‘Chapter 18: Database System Architectures

B Centralized Systems
m Client--Server Systems

B Parallel Systems

‘ Centralized Systems

B Run on a single computer system and do not interact with other
computer systems.

‘ A Centralized Computer System

‘ Client-Server Systems

B Server systems satisfy requests generated at m client systems, whose
general structure is shown below:

client client client

‘ Client-Server Systems (Cont.)

B Database functionality can be divided into:

* Back-end: manages access structures, query evaluation and
optimization, concurrency control and recovery.

* Front-end: consists of tools such as forms, report-writers, and
graphical user interface facilities.

® The interface between the front-end and the back-end is through
SQL or through an application program interface.

‘ Client-Server Systems (Cont.)

m Advantages of replacing mainframes with networks of
workstations or personal computers connected to back-end
server machines:

* better functionality for the cost

* flexibility in locating resources and expanding facilities

‘ Transaction Servers

m Also called query server systems or SQL server systems;
clients send requests to the server system where the
transactions are executed, and results are shipped back to the
client.

‘Transaction Server Process Structure

m A typical transaction server consists of multiple processes
accessing data in shared memory.

B Server processes

* These receive user queries (transactions), execute them and send

‘ Transaction Server Processes (Cont.)

B Log writer process
* Server processes simply add log records to log record buffer

* Log writer process outputs log records to stable storage.

‘ Transaction System Processes (Cont.)

2 = =)

‘ Transaction System Processes (Cont.)

® Shared memory contains shared data
* Buffer pool
* Lock table
* Log buffer

‘ Transaction System Processes (Cont.)

B To avoid overhead of interprocess communication for lock request/grant,
each database process operates directly on the lock table data structure
(Section 16.1.4) instead of sending requests to lock manager process

* Mutual exclusion ensured on the lock table using semaphores, or more
commonly, atomic instructions

* If a lock can be obtained, the lock table is updated directly in shared memory
* If a lock cannot be immediately obtained, a lock request is noted in the lock table

‘ Data Servers

® Used in LANs, where there is a very high speed connection
between the clients and the server, the client machines are
comparable in processing power to the server machine, and the
tasks to be executed are compute intensive.

‘ Data Servers (Cont.)

B Page-Shipping versus ltem-Shipping
* Smaller unit of shipping = more messages
* Worth prefetching related items along with requested item
* Page shipping can be thought of as a form of prefetching

‘ Data Servers (Cont.)

m Data Caching
* Data can be cached at client even in between transactions

* But check that data is up-to-date before it is used (cache coherency)

‘ Parallel Systems

B Parallel database systems consist of multiple processors and
multiple disks connected by a fast interconnection network.

B A coarse-grain parallel machine consists of a small number of
powerful processors

‘ Speed-Up and Scale-Up

B Speedup: a fixed-sized problem executing on a small system is
given to a system which is N-times larger.

* Measured by:
speedup = small system elapsed time

large system elapsed time

Speedup

linear speedup

sublinear speedup

resources ——»

‘ Scaleup

T linear scaleup

A

sublinear scaleup

problem size ——»

(resources increase proportional to problem size)

‘ Batch and Transaction Scaleup

m Batch scaleup:

* A single large job; typical of most database queries and scientific
simulation.

* Use an N-times larger computer on N-times larger problem.

10

‘actors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:

B Startup costs: Cost of starting up multiple processes may
dominate computation time, if the degree of parallelism is high.

m Interference: Processes accessing shared resources

"nterconnection Network Architectures

B Bus. System components send data on and receive data from a
single communication bus;

* Does not scale well with increasing parallelism.

B Mesh. Components are arranged as nodes in a grid, and each
component is connected to all adjacent components

‘ Interconnection Architectures

R

{a} bus (b} mesh

‘ Parallel Database Architectures

B Shared memory -- processors share a common memory
B Shared disk -- processors share a common disk

m Shared nothing -- processors share neither a common memory

12

L Parallel Database Architectures

5

H
5
0

a5

b

i
0

{a) shared memory (b shared disk
M | M | 0 |
{7] % m— LU m 1L m— E
. = - [E—:g |:E|—:2 I:I'.‘I—:2
= o B8 m+8 mr9
[
() shared nothi {d) hierarchical

‘ Shared Memory

B Processors and disks have access to a common memory,
typically via a bus or through an interconnection network.

m Extremely efficient communication between processors — data
in shared memory can be accessed by any processor without
having to move it using software.

13

- Shared Disk

~

m All processors can directly access all disks via an
interconnection network, but the processors have private
memories.

* The memory bus is not a bottleneck

* Architecture provides a degree of fault-tolerance — if a processor
fails, the other processors can take over its tasks since the
database is resident on disks that are accessible from all
processors.

® Examples: IBM Sysplex and DEC clusters (now part of Compaq)
running Rdb (now Oracle Rdb) were early commercial users

B Downside: bottleneck now occurs at interconnection to the disk
subsystem.

B Shared-disk systems can scale to a somewhat larger number. o
processors, but communication between processors is slo

Database System Concepts 18.27 ©Silberschatz, Ko

~ Shared Nothing

~

® Node consists of a processor, memory, and one or more disks.
Processors at one node communicate with another processor at
another node using an interconnection network. A node functions
as the server for the data on the disk or disks the node owns.

Examples: Teradata, Tandem, Oracle-n CUBE

Data accessed from local disks (and local memory accesses) do
not pass through interconnection network, thereby minimizing the
interference of resource sharing.

B Shared-nothing multiprocessors can be scaled up to thousands
of processors without interference.

B Main drawback: cost of communication and non-local disk
access; sending data involves software interaction at both e

Database System Concepts 18.28 ©Silberschatz,

14

‘ Hierarchical

B Combines characteristics of shared-memory, shared-disk, and
shared-nothing architectures.

B Top level is a shared-nothing architecture — nodes connected by
an interconnection network, and do not share disks or memory
with each other.

‘ Distributed Systems

m Data spread over multiple machines (also referred to as sites or
nodes.

® Network interconnects the machines
B Data shared by users on multiple machines

15

‘ Distributed Databases

® Homogeneous distributed databases

* Same software/schema on all sites, data may be partitioned among
sites

* Goal: provide a view of a single database, hiding details of
distribution

‘ Trade-offs in Distributed Systems

B Sharing data — users at one site able to access the data residing
at some other sites.

® Autonomy — each site is able to retain a degree of control over
data stored locally.

implementation Issues tor Distributed

\/
\, Databases

B Atomicity needed even for transactions that update data at multiple
site
* Transaction cannot be committed at one site and aborted at another
B The two-phase commit protocol (2PC) used to ensure atomicity

* Basic idea: each site executes transaction till just before commit, and
the leaves final decision to a coordinator

* Each site must follow decision of coordinator: even if there is a failure
while waiting for coordinators decision

> To do so, updates of transaction are logged to stable storage and
transaction is recorded as “waiting”

* More details in Sectin 19.4.1

m 2PC is not always appropriate: other transaction models based on
persistent messaging, and workflows, are also used

m Distributed concurrency control (and deadlock detection) require
® Replication of data items required for improving data availab
B Details of above in Chapter 19

Database System Concepts 18.33 ©Silberschatz, Ko

~ Network Types

~

m |ocal-area networks (LANS) — composed of processors that are
distributed over small geographical areas, such as a single
building or a few adjacent buildings.

B Wide-area networks (WANs) — composed of processors
distributed over a large geographical area.

® Discontinuous connection — WANSs, such as those based on
periodic dial-up (using, e.g., UUCP), that are connected only for
part of the time.

B Continuous connection — WANS, such as the Internet, where
hosts are connected to the network at all times.

Database System Concepts 18.34 ©Silberschatz,

17

‘ Networks Types (Cont.)

® WANSs with continuous connection are needed for implementing
distributed database systems

B Groupware applications such as Lotus notes can work on WANs
with discontinuous connection:

18

‘ Interconnection Networks

bbb

Bus Interconnection

001 101
111
000
010 110

Mesh Interconnection Hypercube Interconnection |

‘ A Distributed System

19

‘ Local-Area Network

vl Likadar® [ElaE TFU afiei

20

