‘ Chapter 14: Query Optimization

B Introduction
B Catalog Information for Cost Estimation
B Estimation of Statistics

‘ Introduction

m Alternative ways of evaluating a given query
* Equivalent expressions
* Different algorithms for each operation (Chapter 13)

®m Cost difference between a good and a bad way of evaluating a
query can be enormous

* Example: performing ar X s followed by a selection r.A =s.B is

‘ Introduction (Cont.)

Relations generated by two equivalent expressions have the
same set of attributes and contain the same set of tuples,
although their attributes may be ordered differently.

n AU TG

nl’-“T"ull-'"""Hll-ﬂF

Uhﬁmhﬂl.-—ﬂnmu}u |

|
™ -

o brpock-rive=Breakfyn

T | N\

QTR depaior il T e
{a) Enilial Expression Tree (b1 Tromsformed Expression Trose

Introduction (Cont.)

[]

m Generation of query-evaluation plans for an expression involves
several steps:

1. Generating logically equivalent expressions

‘ Overview of chapter

H Statistical information for cost estimation
® Equivalence rules

B Cost-based optimization algorithm

C Estimation

B n.: number of tuples in a relation r.

B b, number of blocks containing tuples of r.

B s size of atuple of r.

m f: blocking factor of r — i.e., the number of tuples of r that

‘ Catalog Information about Indices

m f;: average fan-out of internal nodes of index i, for
tree-structured indices such as B+-trees.

® HT;: number of levels in index i — i.e., the height of i.

‘ Measures of Query Cost

® Recall that

* Typically disk access is the predominant cost, and is also
relatively easy to estimate.

* The number of block transfers from disk is used as a

‘ Selection Size Estimation

m Equality selection a,_,(r)
= SC(A, r) : number of records that will satisfy the selection
[SC(A, r)/f.]| — number of blocks that these records will

‘Statistical Information for Examples

mf =20 (20 tuples of account fit in one block)

account™

m V(branch-name, account) = 50 (50 branches)

m V(balance, account) =500 (500 different balance values)

‘ Selections Involving Comparisons

B Selections of the form g,.,(r) (case of g, (r) is symmetric)

B Let c denote the estimated number of tuples satisfying the
condition.

* If min(A,r) and max(A,r) are available in catalog

‘mplementation of Complex Selections

® The selectivity of a condition 6, is the probability that a tuple in
the relation r satisfies 8, . If s, is the number of satisfying tuples
in r, the selectivity of 6, is given by s, /n,.

‘ Join Operation: Running Example

Running example:
depositor X customer

Catalog information for join examples:
H n =10,000.

customer

‘ Estimation of the Size of Joins

B The Cartesian product r x s contains n, .n, tuples; each tuple
occupies s, + s, bytes.

m IfRn S=10,thenr Xsisthe sameasr xs.

B IfR n Sis akey for R, then a tuple of s will join with at most
one tuple from r

‘Estimation of the Size of Joins (Cont.)

B IfRn S={A}is notakeyfor R or S.

If we assume that every tuple t in R produces tuples in R XIS, the
number of tuples in R X/ S is estimated to be:

n, Ong
V(A,s)

‘Estimation of the Size of Joins (Cont.)

m Compute the size estimates for depositor Xlcustomer without
using information about foreign keys:

* V(customer-name, depositor) = 2500, and
V(customer-name, customer) = 10000

* The two estimates are 5000 * 10000/2500 - 20,000 and 5000 *

‘Size Estimation for Other Operations

B Projection: estimated size of [1,(r) = V(A,)
B Aggregation : estimated size of ,gk(r) = V(Ar)

B Set operations
* For unions/intersections of selections on the same relation: rewrite

‘ Size Estimation (Cont.)

®m OQuter join:
* Estimated size of r _]X| s = size of rX| s + size of r
= Case of right outer join is symmetric

‘Estimation of Number of Distinct Values

Selections: gy (r)
m [f @ forces A to take a specified value: V(A,oq (1)) = 1.
2>eg.,A=3

10

‘Estimation of Distinct Values (Cont.)

Joins:r X's
m If all attributes in A are from r

‘Estimation of Distinct Values (Cont.)

m Estimation of distinct values are straightforward for projections.
* They are the same in [, asinr.
B The same holds for grouping attributes of aggregation.

11

‘ Transformation of Relational
Expressions
® Two relational algebra expressions are said to be equivalent if on

every legal database instance the two expressions generate the
same set of tuples

* Note: order of tuples is irrelevant

‘ Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

046, (E) =0, (0, (E))
2. Selection operations are commutative.

‘Pictorial Depiction of Equivalence Rules

Rk i

If Banly has
sinibuies from E1

‘ Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
EXg E; = B, E;
6. (a) Natural join operations are associative:
(E;XE,) ME, = E;X(E,X Ey)

13

‘ Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation
under the following two conditions:
(a) When all the attributes in 8, involve only the attributes of one
of the expressions (E;) being joined.

‘ Equivalence Rules (Cont.)

8. The projections operation distributes over the theta join operation
as follows:

(a) if /7 involves only attributes from L, O L,:

‘ Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative
E,0E, =E,OE,
E,.nE, =E,n E;
B (set difference is not commutative).

10. Set union and intersection are associative.

‘ Transformation Example

B Query: Find the names of all customers who have an account at
some branch located in Brooklyn.

n customer—name(obranch-cny = “Brooklyn”

(branch X (accountX depositor)))

® Transformation using rule 7a.

15

‘xample with Multiple Transformations

B Query: Find the names of all customers with an account at a
Brooklyn branch whose account balance is over $1000.

I-Icustomer-name((o-branch-city = “Brooklyn” 00 balance > 1000
(branch X (account X depositor)))

‘ Multiple Transformations (Cont.)

nl (LT T L T
rlﬂlﬂ'lll'ﬁ'l'“il-h’ o
- ~
fnmack-rin= ym
| M benlunca < MXKY -'""f H-H-H-"‘ !
i

5] e penriien
m.r"’/r H""‘-H Tﬁf:—_hh Pk < JTHRD

TR e pvErider Binmink vl
(i Initlal Ex e 1 Tree Aduer ijke TreatisToamailini

16

‘ Projection Operation Example

I-Icustomer-name((c’branch-city = “Brooklyn” (branch)X account) X depositor)

® When we compute

‘ Join Ordering Example

® For all relations r; r, and rs,
(X r)Xrg = ry X(rXr3)
m [fr,IXr; is quite large and r, X1, is small, we choose

‘ Join Ordering Example (Cont.)

B Consider the expression

n customer-name ((obranch-city = “Brooklyn” (branCh))
Xlaccount | depositor)

B Could compute account XIdepositor first, and join result

‘numeration of Equivalent Expressions

® Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression

m Conceptually, generate all equivalent expressions by repeatedly
executing the following step until no more expressions can be
found:

* for each expression found so far, use all applicable equivalence

18

‘ Evaluation Plan

B An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.

| R TR T T T

b (harh-join

P

b (merpe-ping alepavidar

N

ﬂh‘nm'r—cqt:l'lmuhlrn X balsvior < 104K
| e imken 1) fuse limear scami

T weCHnt

‘ Choice of Evaluation Plans

B Must consider the interaction of evaluation techniques when
choosing evaluation plans: choosing the cheapest algorithm for
each operation independently may not yield best overall
algorithm. E.g.

* merge-join may be costlier than hash-join, but may provide a sorted
output which reduces the cost for an outer level aggregation.

19

‘ Cost-Based Optimization

B Consider finding the best join-order for ry X rypq . . . Iy,

B There are (2(n — 1))!/(n — 1)! different join orders for above
expression. With n = 7, the number is 665280, with n = 10, the
number is greater than 176 billion!

‘Dynamic Programming in Optimization

B To find best join tree for a set of n relations:

* To find best plan for a set S of n relations, consider all possible
plans of the form: S, [X| (S —S,) where S, is any non-empty
subset of S.

‘ Join Order Optimization Algorithm

procedure findbestplan(S)

if (bestplan[S].cost # »)

return bestplan[S]

/I else bestplan[S] has not been computed earlier, compute it now
for each non-empty subset S1 of S such that S1 # S

P1=findbestplan(S1

‘ Left Deep Join Trees

m In left-deep join trees, the right-hand-side input for each
join is a relation, not the result of an intermediate join.

=] i =" | ==l

AN AN

e F.

N P
o

21

A Cost of Optimization

m With dynamic programming time complexity of optimization with
bushy trees is O(3").

* With n = 10, this number is 59000 instead of 176 billion!
B Space complexity is O(2")
® To find best left-deep join tree for a set of n relations:

* Consider n alternatives with one relation as right-hand side input
and the other relations as left-hand side input.

* Using (recursively computed and stored) least-cost join order for
each alternative on left-hand-side, choose the cheapest of the n
alternatives.

m |f only left-deep trees are considered, time complexity of finding
best join order is O(n 2")

* Space complexity remains at O(2")

B Cost-based optimization is expensive, but worthwhile for q
on large datasets (typical queries have small n, generally

Database System Concepts 3" Edition 14.43 ©Silberschatz, Ko

+ Interesting Orders in Cost-Based Optimization
\/

B Consider the expression (r; XIr, X r3) X, M rg
B Aninteresting sort order is a particular sort order of tuples
that could be useful for a later operation.

* Generating the result of ry x|r,)x| r; sorted on the attributes
common with r, or r; may be useful, but generating it sorted on
the attributes common only r, and r, is not useful.

* Using merge-join to compute r, X r,Xr; may be costlier, but may
provide an output sorted in an interesting order.

m Not sufficient to find the best join order for each subset of the
set of n given relations; must find the best join order for each
subset, for each interesting sort order

* Simple extension of earlier dynamic programming algorithms

Usually, number of interesting orders is quite small and d
affect time/space complexity significantly

Database System Concepts 3 Edition 14.44 ©Silberschatz,

22

R Heuristic Optimization

B Cost-based optimization is expensive, even with
dynamic programming.

B Systems may use heuristics to reduce the number of
choices that must be made in a cost-based fashion.

B Heuristic optimization transforms the query-tree by
using a set of rules that typically (but not in all cases)
improve execution performance:

* Perform selection early (reduces the number of tuples)

* Perform projection early (reduces the number of
attributes)

* Perform most restrictive selection and join operations
before other similar operations.

* Some systems use only heuristics, others combine
heuristics with partial cost-based optimization.

Database System Concepts 3" Edition 14.45 ©Silberschatz, Ko

Y _Steps in Typical Heuristic Optimization

1. Deconstruct conjunctive selections into a sequence of single
selection operations (Equiv. rule 1.).

2. Move selection operations down the query tree for the
earliest possible execution (Equiv. rules 2, 7a, 7b, 11).

3. Execute first those selection and join operations that will
produce the smallest relations (Equiv. rule 6).

4. Replace Cartesian product operations that are followed by a
selection condition by join operations (Equiv. rule 4a).

5. Deconstruct and move as far down the tree as possible lists
of projection attributes, creating new projections where
needed (Equiv. rules 3, 8a, 8b, 12).

6. Identify those subtrees whose operations can be pipelined,
and execute them using pipelining).

Database System Concepts 3 Edition 14.46 ©Silberschatz,

23

‘ Structure of Query Optimizers

B The System R/Starburst optimizer considers only left-deep join
orders. This reduces optimization complexity and generates
plans amenable to pipelined evaluation.

System R/Starburst also uses heuristics to push selections and
projections down the query tree.

B Heuristic optimization used in some versions of Oracle:

‘Structure of Query Optimizers (Cont.)

B Some query optimizers integrate heuristic selection and the
generation of alternative access plans.

* System R and Starburst use a hierarchical procedure based on
the nested-block concept of SQL: heuristic rewriting followed by
cost-based join-order optimization.

24

~

_ Optimizing Nested Subqueries**

B SQL conceptually treats nested subqueries in the where clause as
functions that take parameters and return a single value or set of
values

* Parameters are variables from outer level query that are used in the
nested subquery; such variables are called correlation variables

m Eg.
select customer-name
from borrower
where exists (select *
from depositor
where depositor.customer-name =
borrower.customer-name)

m Conceptually, nested subquery is executed once for each tuple in
the cross-product generated by the outer level from clause

Such evaluation is called correlated evaluation

* Note: other conditions in where clause may be used to comp!
(instead of a cross-product) before executing the nested subqu

Database System Concepts 3" Edition 14.49 ©Silberschatz, Ko

" _, Optimizing Nested Subqueries (Cont.)

m Correlated evaluation may be quite inefficient since
* a large number of calls may be made to the nested query
* there may be unnecessary random I/O as a result

B SQL optimizers attempt to transform nested subqueries to joins
where possible, enabling use of efficient join techniques

B E.g.: earlier nested query can be rewritten as
select customer-name
from borrower, depositor
where depositor.customer-name = borrower.customer-name

* Note: above query doesn’t correctly deal with duplicates, can be
modified to do so as we will see

B In general, it is not possible/straightforward to move the entire
nested subquery from clause into the outer level query from ¢

A temporary relation is created instead, and used in body of oL
level query

Database System Concepts 3 Edition 14.50 ©Silberschatz,

25

')ptimizing Nested Subqueries (Cont.)

In general, SQL queries of the form below can be rewritten as shown
B Rewrite: select ...

from L,

where P, and exists (select *
from L,
where P,)

‘)ptimizing Nested Subqueries (Cont.)

®m In our example, the original nested query would be transformed to
create table t; as
select distinct customer-name
from depositor
select customer-name
from borrower, t;

‘ Materialized Views**

m A materialized view is a view whose contents are computed and
stored.
m Consider the view

create view branch-total-loan(branch-name, total-loan) as
select branch-name, sum(amount

‘ Materialized View Maintenance

B The task of keeping a materialized view up-to-date with the
underlying data is known as materialized view maintenance

m Materialized views can be maintained by recomputation on every
update

27

‘ Incremental View Maintenance

B The changes (inserts and deletes) to a relation or expressions
are referred to as its differential

* Set of tuples inserted to and deleted from r are denoted i, and d,

m To simplify our description, we only consider inserts and deletes

‘ Join Operation

m Consider the materialized view v =r X's and an update to r
m Let rod and re¥ denote the old and new states of relation r
B Consider the case of an insert to r:

* We can write eV x| sas (rd 0 i) X s

_-Selection and Projection Operations

B Selection: Consider a view v = agg(r).

* ynew = Vold o e(ir)

H ynew = Vold - Ge(dr)

B Projection is a more difficult operation

* R=(AB), and r(R) = { (a,2), (a,3)}

* [1(r) has a single tuple (a).

* If we delete the tuple (a,2) from r, we should not delete the tuple (a)
from [,(r), but if we then delete (a,3) as well, we should delete the
tuple

B For each tuple in a projection [],(r) , we will keep a count of how
many times it was derived

* On insert of a tuple to r, if the resultant tuple is already in [,(r) we
increment its count, else we add a new tuple with count = 1

* On delete of a tuple from r, we decrement the count of the
corresponding tuple in [(r)

= if the count becomes 0, we delete the tuple from [],(r)

Database System Concepts 3" Edition 14.57 ©Silberschatz, Ko

~

A Aggregation Operations

E count:v= Agcoum(B)(’).
* When a set of tuples i, is inserted

= For each tuple rin i, if the corresponding group is already present in v,
we increment its count, else we add a new tuple with count = 1

* When a set of tuples d, is deleted

= for each tuple tin i, we look for the group t.A in v, and subtract 1 from
the count for the group.

If the count becomes 0, we delete from v the tuple for the group t.A
B sum:v= Agsum (B)(r)

* We maintain the sum in a manner similar to count, except we add/subtract
the B value instead of adding/subtracting 1 for the count

* Additionally we maintain the count in order to detect groups with no tuples.
Such groups are deleted from v

= Cannot simply test for sum = 0 (why?)

B To handle the case of avg, we maintain the sum and count
aggregate values separately, and divide at the end

Database System Concepts 3 Edition 14.58 ©Silberschatz,

29

‘ Aggregate Operations (Cont.)

B min, max: vV = zGhin @ (-
* Handling insertions on r is straightforward.

* Maintaining the aggregate values min and max on deletions may be

‘ Other Operations

B Setintersection:v=rns

* when a tuple is inserted in r we check if it is present in s, and if so
we add it to v.

‘ Handling Expressions

B To handle an entire expression, we derive expressions for
computing the incremental change to the result of each sub-
expressions, starting from the smallest sub-expressions.

m E.g.consider E, X E, where each of E; and E, may be a
complex expression

Query Optimization and Materialized
Views

B Rewriting queries to use materialized views:
* A materialized view v =r [X| s is available
#* A user submits a query r X sX t
* We can rewrite the query as v X t

31

‘ Materialized View Selection

m Materialized view selection: “What is the best set of views to
materialize?”.

* This decision must be made on the basis of the system workload

32

‘ Selection Cost Estimate Example

0-branch-name = “Perryridge“(account)

B Number of blocks is b, .., = 500: 10,000 tuples in the
relation; each block holds 20 tuples.

‘ Selections Using Indices

B Index scan — search algorithms that use an index; condition is
on search-key of index.

m A3 (primary index on candidate key, equality). Retrieve a
single record that satisfies the corresponding equality condition
Eps =HT +1

33

‘ Cost Estimate Example (Indices)

Consider the QUErY IS Oy, anchname = “Perryridger (2CCOUN), With the
primary index on branch-name.

B Since V(branch-name, account) = 50, we expect that
10000/50 = 200 tuples of the account relation pertain
to the Perryridge branch.

‘ Selections Involving Comparisons

selections of the form o,.(r) or 0, (r) by using a linear file
scan or binary search, or by using indices in the following
ways:

m A6 (primary index, comparison). The cost estimate is:

Example of Cost Estimate for Complex
Selection

B Consider a selection on account with the following condition:
where branch-name = “Perryridge” and balance = 1200

B Consider using algorithm A8:

* The branch-name index is clustering, and if we use it the cost
estimate is 12 block reads (as we saw before).

‘ Example (Cont.)

®m Consider using algorithm A10:

* Use the index on balance to retrieve set S, of pointers to
records with balance = 1200.

* Use index on branch-name to retrieve-set S, of pointers to
records with branch-name = Perryridge”.

*S . n S

= set of pointers to records with branch-name =

35

