‘ Chapter 16: Concurrency Control

B Lock-Based Protocols

B Timestamp-Based Protocols

‘ Lock-Based Protocols

B A lock is a mechanism to control concurrent access to a data item

m Data items can be locked in two modes :

‘ Lock-Based Protocols (Cont.)

m | ock-compatibility matrix

‘ Lock-Based Protocols (Cont.)

B Example of a transaction performing locking:
T,: lock-S(A);
read (A);
unlock(A);

‘ Pitfalls of Lock-Based Protocols

m Consider the partial schedule

S) Ty
lock-% 8}
read| i)
BE=0= 5
write| 1)

lmck-x(A)

‘Pitfalls of Lock-Based Protocols (Cont.)

B The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.

B Starvation is also possible if concurrency control manager is

‘ The Two-Phase Locking Protocol

B This is a protocol which ensures conflict-serializable schedules.
B Phase 1: Growing Phase
* transaction may obtain lock

‘The Two-Phase Locking Protocol (Cont.)

B Two-phase locking does not ensure freedom from deadlocks

B Cascading roll-back is possible under two-phase locking. To

‘The Two-Phase Locking Protocol (Cont.)

B There can be conflict serializable schedules that cannot be
obtained if two-phase locking is used.

B However, in the absence of extra information (e.g., ordering of

‘ Lock Conversions

B Two-phase locking with lock conversions:

— First Phase:
* can acquire a lock-S on item

* can acquire a lock-X on item

‘ Automatic Acquisition of Locks

B A transaction T; issues the standard read/write instruction,
without explicit locking calls.

B The operation read(D) is processed as:

‘Automatic Acquisition of Locks (Cont.)

m write(D) is processed as:

if T;has a lock-X on D
then

)

Implementation of Locking

® A lLock manager can be implemented as a separate process to
which transactions send lock and unlock requests

B The lock manager replies to a lock request by sending a lock
grant messages (or a message asking the transaction to roll
back, in case of a deadlock)

)

Lock Table

w7

T

=
=

g

brogh of

ol

-
=

TE

Black rectangles indicate granted
locks, white ones indicate waiting
requests

Lock table also records the type of
lock granted or requested

New request is added to the end of
the queue of requests for the data
item, and granted if it is compatible
with all earlier locks

Unlock requests result in the
request being deleted, and later
requests are checked to see if they
can now be granted

If transaction aborts, all waiting or
granted requests of the transaction
are deleted

* lock manager may keep a list of
locks held by each transaction, to
implement this efficiently

‘ Graph-Based Protocols

B Graph-based protocols are an alternative to two-phase locking

B Impose a partial ordering — on the set D ={d,, d, ,..., d,} of all

‘ Tree Protocol

‘ Graph-Based Protocols (Cont.)

B The tree protocol ensures conflict serializability as well as
freedom from deadlock.

® Unlocking may occur earlier in the tree-locking protocol than in
the two-phase locking protocol.

* shorter waiting times, and increase in concurrency

‘ Timestamp-Based Protocols

B Each transaction is issued a timestamp when it enters the system. If
an old transaction T, has time-stamp TS(T), a new transaction T; is
assigned time-stamp TS(T)) such that TS(T;) <TS(T)).

B The protocol manages concurrent execution such that the time-
stamps determine the serializability order.

‘Timestamp-Based Protocols (Cont.)

® The timestamp ordering protocol ensures that any conflicting
read and write operations are executed in timestamp order.

B Suppose a transaction T, issues a read(Q

‘ Timestamp-Based Protocols (Cont.)

B Suppose that transaction T; issues write(Q).

m |f TS(T)) < R-timestamp(Q), then the value of Q that T, is
producing was needed previously, and the system assumed that

10

‘ Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4,5

‘Correctness of Timestamp-Ordering Protocol

B The timestamp-ordering protocol guarantees serializability since
all the arcs in the precedence graph are of the form:

transaction transaction

11

‘Recoverability and Cascade Freedom

B Problem with timestamp-ordering protocol:
* Suppose T, aborts, but T; has read a data item written by T,

* Then Tj must abort; if Tj had been allowed to commit earlier, the
schedule is not recoverable.

‘ Thomas’ Write Rule

B Modified version of the timestamp-ordering protocol in which
obsolete write operations may be ignored under certain
circumstances.

B When T, attempts to write data item Q, if TS(T;) < W-

12

‘ Validation-Based Protocol

m Execution of transaction T;is done in three phases.

1. Read and execution phase: Transaction T; writes only to
temporary local variables
2. Validation phase: Transaction T, performs a "“validation test"

to determine if local variables can be written without violating
serializability.

‘ Validation-Based Protocol (Cont.)

B Each transaction T, has 3 timestamps
- Start(T;) : the time when T, started its execution

- Validation(T;): the time when T, entered its validation phase

13

‘ Validation Test for Transaction T

® |f for all T; with TS (T;) < TS (T)) either one of the following
condition holds:

* finish(T,) < start(T))

‘ Schedule Produced by Validation

m Example of schedule produced using validation
T14 | T15

read(B)

‘ Multiple Granularity

m Allow data items to be of various sizes and define a hierarchy of
data granularities, where the small granularities are nested within
larger ones

‘ Example of Granularity Hierarchy

15

‘ Intention Lock Modes

B |n addition to S and X lock modes, there are three additional lock
modes with multiple granularity:

Compatibility Matrix with
Intention Lock Modes
B The compatibility matrix for all lock modes is:

s | ix | s |six]|x |

16

‘ Multiple Granularity Locking Scheme

B Transaction T; can lock a node Q, using the following rules:
1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in
any mode.
3. A node Q can be locked by T; in S or IS mode only if the parent

of Q is currently locked by T; in either IX or IS
mode.

‘ Multiversion Schemes

m Multiversion schemes keep old versions of data item to increase
concurrency.

* Multiversion Timestamp Ordering

* Multiversion Two-Phase Locking

17

~ Multiversion Timestamp Ordering
\/

B Each data item Q has a sequence of versions <Q,, Q,,...., Q,>.
Each version Q, contains three data fields:

* Content -- the value of version Q,.

* W-timestamp(Q,) -- timestamp of the transaction that created
(wrote) version Q,

* R-timestamp(Q,) -- largest timestamp of a transaction that
successfully read version Q,

B when a transaction T; creates a new version Q, of Q, Q,'s W-
timestamp and R-timestamp are initialized to TS(T)).

® R-timestamp of Q, is updated whenever a transaction T, reads
Qi and TS(T)) > R-timestamp(Qy).

Database System Concepts 3" Edition 16.35 ©Silberschatz, Ko

+ Multiversion Timestamp Ordering (Cont)
\/

B The multiversion timestamp scheme presented next ensures
serializability.

B Suppose that transaction T, issues a read(Q) or write(Q) operation.
Let Q, denote the version of Q whose write timestamp is the largest
write timestamp less than or equal to TS(T,).

1. If transaction T, issues a read(Q), then the value returned is the
content of version Q,.

2. If transaction T, issues a write(Q), and if TS(T)) < R-
timestamp(Q,), then transaction T; is rolled
back. Otherwise, if TS(T;) = W-timestamp(Q,), the contents of Q,
are overwritten, otherwise a new version of Q is created.

B Reads always succeed; a write by T; is rejected if some other
transaction T, that (in the serlallzatlon order defined by the -
timestamp values) should read T;'s write, has already read
created by a transaction older than T,

Database System Concepts 3" Edition 16.36 ©Silberschatz, Ko

~ Multiversion Two-Phase Locking
\/

m Differentiates between read-only transactions and update
transactions

B Update transactions acquire read and write locks, and hold all
locks up to the end of the transaction. That is, update
transactions follow rigorous two-phase locking.

* Each successful write results in the creation of a new version of the
data item written.

* each version of a data item has a single timestamp whose value is
obtained from a counter ts-counter that is incremented during
commit processing.

B Read-only transactions are assigned a timestamp by reading the
current value of ts-counter before they start execution; they
follow the multiversion timestamp-ordering protocol for
performing reads.

Database System Concepts 3" Edition 16.37 ©Silberschatz, Ko

+ Multiversion Two-Phase Locking (Cont.)
\/

B When an update transaction wants to read a data item, it obtains
a shared lock on it, and reads the latest version.

B When it wants to write an item, it obtains X lock on; it then
creates a new version of the item and sets this version's
timestamp to co.

B When update transaction T; completes, commit processing
occurs:

* T, sets timestamp on the versions it has created to ts-counter + 1
* T,increments ts-counter by 1

B Read-only transactions that start after T, increments ts-counter
will see the values updated by T,.

B Read-only transactions that start before T; increments the
ts-counter will see the value before the updates by T,.

B Only serializable schedules are produced.

Database System Concepts 3" Edition 16.38 ©Silberschatz, Ko

19

‘ Deadlock Handling

®m Consider the following two transactions:
T: write (X) T,: write(Y)

‘ Deadlock Handling

m System is deadlocked if there is a set of transactions such that
every transaction in the set is waiting for another transaction in

20

‘More Deadlock Prevention Strategies

B Following schemes use transaction timestamps for the sake of
deadlock prevention alone.

B wait-die scheme — non-preemptive
* older transaction may wait for younger one to release data item.

‘ Deadlock prevention (Cont.)

®m Both in wait-die and in wound-wait schemes, a rolled back
transactions is restarted with its original timestamp. Older
transactions thus have precedence over newer ones, and

‘ Deadlock Detection

m Deadlocks can be described as a wait-for graph, which consists
of a pair G = (V,E),
* Vis a set of vertices (all the transactions in the system)

‘ Deadlock Detection (Cont.)

22

‘ Deadlock Recovery

® When deadlock is detected :

“ Some transaction will have to rolled back (made a victim) to break
deadlock. Select that transaction as victim that will incur minimum

‘ Insert and Delete Operations

® [f two-phase locking is used :

* A delete operation may be performed only if the transaction
deleting the tuple has an exclusive lock on the tuple to be deleted.

23

~ Insert and Delete Operations (Cont.)
\/
B The transaction scanning the relation is reading information that

indicates what tuples the relation contains, while a transaction
inserting a tuple updates the same information.

* The information should be locked.
® One solution:

* Associate a data item with the relation, to represent the information
about what tuples the relation contains.

* Transactions scanning the relation acquire a shared lock in the data
item,

* Transactions inserting or deleting a tuple acquire an exclusive lock on
the data item. (Note: locks on the data item do not conflict with locks on
individual tuples.)

® Above protocol provides very low concurrency for
insertions/deletions.

® Index locking protocols provide higher concurrency while
preventing the phantom phenomenon, by requiring locks
on certain index buckets.

Database System Concepts 3" Edition 16.47 ©Silberschatz, Ko

~ Index Locking Protocol

B Every relation must have at least one index. Access to a relation
must be made only through one of the indices on the relation.

B A transaction T, that performs a lookup must lock all the index
buckets that it accesses, in S-mode.

B A transaction T; may not insert a tuple t; into a relation r without
updating all indices to r.

B T, must perform a lookup on every index to find all index buckets
that could have possibly contained a pointer to tuple t;, had it
existed already, and obtain locks in X-mode on all these index
buckets. T; must also obtain locks in X-mode on all index buckets
that it modifies.

B The rules of the two-phase locking protocol must be obse

Database System Concepts 3" Edition 16.48 ©Silberschatz, Ko

24

‘ Weak Levels of Consistency

B Degree-two consistency: differs from two-phase locking in that
S-locks may be released at any time, and locks may be acquired
at any time

* X-locks must be held till end of transaction

‘ Weak Levels of Consistency in SQL

B SQL allows non-serializable executions
* Serializable: is the default

* Repeatable read: allows only committed records to be read, and
repeating a read should return the same value (so read locks should
be retained

~ Concurrency in Index Structures
\/

m [ndices are unlike other database items in that their only job is to
help in accessing data.

B [ndex-structures are typically accessed very often, much more
than other database items.

B Treating index-structures like other database items leads to low
concurrency. Two-phase locking on an index may result in
transactions executing practically one-at-a-time.

B |t is acceptable to have nonserializable concurrent access to an
index as long as the accuracy of the index is maintained.

B |n particular, the exact values read in an internal node of a
B*-tree are irrelevant so long as we land up in the correct leaf
node.

® There are index concurrency protocols where locks on internal
nodes are released early, and not in a two-phase fashion.

Database System Concepts 3" Edition 16.51 ©Silberschatz, Ko

4+ Concurrency in Index Structures (Cont.)
\/

B Example of index concurrency protocol:
B Use crabbing instead of two-phase locking on the nodes of the
B*-tree, as follows. During search/insertion/deletion:
* First lock the root node in shared mode.

* After locking all required children of a node in shared mode, release
the lock on the node.

* During insertion/deletion, upgrade leaf node locks to exclusive
mode.

* When splitting or coalescing requires changes to a parent, lock the
parent in exclusive mode.

m Above protocol can cause excessive deadlocks. Better protocols
are available; see Section 16.9 for one such protocol, the B-link
tree protocol

Database System Concepts 3" Edition 16.52 ©Silberschatz, Ko

26

‘ Locking

_ T | T | T
lock-2iA)
read{A)
lock-5(8)
read(’)
wribe (A}
unlockiA)
fock-X(A)
readiA}
wiitedA)
unlockiA)
lock-5(A)
readiA)

27

‘ncomplete Schedule With a Lock Conversion

‘/ Lock Table

28

‘ Tree-Structured Database Graph

‘erializable Schedule Under the Tree Protocol

e | m | T | T]

29

‘ Schedule 3

1'I

read(B)

read(A)

display{A + B}

A=A4+50
writa{A)
display (A + B)

Schedule 4
ad(Q)
write(Q)
write((Q)

30

'chedule 5, A Schedule Produced by Using Validation

read(A)
{ validate
display (A + B}

‘ Granularity Hierarchy

31

‘ Compatibility Matrix

|5 | [5 [sx]| X

true | true | true | false
true | false | false | false
false | true | false | false
false | false | false | false
false false

‘ Wait-for Graph With No Cycle

32

[]

Wait-for-graph With A Cycle

[]

Nonserializable Schedule with Degree-Two
Consistency

O
lock-S(())

read((J)
unlock(()

lock-X{QJ)

33

‘ B*-Tree For account File with n = 3.

‘Insertion of “Clearview” Into the B*-Tree of Figure
16.21

[Perihel]]

[]

Lock-Compatibility Matrix

35

