‘ Chapter 13: Query Processing

m Overview
B Measures of Query Cost

B Selection Operation

‘ Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

Basic Steps in Query Processing
(Cont.)

® Parsing and translation

* translate the query into its internal form. This is then
translated into relational algebra.

Basic Steps in Query Processing :
Optimization
m A relational algebra expression may have many equivalent

expressions

* E.0., Opaiance<2500(Mbatance(@CcoUNY)) is equivalent to
nbalance(obalance<2500(account))

‘ Basic Steps: Optimization (Cont.)

B Query Optimization: Amongst all equivalent evaluation plans
choose the one with lowest cost.

* Cost is estimated using statistical information from the
database catalog

= e.g. number of tuples in each relation, size of tuples, etc.

‘ Measures of Query Cost

B Cost is generally measured as total elapsed time for
answering query

* Many factors contribute to time cost
= disk accesses, CPU, or even network communication

m Typicall

disk access is the predominant cost, and is also

‘ Measures of Query Cost (Cont.)

m For simplicity we just use number of block transfers from disk as the

cost measure
* We ignore the difference in cost between sequential and random 1/O for
simplicity
* We also ignore CPU costs for simplicity
®m Costs depends on the size of the buffer in main memory

‘ Selection Operation

B File scan — search algorithms that locate and retrieve records
that fulfill a selection condition.

m Algorithm Al (linear search). Scan each file block and test all
records to see whether they satisfy the selection condition.

#* Cost estimate (number of disk blocks scanned) = b,

‘ Selection Operation (Cont.)

m A2 (binary search). Applicable if selection is an equality
comparison on the attribute on which file is ordered.

* Assume that the blocks of a relation are stored contiguously

‘ Selections Using Indices

B Index scan — search algorithms that use an index
* selection condition must be on search-key of index.

B A3 (primary index on candidate key, equality). Retrieve a single record
that satisfies the corresponding equality condition

* Cost=HT;+1

‘ Selections Involving Comparisons

m Can implement selections of the form o, (r) or g, (r) by using
* a linear file scan or binary search,
* or by using indices in the following ways:

B A6 (primary index, comparison). (Relation is sorted on A)

> For g, .(r) use index to find first tuple > v and scan relation
sequentially from there

‘mplementation of Complex Selections

® Conjunction: Qg g, .. g/(r)
B A8 (conjunctive selection using one index).

* Select a combination of 6, and algorithms Al through A7 that
results in the least cost forayg; (r).

* Test other conditions on tuple after fetching it into memory buffer.

‘ Algorithms for Complex Selections

® Disjunction:0g, g, [l . . g, (1.
B Al1l (disjunctive selection by union of identifiers).

* Applicable if all conditions have available indices.
= Otherwise use linear scan.

‘ Sorting

® We may build an index on the relation, and then use the index to

read the relation in sorted order. May lead to one disk block
access for each tuple.

®m For relations that fit in memory, techniques like quicksort can be

‘ External Sort-Merge

Let M denote memory size (in pages).

1. Create sorted runs. Letibe 0 initially.
Repeatedly do the following till the end of the relation:
(@) Read M blocks of relation into memory
(b) Sort the in-memory blocks
(c) Write sorted data to run R;; increment i.

‘ External Sort-Merge (Cont.)

m Ifi > M, several merge passes are required.

* In each pass, contiguous groups of M - 1 runs are
merged.

‘Example: External Sorting Using Sort-Merge
g |24 [d [31] : i a | 14
n |24 g |4 1 . ETY all9
d [31 = “_j 5] B[4
c (33 € (33

c |3 @ | 1
b [14 = d| 7
efis| lel®] LE a2
vjis] KA L
d |21 m| 3 -4 B |16
ml3 [“‘1 B AE
pl2 L m{ 3
a7l [uj . I ol 2
ajia| [E]7 P]i e
T

gt L2 ——
relation TunE runs output

creale THITRE (HTE SIS

Tuns pass-| pass—2

‘ External Merge Sort (Cont.)

m Cost analysis:
* Total number of merge passes required: [log,, ;(b,/M) .
* Disk accesses for initial run creation as well as in each pass is 2b,

= for final pass, we don’t count write cost

‘ Join Operation

m Several different algorithms to implement joins
* Nested-loop join

* Block nested-loop join

‘ Nested-Loop Join

® To compute the theta join r Xgs
for each tuple t.in r do begin

for each tuple t; in s do begin

test pair (t.t.) to see if they satisfy the join condition 6

10

‘ Nested-Loop Join (Cont.)

® In the worst case, if there is enough memory only to hold
one block of each relation, the estimated cost is

n, Obg + b,
disk accesses.
m |f the smaller relation fits entirely in memory, use that as the

‘ Block Nested-Loop Join

®m Variant of nested-loop join in which every block of inner
relation is paired with every block of outer relation.

for each block B, of r do begin
for each block B4 of s do begin

11

A Block Nested-Loop Join (Cont.)

~

B Worst case estimate: b, Ob, + b, block accesses.

* Each block in the inner relation s is read once for each block in
the outer relation (instead of once for each tuple in the outer
relation

B Best case: b, + bg block accesses.

B |Improvements to nested loop and block nested loop
algorithms:

* In block nested-loop, use M — 2 disk blocks as blocking unit for
outer relations, where M = memory size in blocks; use remaining
two blocks to buffer inner relation and output

> Cost= [b, /(M-2)]0bg + b,

* If equi-join attribute forms a key or inner relation, stop inner loop

on first match

* Scan inner loop forward and backward alternately, to make u
the blocks remaining in buffer (with LRU replacement)

* Use index on inner relation if available (next slide)

Database System Concepts 13.23 ©Silberschatz, Ko

& Indexed Nested-Loop Join

B Index lookups can replace file scans if
* join is an equi-join or natural join and
* an index is available on the inner relation’s join attribute
= Can construct an index just to compute a join.

B For each tuple t, in the outer relation r, use the index to look up
tuples in s that satisfy the join condition with tuple t,.

B Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.
m Costof the join: b, +n, Oc

* Where c is the cost of traversing index and fetching all matching s
tuples for one tuple or r

* c can be estimated as cost of a single selection on s using the join
condition.

m If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.

Database System Concepts 13.24 ©Silberschatz,

12

‘Example of Nested-Loop Join Costs

® Compute depositor X customer, with depositor as the outer
relation.

m Let customer have a primary B*-tree index on the join attribute
customer-name, which contains 20 entries in each index node.

®m Since customer has 10,000 tuples, the height of the tree is 4, and

‘ Merge-Join

1. Sort both relations on their join attribute (if not already sorted on the
join attributes).

2. Merge the sorted relations to join them
1. Join step is similar to the merge stage of the sort-merge algorithm.

2. Main difference is handling of duplicate values in join attribute — every
pair with same value on join attribute must be matched

‘ Merge-Join (Cont.)

B Can be used only for equi-joins and natural joins

B Each block needs to be read only once (assuming all tuples for
any given value of the join attributes fit in memory

B Thus number of block accesses for merge-join is

‘ Hash-Join

m Applicable for equi-joins and natural joins.
B A hash function h is used to partition tuples of both relations

B h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes
the common attributes of r and s used in the natural join.

* 1,

14

[]

Hash-Join (Cont.)

@

Hash-Join (Cont.)

B r tuples in r; need only to be compared with s tuples in s;
Need not be compared with s tuples in any other partition,

15

[]

The hash-join of r and s is computed as follows.

Hash-Join Algorithm

1. Partition the relation s using hashing function h. When
partitioning a relation, one block of memory is reserved as
the output buffer for each partition.

2. Partition r similarly.

@

Hash-Join algorithm (Cont.)

The value n and the hash function h is chosen such that each
s; should fit in memory.

* Typically n is chosen as |_bs/M-| *f where fis a “fudge factor”,
typically around 1.2

* The probe relation partitions s; need not fit in memory

~

A Handling of Overflows

B Hash-table overflow occurs in partition s; if s; does not fit in
memory. Reasons could be

* Many tuples in s with same value for join attributes
* Bad hash function

m Partitioning is said to be skewed if some partitions have
significantly more tuples than some others

m Overflow resolution can be done in build phase
* Partition s; is further partitioned using different hash function.
* Partition r, must be similarly partitioned.

m Overflow avoidance performs partitioning carefully to avoid
overflows during build phase

* E.g. partition build relation into many partitions, then combine them
® Both approaches fail with large numbers of duplicates

* Fallback option: use block nested loops join on overflowed
partitions

Database System Concepts 13.33 ©Silberschatz, Ko

~

A Cost of Hash-Join

m |f recursive partitioning is not required: cost of hash join is
3(b, + bg) +2 On,

m |[f recursive partitioning required, number of passes required for
partitioning s is [log,, ,(b,) — 1. This is because each final
partition of s should fit in memory.

B The number of partitions of probe relation r is the same as that

for build relation s; the number of passes for partitioning of r is
also the same as for s.

B Therefore it is best to choose the smaller relation as the build
relation.

B Total cost estimate is:
2(br o bsl_IOQM—l(bs) = 1—| o br i bs

m |f the entire build input can be kept in main memory, n can b
set to 0 and the algorithm does not partition the relations int
temporary files. Cost estimate goes down to b, + b.

Database System Concepts 13.34 ©Silberschatz,

17

‘ Example of Cost of Hash-Join

customer X depositor
B Assume that memory size is 20 blocks

B bgepositor= 100 and beysiomer = 400.

B depositor is to be used as build input. Partition it into five partitions,
each of size 20 blocks. This partitioning can be done in one pass.

‘ Hybrid Hash-Join

m Useful when memory sized are relatively large, and the build input
is bigger than memory.

B Main feature of hybrid hash join:
Keep the first partition of the build relation in memory.

m E.g. With memory size of 25 blocks, depositor can be partitioned
into five partitions, each of size 20 blocks.

‘ Complex Joins

B Join with a conjunctive condition:

1 Mo 2n min S
* Either use nested loops/block nested loops, or

* Compute the result of one of the simpler joins rX 4s

‘ Other Operations

B Duplicate elimination can be implemented via
hashing or sorting.

* On sorting duplicates will come adjacent to each other,

19

‘ Other Operations : Aggregation

B Aggregation can be implemented in a manner similar to

duplicate elimination.

* Sorting or hashing can be used to bring tuples in the same group
together, and then the aggregate functions can be applied on each
group.

* Optimization: combine tuples in the same group during run

‘ Other Operations : Set Operations

m Set operations (O, n and O0): can either use variant of
merge-join after sorting, or variant of hash-join.

m E.g., Set operations using hashing:

1. Partition both relations using the same hash function, thereby
creating ry ryrp and s; sy s,

2. Process each partition i as follows. Using a different hashing

20

‘ Other Operations : Outer Join

m Outer join can be computed either as
* A join followed by addition of null-padded non-patrticipating tuples.
* by modifying the join algorithms.

B Modifying merge join to compute r X s

‘ Evaluation of Expressions

m So far: we have seen algorithms for individual operations
m Alternatives for evaluating an entire expression tree

* Materialization: generate results of an expression whose inputs
are relations or are already computed, materialize (store) it on disk.
Repeat.

21

‘ Materialization

m Materialized evaluation: evaluate one operation at a
time, starting at the lowest-level. Use intermediate
results materialized into temporary relations to evaluate
next-level operations.

m E.g., in figure below, compute and store

‘ Materialization (Cont.)

m Materialized evaluation is always applicable

m Cost of writing results to disk and reading them back can be
quite high
* Our cost formulas for operations ignore cost of writing results to

Pipelining

B Pipelined evaluation : evaluate several operations
simultaneously, passing the results of one operation on to the next.

B E.g., in previous expression tree, don’t store result of

g balance <2500 (account)
* instead, pass tuples directly to the join.. Similarly, don’t store result of

Pipelining (Cont.)

® [ndemand driven or lazy evaluation
* system repeatedly requests next tuple from top level operation

* Each operation requests next tuple from children operations as required, in order to
output its next tuple

* In between calls, operation has to maintain “state” so it knows what to return next
* Each operation is implemented as an iterator implementing the following operations

23

‘ Pipelining (Cont.)

B In produce-driven or eager pipelining
* Operators produce tuples eagerly and pass them up to their parents

= Buffer maintained between operators, child puts tuples in buffer,
parent removes tuples from buffer

= if buffer is full, child waits till there is space in the buffer, and then

‘Evaluation Algorithms for Pipelining

B Some algorithms are not able to output results even as they get
input tuples
* E.g. merge join, or hash join

* These result in intermediate results being written to disk and then
read back always

24

m Strategy 1. Compute depositorX| customer; use result to

Complex Joins

Join involving three relations: loan[X depositor X customer

compute loan X (depositor x| customer)

Strategy 2. Computer loan X depositor first, and then join
the result with customer.

25

