Chapter 14

Q Introduction

m Alternative ways of evaluating a given query
* Equivalent expressions
* Different algorithms for each operation (Chapter 13)

m Cost difference between a good and a bad way of evaluating a
query can be enormous

* Example: performing a r X s followed by a selection r.A = s.B is

LAY
ATV HRIR

. Chapter 14: Query Optimization

/2

Introduction
Catalog Information for Cost Estimation
Estimation of Statistics

Transformation of Relational Expressions

LY
il =

)

Relations generated by two equivalent expressions have the
same set of attributes and contain the same set of tuples,
although their attributes may be ordered differently.

Introduction (Cont.)

]_[Customer-nane

[T customer-name
O hranch-cirv=Brooklyn

M

PN e

G branch-ci rv=Brooklyn]

N | /N

account depasitor branch account depaosito

(a) Initial Expression Tree (b) Transformed Expression Tree

~ Introduction (Cont.)
\/

B Generation of query-evaluation plans for an expression involves
several steps:

1. Generating logically equivalent expressions

> Use equivalence rules to transform an expression into an
equivalent one.

2. Annotating resultant expressions to get alternative query plans
3. Choosing the cheapest plan based on estimated cost

m The overall process is called cost based optimization.

§ A

©Si|berschm

Statistical Intormation tor Cost
Y Estimation

Database System Concepts 3 Edition 14.5

n,: number of tuples in a relation r.
b,: number of blocks containing tuples of r.
s, size of a tuple of r.

f.: blocking factor of r —i.e., the number of tuples of r that
fit into one block.

B V(A r): number of distinct values that appear in r for
attribute A; same as the size of []().

B SC(A, n): selection cardinality of attribute A of relation r;
average number of records that satisfy equality on A.

m [f tuples of r are stored together physically in a file, then:

4
fr \
A g

D\J\j
Database System Concepts 3™ Edition 14.7 i (,:hml 1

b=

A Overview of chapter

Statistical information for cost estimation
Equivalence rules

Cost-based optimization algorithm
Optimizing nested subqueries

Materialized views and view maintenance

it \

HL—A

©Si|berschm

Database System Concepts 3 Edition 14.6

~

_ Catalog Information about Indices

m f;: average fan-out of internal nodes of index /, for
tree-structured indices such as B+-trees.
® HT; number of levels in index i — i.e., the height of /.

* For a balanced tree index (such as B+-tree) on attribute A
of relation r, HT; =[logg(V(A,n) .

* For a hash index, HT;is 1.

* LB;: number of lowest-level index blocks in i — i.e, the
number of blocks at the leaf level of the index.

. \

H-EA

() 3
©Si|berschm

Database System Concepts 3" Edition 14.8

A A Measures of Query Cost

® Recall that

* Typically disk access is the predominant cost, and is also
relatively easy to estimate.

* The number of block transfers from disk is used as a
measure of the actual cost of evaluation.

* It is assumed that all transfers of blocks have the same
cost.

= Real life optimizers do not make this assumption, and
distinguish between sequential and random disk access

® We do not include cost to writing output to disk.
m We refer to the cost estimate of algorithm A as E,

§ A

©Si|berschm

Database System Concepts 3 Edition 14.9

Y _ Statistical Information for Examples

frecount= 20 (20 tuples of account fit in one block)
V(branch-name, account) =50 (50 branches)
V(balance, account) = 500 (500 different balance values)
TL.count = 10000 (account has 10,000 tuples)
Assume the following indices exist on account:

* A primary, B*-tree index for attribute branch-name

* A secondary, B*-tree index for attribute balance

Database System Concepts 3™ Edition 14.11 il , KO

A Selection Size Estimation

m Equality selection o,_/(r)
= SC(A, r) : number of records that will satisfy the selection

>[SC(A, r)/f,—| — number of blocks that these records will
occupy

= E.g. Binary search cost estimate becomes

SC(Ar) 1
f,

r

E.p =[log,(b,)]+ {

* Equality condition on a key attribute: SC(A,r) =1

it \

HL—A

14.10 ©Si|berschm

Database System Concepts 3 Edition

Y _ Selections Involving Comparisons

B Selections of the form o,_,(r) (case of g, \(r) is symmetric)
m Let c denote the estimated number of tuples satisfying the
condition.
* If min(A,r) and max(A,r) are available in catalog
>C=0ifv<min(Ar)
v—min(4,r)
“max(4,r) —min(4, r)

>2C=n

r

* In absence of statistical information ¢ is assumed to be n,/ 2.

Database System Concepts 3" Edition 14.12

" _Jmplementation of Complex Selections

The selectivity of a condition ; is the probability that a tuple in
the relation r satisfies ;. If s; is the number of satisfying tuples
in r, the selectivity of ;s given by s;/n,.

m Conjunction: Tyiqgor . ngn (1)- The estimate for number of

s, Os, O..0s,
tuples in the result is: n, Dn—"
® Disjunction:gg g, g, (). Estimated number of tuples:
n E[l-a—i)m(l—s—zm.ﬂa—s—")j
n, n, n,
m Negation: o 4(r). Estimated number of tuples:
n,— size(o4r)) 7 :
A

Database System Concepts 3 Edition 14.13 ©Silberschatz, Ko an

~

- Estimation of the Size of Joins

B The Cartesian product r x s contains n,.n, tuples; each tuple
occupies s, + s, bytes.

B IfRn S=0,thenr Xsisthe sameasr xs.

B If Rn Sis akey for R, then a tuple of s will join with at most
one tuple from r

* therefore, the number of tuples in r[X| s is no greater than the
number of tuples in s.
m If Rn SinSis aforeign key in S referencing R, then the
number of tuples in r X s is exactly the same as the number of
tuples in s.

= The case for R n S being a foreign key referencing S is
symmetric.

m In the example query depositor X customer, customer-name in
depositor is a foreign key of customer

* hence, the result has exactly 1, tuples, which is 5000 \

1A \

©Si|berschm

Database System Concepts 3™ Edition 14.15

~

_ Join Operation: Running Example

Running example:
depositor X customer

Catalog information for join examples:
B Necystomer = 10,000.
B . stomer = 25, which implies that
bystomer =10000/25 = 400.
= ndepositor =5000.
" fyepositor = 90, which implies that
b gepositor = 5000/50 = 100.

®m V/(customer-name, depositor) = 2500, which implies that , on
average, each customer has two accounts.

Also assume that customer-name in depositor is a foreign key
on customer. | \

HL—A

©Si|bersch®

Database System Concepts 3 Edition 14.14

~

_ Estimation of the Size of Joins (Cont.)

m IfRn S={A}is notakey for Ror S.
If we assume that every tuple t in R produces tuples in R[X|S, the
number of tuples in R X S is estimated to be:

n, Ong
V(A,s)
If the reverse is true, the estimate obtained will be:
n, Ong
V(A,r)
The lower of these two estimates is probably the more accurate
one.
. \
A
Database System Concepts 3" Edition 14.16 ©Silberschatz, Ko an

" _Estimation of the Size of Joins (Cont.)

m Compute the size estimates for depositor Xlcustomer without
using information about foreign keys:
* V(customer-name, depositor) = 2500, and
V(customer-name, customer) = 10000
* The two estimates are 5000 * 10000/2500 - 20,000 and 5000 *
10000/10000 = 5000

* We choose the lower estimate, which in this case, is the same as
our earlier computation using foreign keys.

\

§ A

Database System Concepts 3 Edition 14.17 ©Silberschatz, Ko an
~7 » u u

A Size Estimation (Cont.)

m Outer join:

* Estimated size of r x| s =size of rX| s + size of r
= Case of right outer join is symmetric
* Estimated size of r_[X__ s =size of r [X| s + size of r + size of s

Database System Concepts 3™ Edition 14.19

" _ Size Estimation for Other Operations

B Projection: estimated size of [,() = V(A
B Aggregation : estimated size of ,g(r) = V(A,r)

B Set operations

* For unions/intersections of selections on the same relation: rewrite
and use size estimate for selections

> E.g. Oy (r) O gy, (r) can be rewritten as Ogq Og, (1)
* For operations on different relations:
= estimated size of r 0 s = size of r + size of s.
= estimated size of r n s = minimum size of r and size of s.
> estimated size of r—s =r.

> All the three estimates may be quite inaccurate, but provide
upper bounds on the sizes.

it \

HL—A

©Si|berschm

Database System Concepts 3 Edition 14.18

Y _ Estimation of Number of Distinct Values

Selections: oy (r)

m |f 0 forces A to take a specified value: V(A,o, (1)) = 1.
2>eg.,A=3

m |f 6 forces A to take on one of a specified set of values:
V(A,0, (r)) = number of specified values.
>(€eg,(A=1VA=3VA=4)),

m If the selection condition 8 is of the form A op r
estimated V(A,o04(n) = V(A1) * s
= where s is the selectivity of the selection.

® In all the other cases: use approximate estimate of

min(V(A,r), ngg (r))

* More accurate estimate can be got using probability theory, but
this one works fine generally l \
1 7

() 3
©Si|berschm

\

Database System Concepts 3" Edition 14.20

 _ Estimation of Distinct Values (Cont.)

Joins: r X' s

m If all attributes in A are from r
estimated V(A, riX's) = min (V(A,r), n 1)

m If A contains attributes A1 from r and A2 from s, then estimated
V(A,r Xs) =

min(V(A1,0"V(A2 - A1,s), A1 = A2,)*V(A2,5), N, 1)

* More accurate estimate can be got using probability theory, but this
one works fine generally

\

§ A

©Si|berschm

Transformation of Relational
~ Expressions

Database System Concepts 3 Edition 14.21

m Two relational algebra expressions are said to be equivalent if on
every legal database instance the two expressions generate the
same set of tuples

* Note: order of tuples is irrelevant
® In SQL, inputs and outputs are multisets of tuples

* Two expressions in the multiset version of the relational algebra are
said to be equivalent if on every legal database instance the two
expressions generate the same multiset of tuples

B An equivalence rule says that expressions of two forms are
equivalent

* Can replace expression of first form by second, or vice versa

f=A

Database System Concepts 3™ Edition 14.23 il m

"~ _ Estimation of Distinct Values (Cont.)

m Estimation of distinct values are straightforward for projections.
* They are the same in [,y as in r.

B The same holds for grouping attributes of aggregation.

m For aggregated values

* For min(A) and max(A), the number of distinct values can be
estimated as min(V(A,r), V(G,r)) where G denotes grouping attributes

* For other aggregates, assume all values are distinct, and use V(G,r)

it \

HL—A

©Si|bersch®

Database System Concepts 3 Edition 14.22

A Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

O 9, (E)= Og (Uez (E))
2. Selection operations are commutative.

04(04,(E)) =0y, (04 (E))

3. Only the last in a sequence of projection operations is
needed, the others can be omitted.

M (M, (- (M (E))...)) =M (E)

4. Selections can be combined with Cartesian products and

theta joins.
2. Oy(E4XE,) = E; XyE,
0. 0g1(Eq Mg Ep) = E4IX o152 E2 & \
S
Database System Concepts 3" Edition 14.24 ©Silberschatz, Ko an

QPictorial Depiction of Equivalence Rules

/MB . Rule 4 R /M 4
N

El E2 E2 El

| Rule 5 X

Rule 6a

If 8 only has
attributes from E1

Q Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation
under the following two conditions:
(a) When all the attributes in 6, involve only the attributes of one
of the expressions (E,) being joined.

0go(Eq Mg Ey) = (Tgo(E4)) Mg E,

gy

Q Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
EXg E;, = E;DG E;
6. (a) Natural join operations are associative:
(EsXE) XE; = E;,X(E,N Ej)

)

Equivalence Rules (Cont.)

8. The projections operation distributes over the theta join operation

as follows:
(a) if /7 involves only attributes from L, O L,:

g

Q Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative
E,0E, =E,0E,
E,nE, =E, n E,
B (set difference is not commutative).
10. Set union and intersection are associative.
(E;DE)UE;=E,D(E,0Ey)
E.nE)nE;=E,n(E;n E

LN
AR

‘xample with Multiple Transformations

B Query: Find the names of all customers with an account at a
Brooklyn branch whose account balance is over $1000.

I-Icustomer—name((O-branch-city = “Brooklyn” [0 balance > 1000

(branch X (account X depositor)))
® Transformation using join associatively (Rule 6a):

LAY
il

Q Transformation Example

B Query: Find the names of all customers who have an account at
some branch located in Brooklyn.
O

customer- name(obmnch -city = “Brooklyn”

(branch X (account[>4 depositor)))

® Transformation using rule 7a.
I

customer-name

LY
AR

Q Multiple Transformations (Cont.)

I Clstonmer-iare
CHSTERRE F-Iaie

[
branch-city=Brooklyn / \\
A balance < 1000

B depositor

G branch-cirv=Brooklyn G halance < 1000

X—ao——23

account depositor account

(a) Initial Ex sion Tree iple Transformations

~

- Projection Operation Example

I_lcustomer—name((Gbranch-city = “Brooklyn” (br anCh) X account) X depositor,)

® When we compute

. (Gbranch_-city = “Brooklyn” (bran_Ch) Haccount)
we obtain a relation whose schema is:
(branch-name, branch-city, assets, account-number, balance)

B Push projections using equivalence rules 8a and 8b; eliminate
unneeded attributes from intermediate results to get:
r

customer-name ((

n account-number(_ (obranch-city = “Brooklyn” (br an Ch) N account))
IX| depositor)

§ A

©Si|berschatz.<o:>:g

Database System Concepts 3 Edition 14.33

~

_ Join Ordering Example (Cont.)

m Consider the expression

M customer-name ((Gbranch-city = “Brooklyn” (b ran Ch))

Xlaccount X|depositor)

m Could compute account X depositor first, and join result
with

0-branch—city = “Brooklyn” (br an Ch)
but account Xdepositor is likely to be a large relation.

m Since it is more likely that only a small fraction of the
bank’s customers have accounts in branches located
in Brooklyn, it is better to compute

Gbranch—city = “Brooklyn” (b ran Ch) MXaccount
first.

f=A

Database System Concepts 3™ Edition 14.35 il (,:ha\uv_/\j

~

A Join Ordering Example

® For all relations r, r, and r;,
(X)Xy = rX(rXr)
m |fr,Xry is quite large and r, Xr, is small, we choose

(X)X rs
so that we compute and store a smaller temporary relation.

it \

HL—A

©Si|berschm

Database System Concepts 3 Edition 14.34

~

_Enumeration of Equivalent Expressions

® Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression

m Conceptually, generate all equivalent expressions by repeatedly
executing the following step until no more expressions can be
found:

* for each expression found so far, use all applicable equivalence
rules, and add newly generated expressions to the set of expressions
found so far

m The above approach is very expensive in space and time

B Space requirements reduced by sharing common subexpressions:

* when E1 is generated from E2 by an equivalence rule, usually only the
top level of the two are different, subtrees below are the same and
can be shared

= E.g. when applying join associativity
Time requirements are reduced by not generating all expressions \
* More details shortly 1A)

©Si|berschm

Database System Concepts 3" Edition 14.36

A A Evaluation Plan

m An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.

T ystomer-name (S0t o remove duplicates)

P (hash-join)

2 TEe,

g (merge-join) depositor

Pipulinc/ N}clinu

G pranch-ciry=Brooklyn G palance < 1000

(use index 1) (use linear scan)

branch account

;\;ﬁj
Database System Concepts 3 Edition 14.37 i iih‘w d

~

A Cost-Based Optimization

m Consider finding the best join-order for r; x| ;) . . . 1,

m There are (2(n— 1))!/(n - 1)! different join orders for above
expression. With n =7, the number is 665280, with n = 10, the
number is greater than 176 billion!

® No need to generate all the join orders. Using dynamic
programming, the least-cost join order for any subset of
{r, rpy . . . 1} is computed only once and stored for future use.

‘
D\J\j
Database System Concepts 3™ Edition 14.39 i ﬂm‘ d 1

~

A Choice of Evaluation Plans

® Must consider the interaction of evaluation techniques when
choosing evaluation plans: choosing the cheapest algorithm for
each operation independently may not yield best overall
algorithm. E.g.

* merge-join may be costlier than hash-join, but may provide a sorted
output which reduces the cost for an outer level aggregation.

* nested-loop join may provide opportunity for pipelining

®m Practical query optimizers incorporate elements of the following
two broad approaches:

1. Search all the plans and choose the best plan in a
cost-based fashion.

2. Uses heuristics to choose a plan.

it \

1A \\

©Si|herschm

+~ Dynamic Programming in Optimization
\/

Database System Concepts 3 Edition 14.38

m To find best join tree for a set of n relations:

* To find best plan for a set S of n relations, consider all possible
plans of the form: S,[X| (S — S,) where S, is any non-empty
subset of S.

* Recursively compute costs for joining subsets of S to find the
cost of each plan. Choose the cheapest of the 27 — 1
alternatives.

* When plan for any subset is computed, store it and reuse it
when it is required again, instead of recomputing it

= Dynamic programming

. \

- \\

() 3
©Si|berschm

Database System Concepts 3" Edition 14.40

_ Join Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost # ©)
return bestplan[S]
/I else bestplan[S] has not been computed earlier, compute it now
for each non-empty subset S1 of S such that S1# S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost
bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;
join results of P1 and P2 using A”
return bestplan[S]

\

§ A

©Si|berschm

Database System Concepts 3 Edition 14.41

A Cost of Optimization

® With dynamic programming time complexity of optimization with
bushy trees is O(3").
* With n = 10, this number is 59000 instead of 176 billion!
B Space complexity is O(2")
m To find best left-deep join tree for a set of n relations:

* Consider n alternatives with one relation as right-hand side input
and the other relations as left-hand side input.

* Using (recursively computed and stored) least-cost join order for
each alternative on left-hand-side, choose the cheapest of the n
alternatives.

m If only left-deep trees are considered, time complexity of finding
best join order is O(n 27)

* Space complexity remains at O(2")

m Cost-based optimization is expensive, but worthwhile for queries
on large datasets (typical queries have small n, generally < I'I;O)

ikt

Database System Concepts 3™ Edition 14.43 il , KO

\

~

A Left Deep Join Trees

m In left-deep join trees, the right-hand-side input for each
join is a relation, not the result of an intermediate join.

(a) Left-deep Join Tree (b) Non-lefi-deep Join Tree

it \

HL—A

©Si|bersch®

4 Interesting Orders in Cost-Based Optimization
\/

Database System Concepts 3 Edition 14.42

®m Consider the expression (ry X\ry X rs) X ry X rs

B An interesting sort order is a particular sort order of tuples
that could be useful for a later operation.
* Generating the result of r, x| r,[X| r; sorted on the attributes

common with r, or ry; may be useful, but generating it sorted on
the attributes common only r, and r,, is not useful.

* Using merge-join to compute r,X| r, X r; may be costlier, but may
provide an output sorted in an interesting order.
® Not sufficient to find the best join order for each subset of the
set of n given relations; must find the best join order for each
subset, for each interesting sort order

* Simple extension of earlier dynamic programming algorithms

Usually, number of interesting orders is quite small and doesnt
affect time/space complexity significantly w \

'» A

() 3
©Si|berschm

Database System Concepts 3" Edition 14.44

Y Heuristic Optimization

m Cost-based optimization is expensive, even with
dynamic programming.

m Systems may use heuristics to reduce the number of
choices that must be made in a cost-based fashion.

B Heuristic optimization transforms the query-tree by

' _Steps in Typical Heuristic Optimization

1.

2.

Deconstruct conjunctive selections into a sequence of single
selection operations (Equiv. rule 1.).

Move selection operations down the query tree for the
earliest possible execution (Equiv. rules 2, 7a, 7b, 11).

. Execute first those selection and join operations that will

produce the smallest relations (Equiv. rule 6).

using a set of rules that typically (but not in all cases) 4. Replace Cartesian product operations that are followed by a
improve execution performance: selection condition by join operations (Equiv. rule 4a).
* Perform selection early (reduces the number of tuples) 5. Deconstruct and move as far down the tree as possible lists
#* Perform projection early (reduces the number of of projection gttrlbutes, creating new projections where
attributes) needed (Equiv. rules 3, 8a, 8b, 12).
Perform most restrictive selection and join operations 6. Identify those subtrees whose operations can be pipelined,
before other similar operations. and execute them using pipelining).
* Some systems use only heuristics, others combine _ ; { :
heuristics with partial cost-based optimization. 1 \ l \
Database System Concepts 3 Edition 14.45 ©Silberschatz, Ko an Database System Concepts 3 Edition 14.46 ©Silberschatz, Ko an
~

Structure of Query Optimizers " _Structure of Query Optimizers (Cont.)

~

m The System R/Starburst optimizer considers only left-deep join

orders. This reduces optimization complexity and generates
plans amenable to pipelined evaluation.
System R/Starburst also uses heuristics to push selections and
projections down the query tree.
Heuristic optimization used in some versions of Oracle:
* Repeatedly pick “best” relation to join next

= Starting from each of n starting points. Pick best among these.

For scans using secondary indices, some optimizers take into

account the probability that the page containing the tuple is in the
buffer.

m Intricacies of SQL complicate query optimization

* E.g. nested subqueries

f=A

Database System Concepts 3™ Edition 14.47 il m

Database System Concepts 3" Edition 14.48

B Some query optimizers integrate heuristic selection and the
generation of alternative access plans.
* System R and Starburst use a hierarchical procedure based on

the nested-block concept of SQL: heuristic rewriting followed by
cost-based join-order optimization.

m Even with the use of heuristics, cost-based query optimization
imposes a substantial overhead.

®m This expense is usually more than offset by savings at query-
execution time, particularly by reducing the number of slow
disk accesses.

. \

H-EA

@Silberschm

~

. Optimizing Nested Subqueries™

m SQL conceptually treats nested subqueries in the where clause as
functions that take parameters and return a single value or set of
values

* Parameters are variables from outer level query that are used in the
nested subquery; such variables are called correlation variables

m Eg.
select customer-name
from borrower
where exists (select *
from depositor
where depositor.customer-name =
borrower.customer-name)

m Conceptually, nested subquery is executed once for each tuple in
the cross-product generated by the outer level from clause

* Such evaluation is called correlated evaluation

* Note: other conditions in where clause may be used to computefa join \
(instead of a cross-product) before executing the nested subquery \
M

Database System Concepts 3 Edition 14.49 ©Silberschatz, Ko an

~

_Optimizing Nested Subqueries (Cont.)

In general, SQL queries of the form below can be rewritten as shown

m Rewrite: select ...
from L,
where P, and exists (select *
from L,
where P,)

m To: create table {, as
select distinct V
from L,
where P,
select ...
from L, t,
where P, and P,?
* P,' contains predicates in P, that do not involve any correlation variables
* P, reintroduces predicates involving correlation variables, with
relations renamed appropriately d :

* V contains all attributes used in predicates with correlation variabtes \

Database System Concepts 3™ Edition 14.51 il (,:ha\uv_/\j

- Optimizing Nested Subqueries (Cont.)

m Correlated evaluation may be quite inefficient since
* a large number of calls may be made to the nested query
* there may be unnecessary random I/O as a result

B SQL optimizers attempt to transform nested subqueries to joins
where possible, enabling use of efficient join techniques

m E.g.: earlier nested query can be rewritten as
select customer-name
from borrower, depositor
where depositor.customer-name = borrower.customer-name
* Note: above query doesn’t correctly deal with duplicates, can be
modified to do so as we will see
B In general, it is not possible/straightforward to move the entire
nested subquery from clause into the outer level query from clause

* A temporary relation is created instead, and used in body of oqt'e[\

- - Q::D
Database System Concepts 3 Edition 14.50 ©Silberschatz, Ko an

\

~ . " u
_Optimizing Nested Subqueries (Cont.)
B |n our example, the original nested query would be transformed to
create table ¢, as
select distinct customer-name
from depositor
select customer-name
from borrower, t,
where t,.customer-name = borrower.customer-name
m The process of replacing a nested query by a query with a join
(possibly with a temporary relation) is called decorrelation.
m Decorrelation is more complicated when
* the nested subquery uses aggregation, or
* when the result of the nested subquery is used to test for equality, or
* when the condition linking the nested subquery to the other
query is not exists,
* and so on. 7, \
2
Database System Concepts 3" Edition 14.52 ©Silberschatz, Ko an

~

= . u ~ u . u .
A Materialized Views™ . Materialized View Maintenance
® A materialized view is a view whose contents are computed and m The task of keeping a materialized view up-to-date with the
stored. underlying data is known as materialized view maintenance
m Consider the view m Materialized views can be maintained by recomputation on every
create view branch-total-loan(branch-name, total-loan) as update
:elec} branch-name, sum(amount) m A better option is to use incremental view maintenance
rom /oan
groupby branch-name * Changes to database relations are used to compute changes to

materialized view, which is then updated
® Materializing the above view would be very useful if the total loan

; . ® View maintenance can be done by
amount is required frequently iy v dof del 4 uod omch
ining tri insert, te, t
* Saves the effort of finding multiple tuples and adding up their re?ar:iti; ?ln tﬁ én\ll?gwr;%%ﬁ:;ig: Inseft, delete, and update of eac
amounts

* Manually written code to update the view whenever database
relations are updated

* Supported directly by the database)

‘1-:, 5 i

Database System Concepts 3 Edition 14.53 ©Silberschatz, Ko an Database System Concepts 3 Edition 14.54 ©Silberschatz, Ko an
~ - - ~ - "
- Incremental View Maintenance A Join Operation
B The changes (inserts and deletes) to a relation or expressions ®m Consider the materialized view v = r X's and an update to r
are referred to as its differential ® Let rod and rev denote the old and new states of relation r
* [i : .
Set of tuples inserted to and deleted from r are denoted i, and d, | CarellET e msee 6F 5 rEeT i
m To simplify our description, we only consider inserts and deletes * We can write %)| s as (99 0 i) s
* We replace updates to a tuple by deletion of the tuple followed by * And rewrite the above to (4[] Sr) 0 (. s)
insertion of the update tuple r
. * But (r°d[X s) is simply the old value of the materialized view, so the
B We describe how to compute the change to the result of each incremental change to the view is just i.[X(s
relational operation, given changes to its inputs : .
2 _ 2 < _ R _ B Thus, for inserts vmew = veld[J(j X s)
m We then outline how to handle relational algebra expressions .
m Similarly for deletes v = yold—(d_[Xs)
A \ dt \
i A <)

Database System Concepts 3™ Edition 14.55 il (,:ha\uv_/\j Database System Concepts 3" Edition 14.56 ©Si|berschm

" _ Selection and Projection Operations

m Selection: Consider a view v = gg(r).
#oynew = yold [G ()
* ynew = yold _ g (dl)

B Projection is a more difficult operation
* R=(A,B), and r(R) ={ (a,2), (a,3)}
* () has a single tuple (a).

* If we delete the tuple (a,2) from r, we should not delete the tuple (a)
from [,(r), but if we then delete (a,3) as well, we should delete the
tuple

B For each tuple in a projection [],(r) , we will keep a count of how
many times it was derived

* On insert of a tuple to r, if the resultant tuple is already in [],(r) we
increment its count, else we add a new tuple with count = 1

* On delete of a tuple from r, we decrement the count of the
corresponding tuple in [](r)

= if the count becomes 0, we delete the tuple from [],(r) 1 ’L) :
Database System Concepts 3 Edition 14.57 ©Si|berschatz.<o:>:g
~7 L]
- Aggregate Operations (Cont.)

B min, max: v=,G.,@s (-
* Handling insertions on r is straightforward.

* Maintaining the aggregate values min and max on deletions may be
more expensive. We have to look at the other tuples of r that are in
the same group to find the new minimum

Database System Concepts 3™ Edition 14.59 il (,:ha\uv_/\j

~

A Aggregation Operations

B count:v= Agcount(B)U).
* When a set of tuples i, is inserted

= For each tuple rin i, if the corresponding group is already present in v,
we increment its count, else we add a new tuple with count = 1

* When a set of tuples d, is deleted

= for each tuple t in i we look for the group t.A in v, and subtract 1 from
the count for the group.

If the count becomes 0, we delete from v the tuple for the group t.A
B osumiv=,G0me"
* We maintain the sum in a manner similar to count, except we add/subtract

the B value instead of adding/subtracting 1 for the count

* Additionally we maintain the count in order to detect groups with no tuples.
Such groups are deleted from v

= Cannot simply test for sum = 0 (why?) @ \

® To handle the case of avg, we maintain the sum and count 1750)
aggregate values separately, and divide at the end \ '

Database System Concepts 3 Edition 14.58 ©Silberschatz, Ko an

~

Other Operations

~

B Setintersection: v=rn s

* when a tuple is inserted in r we check if it is present in s, and if so
we add it to v.

* If the tuple is deleted from r, we delete it from the intersection if it is
present.

* Updates to s are symmetric

* The other set operations, union and set difference are handled in a
similar fashion.

m Outer joins are handled in much the same way as joins but with
some extra work

* we leave details to you.

. \

H-EA

©Si|berschm

Database System Concepts 3" Edition 14.60

A Handling Expressions

B To handle an entire expression, we derive expressions for
computing the incremental change to the result of each sub-
expressions, starting from the smallest sub-expressions.

m E.g. consider E; X E, where each of E; and E, may be a
complex expression

* Suppose the set of tuples to be inserted into E, is given by D,
= Computed earlier, since smaller sub-expressions are handled

LN
SRR

A Materialized View Selection

m Materialized view selection: “What is the best set of views to
materialize?”.

* This decision must be made on the basis of the system workload

B Indices are just like materialized views, problem of index
selection is closely related, to that of materialized view
selection, although it is simpler.

B Some database systems, provide tools to help the database

LY
~ithame o

£ Query Optimization and Materialized
-~ Views

B Rewriting queries to use materialized views:
* A materialized view v = r x| s is available
* A user submits a query r X s)q t
* We can rewrite the query as v X t
= Whether to do so depends on cost estimates for the two alternative
® Replacing a use of a materialized view by the view definition:

LY
SIS

~

- Selection Cost Estimate Example

0—branch—name = “Perryridge"(account)

B Number of blocks is b, = 500: 10,000 tuples in the
relation; each block holds 20 tuples.
B Assume account is sorted on branch-name.
* V(branch-name,account) is 50

* 10000/50 = 200 tuples of the account relation pertain to
Perryridge branch

* 200/20 = 10 blocks for these tuples
* A binary search to find the first record would take
rlogz(SOOﬂ = 9 block accesses

m Total cost of binary search is 9 + 10 -1 = 18 block
accesses (versus 500 for linear scan) 7 X

WA

©Si|berschm

Database System Concepts 3 Edition 14.65

~

_ Cost Estimate Example (Indices)

C(.)ns1der. the query 1S Op,uchname - “perryridge-(@ccount), with the
primary index on branch-name.

m Since V(branch-name, account) = 50, we expect that
10000/50 = 200 tuples of the account relation pertain
to the Perryridge branch.

®m Since the index is a clustering index, 200/20 = 10 block
reads are required to read the account tuples.

B Several index blocks must also be read. If B*-tree
index stores 20 pointers per node, then the B*-tree
index must have between 3 and 5 leaf nodes and the
entire tree has a depth of 2. Therefore, 2 index blocks
must be read.

®m This strategy requires 12 total block reads. 4 1
A=A

Database System Concepts 3™ Edition 14.67 il (,:ha\uv_/\j

A Selections Using Indices

B Index scan — search algorithms that use an index; condition is
on search-key of index.

m A3 (primary index on candidate key, equality). Retrieve a
single record that satisfies the corresponding equality condition
E,,=HT +1

B A4 (primary index on nonkey, equality) Retrieve multiple
records. Let the search-key attribute be A.

SC(A,r)—‘

r

Epq =HT; J{

m A5 (equality on search-key of secondary index).
* Retrieve a single record if the search-key is a candidate key
E,s=HT, +1
* Retrieve multiple records (each may be on a different block) if the
search-key is not a candidate key. E,; = HT, + SC(A,r)

F \

HL—A

©Si|berschm

Database System Concepts 3 Edition 14.66

~

_ Selections Involving Comparisons

selections of the form o,_,(r) or 0, (r) by using a linear file
scan or binary search, or by using indices in the following
ways:

m A6 (primary index, comparison). The cost estimate is:

Egg =HT; + M
fr
where c is the estimated number of tuples satisfying
the condition. In absence of statistical information c is
assumed to be n, /2.

m A7 (secondary index, comparison). The cost estimate:
Exr =HT, + 98 40
where c is defined as before.” (Linear file scan may be

cheaper if ¢ is large!). 1 £

©Si|berschm

\

Database System Concepts 3" Edition 14.68

Example of Cost Estimate for Complex
E E Q Example (Cont.)

Selection

m Consider using algorithm A10:

* Use the index on balance to retrieve set S, of pointers to
records with balance = 1200.

B Consider a selection on account with the following condition:
where branch-name = “Perryridge” and balance = 1200

® Consider using algorithm A8: * Use index on branch-name to retrieve-set S, of pointers to
* The branch-name index is clustering, and if we use it the cost records with branch-name = Perryridge”.

1 "'ﬂ.‘l‘-ﬂn-... 1 "'ﬂ.‘t‘-ﬂn-...

