‘ Chapter 17: Recovery System

Failure Classification
Storage Structure

[
|
B Recovery and Atomicity
||

Log-Based Recovery

‘ Failure Classification

® Transaction failure :

* Logical errors: transaction cannot complete due to some internal
error condition

* System errors: the database system must terminate an active
transaction due to an error condition (e.g., deadlock)

‘ Recovery Algorithms

B Recovery algorithms are techniques to ensure database
consistency and transaction atomicity and durability despite
failures

* Focus of this chapter

‘ Storage Structure

m Volatile storage:
* does not survive system crashes
* examples: main memory, cache memory

‘ Stable-Storage Implementation

B Maintain multiple copies of each block on separate disks

* copies can be at remote sites to protect against disasters such as fire or
flooding.

B Failure during data transfer can still result in inconsistent copies: Block
transfer can result in

* Successful completion

‘Stable-Storage Implementation (Cont.)

B Protecting storage media from failure during data transfer (cont.):

B Copies of a block may differ due to failure during output operation. To
recover from failure:

1. First find inconsistent blocks:

1. Expensive solution: Compare the two copies of every disk block.

‘ Data Access

m Physical blocks are those blocks residing on the disk.

m Buffer blocks are the blocks residing temporarily in main
memory.

m Block movements between disk and main memory are initiated
through the following two operations:

* input(B) transfers the physical block B to main memory.

‘ Data Access (Cont.)

B Transaction transfers data items between system buffer blocks
and its private work-area using the following operations :

* read(X) assigns the value of data item X to the local variable x;.

* write(X) assigns the value of local variable x; to data item {X} in the
buffer block.

* both these commands may necessitate the issue of an input(By)

‘ Example of Data Access

buffer
Buffer Block A ———»["y L input(A)

D
Buffer Block B —— \ ‘E
output(B ‘ -

‘ Recovery and Atomicity

® Modifying the database without ensuring that the transaction will
commit may leave the database in an inconsistent state.

m Consider transaction T; that transfers $50 from account A to

‘ Recovery and Atomicity (Cont.)

B To ensure atomicity despite failures, we first output information
describing the modifications to stable storage without modifying
the database itself.

m We study two approaches:

‘ Log-Based Recovery

B A log is kept on stable storage.

* The log is a sequence of log records, and maintains a record of update
activities on the database.

B When transaction T, starts, it registers itself by writing a
<T, start>log record

m Before T. executes write(X), a log

record <T, X, V,, V> is written

‘ Deferred Database Modification

B The deferred database modification scheme records all
modifications to the log, but defers all the writes to after partial
commit.

B Assume that transactions execute serially

B Transaction starts by writing <T; start> record to log.

Qeferred Database Modification (Cont.)

m During recovery after a crash, a transaction needs to be redone if
and only if both <T; start> and<T,commit> are there in the log.

B Redoing a transaction T, (redoT)) sets the value of all data items
updated by the transaction to the new values.

B Crashes can occur while
* the . :

Qeferred Database Modification (Cont.)

m Below we show the log as it appears at three instances of time.

<T,, start> <T;, start> <T;, starts

<T,, A, 950> <T,, A, 950> <T,, A, 950

<T,, B, 2050» <T,, B, 2050> <T,, B, 2050>
<Ty commit> <T,, commit>

<T, start=> <T; start=>
=T, C, 6= <T;. C, 6il=
=T, commit=
(b) (c)

‘ Immediate Database Modification

B The immediate database modification scheme allows
database updates of an uncommitted transaction to be made as
the writes are issued

* since undoing may be needed, update logs must have both old
value and new value

B Update log record must be written before database item is written

‘Immediate Database Modification Example

Log Write Output

<T, start>
<T, A, 1000, 950>
T,, B, 2000, 2050

'mediate Database Modification (Cont.)

B Recovery procedure has two operations instead of one:

* undo(T,) restores the value of all data items updated by T; to their
old values, going backwards from the last log record for T,

* redo(T;) sets the value of all data items updated by T, to the new
values, going forward from the first log record for T;

Immediate DB Modification Recovery

Example
Below we show the log as it appears at three instances of time.
=T, star= =T, start= =T, start=

<Tp, A, 1000, 950= <Ty, A, 1000, 950> «<T,, A, 1000, 950=
=Ty, B, 2000, 2050 «Ty, B 000, 206> <7y, B 2000, 205

< Ty commit= <}y commif=

=T starts =7} start=

<T,, C, 700, 6= <T,, C, 700, 600
=T, commil=

(b} ich

‘ Checkpoints

® Problems in recovery procedure as discussed earlier :
1. searching the entire log is time-consuming

2. we might unnecessarily redo transactions which have already
3. output their updates to the database.

10

‘ Checkpoints (Cont.)

® During recovery we need to consider only the most recent
transaction T; that started before the checkpoint, and
transactions that started after T,.

1. Scan backwards from end of log to find the most recent
<checkpoint> record

‘ Example of Checkpoints

Ty

v

‘ Shadow Paging

® Shadow paging is an alternative to log-based recovery; this
scheme is useful if transactions execute serially

B |dea: maintain two page tables during the lifetime of a transaction —
the current page table, and the shadow page table

m Store the shadow page table in nonvolatile storage, such that state

Sample Page Table

i
J—
R
.'-
b -
e

e

S

e o R R N

‘ Example of Shadow Paging
Shadow and current page tables after write to page 4

- -
! Y
| b, 1
II f ‘.II

i = =, |}

Il| o L1
o\ oy
b - - i L - 3
3 Y F - . b
1 | .'Ir ! = L]
'y = - |'I s - '." — 4
3 J e 3

— -l |
&] lk?‘— &
T 1= — —_ | —t T
& 4 —— B
a s - - - ';L_ *
1] - — 14]
shackne page o ey et pege lable

‘ Shadow Paging (Cont.)

B To commit a transaction :

1. Flush all modified pages in main memory to disk

2. Output current page table to disk

3. Make the current page table the new shadow page table, as follows:
* keep a pointer to the shadow page table at a fixed (known) location on disk.
* to make the current page table the new shadow page table, simply update

13

‘ Show Paging (Cont.)

m Advantages of shadow-paging over log-based schemes
* no overhead of writing log records
* recovery is trivial
® Disadvantages :
* Copying the entire page table is very expensive
> Can be reduced by using a page table structured like a B*-tree

‘Recovery With Concurrent Transactions

® We modify the log-based recovery schemes to allow multiple
transactions to execute concurrently.

* All transactions share a single disk buffer and a single log
* A buffer block can have data items updated by one or more transactions

B We assume concurrency control using strict two-phase locking;

‘Recovery With Concurrent Transactions (Cont.)

B Checkpoints are performed as before, except that the checkpoint log
record is now of the form

< checkpoint L>
where L is the list of transactions active at the time of the checkpoint

* We assume no updates are in progress while the checkpoint is carried
out (will relax this later)

‘ecovery With Concurrent Transactions (Cont.)

m At this point undo-list consists of incomplete transactions which

must be undone, and redo-list consists of finished transactions
that must be redone.

B Recovery now continues as follows:

1. Scan log backwards from most recent record, stopping when

<T. start> records have been encountered for every T. in undo-list.

15

‘ Example of Recovery

B Go over the steps of the recovery algorithm on the following log:
<T, start>
<T, A, 0, 10>
<T

commit>

‘ Log Record Buffering

B Log record buffering: log records are buffered in main memory,
instead of of being output directly to stable storage.

* Log records are output to stable storage when a block of log records
in the buffer is full, or a log force operation is executed.

16

‘ Log Record Buffering (Cont.)

® The rules below must be followed if log records are buffered:

* Log records are output to stable storage in the order in which they
are created.

* Transaction T; enters the commit state only when the log record
<T, commit> has been output to stable storage.

‘ Database Buffering

B Database maintains an in-memory buffer of data blocks

* When a new block is needed, if buffer is full an existing block needs to be
removed from buffer

* If the block chosen for removal has been updated, it must be output to disk

B As aresult of the write-ahead logging rule, if a block with uncommitted
updates is output to disk, log records with undo information for the updates

17

‘ Buffer Management (Cont.)

®m Database buffer can be implemented either
* in an area of real main-memory reserved for the database, or
* in virtual memory
B Implementing buffer in reserved main-memory has drawbacks:
* Memory is partitioned before-hand between database buffer and

‘ Buffer Management (Cont.)

B Database buffers are generally implemented in virtual memory in
spite of some drawbacks:
* When operating system needs to evict a page that has been

modified, to make space for another page, the page is written to
swap space on disk.

ilure with Loss of Nonvolatile Storage

m So far we assumed no loss of non-volatile storage

® Technique similar to checkpointing used to deal with loss of non-volatile
storage

* Periodically dump the entire content of the database to stable storage

* No transaction may be active during the dump procedure; a procedure
similar to checkpointing must take place

19

~ Advanced Recovery Techniques
\/

B Support high-concurrency locking techniques, such as those used
for B*-tree concurrency control

m Operations like B*-tree insertions and deletions release locks
early.

* They cannot be undone by restoring old values (physical undo),
since once a lock is released, other transactions may have updated
the B*-tree.

* Instead, insertions (resp. deletions) are undone by executing a
deletion (resp. insertion) operation (known as logical undo).

B For such operations, undo log records should contain the undo
operation to be executed
* called logical undo logging, in contrast to physical undo logging.

B Redo information is logged physically (that is, new value for each
write) even for such operations

* Logical redo is very complicated since database state on disk
not be “operation consistent”

Database System Concepts 17.39 ©Silberschatz, Ko

L Advanced Recovery Technigues (Cont.)

m Operation logging is done as follows:

1. When operation starts, log <T,, 0, operation-begin>. Here O, is a
unique identifier of the operation instance.

2. While operation is executing, normal log records with physical redo
and physical undo information are logged.

3. When operation completes, <T;, O;, operation-end, U> is logged,
where U contains information needed to perform a logical undo
information.

m |f crash/rollback occurs before operation completes:
* the operation-end log record is not found, and
* the physical undo information is used to undo operation.
m |[f crash/rollback occurs after the operation completes:
* the operation-end log record is found, and in this case

* logical undo is performed using U; the physical undo information for
the operation is ignored.

B Redo of operation (after crash) still uses physical redo
information.

Database System Concepts 17.40 ©Silberschatz,

20

‘dvanced Recovery Technigues (Cont.)

Rollback of transaction T; is done as follows:

B Scan the log backwards

1. Ifalog record <T;, X, V,, V,> is found, perform the undo and log a
special redo-only log record <T;, X, V,>.

‘dvanced Recovery Techniques (Cont.)

B Scan the log backwards (cont.):
3. If aredo-only record is found ignore it
4. Ifa<T, Oj, operation-abort> record is found:

skip all preceding log records for T, until the record
<T,, O, operation-begin> is found.

21

'dvanced Recovery Techniques(Cont,)

The following actions are taken when recovering from system crash

1. Scan log forward from last < checkpoint L> record

1. Repeat history by physically redoing all updates of all
transactions,

2. Create an undo-list during the scan as follows

‘dvanced Recovery Techniques (Cont.)

Recovery from system crash (cont.)

2. Scan log backwards, performing undo on log records of
transactions found in undo-list.

* Transactions are rolled back as described earlier.

* When <T. start> is found for a transaction T; in undo-list, write a

22

‘dvanced Recovery Technigues (Cont.)

B Checkpointing is done as follows:
1. Output all log records in memory to stable storage
2. Output to disk all modified buffer blocks
3. Output to log on stable storage a < checkpoint L> record.

‘dvanced Recovery Techniques (Cont.)

B Fuzzy checkpointing is done as follows:
1. Temporarily stop all updates by transactions
Write a <checkpoint L> log record and force log to stable storage
Note list M of modified buffer blocks
Now permit transactions to proceed with their actions
Output to disk all modified buffer blocks in list M

giNE W D

23

‘ ARIES

® ARIES is a state of the art recovery method

* Incorporates numerous optimizations to reduce overheads during
normal processing and to speed up recovery

* The “advanced recovery algorithm” we studied earlier is modeled
after ARIES, but greatly simplified by removing optimizations

B Unlike the advanced recovery algorithm, ARIES

24

‘ ARIES Optimizations

m Physiological redo

* Affected page is physically identified, action within page can be
logical

> Used to reduce logging overheads

~ e.g. when arecord is deleted and all other records have to be
moved to fill hole

‘ ARIES Data Structures

® Log sequence number (LSN) identifies each log record
* Must be sequentially increasing
* Typically an offset from beginning of log file to allow fast access
> Easily extended to handle multiple log files

B Each page contains a PageL SN which is the LSN of the last log
record whose effects are reflected on the page

‘ ARIES Data Structures (Cont.)

m Each log record contains LSN of previous log record of the same
transaction

LSN Transld PrevLSN Redolnfo Undolnfo

* LSN in log record may be implicit

‘ ARIES Data Structures (Cont.)

m DirtyPageTable
* List of pages in the buffer that have been updated
* Contains, for each such page
> PageL SN of the page

> RecLSN is an LSN such that log records before this LSN have
already been applied to the page version on disk

26

‘ ARIES Recovery Algorithm

ARIES recovery involves three passes
B Analysis pass: Determines
* Which transactions to undo

* Which pages were dirty (disk version not up to date) at time of crash

‘ ARIES Recovery: Analysis

Analysis pass
m Starts from last complete checkpoint log record
* Reads in DirtyPageTable from log record
* Sets RedoLSN = min of RecLSNs of all pages in DirtyPageTable

‘ ARIES Recovery: Analysis (Cont.)

Analysis pass (cont.)
m Scans forward from checkpoint

* If any log record found for transaction not in undo-list, adds
transaction to undo-list

* Whenever an update log record is found

‘ ARIES Redo Pass

Redo Pass: Repeats history by replaying every action not already
reflected in the page on disk, as follows:

B Scans forward from RedoLSN. Whenever an update log record
is found:

1. If the page is not in DirtyPageTable or the LSN of the log record is

28

ARIES Undo Actions

B When an undo is performed for an update log record

* Generate a CLR containing the undo action performed (actions performed during
undo are logged physicaly or physiologically).

> CLR for record n noted as n’ in figure below
* Set UndoNextLSN of the CLR to the PrevLSN value of the update log record
> Arrows indicate UndoNextLSN value

ARIES: Undo Pass

Undo pass
m Performs backward scan on log undoing all transaction in undo-list
* Backward scan optimized by skipping unneeded log records as follows:

> Next LSN to be undone for each transaction set to LSN of last log
record for transaction found by analysis pass.

‘ Other ARIES Features

® Recovery Independence
* Pages can be recovered independently of others

> E.g. if some disk pages fail they can be recovered from a backup
while other pages are being used

B Savepoints:

‘ Other ARIES Features (Cont.)

B Fine-grained locking:

* Index concurrency algorithms that permit tuple level locking on
indices can be used

> These require logical undo, rather than physical undo, as in

‘ Remote Backup Systems

B Remote backup systems provide high availability by allowing
transaction processing to continue even if the primary site is destroyed.

31

‘ Remote Backup Systems (Cont.)

m Detection of failure: Backup site must detect when primary site has
failed

* to distinguish primary site failure from link failure maintain several
communication links between the primary and the remote backup.

m Transfer of control:

‘ Remote Backup Systems (Cont.)

B Time to recover: To reduce delay in takeover, backup site
periodically proceses the redo log records (in effect, performing
recovery from previous database state), performs a checkpoint,
and can then delete earlier parts of the log.

m Hot-Spare configuration permits very fast takeover:

* Backup continually processes redo log record as they arrive

32

‘ Remote Backup Systems (Cont.)

m Ensure durability of updates by delaying transaction commit until
update is logged at backup; avoid this delay by permitting lower
degrees of durability.

B One-safe: commit as soon as transaction’s commit log record is
written at primary

* Problem: updates may not arrive at backup before it takes over.

33

‘ Block Storage Operations

'ortion of the Database Log Corresponding to
Toand T,

"I:T[]. start=>

{Tu., A_, 95[}}
<Ty, B, 2050
<T, commit=
<T, start>

<T,, C, 600>
<T, commit=

‘ate of the Log and Database Corresponding

to Toand T,
Log Database
=T, start=
<Ty, A, 950>
<Ty, B, 2060=

<T, commit=>

{T'l Etalt-"
"‘:T]_; E; mﬂ-}
<T, commit>

ortion of the System Log Corresponding to
Toand T,

{Tﬂ start>
<Ty, A, 1000, 950>
<Ty, B, 2000, 2050=
<T, commit>

=T, start>

<T,, C, 700, 600=
<T; commit>

35

‘ Corresponding to Toand T,

Log Database
<T, start>
<Ty. A, 1000, 950

=Ty, B, 2000, 2050>

=T commil=
«<T, start>
=Ty, C, 700, 600=
C=600

<T, commit>

36

