
©Silberschatz, Korth and Sudarshan15.1Database System Concepts

Chapter 15: TransactionsChapter 15: Transactions

! Transaction Concept
! Transaction State
! Implementation of Atomicity and Durability
! Concurrent Executions
! Serializability
! Recoverability
! Implementation of Isolation
! Transaction Definition in SQL
! Testing for Serializability.

©Silberschatz, Korth and Sudarshan15.2Database System Concepts

Transaction ConceptTransaction Concept

! A transaction is a unit of program execution that
accesses and possibly updates various data items.

! A transaction must see a consistent database.
! During transaction execution the database may be

inconsistent.
! When the transaction is committed, the database must

be consistent.
! Two main issues to deal with:

! Failures of various kinds, such as hardware failures and
system crashes

! Concurrent execution of multiple transactions

©Silberschatz, Korth and Sudarshan15.3Database System Concepts

ACID PropertiesACID Properties

! Atomicity. Either all operations of the transaction are
properly reflected in the database or none are.

! Consistency. Execution of a transaction in isolation
preserves the consistency of the database.

! Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate
transaction results must be hidden from other concurrently
executed transactions.
! That is, for every pair of transactions Ti and Tj, it appears to Ti

that either Tj, finished execution before Ti started, or Tj started
execution after Ti finished.

! Durability. After a transaction completes successfully, the
changes it has made to the database persist, even if there
are system failures.

To preserve integrity of data, the database system must ensure:

©Silberschatz, Korth and Sudarshan15.4Database System Concepts

Example of Fund TransferExample of Fund Transfer

! Transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

! Consistency requirement – the sum of A and B is unchanged
by the execution of the transaction.

! Atomicity requirement — if the transaction fails after step 3
and before step 6, the system should ensure that its updates
are not reflected in the database, else an inconsistency will
result.

©Silberschatz, Korth and Sudarshan15.5Database System Concepts

Example of Fund Transfer (Cont.)Example of Fund Transfer (Cont.)

! Durability requirement — once the user has been notified
that the transaction has completed (i.e., the transfer of the
$50 has taken place), the updates to the database by the
transaction must persist despite failures.

! Isolation requirement — if between steps 3 and 6, another
transaction is allowed to access the partially updated
database, it will see an inconsistent database
(the sum A + B will be less than it should be).
Can be ensured trivially by running transactions serially,
that is one after the other. However, executing multiple
transactions concurrently has significant benefits, as we
will see.

©Silberschatz, Korth and Sudarshan15.6Database System Concepts

Transaction StateTransaction State

! Active, the initial state; the transaction stays in this state
while it is executing

! Partially committed, after the final statement has been
executed.

! Failed, after the discovery that normal execution can no
longer proceed.

! Aborted, after the transaction has been rolled back and the
database restored to its state prior to the start of the
transaction. Two options after it has been aborted:
! restart the transaction – only if no internal logical error
! kill the transaction

! Committed, after successful completion.

©Silberschatz, Korth and Sudarshan15.7Database System Concepts

Transaction State (Cont.)Transaction State (Cont.)

©Silberschatz, Korth and Sudarshan15.8Database System Concepts

Implementation of Atomicity and Implementation of Atomicity and
DurabilityDurability

! The recovery-management component of a database
system implements the support for atomicity and
durability.

! The shadow-database scheme:
! assume that only one transaction is active at a time.
! a pointer called db_pointer always points to the current

consistent copy of the database.
! all updates are made on a shadow copy of the database, and

db_pointer is made to point to the updated shadow copy
only after the transaction reaches partial commit and all
updated pages have been flushed to disk.

! in case transaction fails, old consistent copy pointed to by
db_pointer can be used, and the shadow copy can be
deleted.

©Silberschatz, Korth and Sudarshan15.9Database System Concepts

Implementation of Atomicity and Durability Implementation of Atomicity and Durability
(Cont.)(Cont.)

! Assumes disks to not fail
! Useful for text editors, but extremely inefficient for large

databases: executing a single transaction requires copying
the entire database. Will see better schemes in Chapter 17.

The shadow-database scheme:

©Silberschatz, Korth and Sudarshan15.10Database System Concepts

Concurrent ExecutionsConcurrent Executions

! Multiple transactions are allowed to run concurrently in the
system. Advantages are:
! increased processor and disk utilization, leading to better

transaction throughput: one transaction can be using the CPU
while another is reading from or writing to the disk

! reduced average response time for transactions: short
transactions need not wait behind long ones.

! Concurrency control schemes – mechanisms to achieve
isolation, i.e., to control the interaction among the
concurrent transactions in order to prevent them from
destroying the consistency of the database
! Will study in Chapter 14, after studying notion of correctness of

concurrent executions.

©Silberschatz, Korth and Sudarshan15.11Database System Concepts

SchedulesSchedules

! Schedules – sequences that indicate the chronological order in
which instructions of concurrent transactions are executed
! a schedule for a set of transactions must consist of all instructions of

those transactions
! must preserve the order in which the instructions appear in each

individual transaction.

©Silberschatz, Korth and Sudarshan15.12Database System Concepts

Example SchedulesExample Schedules
! Let T1 transfer $50 from A to B, and T2 transfer 10% of

the balance from A to B. The following is a serial
schedule (Schedule 1 in the text), in which T1 is
followed by T2.

©Silberschatz, Korth and Sudarshan15.13Database System Concepts

Example Schedule (Cont.)Example Schedule (Cont.)
! Let T1 and T2 be the transactions defined previously. The

following schedule (Schedule 3 in the text) is not a serial
schedule, but it is equivalent to Schedule 1.

In both Schedule 1 and 3, the sum A + B is preserved.

©Silberschatz, Korth and Sudarshan15.14Database System Concepts

Example Schedules (Cont.)Example Schedules (Cont.)
! The following concurrent schedule (Schedule 4 in the

text) does not preserve the value of the the sum A + B.

©Silberschatz, Korth and Sudarshan15.15Database System Concepts

SerializabilitySerializability

! Basic Assumption – Each transaction preserves database
consistency.

! Thus serial execution of a set of transactions preserves
database consistency.

! A (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule. Different forms of schedule
equivalence give rise to the notions of:
1. conflict serializability
2. view serializability

! We ignore operations other than read and write instructions,
and we assume that transactions may perform arbitrary
computations on data in local buffers in between reads and
writes. Our simplified schedules consist of only read and
write instructions.

©Silberschatz, Korth and Sudarshan15.16Database System Concepts

Conflict SerializabilityConflict Serializability

! Instructions li and lj of transactions Ti and Tj respectively, conflict
if and only if there exists some item Q accessed by both li and lj,
and at least one of these instructions wrote Q.
1. li = read(Q), lj = read(Q). li and lj don’t conflict.
2. li = read(Q), lj = write(Q). They conflict.
3. li = write(Q), lj = read(Q). They conflict
4. li = write(Q), lj = write(Q). They conflict

! Intuitively, a conflict between li and lj forces a (logical) temporal
order between them. If li and lj are consecutive in a schedule
and they do not conflict, their results would remain the same
even if they had been interchanged in the schedule.

©Silberschatz, Korth and Sudarshan15.17Database System Concepts

Conflict Serializability (Cont.)Conflict Serializability (Cont.)

! If a schedule S can be transformed into a schedule S´ by a
series of swaps of non-conflicting instructions, we say that
S and S´ are conflict equivalent.

! We say that a schedule S is conflict serializable if it is
conflict equivalent to a serial schedule

! Example of a schedule that is not conflict serializable:
T3 T4

read(Q)
write(Q)

write(Q)

We are unable to swap instructions in the above schedule
to obtain either the serial schedule < T3, T4 >, or the serial
schedule < T4, T3 >.

©Silberschatz, Korth and Sudarshan15.18Database System Concepts

Conflict Serializability (Cont.)Conflict Serializability (Cont.)

! Schedule 3 below can be transformed into Schedule 1, a
serial schedule where T2 follows T1, by series of swaps of
non-conflicting instructions. Therefore Schedule 3 is conflict
serializable.

©Silberschatz, Korth and Sudarshan15.19Database System Concepts

View SerializabilityView Serializability
! Let S and S´ be two schedules with the same set of

transactions. S and S´ are view equivalent if the following
three conditions are met:
1. For each data item Q, if transaction Ti reads the initial value of Q in

schedule S, then transaction Ti must, in schedule S´, also read the
initial value of Q.

2. For each data item Q if transaction Ti executes read(Q) in schedule
S, and that value was produced by transaction Tj (if any), then
transaction Ti must in schedule S´ also read the value of Q that
was produced by transaction Tj .

3. For each data item Q, the transaction (if any) that performs the final
write(Q) operation in schedule S must perform the final write(Q)
operation in schedule S´.

As can be seen, view equivalence is also based purely on reads
and writes alone.

©Silberschatz, Korth and Sudarshan15.20Database System Concepts

View Serializability (Cont.)View Serializability (Cont.)

! A schedule S is view serializable it is view equivalent to a serial
schedule.

! Every conflict serializable schedule is also view serializable.
! Schedule 9 (from text) — a schedule which is view-serializable

but not conflict serializable.

! Every view serializable schedule that is not conflict
serializable has blind writes.

©Silberschatz, Korth and Sudarshan15.21Database System Concepts

Other Notions of SerializabilityOther Notions of Serializability
! Schedule 8 (from text) given below produces same

outcome as the serial schedule < T1, T5 >, yet is not
conflict equivalent or view equivalent to it.

! Determining such equivalence requires analysis of
operations other than read and write.

©Silberschatz, Korth and Sudarshan15.22Database System Concepts

RecoverabilityRecoverability

! Recoverable schedule — if a transaction Tj reads a data items
previously written by a transaction Ti , the commit operation of Ti
appears before the commit operation of Tj.

! The following schedule (Schedule 11) is not recoverable if T9
commits immediately after the read

! If T8 should abort, T9 would have read (and possibly shown to the
user) an inconsistent database state. Hence database must
ensure that schedules are recoverable.

Need to address the effect of transaction failures on concurrently
running transactions.

©Silberschatz, Korth and Sudarshan15.23Database System Concepts

Recoverability (Cont.)Recoverability (Cont.)

! Cascading rollback – a single transaction failure leads to
a series of transaction rollbacks. Consider the following
schedule where none of the transactions has yet
committed (so the schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.
! Can lead to the undoing of a significant amount of work

©Silberschatz, Korth and Sudarshan15.24Database System Concepts

Recoverability (Cont.)Recoverability (Cont.)

! Cascadeless schedules — cascading rollbacks cannot occur;
for each pair of transactions Ti and Tj such that Tj reads a data
item previously written by Ti, the commit operation of Ti appears
before the read operation of Tj.

! Every cascadeless schedule is also recoverable
! It is desirable to restrict the schedules to those that are

cascadeless

©Silberschatz, Korth and Sudarshan15.25Database System Concepts

Implementation of IsolationImplementation of Isolation

! Schedules must be conflict or view serializable, and
recoverable, for the sake of database consistency, and
preferably cascadeless.

! A policy in which only one transaction can execute at a time
generates serial schedules, but provides a poor degree of
concurrency..

! Concurrency-control schemes tradeoff between the amount
of concurrency they allow and the amount of overhead that
they incur.

! Some schemes allow only conflict-serializable schedules to
be generated, while others allow view-serializable
schedules that are not conflict-serializable.

©Silberschatz, Korth and Sudarshan15.26Database System Concepts

Transaction Definition in SQLTransaction Definition in SQL

! Data manipulation language must include a construct for
specifying the set of actions that comprise a transaction.

! In SQL, a transaction begins implicitly.
! A transaction in SQL ends by:

! Commit work commits current transaction and begins a new
one.

! Rollback work causes current transaction to abort.
! Levels of consistency specified by SQL-92:

! Serializable — default
! Repeatable read
! Read committed
! Read uncommitted

©Silberschatz, Korth and Sudarshan15.27Database System Concepts

Levels of Consistency in SQLLevels of Consistency in SQL--9292

! Serializable — default
! Repeatable read — only committed records to be read,

repeated reads of same record must return same value.
However, a transaction may not be serializable – it may find
some records inserted by a transaction but not find others.

! Read committed — only committed records can be read, but
successive reads of record may return different (but
committed) values.

! Read uncommitted — even uncommitted records may be
read.

Lower degrees of consistency useful for gathering approximate
information about the database, e.g., statistics for query optimizer.

©Silberschatz, Korth and Sudarshan15.28Database System Concepts

Testing for SerializabilityTesting for Serializability
! Consider some schedule of a set of transactions T1, T2,

..., Tn

! Precedence graph — a direct graph where the
vertices are the transactions (names).

! We draw an arc from Ti to Tj if the two transaction
conflict, and Ti accessed the data item on which the
conflict arose earlier.

! We may label the arc by the item that was accessed.
! Example 1

x

y

©Silberschatz, Korth and Sudarshan15.29Database System Concepts

Example Schedule (Schedule A)Example Schedule (Schedule A)
T1 T2 T3 T4 T5

read(X)
read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)

©Silberschatz, Korth and Sudarshan15.30Database System Concepts

Precedence Graph for Schedule APrecedence Graph for Schedule A

T3
T4

T1 T2

©Silberschatz, Korth and Sudarshan15.31Database System Concepts

Test for Conflict SerializabilityTest for Conflict Serializability

! A schedule is conflict serializable if and only if its precedence
graph is acyclic.

! Cycle-detection algorithms exist which take order n2 time, where
n is the number of vertices in the graph. (Better algorithms take
order n + e where e is the number of edges.)

! If precedence graph is acyclic, the serializability order can be
obtained by a topological sorting of the graph. This is a linear
order consistent with the partial order of the graph.
For example, a serializability order for Schedule A would be
T5 → T1 → T3 → T2 → T4 .

©Silberschatz, Korth and Sudarshan15.32Database System Concepts

Test for View SerializabilityTest for View Serializability

! The precedence graph test for conflict serializability must be
modified to apply to a test for view serializability.

! The problem of checking if a schedule is view serializable falls
in the class of NP-complete problems. Thus existence of an
efficient algorithm is unlikely.
However practical algorithms that just check some sufficient
conditions for view serializability can still be used.

©Silberschatz, Korth and Sudarshan15.33Database System Concepts

Concurrency Control vs. Serializability TestsConcurrency Control vs. Serializability Tests

! Testing a schedule for serializability after it has executed is a
little too late!

! Goal – to develop concurrency control protocols that will assure
serializability. They will generally not examine the precedence
graph as it is being created; instead a protocol will impose a
discipline that avoids nonseralizable schedules.
Will study such protocols in Chapter 16.

! Tests for serializability help understand why a concurrency
control protocol is correct.

End of ChapterEnd of Chapter

©Silberschatz, Korth and Sudarshan15.35Database System Concepts

Schedule 2 Schedule 2 ---- A Serial Schedule in Which A Serial Schedule in Which
TT22 is Followed by is Followed by TT11

©Silberschatz, Korth and Sudarshan15.36Database System Concepts

Schedule 5 Schedule 5 ---- Schedule 3 After Swapping A Schedule 3 After Swapping A
Pair of InstructionsPair of Instructions

©Silberschatz, Korth and Sudarshan15.37Database System Concepts

Schedule 6 Schedule 6 ---- A Serial Schedule That is A Serial Schedule That is
Equivalent to Schedule 3Equivalent to Schedule 3

©Silberschatz, Korth and Sudarshan15.38Database System Concepts

Schedule 7Schedule 7

©Silberschatz, Korth and Sudarshan15.39Database System Concepts

Precedence Graph for Precedence Graph for
(a) Schedule 1 and (b) Schedule 2(a) Schedule 1 and (b) Schedule 2

©Silberschatz, Korth and Sudarshan15.40Database System Concepts

Illustration of Topological SortingIllustration of Topological Sorting

©Silberschatz, Korth and Sudarshan15.41Database System Concepts

Precedence GraphPrecedence Graph

©Silberschatz, Korth and Sudarshan15.42Database System Concepts

fig. 15.21fig. 15.21

