Chapter 14

Q Introduction

m Alternative ways of evaluating a given query
* Equivalent expressions
* Different algorithms for each operation (Chapter 13)

m Cost difference between a good and a bad way of evaluating a
query can be enormous

* Example: performing a r X s followed by a selection r.A = s.B is
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Relations generated by two equivalent expressions have the
same set of attributes and contain the same set of tuples,
although their attributes may be ordered differently.

Introduction (Cont.)
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~ Introduction (Cont.)
\/

B Generation of query-evaluation plans for an expression involves
several steps:

1. Generating logically equivalent expressions

> Use equivalence rules to transform an expression into an
equivalent one.

2. Annotating resultant expressions to get alternative query plans
3. Choosing the cheapest plan based on estimated cost

m The overall process is called cost based optimization.
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Statistical Intormation tor Cost
Y Estimation

Database System Concepts 3 Edition 14.5

n,: number of tuples in a relation r.
b,: number of blocks containing tuples of r.
s, size of a tuple of r.

f.: blocking factor of r —i.e., the number of tuples of r that
fit into one block.

B V(A r): number of distinct values that appear in r for
attribute A; same as the size of []().

B SC(A, n): selection cardinality of attribute A of relation r;
average number of records that satisfy equality on A.

m [f tuples of r are stored together physically in a file, then:

4
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A Overview of chapter

Statistical information for cost estimation
Equivalence rules

Cost-based optimization algorithm
Optimizing nested subqueries

Materialized views and view maintenance
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_ Catalog Information about Indices

m f;: average fan-out of internal nodes of index /, for
tree-structured indices such as B+-trees.
® HT; number of levels in index i — i.e., the height of /.

* For a balanced tree index (such as B+-tree) on attribute A
of relation r, HT; =[logg(V(A,n) .

* For a hash index, HT;is 1.

* LB;: number of lowest-level index blocks in i — i.e, the
number of blocks at the leaf level of the index.

. \
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A A Measures of Query Cost

® Recall that

* Typically disk access is the predominant cost, and is also
relatively easy to estimate.

* The number of block transfers from disk is used as a
measure of the actual cost of evaluation.

* It is assumed that all transfers of blocks have the same
cost.

= Real life optimizers do not make this assumption, and
distinguish between sequential and random disk access

® We do not include cost to writing output to disk.
m We refer to the cost estimate of algorithm A as E,

§ A
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Y _ Statistical Information for Examples

frecount= 20 (20 tuples of account fit in one block)
V(branch-name, account) =50 (50 branches)
V(balance, account) = 500 (500 different balance values)
TL.count = 10000 (account has 10,000 tuples)
Assume the following indices exist on account:

* A primary, B*-tree index for attribute branch-name

* A secondary, B*-tree index for attribute balance

Database System Concepts 3™ Edition 14.11 il , KO

A Selection Size Estimation

m Equality selection o,_/(r)
= SC(A, r) : number of records that will satisfy the selection

>[SC(A, r)/f,—| — number of blocks that these records will
occupy

= E.g. Binary search cost estimate becomes

SC(Ar) 1
f,

r

E.p =[log,(b, )]+ {

* Equality condition on a key attribute: SC(A,r) =1

it \
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Y _ Selections Involving Comparisons

B Selections of the form o,_,(r) (case of g, \(r) is symmetric)
m Let c denote the estimated number of tuples satisfying the
condition.
* If min(A,r) and max(A,r) are available in catalog
>C=0ifv<min(Ar)
v—min(4,r)
“max(4,r) —min(4, r)

>2C=n

r

* In absence of statistical information ¢ is assumed to be n,/ 2.
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" _Jmplementation of Complex Selections

The selectivity of a condition ; is the probability that a tuple in
the relation r satisfies ;. If s; is the number of satisfying tuples
in r, the selectivity of ;s given by s;/n,.

m Conjunction: Tyiqgor . ngn (1)- The estimate for number of

s, Os, O..0s,
tuples in the result is: n, Dn—"
® Disjunction:gg g, g, (). Estimated number of tuples:
n E[l-a—i)m(l—s—zm.ﬂa—s—")j
n, n, n,
m Negation: o 4(r). Estimated number of tuples:
n,— size(o4r)) 7 :
A
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- Estimation of the Size of Joins

B The Cartesian product r x s contains n,.n, tuples; each tuple
occupies s, + s, bytes.

B IfRn S=0,thenr Xsisthe sameasr xs.

B If Rn Sis akey for R, then a tuple of s will join with at most
one tuple from r

* therefore, the number of tuples in r[X| s is no greater than the
number of tuples in s.
m If Rn SinSis aforeign key in S referencing R, then the
number of tuples in r X s is exactly the same as the number of
tuples in s.

= The case for R n S being a foreign key referencing S is
symmetric.

m In the example query depositor X customer, customer-name in
depositor is a foreign key of customer

* hence, the result has exactly 1, tuples, which is 5000 \

1A \
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_ Join Operation: Running Example

Running example:
depositor X customer

Catalog information for join examples:
B Necystomer = 10,000.
B . stomer = 25, which implies that
bystomer =10000/25 = 400.
= ndepositor =5000.
" fyepositor = 90, which implies that
b gepositor = 5000/50 = 100.

®m V/(customer-name, depositor) = 2500, which implies that , on
average, each customer has two accounts.

Also assume that customer-name in depositor is a foreign key
on customer. | \

HL—A

©Si|bersch®

Database System Concepts 3 Edition 14.14

~

_ Estimation of the Size of Joins (Cont.)

m IfRn S={A}is notakey for Ror S.
If we assume that every tuple t in R produces tuples in R[X|S, the
number of tuples in R X S is estimated to be:

n, Ong
V(A,s)
If the reverse is true, the estimate obtained will be:
n, Ong
V(A,r)
The lower of these two estimates is probably the more accurate
one.
. \
A
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" _Estimation of the Size of Joins (Cont.)

m Compute the size estimates for depositor Xlcustomer without
using information about foreign keys:
* V(customer-name, depositor) = 2500, and
V(customer-name, customer) = 10000
* The two estimates are 5000 * 10000/2500 - 20,000 and 5000 *
10000/10000 = 5000

* We choose the lower estimate, which in this case, is the same as
our earlier computation using foreign keys.

\
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A Size Estimation (Cont.)

m Outer join:

* Estimated size of r x| s =size of rX| s + size of r
= Case of right outer join is symmetric
* Estimated size of r_[X__ s =size of r [X| s + size of r + size of s

Database System Concepts 3™ Edition 14.19

" _ Size Estimation for Other Operations

B Projection: estimated size of [,() = V(A
B Aggregation : estimated size of ,g(r) = V(A,r)

B Set operations

* For unions/intersections of selections on the same relation: rewrite
and use size estimate for selections

> E.g. Oy (r) O gy, (r) can be rewritten as Ogq Og, (1)
* For operations on different relations:
= estimated size of r 0 s = size of r + size of s.
= estimated size of r n s = minimum size of r and size of s.
> estimated size of r—s =r.

> All the three estimates may be quite inaccurate, but provide
upper bounds on the sizes.

it \
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Y _ Estimation of Number of Distinct Values

Selections: oy (r)

m |f 0 forces A to take a specified value: V(A,o, (1)) = 1.
2>eg.,A=3

m |f 6 forces A to take on one of a specified set of values:
V(A,0, (r)) = number of specified values.
>(€eg,(A=1VA=3VA=4)),

m If the selection condition 8 is of the form A op r
estimated V(A,o04(n) = V(A1) * s
= where s is the selectivity of the selection.

® In all the other cases: use approximate estimate of

min(V(A,r), ngg (r))

* More accurate estimate can be got using probability theory, but
this one works fine generally l \
1 7
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 _ Estimation of Distinct Values (Cont.)

Joins: r X' s

m If all attributes in A are from r
estimated V(A, riX's) = min (V(A,r), n 1)

m If A contains attributes A1 from r and A2 from s, then estimated
V(A,r Xs) =

min(V(A1,0"V(A2 - A1,s), A1 = A2,)*V(A2,5), N, 1)

* More accurate estimate can be got using probability theory, but this
one works fine generally

\
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Transformation of Relational
~ Expressions
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m Two relational algebra expressions are said to be equivalent if on
every legal database instance the two expressions generate the
same set of tuples

* Note: order of tuples is irrelevant
® In SQL, inputs and outputs are multisets of tuples

* Two expressions in the multiset version of the relational algebra are
said to be equivalent if on every legal database instance the two
expressions generate the same multiset of tuples

B An equivalence rule says that expressions of two forms are
equivalent

* Can replace expression of first form by second, or vice versa

f=A
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"~ _ Estimation of Distinct Values (Cont.)

m Estimation of distinct values are straightforward for projections.
* They are the same in [,y as in r.

B The same holds for grouping attributes of aggregation.

m For aggregated values

* For min(A) and max(A), the number of distinct values can be
estimated as min(V(A,r), V(G,r)) where G denotes grouping attributes

* For other aggregates, assume all values are distinct, and use V(G,r)

it \
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A Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

O 9, (E)= Og (Uez (E))
2. Selection operations are commutative.

04(04,(E)) =0y, (04 (E))

3. Only the last in a sequence of projection operations is
needed, the others can be omitted.

M (M, (- (M (E))...)) =M (E)

4. Selections can be combined with Cartesian products and

theta joins.
2. Oy(E4XE,) = E; XyE,
0. 0g1(Eq Mg Ep) = E4IX o152 E2 & \
S
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QPictorial Depiction of Equivalence Rules

/MB . Rule 4 R /M 4
N

El E2 E2 El

| Rule 5 X

Rule 6a

If 8 only has
attributes from E1

Q Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation
under the following two conditions:
(a) When all the attributes in 6, involve only the attributes of one
of the expressions (E,) being joined.

0go(Eq Mg Ey) = (Tgo(E4)) Mg E,

gy

Q Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
EXg E;, = E;DG E;
6. (a) Natural join operations are associative:
(EsXE) XE; = E;,X(E,N Ej)

)

Equivalence Rules (Cont.)

8. The projections operation distributes over the theta join operation

as follows:
(a) if /7 involves only attributes from L, O L,:

g




Q Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative
E,0E, =E,0E,
E,nE, =E, n E,
B (set difference is not commutative).
10. Set union and intersection are associative.
(E;DE)UE;=E,D(E,0Ey)
E.nE)nE;=E,n(E;n E
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‘xample with Multiple Transformations

B Query: Find the names of all customers with an account at a
Brooklyn branch whose account balance is over $1000.

I-Icustomer—name((O-branch-city = “Brooklyn” [0 balance > 1000

(branch X (account X depositor)))
® Transformation using join associatively (Rule 6a):

LAY
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Q Transformation Example

B Query: Find the names of all customers who have an account at
some branch located in Brooklyn.
O

customer- name(obmnch -city = “Brooklyn”

(branch X (account[>4 depositor)))

® Transformation using rule 7a.
I

customer-name

LY
AR

Q Multiple Transformations (Cont.)

I Clstonmer-iare
CHSTERRE F-Iaie

[
branch-city=Brooklyn / \\
A balance < 1000

B depositor

G branch-cirv=Brooklyn G halance < 1000

X—ao——23

account depositor account

(a) Initial Ex sion Tree iple Transformations
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- Projection Operation Example

I_lcustomer—name((Gbranch-city = “Brooklyn” (br anCh) X account) X depositor, )

® When we compute

. (Gbranch_-city = “Brooklyn” (bran_Ch) Haccount)
we obtain a relation whose schema is:
(branch-name, branch-city, assets, account-number, balance)

B Push projections using equivalence rules 8a and 8b; eliminate
unneeded attributes from intermediate results to get:
r

customer-name ((

n account-number(_ (obranch-city = “Brooklyn” (br an Ch) N account ))
IX| depositor)

§ A

©Si|berschatz.<o:>:g

Database System Concepts 3 Edition 14.33

~

_ Join Ordering Example (Cont.)

m Consider the expression

M customer-name ((Gbranch-city = “Brooklyn” (b ran Ch))

Xlaccount X|depositor)

m Could compute account X depositor first, and join result
with

0-branch—city = “Brooklyn” (br an Ch)
but account Xdepositor is likely to be a large relation.

m Since it is more likely that only a small fraction of the
bank’s customers have accounts in branches located
in Brooklyn, it is better to compute

Gbranch—city = “Brooklyn” (b ran Ch) MXaccount
first.

f=A
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A Join Ordering Example

® For all relations r, r, and r;,
(X )Xy = rX(rXr)
m |fr,Xry is quite large and r, Xr, is small, we choose

(X)X rs
so that we compute and store a smaller temporary relation.

it \
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_Enumeration of Equivalent Expressions

® Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression

m Conceptually, generate all equivalent expressions by repeatedly
executing the following step until no more expressions can be
found:

* for each expression found so far, use all applicable equivalence
rules, and add newly generated expressions to the set of expressions
found so far

m The above approach is very expensive in space and time

B Space requirements reduced by sharing common subexpressions:

* when E1 is generated from E2 by an equivalence rule, usually only the
top level of the two are different, subtrees below are the same and
can be shared

= E.g. when applying join associativity
Time requirements are reduced by not generating all expressions \
* More details shortly 1A)
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A A Evaluation Plan

m An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.

T ystomer-name (S0t o remove duplicates)

P (hash-join)

2 TEe,

g (merge-join) depositor

Pipulinc/ N}clinu

G pranch-ciry=Brooklyn G palance < 1000

(use index 1) (use linear scan)

branch account

;\;ﬁj
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A Cost-Based Optimization

m Consider finding the best join-order for r; x| ;) . . . 1,

m There are (2(n— 1))!/(n - 1)! different join orders for above
expression. With n =7, the number is 665280, with n = 10, the
number is greater than 176 billion!

® No need to generate all the join orders. Using dynamic
programming, the least-cost join order for any subset of
{r, rpy . . . 1} is computed only once and stored for future use.

‘
D\J\j
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A Choice of Evaluation Plans

® Must consider the interaction of evaluation techniques when
choosing evaluation plans: choosing the cheapest algorithm for
each operation independently may not yield best overall
algorithm. E.g.

* merge-join may be costlier than hash-join, but may provide a sorted
output which reduces the cost for an outer level aggregation.

* nested-loop join may provide opportunity for pipelining

®m Practical query optimizers incorporate elements of the following
two broad approaches:

1. Search all the plans and choose the best plan in a
cost-based fashion.

2. Uses heuristics to choose a plan.

it \
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+~  Dynamic Programming in Optimization
\/
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m To find best join tree for a set of n relations:

* To find best plan for a set S of n relations, consider all possible
plans of the form: S,[X| (S — S,) where S, is any non-empty
subset of S.

* Recursively compute costs for joining subsets of S to find the
cost of each plan. Choose the cheapest of the 27 — 1
alternatives.

* When plan for any subset is computed, store it and reuse it
when it is required again, instead of recomputing it

= Dynamic programming

. \
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_ Join Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost # ©)
return bestplan[S]
/I else bestplan[S] has not been computed earlier, compute it now
for each non-empty subset S1 of S such that S1# S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost
bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;
join results of P1 and P2 using A”
return bestplan[S]

\
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A Cost of Optimization

® With dynamic programming time complexity of optimization with
bushy trees is O(3").
* With n = 10, this number is 59000 instead of 176 billion!
B Space complexity is O(2")
m To find best left-deep join tree for a set of n relations:

* Consider n alternatives with one relation as right-hand side input
and the other relations as left-hand side input.

* Using (recursively computed and stored) least-cost join order for
each alternative on left-hand-side, choose the cheapest of the n
alternatives.

m If only left-deep trees are considered, time complexity of finding
best join order is O(n 27)

* Space complexity remains at O(2")

m Cost-based optimization is expensive, but worthwhile for queries
on large datasets (typical queries have small n, generally < I'I;O)

ikt
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A Left Deep Join Trees

m In left-deep join trees, the right-hand-side input for each
join is a relation, not the result of an intermediate join.

(a) Left-deep Join Tree (b) Non-lefi-deep Join Tree

it \
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4 Interesting Orders in Cost-Based Optimization
\/
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®m Consider the expression (ry X\ry X rs) X ry X rs

B An interesting sort order is a particular sort order of tuples
that could be useful for a later operation.
* Generating the result of r, x| r,[X| r; sorted on the attributes

common with r, or ry; may be useful, but generating it sorted on
the attributes common only r, and r,, is not useful.

* Using merge-join to compute r,X| r, X r; may be costlier, but may
provide an output sorted in an interesting order.
® Not sufficient to find the best join order for each subset of the
set of n given relations; must find the best join order for each
subset, for each interesting sort order

* Simple extension of earlier dynamic programming algorithms

# Usually, number of interesting orders is quite small and doesnt
affect time/space complexity significantly w \

'» A
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Y Heuristic Optimization

m Cost-based optimization is expensive, even with
dynamic programming.

m Systems may use heuristics to reduce the number of
choices that must be made in a cost-based fashion.

B Heuristic optimization transforms the query-tree by

' _Steps in Typical Heuristic Optimization

1.

2.

Deconstruct conjunctive selections into a sequence of single
selection operations (Equiv. rule 1.).

Move selection operations down the query tree for the
earliest possible execution (Equiv. rules 2, 7a, 7b, 11).

. Execute first those selection and join operations that will

produce the smallest relations (Equiv. rule 6).

using a set of rules that typically (but not in all cases) 4. Replace Cartesian product operations that are followed by a
improve execution performance: selection condition by join operations (Equiv. rule 4a).
* Perform selection early (reduces the number of tuples) 5. Deconstruct and move as far down the tree as possible lists
#* Perform projection early (reduces the number of of projection gttrlbutes, creating new projections where
attributes) needed (Equiv. rules 3, 8a, 8b, 12).
# Perform most restrictive selection and join operations 6. Identify those subtrees whose operations can be pipelined,
before other similar operations. and execute them using pipelining).
* Some systems use only heuristics, others combine _ ; { :
heuristics with partial cost-based optimization. 1 \ l \
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Structure of Query Optimizers " _Structure of Query Optimizers (Cont.)

~

m The System R/Starburst optimizer considers only left-deep join

orders. This reduces optimization complexity and generates
plans amenable to pipelined evaluation.
System R/Starburst also uses heuristics to push selections and
projections down the query tree.
Heuristic optimization used in some versions of Oracle:
* Repeatedly pick “best” relation to join next

= Starting from each of n starting points. Pick best among these.

For scans using secondary indices, some optimizers take into

account the probability that the page containing the tuple is in the
buffer.

m Intricacies of SQL complicate query optimization

* E.g. nested subqueries

f=A
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B Some query optimizers integrate heuristic selection and the
generation of alternative access plans.
* System R and Starburst use a hierarchical procedure based on

the nested-block concept of SQL: heuristic rewriting followed by
cost-based join-order optimization.

m Even with the use of heuristics, cost-based query optimization
imposes a substantial overhead.

®m This expense is usually more than offset by savings at query-
execution time, particularly by reducing the number of slow
disk accesses.

. \
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. Optimizing Nested Subqueries™

m SQL conceptually treats nested subqueries in the where clause as
functions that take parameters and return a single value or set of
values

* Parameters are variables from outer level query that are used in the
nested subquery; such variables are called correlation variables

m Eg.
select customer-name
from borrower
where exists (select *
from depositor
where depositor.customer-name =
borrower.customer-name)

m Conceptually, nested subquery is executed once for each tuple in
the cross-product generated by the outer level from clause

* Such evaluation is called correlated evaluation

* Note: other conditions in where clause may be used to computefa join \
(instead of a cross-product) before executing the nested subquery \
M

Database System Concepts 3 Edition 14.49 ©Silberschatz, Ko an

~

_Optimizing Nested Subqueries (Cont.)

In general, SQL queries of the form below can be rewritten as shown

m Rewrite: select ...
from L,
where P, and exists (select *
from L,
where P,)

m To: create table {, as
select distinct V
from L,
where P,
select ...
from L, t,
where P, and P,?
* P,' contains predicates in P, that do not involve any correlation variables
* P, reintroduces predicates involving correlation variables, with
relations renamed appropriately d :

* V contains all attributes used in predicates with correlation variabtes \
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- Optimizing Nested Subqueries (Cont.)

m Correlated evaluation may be quite inefficient since
* a large number of calls may be made to the nested query
* there may be unnecessary random I/O as a result

B SQL optimizers attempt to transform nested subqueries to joins
where possible, enabling use of efficient join techniques

m E.g.: earlier nested query can be rewritten as
select customer-name
from borrower, depositor
where depositor.customer-name = borrower.customer-name
* Note: above query doesn’t correctly deal with duplicates, can be
modified to do so as we will see
B In general, it is not possible/straightforward to move the entire
nested subquery from clause into the outer level query from clause

* A temporary relation is created instead, and used in body of oqt'e[ \

- - Q::D
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_Optimizing Nested Subqueries (Cont.)
B |n our example, the original nested query would be transformed to
create table ¢, as
select distinct customer-name
from depositor
select customer-name
from borrower, t,
where t,.customer-name = borrower.customer-name
m The process of replacing a nested query by a query with a join
(possibly with a temporary relation) is called decorrelation.
m Decorrelation is more complicated when
* the nested subquery uses aggregation, or
* when the result of the nested subquery is used to test for equality, or
* when the condition linking the nested subquery to the other
query is not exists,
* and so on. 7, \
2
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A Materialized Views™ . Materialized View Maintenance
® A materialized view is a view whose contents are computed and m The task of keeping a materialized view up-to-date with the
stored. underlying data is known as materialized view maintenance
m Consider the view m Materialized views can be maintained by recomputation on every
create view branch-total-loan(branch-name, total-loan) as update
:elec} branch-name, sum(amount) m A better option is to use incremental view maintenance
rom /oan
groupby branch-name * Changes to database relations are used to compute changes to

materialized view, which is then updated
® Materializing the above view would be very useful if the total loan

; . ® View maintenance can be done by
amount is required frequently iy v dof del 4 uod  omch
ining tri insert, te, t
* Saves the effort of finding multiple tuples and adding up their re?ar:iti; ?ln tﬁ én\ll?gwr;%%ﬁ:;ig: Inseft, delete, and update of eac
amounts

* Manually written code to update the view whenever database
relations are updated

* Supported directly by the database )

‘1-:, 5 i

Database System Concepts 3 Edition 14.53 ©Silberschatz, Ko an Database System Concepts 3 Edition 14.54 ©Silberschatz, Ko an
~ - - ~ - "
- Incremental View Maintenance A Join Operation
B The changes (inserts and deletes) to a relation or expressions ®m Consider the materialized view v = r X's and an update to r
are referred to as its differential ® Let rod and rev denote the old and new states of relation r
* [ i : .
Set of tuples inserted to and deleted from r are denoted i, and d, | CarellET e msee 6F 5 rEeT i
m To simplify our description, we only consider inserts and deletes * We can write % )| s as (99 0 i) s
* We replace updates to a tuple by deletion of the tuple followed by * And rewrite the above to (4[] Sr) 0 (. s)
insertion of the update tuple r
. * But (r°d[X s) is simply the old value of the materialized view, so the
B We describe how to compute the change to the result of each incremental change to the view is just  i.[X(s
relational operation, given changes to its inputs : .
2 _ 2 < _ R _ B Thus, for inserts  vmew = veld[J(j X s)
m We then outline how to handle relational algebra expressions .
m Similarly for deletes v = yold—(d_[Xs)
A \ dt \
i A <)

Database System Concepts 3™ Edition 14.55 il (,:ha\uv_/\j Database System Concepts 3" Edition 14.56 ©Si|berschm



" _ Selection and Projection Operations

m Selection: Consider a view v = gg(r).
#oynew = yold [G ()
* ynew = yold _ g (dl)

B Projection is a more difficult operation
* R=(A,B), and r(R) ={ (a,2), (a,3)}
* () has a single tuple (a).

* If we delete the tuple (a,2) from r, we should not delete the tuple (a)
from [,(r), but if we then delete (a,3) as well, we should delete the
tuple

B For each tuple in a projection [],(r) , we will keep a count of how
many times it was derived

* On insert of a tuple to r, if the resultant tuple is already in [],(r) we
increment its count, else we add a new tuple with count = 1

* On delete of a tuple from r, we decrement the count of the
corresponding tuple in [](r)

= if the count becomes 0, we delete the tuple from [],(r) 1 ’L ) :
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- Aggregate Operations (Cont.)

B min, max: v=,G.,@s (-
* Handling insertions on r is straightforward.

* Maintaining the aggregate values min and max on deletions may be
more expensive. We have to look at the other tuples of r that are in
the same group to find the new minimum
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A Aggregation Operations

B count:v= Agcount(B)U).
* When a set of tuples i, is inserted

= For each tuple rin i, if the corresponding group is already present in v,
we increment its count, else we add a new tuple with count = 1

* When a set of tuples d, is deleted

= for each tuple t in i we look for the group t.A in v, and subtract 1 from
the count for the group.

If the count becomes 0, we delete from v the tuple for the group t.A
B osumiv=,G0me"
* We maintain the sum in a manner similar to count, except we add/subtract

the B value instead of adding/subtracting 1 for the count

* Additionally we maintain the count in order to detect groups with no tuples.
Such groups are deleted from v

= Cannot simply test for sum = 0 (why?) @ \

® To handle the case of avg, we maintain the sum and count 1750)
aggregate values separately, and divide at the end \ '
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Other Operations

~

B Setintersection: v=rn s

* when a tuple is inserted in r we check if it is present in s, and if so
we add it to v.

* If the tuple is deleted from r, we delete it from the intersection if it is
present.

* Updates to s are symmetric

* The other set operations, union and set difference are handled in a
similar fashion.

m Outer joins are handled in much the same way as joins but with
some extra work

* we leave details to you.

. \

H-EA
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A Handling Expressions

B To handle an entire expression, we derive expressions for
computing the incremental change to the result of each sub-
expressions, starting from the smallest sub-expressions.

m E.g. consider E; X E, where each of E; and E, may be a
complex expression

* Suppose the set of tuples to be inserted into E, is given by D,
= Computed earlier, since smaller sub-expressions are handled

LN
SRR

A Materialized View Selection

m Materialized view selection: “What is the best set of views to
materialize?”.

* This decision must be made on the basis of the system workload

B Indices are just like materialized views, problem of index
selection is closely related, to that of materialized view
selection, although it is simpler.

B Some database systems, provide tools to help the database

LY
~ithame o

£ Query Optimization and Materialized
-~ Views

B Rewriting queries to use materialized views:
* A materialized view v = r x| s is available
* A user submits a query r X s)q t
* We can rewrite the query as v X t
= Whether to do so depends on cost estimates for the two alternative
® Replacing a use of a materialized view by the view definition:

LY
SIS
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- Selection Cost Estimate Example

0—branch—name = “Perryridge"(account)

B Number of blocks is b, = 500: 10,000 tuples in the
relation; each block holds 20 tuples.
B Assume account is sorted on branch-name.
* V(branch-name,account) is 50

* 10000/50 = 200 tuples of the account relation pertain to
Perryridge branch

* 200/20 = 10 blocks for these tuples
* A binary search to find the first record would take
rlogz(SOOﬂ = 9 block accesses

m Total cost of binary search is 9 + 10 -1 = 18 block
accesses (versus 500 for linear scan) 7 X

WA
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_ Cost Estimate Example (Indices)

C(.)ns1der. the query 1S Op,uchname - “perryridge-(@ccount), with the
primary index on branch-name.

m Since V(branch-name, account) = 50, we expect that
10000/50 = 200 tuples of the account relation pertain
to the Perryridge branch.

®m Since the index is a clustering index, 200/20 = 10 block
reads are required to read the account tuples.

B Several index blocks must also be read. If B*-tree
index stores 20 pointers per node, then the B*-tree
index must have between 3 and 5 leaf nodes and the
entire tree has a depth of 2. Therefore, 2 index blocks
must be read.

®m This strategy requires 12 total block reads. 4 1
A=A
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A Selections Using Indices

B Index scan — search algorithms that use an index; condition is
on search-key of index.

m A3 (primary index on candidate key, equality). Retrieve a
single record that satisfies the corresponding equality condition
E,,=HT +1

B A4 (primary index on nonkey, equality) Retrieve multiple
records. Let the search-key attribute be A.

SC(A,r)—‘

r

Epq =HT; J{

m A5 (equality on search-key of secondary index).
* Retrieve a single record if the search-key is a candidate key
E,s=HT, +1
* Retrieve multiple records (each may be on a different block) if the
search-key is not a candidate key. E,; = HT, + SC(A,r)

F \

HL—A

©Si|berschm

Database System Concepts 3 Edition 14.66

~

_ Selections Involving Comparisons

selections of the form o,_,(r) or 0, (r) by using a linear file
scan or binary search, or by using indices in the following
ways:

m A6 (primary index, comparison). The cost estimate is:

Egg =HT; + M
fr
where c is the estimated number of tuples satisfying
the condition. In absence of statistical information c is
assumed to be n, /2.

m A7 (secondary index, comparison). The cost estimate:
Exr =HT, + 98 40
where c is defined as before.” (Linear file scan may be

cheaper if ¢ is large!). 1 £
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Example of Cost Estimate for Complex
E E Q Example (Cont.)

Selection

m Consider using algorithm A10:

* Use the index on balance to retrieve set S, of pointers to
records with balance = 1200.

B Consider a selection on account with the following condition:
where branch-name = “Perryridge” and balance = 1200

® Consider using algorithm A8: * Use index on branch-name to retrieve-set S, of pointers to
* The branch-name index is clustering, and if we use it the cost records with branch-name = Perryridge”.
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