
Chapter 10: XMLChapter 10: XML

©Silberschatz, Korth and Sudarshan10.2Database System Concepts

IntroductionIntroduction

! XML: Extensible Markup Language

! Defined by the WWW Consortium (W3C)

! Originally intended as a document markup language not a
database language

" Documents have tags giving extra information about sections of the
document

E.g. <title> XML </title> <slide> Introduction …</slide>

" Derived from SGML (Standard Generalized Markup Language), but
simpler to use than SGML

" Extensible, unlike HTML

Users can add new tags, and separately specify how the tag should
be handled for display

" Goal was (is?) to replace HTML as the language for publishing
documents on the Web

©Silberschatz, Korth and Sudarshan10.3Database System Concepts

XML Introduction (Cont.)XML Introduction (Cont.)

! The ability to specify new tags, and to create nested tag structures
made XML a great way to exchange data, not just documents.
" Much of the use of XML has been in data exchange applications, not as a

replacement for HTML

! Tags make data (relatively) self-documenting
" E.g.

<bank>
<account>

<account-number> A-101 </account-number>
<branch-name> Downtown </branch-name>
<balance> 500 </balance>

</account>
<depositor>

<account-number> A-101 </account-number>
<customer-name> Johnson </customer-name>

</depositor>
</bank>

©Silberschatz, Korth and Sudarshan10.4Database System Concepts

XML: MotivationXML: Motivation

! Data interchange is critical in today’s networked world

" Examples:

Banking: funds transfer

Order processing (especially inter-company orders)

Scientific data

– Chemistry: ChemML, …

– Genetics: BSML (Bio-Sequence Markup Language), …

" Paper flow of information between organizations is being replaced
by electronic flow of information

! Each application area has its own set of standards for
representing information

! XML has become the basis for all new generation data
interchange formats

©Silberschatz, Korth and Sudarshan10.5Database System Concepts

XML Motivation (Cont.)XML Motivation (Cont.)

! Earlier generation formats were based on plain text with line
headers indicating the meaning of fields

" Similar in concept to email headers

" Does not allow for nested structures, no standard “type” language

" Tied too closely to low level document structure (lines, spaces, etc)

! Each XML based standard defines what are valid elements, using

" XML type specification languages to specify the syntax

DTD (Document Type Descriptors)

XML Schema

" Plus textual descriptions of the semantics

! XML allows new tags to be defined as required

" However, this may be constrained by DTDs

! A wide variety of tools is available for parsing, browsing and
querying XML documents/data

©Silberschatz, Korth and Sudarshan10.6Database System Concepts

Structure of XML DataStructure of XML Data

! Tag: label for a section of data

! Element: section of data beginning with <tagname> and ending
with matching </tagname>

! Elements must be properly nested

" Proper nesting

<account> … <balance> …. </balance> </account>

" Improper nesting

<account> … <balance> …. </account> </balance>

" Formally: every start tag must have a unique matching end tag, that
is in the context of the same parent element.

! Every document must have a single top-level element

©Silberschatz, Korth and Sudarshan10.7Database System Concepts

Example of Nested ElementsExample of Nested Elements

<bank-1>
<customer>

<customer-name> Hayes </customer-name>
<customer-street> Main </customer-street>
<customer-city> Harrison </customer-city>
<account>

<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>

</account>
<account>

…
</account>

</customer>
.
.

</bank-1>

©Silberschatz, Korth and Sudarshan10.8Database System Concepts

Motivation for NestingMotivation for Nesting

! Nesting of data is useful in data transfer

" Example: elements representing customer-id, customer name, and
address nested within an order element

! Nesting is not supported, or discouraged, in relational databases

" With multiple orders, customer name and address are stored
redundantly

" normalization replaces nested structures in each order by foreign key
into table storing customer name and address information

" Nesting is supported in object-relational databases

! But nesting is appropriate when transferring data

" External application does not have direct access to data referenced
by a foreign key

©Silberschatz, Korth and Sudarshan10.9Database System Concepts

Structure of XML Data (Cont.)Structure of XML Data (Cont.)

! Mixture of text with sub-elements is legal in XML.
" Example:

<account>
This account is seldom used any more.
<account-number> A-102</account-number>
<branch-name> Perryridge</branch-name>
<balance>400 </balance>

</account>
" Useful for document markup, but discouraged for data

representation

©Silberschatz, Korth and Sudarshan10.10Database System Concepts

AttributesAttributes

! Elements can have attributes
" <account acct-type = “checking” >

<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>

</account>

! Attributes are specified by name=value pairs inside the starting
tag of an element

! An element may have several attributes, but each attribute name
can only occur once

<account acct-type = “checking” monthly-fee=“5”>

©Silberschatz, Korth and Sudarshan10.11Database System Concepts

Attributes Vs. Attributes Vs. SubelementsSubelements

! Distinction between subelement and attribute

" In the context of documents, attributes are part of markup, while
subelement contents are part of the basic document contents

" In the context of data representation, the difference is unclear and
may be confusing

Same information can be represented in two ways

– <account account-number = “A-101”> …. </account>

– <account>
<account-number>A-101</account-number> …

</account>

" Suggestion: use attributes for identifiers of elements, and use
subelements for contents

©Silberschatz, Korth and Sudarshan10.12Database System Concepts

More on XML SyntaxMore on XML Syntax

! Elements without subelements or text content can be abbreviated
by ending the start tag with a /> and deleting the end tag

" <account number=“A-101” branch=“Perryridge” balance=“200 />

! To store string data that may contain tags, without the tags being
interpreted as subelements, use CDATA as below

" <![CDATA[<account> … </account>]]>

#Here, <account> and </account> are treated as just strings

©Silberschatz, Korth and Sudarshan10.13Database System Concepts

NamespacesNamespaces

! XML data has to be exchanged between organizations

! Same tag name may have different meaning in different
organizations, causing confusion on exchanged documents

! Specifying a unique string as an element name avoids confusion

! Better solution: use unique-name:element-name

! Avoid using long unique names all over document by using XML
Namespaces

<bank Xmlns:FB=‘http://www.FirstBank.com’>
…
<FB:branch>

<FB:branchname>Downtown</FB:branchname>
<FB:branchcity> Brooklyn </FB:branchcity>

</FB:branch>
…

</bank>

©Silberschatz, Korth and Sudarshan10.14Database System Concepts

XML Document SchemaXML Document Schema

! Database schemas constrain what information can be stored,
and the data types of stored values

! XML documents are not required to have an associated schema

! However, schemas are very important for XML data exchange

" Otherwise, a site cannot automatically interpret data received from
another site

! Two mechanisms for specifying XML schema

" Document Type Definition (DTD)

Widely used

" XML Schema

Newer, increasing use

©Silberschatz, Korth and Sudarshan10.15Database System Concepts

Document Type Definition (DTD)Document Type Definition (DTD)

! The type of an XML document can be specified using a DTD

! DTD constraints structure of XML data

" What elements can occur

" What attributes can/must an element have

" What subelements can/must occur inside each element, and how
many times.

! DTD does not constrain data types

" All values represented as strings in XML

! DTD syntax

" <!ELEMENT element (subelements-specification) >

" <!ATTLIST element (attributes) >

©Silberschatz, Korth and Sudarshan10.16Database System Concepts

Element Specification in DTDElement Specification in DTD

! Subelements can be specified as
" names of elements, or

" #PCDATA (parsed character data), i.e., character strings

" EMPTY (no subelements) or ANY (anything can be a subelement)

! Example
<! ELEMENT depositor (customer-name account-number)>
<! ELEMENT customer-name (#PCDATA)>
<! ELEMENT account-number (#PCDATA)>

! Subelement specification may have regular expressions
<!ELEMENT bank ((account | customer | depositor)+)>

Notation:

– “|” - alternatives

– “+” - 1 or more occurrences

– “*” - 0 or more occurrences

©Silberschatz, Korth and Sudarshan10.17Database System Concepts

Bank DTDBank DTD

<!DOCTYPE bank [
<!ELEMENT bank ((account | customer | depositor)+)>
<!ELEMENT account (account-number branch-name balance)>
<! ELEMENT customer(customer-name customer-street

customer-city)>
<! ELEMENT depositor (customer-name account-number)>
<! ELEMENT account-number (#PCDATA)>
<! ELEMENT branch-name (#PCDATA)>
<! ELEMENT balance(#PCDATA)>
<! ELEMENT customer-name(#PCDATA)>
<! ELEMENT customer-street(#PCDATA)>
<! ELEMENT customer-city(#PCDATA)>

]>

©Silberschatz, Korth and Sudarshan10.18Database System Concepts

Attribute Specification in DTDAttribute Specification in DTD

! Attribute specification : for each attribute
" Name

" Type of attribute

CDATA

ID (identifier) or IDREF (ID reference) or IDREFS (multiple IDREFs)

– more on this later

" Whether

mandatory (#REQUIRED)

has a default value (value),

or neither (#IMPLIED)

! Examples
" <!ATTLIST account acct-type CDATA “checking”>

" <!ATTLIST customer
customer-id ID # REQUIRED
accounts IDREFS # REQUIRED >

©Silberschatz, Korth and Sudarshan10.19Database System Concepts

IDs and IDs and IDREFsIDREFs

! An element can have at most one attribute of type ID

! The ID attribute value of each element in an XML document must
be distinct

" Thus the ID attribute value is an object identifier

! An attribute of type IDREF must contain the ID value of an
element in the same document

! An attribute of type IDREFS contains a set of (0 or more) ID
values. Each ID value must contain the ID value of an element
in the same document

©Silberschatz, Korth and Sudarshan10.20Database System Concepts

Bank DTD with AttributesBank DTD with Attributes

! Bank DTD with ID and IDREF attribute types.
<!DOCTYPE bank-2[

<!ELEMENT account (branch, balance)>
<!ATTLIST account

account-number ID # REQUIRED
owners IDREFS # REQUIRED>

<!ELEMENT customer(customer-name, customer-street,
customer-city)>

<!ATTLIST customer
customer-id ID # REQUIRED
accounts IDREFS # REQUIRED>

… declarations for branch, balance, customer-name,
customer-street and customer-city

]>

©Silberschatz, Korth and Sudarshan10.21Database System Concepts

XML data with ID and IDREF attributesXML data with ID and IDREF attributes

<bank-2>
<account account-number=“A-401” owners=“C100 C102”>

<branch-name> Downtown </branch-name>
<balance> 500 </balance>

</account>
<customer customer-id=“C100” accounts=“A-401”>

<customer-name>Joe </customer-name>
<customer-street> Monroe </customer-street>
<customer-city> Madison</customer-city>

</customer>
<customer customer-id=“C102” accounts=“A-401 A-402”>

<customer-name> Mary </customer-name>
<customer-street> Erin </customer-street>
<customer-city> Newark </customer-city>

</customer>
</bank-2>

©Silberschatz, Korth and Sudarshan10.22Database System Concepts

Limitations of Limitations of DTDsDTDs

! No typing of text elements and attributes

" All values are strings, no integers, reals, etc.

! Difficult to specify unordered sets of subelements

" Order is usually irrelevant in databases

" (A | B)* allows specification of an unordered set, but

Cannot ensure that each of A and B occurs only once

! IDs and IDREFs are untyped

" The owners attribute of an account may contain a reference to
another account, which is meaningless

owners attribute should ideally be constrained to refer to
customer elements

©Silberschatz, Korth and Sudarshan10.23Database System Concepts

XML SchemaXML Schema

! XML Schema is a more sophisticated schema language which
addresses the drawbacks of DTDs. Supports

" Typing of values

E.g. integer, string, etc

Also, constraints on min/max values

" User defined types

" Is itself specified in XML syntax, unlike DTDs

More standard representation, but verbose

" Is integrated with namespaces

" Many more features

List types, uniqueness and foreign key constraints, inheritance ..

! BUT: significantly more complicated than DTDs, not yet widely
used.

©Silberschatz, Korth and Sudarshan10.24Database System Concepts

XML Schema Version of Bank DTDXML Schema Version of Bank DTD
<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema>
<xsd:element name=“bank” type=“BankType”/>

<xsd:element name=“account”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“account-number” type=“xsd:string”/>
<xsd:element name=“branch-name” type=“xsd:string”/>
<xsd:element name=“balance” type=“xsd:decimal”/>

</xsd:squence>
</xsd:complexType>

</xsd:element>

….. definitions of customer and depositor ….

<xsd:complexType name=“BankType”>
<xsd:squence>

<xsd:element ref=“account” minOccurs=“0” maxOccurs=“unbounded”/>
<xsd:element ref=“customer” minOccurs=“0” maxOccurs=“unbounded”/>
<xsd:element ref=“depositor” minOccurs=“0” maxOccurs=“unbounded”/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

©Silberschatz, Korth and Sudarshan10.25Database System Concepts

Querying and Transforming XML DataQuerying and Transforming XML Data

! Translation of information from one XML schema to another

! Querying on XML data

! Above two are closely related, and handled by the same tools

! Standard XML querying/translation languages
" XPath

Simple language consisting of path expressions

" XSLT

Simple language designed for translation from XML to XML and
XML to HTML

" XQuery

An XML query language with a rich set of features

! Wide variety of other languages have been proposed, and some
served as basis for the Xquery standard
" XML-QL, Quilt, XQL, …

©Silberschatz, Korth and Sudarshan10.26Database System Concepts

Tree Model of XML DataTree Model of XML Data

! Query and transformation languages are based on a tree model of
XML data

! An XML document is modeled as a tree, with nodes corresponding
to elements and attributes
" Element nodes have children nodes, which can be attributes or

subelements

" Text in an element is modeled as a text node child of the element

" Children of a node are ordered according to their order in the XML
document

" Element and attribute nodes (except for the root node) have a single
parent, which is an element node

" The root node has a single child, which is the root element of the
document

! We use the terminology of nodes, children, parent, siblings,
ancestor, descendant, etc., which should be interpreted in the
above tree model of XML data.

©Silberschatz, Korth and Sudarshan10.27Database System Concepts

XPathXPath

! XPath is used to address (select) parts of documents using
path expressions

! A path expression is a sequence of steps separated by “/”

" Think of file names in a directory hierarchy

! Result of path expression: set of values that along with their
containing elements/attributes match the specified path

! E.g. /bank-2/customer/customer-name evaluated on the
bank-2 data we saw earlier returns

<customer-name>Joe</customer-name>
<customer-name>Mary</customer-name>

! E.g. /bank-2/customer/customer-name/text()
returns the same names, but without the enclosing tags

©Silberschatz, Korth and Sudarshan10.28Database System Concepts

XPath XPath (Cont.)(Cont.)

! The initial “/” denotes root of the document (above the top-level tag)

! Path expressions are evaluated left to right

" Each step operates on the set of instances produced by the previous step

! Selection predicates may follow any step in a path, in []

" E.g. /bank-2/account[balance > 400]

returns account elements with a balance value greater than 400

/bank-2/account[balance] returns account elements containing a
balance subelement

! Attributes are accessed using “@”

" E.g. /bank-2/account[balance > 400]/@account-number

returns the account numbers of those accounts with balance > 400

" IDREF attributes are not dereferenced automatically (more on this later)

©Silberschatz, Korth and Sudarshan10.29Database System Concepts

Functions in Functions in XPathXPath

! XPath provides several functions
" The function count() at the end of a path counts the number of

elements in the set generated by the path

E.g. /bank-2/account[customer/count() > 2]

– Returns accounts with > 2 customers

" Also function for testing position (1, 2, ..) of node w.r.t. siblings

! Boolean connectives and and or and function not() can be used
in predicates

! IDREFs can be referenced using function id()
" id() can also be applied to sets of references such as IDREFS and

even to strings containing multiple references separated by blanks

" E.g. /bank-2/account/id(@owner)

returns all customers referred to from the owners attribute
of account elements.

©Silberschatz, Korth and Sudarshan10.30Database System Concepts

More More XPathXPath FeaturesFeatures

! Operator “|” used to implement union

" E.g. /bank-2/account/id(@owner) | /bank-2/loan/id(@borrower)

gives customers with either accounts or loans

However, “|” cannot be nested inside other operators.

! “//” can be used to skip multiple levels of nodes

" E.g. /bank-2//customer-name

finds any customer-name element anywhere under the /bank-2 element,
regardless of the element in which it is contained.

! A step in the path can go to:

parents, siblings, ancestors and descendants

of the nodes generated by the previous step, not just to the children

" “//”, described above, is a short from for specifying “all descendants”

" “..” specifies the parent.

" We omit further details,

©Silberschatz, Korth and Sudarshan10.31Database System Concepts

XSLTXSLT

! A stylesheet stores formatting options for a document, usually
separately from document

" E.g. HTML style sheet may specify font colors and sizes for
headings, etc.

! The XML Stylesheet Language (XSL) was originally designed
for generating HTML from XML

! XSLT is a general-purpose transformation language

" Can translate XML to XML, and XML to HTML

! XSLT transformations are expressed using rules called
templates
" Templates combine selection using XPath with construction of

results

©Silberschatz, Korth and Sudarshan10.32Database System Concepts

XSLT TemplatesXSLT Templates

! Example of XSLT template with match and select part
<xsl:template match=“/bank-2/customer”>

<xsl:value-of select=“customer-name”/>
</xsl:template>
<xsl:template match=“*”/>

! The match attribute of xsl:template specifies a pattern in XPath

! Elements in the XML document matching the pattern are processed
by the actions within the xsl:template element
" xsl:value-of selects (outputs) specified values (here, customer-name)

! For elements that do not match any template
" Attributes and text contents are output as is
" Templates are recursively applied on subelements

! The <xsl:template match=“*”/> template matches all
elements that do not match any other template
" Used to ensure that their contents do not get output.

©Silberschatz, Korth and Sudarshan10.33Database System Concepts

XSLT Templates (Cont.)XSLT Templates (Cont.)

! If an element matches several templates, only one is used
" Which one depends on a complex priority scheme/user-defined

priorities
" We assume only one template matches any element

©Silberschatz, Korth and Sudarshan10.34Database System Concepts

Creating XML OutputCreating XML Output

! Any text or tag in the XSL stylesheet that is not in the xsl
namespace is output as is

! E.g. to wrap results in new XML elements.
<xsl:template match=“/bank-2/customer”>

<customer>
<xsl:value-of select=“customer-name”/>
</customer>

</xsl;template>
<xsl:template match=“*”/>

" Example output:
<customer> Joe </customer>
<customer> Mary </customer>

©Silberschatz, Korth and Sudarshan10.35Database System Concepts

Creating XML Output (Cont.)Creating XML Output (Cont.)

! Note: Cannot directly insert a xsl:value-of tag inside another tag
" E.g. cannot create an attribute for <customer> in the previous example

by directly using xsl:value-of
" XSLT provides a construct xsl:attribute to handle this situation

xsl:attribute adds attribute to the preceding element
E.g. <customer>

<xsl:attribute name=“customer-id”>
<xsl:value-of select = “customer-id”/>

</xsl:attribute>
</customer>

results in output of the form
<customer customer-id=“….”> ….

! xsl:element is used to create output elements with computed
names

©Silberschatz, Korth and Sudarshan10.36Database System Concepts

Structural RecursionStructural Recursion

! Action of a template can be to recursively apply templates to the
contents of a matched element

! E.g.
<xsl:template match=“/bank”>

<customers>
<xsl:template apply-templates/>

</customers >
</xsl:template>
<xsl:template match=“/customer”>

<customer>
<xsl:value-of select=“customer-name”/>

</customer>
</xsl:template>
<xsl:template match=“*”/>

! Example output:
<customers>

<customer> John </customer>
<customer> Mary </customer>

</customers>

©Silberschatz, Korth and Sudarshan10.37Database System Concepts

Joins in XSLTJoins in XSLT

! XSLT keys allow elements to be looked up (indexed) by values of
subelements or attributes
! Keys must be declared (with a name) and, the key() function can then

be used for lookup. E.g.

! <xsl:key name=“acctno” match=“account”
use=“account-number”/>

! <xsl:value-of select=key(“acctno”, “A-101”)
! Keys permit (some) joins to be expressed in XSLT

<xsl:key name=“acctno” match=“account” use=“account-number”/>
<xsl:key name=“custno” match=“customer” use=“customer-name”/>
<xsl:template match=“depositor”>

<cust-acct>
<xsl:value-of select=key(“custno”, “customer-name”)/>
<xsl:value-of select=key(“acctno”, “account-number”)/>
</cust-acct>

</xsl:template>
<xsl:template match=“*”/>

©Silberschatz, Korth and Sudarshan10.38Database System Concepts

Sorting in XSLTSorting in XSLT

! Using an xsl:sort directive inside a template causes all elements
matching the template to be sorted
" Sorting is done before applying other templates

! E.g.
<xsl:template match=“/bank”>

<xsl:apply-templates select=“customer”>
<xsl:sort select=“customer-name”/>
</xsl:apply-templates>

</xsl:template>
<xsl:template match=“customer”>

<customer>
<xsl:value-of select=“customer-name”/>
<xsl:value-of select=“customer-street”/>
<xsl:value-of select=“customer-city”/>

</customer>
<xsl:template>
<xsl:template match=“*”/>

©Silberschatz, Korth and Sudarshan10.39Database System Concepts

XQueryXQuery

! XQuery is a general purpose query language for XML data

! Currently being standardized by the World Wide Web Consortium
(W3C)

" The textbook description is based on a March 2001 draft of the standard.
The final version may differ, but major features likely to stay unchanged.

! Alpha version of XQuery engine available free from Microsoft

! XQuery is derived from the Quilt query language, which itself borrows
from SQL, XQL and XML-QL

! XQuery uses a
for … let … where .. result …

syntax
for $ SQL from
where $ SQL where
result $ SQL select
let allows temporary variables, and has no equivalent in SQL

©Silberschatz, Korth and Sudarshan10.40Database System Concepts

FLWR Syntax inFLWR Syntax in XQuery XQuery

! For clause uses XPath expressions, and variable in for clause
ranges over values in the set returned by XPath

! Simple FLWR expression in XQuery

" find all accounts with balance > 400, with each result enclosed in
an <account-number> .. </account-number> tag

for $x in /bank-2/account
let $acctno := $x/@account-number
where $x/balance > 400
return <account-number> $acctno </account-number>

! Let clause not really needed in this query, and selection can be
done In XPath. Query can be written as:

for $x in /bank-2/account[balance>400]
return <account-number> $x/@account-number

</account-number>

©Silberschatz, Korth and Sudarshan10.41Database System Concepts

Path Expressions and FunctionsPath Expressions and Functions

! Path expressions are used to bind variables in the for clause, but
can also be used in other places
" E.g. path expressions can be used in let clause, to bind variables to

results of path expressions

! The function distinct() can be used to removed duplicates in
path expression results

! The function document(name) returns root of named document

" E.g. document(“bank-2.xml”)/bank-2/account

! Aggregate functions such as sum() and count() can be applied
to path expression results

! XQuery does not support group by, but the same effect can be
got by nested queries, with nested FLWR expressions within a
result clause
" More on nested queries later

©Silberschatz, Korth and Sudarshan10.42Database System Concepts

JoinsJoins

! Joins are specified in a manner very similar to SQL
for $a in /bank/account,

$c in /bank/customer,
$d in /bank/depositor

where $a/account-number = $d/account-number
and $c/customer-name = $d/customer-name

return <cust-acct> $c $a </cust-acct>

! The same query can be expressed with the selections specified
as XPath selections:

for $a in /bank/account
$c in /bank/customer
$d in /bank/depositor[

account-number = $a/account-number and
customer-name = $c/customer-name]

return <cust-acct> $c $a</cust-acct>

©Silberschatz, Korth and Sudarshan10.43Database System Concepts

Changing Nesting StructureChanging Nesting Structure

! The following query converts data from the flat structure for bank
information into the nested structure used in bank-1
<bank-1>

for $c in /bank/customer
return

<customer>
$c/*
for $d in /bank/depositor[customer-name = $c/customer-name],

$a in /bank/account[account-number=$d/account-number]
return $a

</customer>
</bank-1>

! $c/* denotes all the children of the node to which $c is bound, without the
enclosing top-level tag

! Exercise for reader: write a nested query to find sum of account
balances, grouped by branch.

©Silberschatz, Korth and Sudarshan10.44Database System Concepts

XQueryXQuery Path ExpressionsPath Expressions

! $c/text() gives text content of an element without any
subelements/tags

! XQuery path expressions support the “–>” operator for
dereferencing IDREFs

" Equivalent to the id() function of XPath, but simpler to use

" Can be applied to a set of IDREFs to get a set of results

" June 2001 version of standard has changed “–>” to “=>”

©Silberschatz, Korth and Sudarshan10.45Database System Concepts

Sorting in Sorting in XQuery XQuery

! Sortby clause can be used at the end of any expression. E.g. to
return customers sorted by name

for $c in /bank/customer
return <customer> $c/* </customer> sortby(name)

! Can sort at multiple levels of nesting (sort by customer-name, and by
account-number within each customer)

<bank-1>
for $c in /bank/customer
return

<customer>
$c/*
for $d in /bank/depositor[customer-name=$c/customer-name],

$a in /bank/account[account-number=$d/account-number]
return <account> $a/* </account> sortby(account-number)

</customer> sortby(customer-name)
</bank-1>

©Silberschatz, Korth and Sudarshan10.46Database System Concepts

Functions and Other Functions and Other XQueryXQuery FeaturesFeatures

! User defined functions with the type system of XMLSchema
function balances(xsd:string $c) returns list(xsd:numeric) {

for $d in /bank/depositor[customer-name = $c],
$a in /bank/account[account-number=$d/account-number]

return $a/balance
}

! Types are optional for function parameters and return values

! Universal and existential quantification in where clause predicates

" some $e in path satisfies P

" every $e in path satisfies P

! XQuery also supports If-then-else clauses

©Silberschatz, Korth and Sudarshan10.47Database System Concepts

Application Program InterfaceApplication Program Interface

! There are two standard application program interfaces to XML
data:

" SAX (Simple API for XML)

#Based on parser model, user provides event handlers for
parsing events

– E.g. start of element, end of element

– Not suitable for database applications

" DOM (Document Object Model)

#XML data is parsed into a tree representation

#Variety of functions provided for traversing the DOM tree

#E.g.: Java DOM API provides Node class with methods
getParentNode(), getFirstChild(), getNextSibling()
getAttribute(), getData() (for text node)
getElementsByTagName(), …

#Also provides functions for updating DOM tree

©Silberschatz, Korth and Sudarshan10.48Database System Concepts

Storage of XML DataStorage of XML Data

! XML data can be stored in

" Non-relational data stores

Flat files

– Natural for storing XML

– But has all problems discussed in Chapter 1 (no concurrency,
no recovery, …)

XML database

– Database built specifically for storing XML data, supporting
DOM model and declarative querying

– Currently no commercial-grade systems

" Relational databases

Data must be translated into relational form

Advantage: mature database systems

Disadvantages: overhead of translating data and queries

©Silberschatz, Korth and Sudarshan10.49Database System Concepts

Storage of XML in Relational DatabasesStorage of XML in Relational Databases

! Alternatives:

" String Representation

" Tree Representation

" Map to relations

©Silberschatz, Korth and Sudarshan10.50Database System Concepts

String RepresentationString Representation

! Store each top level element as a string field of a tuple in a
relational database

" Use a single relation to store all elements, or

" Use a separate relation for each top-level element type

E.g. account, customer, depositor relations

– Each with a string-valued attribute to store the element

! Indexing:

" Store values of subelements/attributes to be indexed as extra fields
of the relation, and build indices on these fields

E.g. customer-name or account-number

" Oracle 9 supports function indices which use the result of a
function as the key value.

The function should return the value of the required
subelement/attribute

©Silberschatz, Korth and Sudarshan10.51Database System Concepts

String Representation (Cont.)String Representation (Cont.)

! Benefits:

" Can store any XML data even without DTD

" As long as there are many top-level elements in a document, strings
are small compared to full document

Allows fast access to individual elements.

! Drawback: Need to parse strings to access values inside the
elements

" Parsing is slow.

©Silberschatz, Korth and Sudarshan10.52Database System Concepts

Tree RepresentationTree Representation

! Tree representation: model XML data as tree and store using
relations

nodes(id, type, label, value)
child (child-id, parent-id)

! Each element/attribute is given a unique identifier

! Type indicates element/attribute

! Label specifies the tag name of the element/name of attribute

! Value is the text value of the element/attribute

! The relation child notes the parent-child relationships in the tree

" Can add an extra attribute to child to record ordering of children

bank (id:1)

customer (id:2) account (id: 5)

customer-name
(id: 3)

account-number
(id: 7)

©Silberschatz, Korth and Sudarshan10.53Database System Concepts

Tree Representation (Cont.)Tree Representation (Cont.)

! Benefit: Can store any XML data, even without DTD

! Drawbacks:

" Data is broken up into too many pieces, increasing space overheads

" Even simple queries require a large number of joins, which can be
slow

©Silberschatz, Korth and Sudarshan10.54Database System Concepts

Mapping XML Data to RelationsMapping XML Data to Relations

! Map to relations
" If DTD of document is known, can map data to relations

" A relation is created for each element type

Elements (of type #PCDATA), and attributes are mapped to
attributes of relations

More details on next slide …

! Benefits:

" Efficient storage

" Can translate XML queries into SQL, execute efficiently, and then
translate SQL results back to XML

! Drawbacks: need to know DTD, translation overheads still
present

©Silberschatz, Korth and Sudarshan10.55Database System Concepts

Mapping XML Data to Relations (Cont.)Mapping XML Data to Relations (Cont.)

! Relation created for each element type contains

" An id attribute to store a unique id for each element

" A relation attribute corresponding to each element attribute

" A parent-id attribute to keep track of parent element

As in the tree representation

Position information (ith child) can be store too

! All subelements that occur only once can become relation
attributes

" For text-valued subelements, store the text as attribute value

" For complex subelements, can store the id of the subelement

! Subelements that can occur multiple times represented in a
separate table

" Similar to handling of multivalued attributes when converting ER
diagrams to tables

©Silberschatz, Korth and Sudarshan10.56Database System Concepts

Mapping XML Data to Relations (Cont.)Mapping XML Data to Relations (Cont.)

! E.g. For bank-1 DTD with account elements nested within customer
elements, create relations

" customer(id, parent-id, customer-name, customer-stret, customer-city)

parent-id can be dropped here since parent is the sole root element

All other attributes were subelements of type #PCDATA, and occur
only once

" account (id, parent-id, account-number, branch-name, balance)

parent-id keeps track of which customer an account occurs under

Same account may be represented many times with different parents

