‘ Chapter 15: Transactions

B Transaction Concept
B Transaction State

B Implementation of Atomicity and Durability

‘ Transaction Concept

B Atransaction is a unit of program execution that
accesses and possibly updates various data items.

B A transaction must see a consistent database.

‘ ACID Properties

To preserve integrity of data, the database system must ensure:
m Atomicity. Either all operations of the transaction are
properly reflected in the database or none are.

B Consistency. Execution of a transaction in isolation
preserves the consistency of the database.

B |solation. Although multiple transactions may execute

‘ Example of Fund Transfer

® Transaction to transfer $50 from account A to account B:
1. read(A)

. A:=A-50

write(A)

read(B)

. B:=B+50

g s w N

‘ Example of Fund Transfer (Cont.)

®m Durability requirement — once the user has been notified
that the transaction has completed (i.e., the transfer of the
$50 has taken place), the updates to the database by the
transaction must persist despite failures.

m [solation requirement — if between steps 3 and 6, another

‘ Transaction State

B Active, the initial state; the transaction stays in this state
while it is executing

m Partially committed, after the final statement has been
executed.

m Failed, after the discovery that normal execution can no

‘ Transaction State (Cont.)

‘ Implementation of Atomicity and
Durability

B The recovery-management component of a database
system implements the support for atomicity and
durability.

B The shadow-database scheme:

* assume that only one transaction is active at a time.

Implementation of Atomicity and Durability
(Cont.)

The shadow-database scheme:

db_puinser

old copy of o
database datiwe s &
: {h bre hefetecd] g

i) After updaie

‘ Concurrent Executions

B Multiple transactions are allowed to run concurrently in the
system. Advantages are:

* increased processor and disk utilization, leading to better
transaction throughput: one transaction can be using the CPU
while another is reading from or writing to the disk

‘ Schedules

B Schedules — sequences that indicate the chronological order in
which instructions of concurrent transactions are executed

* a schedule for a set of transactions must consist of all instructions of

‘ Example Schedules

B Let T, transfer $50 from A to B, and T, transfer 10% of
the balance from A to B. The following is a serial
schedule (Schedule 1 in the text), in which T, is
followed by T,.

‘ Example Schedule (Cont.)

® Let T, and T, be the transactions defined previously. The
following schedule (Schedule 3 in the text) is not a serial
schedule, but it is equivalent to Schedule 1.

Example Schedules (Cont.)

B The following concurrent schedule (Schedule 4 in the
text) does not preserve the value of the the sum A + B.

writa{A)

‘ Serializability

B Basic Assumption — Each transaction preserves database
consistency.

B Thus serial execution of a set of transactions preserves
database consistency.

m A (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule. Different forms of schedule

‘/ Conflict Serializability

® Instructions |; and |, of transactions T, and T; respectively, conflict
if and only if there exists some item Q accessed by both |, and |;,
and at least one of these instructions wrote Q.

1. l;=read(Q), |, =read(Q). | and |, don’t conflict.
2. l;=read(Q), I, =write(Q). They conflict.

"
3. . = write(Q), | =read(Q). They conflict

‘ Conflict Serializability (Cont.)

m |f a schedule S can be transformed into a schedule S” by a
series of swaps of non-conflicting instructions, we say that
S and S’ are conflict equivalent.

m We say that a schedule S is conflict serializable if it is
conflict equivalent to a serial schedule

‘ Conflict Serializability (Cont.)

B Schedule 3 below can be transformed into Schedule 1, a
serial schedule where T, follows T,, by series of swaps of
non-conflicting instructions. Therefore Schedule 3 is conflict
serializable.

‘ View Serializability

B Let S and S” be two schedules with the same set of
transactions. S and S” are view equivalent if the following
three conditions are met:

1. For each data item Q, if transaction T, reads the initial value of Q in
schedule S, then transaction T; must, in schedule S’, also read the
initial value of Q.

2. For each data item Q if transaction T, executes read(Q) in schedule
S, and that value was produced by transaction T. (if any), then

‘ View Serializability (Cont.)

B A schedule S is view serializable it is view equivalent to a serial
schedule.

m Every conflict serializable schedule is also view serializable.

B Schedule 9 (from text) — a schedule which is view-serializable
but not conflict serializable.

10

‘ Other Notions of Serializability

B Schedule 8 (from text) given below produces same
outcome as the serial schedule < T,, T; >, yet is not
conflict equivalent or view equivalent to it.

L™ T

read(A)

‘ Recoverability

Need to address the effect of transaction failures on concurrently
running transactions.
m Recoverable schedule — if a transaction T, reads a data items
previously written by a transaction T,, the commit operation of T;
appears before the commit operation of T;.

m The following schedule (Schedule 11) is not recoverable if T,

11

‘ Recoverability (Cont.)

B Cascading rollback — a single transaction failure leads to
a series of transaction rollbacks. Consider the following
schedule where none of the transactions has yet
committed (so the schedule is recoverable)

‘ Recoverability (Cont.)

B Cascadeless schedules — cascading rollbacks cannot occur;
for each pair of transactions T; and T, such that T; reads a data
item previously written by T;, the commit operation of T, appears

before the read operation of T;.

B Every cascadeless schedule is also recoverable

12

‘ Implementation of Isolation

B Schedules must be conflict or view serializable, and
recoverable, for the sake of database consistency, and
preferably cascadeless.

®m A policy in which only one transaction can execute at a time
generates serial schedules, but provides a poor degree of

‘ Transaction Definition in SQL

m Data manipulation language must include a construct for
specifying the set of actions that comprise a transaction.

B In SQL, a transaction begins implicitly.

B A transaction in SQL ends by:
* Commit work commits current transaction and begins a new

13

[]

Levels of Consistency in SQL-92

B Serializable — default

B Repeatable read — only committed records to be read,
repeated reads of same record must return same value.
However, a transaction may not be serializable — it may find
some records inserted by a transaction but not find others.

[]

Testing for Serializability

B Consider some schedule of a set of transactions T,, T,,
T

B Precedence graph — a direct graph where the
vertices are the transactions (names).

® We draw an arc from T, to T, if the two transaction
conflict, and T, accessed the data item on which the

14

‘/ Example Schedule (Schedule A)

LY PR I PO N PO B PO

‘ Precedence Graph for Schedule A

‘ Test for Conflict Serializability

m A schedule is conflict serializable if and only if its precedence
graph is acyclic.

®m Cycle-detection algorithms exist which take order n? time, where
n is the number of vertices in the graph. (Better algorithms take
order n + e where e is the number of edges.

‘ Test for View Serializability

B The precedence graph test for conflict serializability must be
modified to apply to a test for view serializability.

B The problem of checking if a schedule is view serializable falls
in the class of NP-complete problems. Thus existence of an
efficient algorithm is unlikely.

16

‘Concurrency Control vs. Serializability Tests

B Testing a schedule for serializability after it has executed is a
little too late!

B Goal - to develop concurrency control protocols that will assure
serializability. They will generally not examine the precedence
graph as it is being created; instead a protocol will impose a

17

Schedule 2 -- A Serial Schedule in Which
T, is Followed by T,

I mn | &
reac A
ferrp = A * 0.1
A=A = temp
writel A}

read|{B)

B =8 +lemp
write(8}

‘Schedule 5 -- Schedule 3 After Swapping A
Pair of Instructions

I 3] I &
read(A)
write(A)

read(B)

write(B)

18

Schedule 6 -- A Serial Schedule That 1S
Equivalent to Schedule 3

T T
read(A)
write(A)
read(B)
write(B)

‘/ Schedule 7

19

‘ Precedence Graph for
(a) Schedule 1 and (b) Schedule 2

‘ lllustration of Topological Sorting

20

‘ Precedence Graph

‘ fig. 15.21

read(Q)

write(Q)

write(Q)

