‘ Chapter 20: Parallel Databases

B Introduction
H |/O Parallelism

m Interquery Parallelism

‘ Introduction

B Parallel machines are becoming quite common and affordable
* Prices of microprocessors, memory and disks have dropped sharply

m Databases are growing increasingly large

‘ Parallelism in Databases

®m Data can be partitioned across multiple disks for parallel 1/O.

m Individual relational operations (e.g., sort, join, aggregation) can
be executed in parallel
* data ca partitioned and each an work independent!

‘ I/0O Parallelism

B Reduce the time required to retrieve relations from disk by partitioning
m the relations on multiple disks.

B Horizontal partitioning — tuples of a relation are divided among many
disks such that each tuple resides on one disk.

‘ I/O Parallelism (Cont.)

®m Partitioning techniques (cont.):

B Range partitioning:
* Choose an attribute as the partitioning attribute.

'omparison of Partitioning Techniques

B Evaluate how well partitioning techniques support the following
types of data access:

1.Scanning the entire relation.

'mparison of Partitioning Techniques (Cont.)

Round robin:

B Advantages

Qmparison of Partitioning Techniques(Cont.)

Hash partitioning:

B Good for sequential access

‘omparison of Partitioning Techniques (Cont.)

Range patrtitioning:

B Provides data clustering by partitioning attribute value.

B Good for sequential access

B Good for point queries on partitioning attribute: only one disk

‘ Partitioning a Relation across Disks

m |If a relation contains only a few tuples which will fit into a single
disk block, then assign the relation to a single disk.

‘ Handling of Skew

B The distribution of tuples to disks may be skewed — that is,
some disks have many tuples, while others may have fewer
tuples.

B Types of skew:

‘Handling Skew in Range-Partitioning

B To create a balanced partitioning vector (assuming partitioning
attribute forms a key of the relation):

* Sort the relation on the partitioning attribute.
* he partiti e anning the relation in sorte

‘ Handling Skew using Histograms

B Balanced partitioning vector can be constructed from histogram in a
relatively straightforward fashion

B Assume uniform distribution within each range of the histogram

B Histogram can be constructed by scanning relation, or sampling
(blocks containing) tuples of the relation

1

1-5 &-10 11-15 1820 21-25
value

C Partitioning

m Skew in range partitioning can be handled elegantly using virtual
processor partitioning:

* create a large number of partitions (say 10 to 20 times the number
of processors)

* Assign virtual processors to partitions either in round-robin fashion

‘ Interquery Parallelism

® Queries/transactions execute in parallel with one another.

B Increases transaction throughput; used primarily to scale up a
transaction processing system to support a larger number of
transactions per second.

B Easiest form of parallelism to support, particularly in a shared-
memory parallel database, because even sequential database

‘ Cache Coherency Protocol

m Example of a cache coherency protocol for shared disk systems:

* Before reading/writing to a page, the page must be locked in
shared/exclusive mode.

* On locking a page, the page must be read from disk

‘ Intraquery Parallelism

B Execution of a single query in parallel on multiple
processors/disks; important for speeding up long-running
queries.

B Two complementary forms of intraquery parallelism :

‘rallel Processing of Relational Operations

B Our discussion of parallel algorithms assumes:
* read-only queries
* shared-nothing architecture
* n processors, P, ..., P, 4, and n disks Dy, ..., D, ;, where disk D; is

‘ Parallel Sort

Range-Partitioning Sort
®m Choose processors Py, ..., P.,, where m < n -1 to do sorting.
m Create range-partition vector with m entries, on the sorting attributes

m Redistribute the relation using range partitioning
#* all tuples that lie in the i range are sent to processor P;

‘ Parallel Sort (Cont.)

Parallel External Sort-Merge

m Assume the relation has already been partitioned among disks
Dy, ..., D4 (in whatever manner).

B Each processor P; locally sorts the data on disk D;.

‘ Parallel Join

B The join operation requires pairs of tuples to be tested to see if
they satisfy the join condition, and if they do, the pair is added to
the join output.

m Parallel join algorithms attempt to split the pairs to be tested over

‘ Partitioned Join

B For equi-joins and natural joins, it is possible to partition the two input
relations across the processors, and compute the join locally at each
processor.

® Letrand s be the input relations, and we want to compute r [, p-sg S-

‘ Partitioned Join (Cont.)

‘ Fragment-and-Replicate Join

B Partitioning not possible for some join conditions
* e.g., non-equijoin conditions, such as r.A > s.B.

B For joins were partitioning is not applicable, parallelization can
be accomplished by fragment and replicate technigue

12

‘Depiction of Fragment-and-Replicate Joins

ImIIaII-: [h] oo []
W@ [[PJuE'H%D—er-?}—
TI_{E']—I :—U’m 1,_"—|:"E]— —
Tl
L@l
a. Asymmetric

Pv—l. L

Fragmentand

Replicate b. Fragment and Replicate

‘Fragment-and-Replicate Join (Cont.)

B General case: reduces the sizes of the relations at each
processor.

* ris partitioned into n partitions,ry, Iy, ..., I , ;S is partitioned into m
partitions, Sy, Sy, -.. Sp.q-

13

‘Fragment—and-Replicate Join (Cont.)

®m Both versions of fragment-and-replicate work with any join condition,
since every tuple in r can be tested with every tuple in s.

m Usually has a higher cost than partitioning, since one of the
relations (for asymmetric fragment-and-replicate) or both relations
(for general fragment-and-replicate) have to be replicated.

‘ Partitioned Parallel Hash-Join

Parallelizing partitioned hash join:

B Assume s is smaller than r and therefore s is chosen as the build
relation.

B A hash function h, takes the join attribute value of each tuple in s

L Partitioned Parallel Hash-Join (Cont.)
\/

B Once the tuples of s have been distributed, the larger relation r is
redistributed across the m processors using the hash function h;

* Letr, denote the tuples of relation r that are sent to processor P;.

m As the r tuples are received at the destination processors, they
are repartitioned using the function h,
* (just as the probe relation is partitioned in the sequential hash-join
algorithm).
B Each processor P; executes the build and probe phases of the
hash-join algorithm on the local partitions r,and s of r and s to
produce a partition of the final result of the hash-join.

= Note: Hash-join optimizations can be applied to the parallel case

* e.g., the hybrid hash-join algorithm can be used to cache so
the incoming tuples in memory and avoid the cost of writing t
and reading them back in.

Database System Concepts 20.29 ©Silberschatz, Ko

~ Parallel Nested-Loop Join
\/

B Assume that

* relation s is much smaller than relation r and that r is stored by
partitioning.
* there is an index on a join attribute of relation r at each of the
partitions of relation r.
B Use asymmetric fragment-and-replicate, with relation s being
replicated, and using the existing partitioning of relation r.
® Each processor P; where a partition of relation s is stored reads

the tuples of relation s stored in D;, and replicates the tuples to
every other processor P;.

* At the end of this phase, relation s is replicated at all sites that store
tuples of relation r.

B Each processor P; performs an indexed nested-loop join of
relation s with the it" partition of relation r.

Database System Concepts 20.30 ©Silberschatz,

15

‘ Other Relational Operations

Selection ag(r)

m If 8is of the form a; = v, where g; is an attribute and v a value.

* If ris partitioned on a; the selection is performed at a single
processor.

‘ Other Relational Operations (Cont.)

® Duplicate elimination
* Perform by using either of the parallel sort techniques

> eliminate duplicates as soon as they are found during sorting.

‘ Grouping/Aggregation

m Partition the relation on the grouping attributes and then compute
the aggregate values locally at each processor.

B Can reduce cost of transferring tuples during partitioning by
partly computing aggregate values before partitioning.

Qst of Parallel Evaluation of Operations

m |If there is no skew in the partitioning, and there is no overhead
due to the parallel evaluation, expected speed-up will be 1/n

m |f skew and overheads are also to be taken into account, the time
taken by a parallel operation can be estimated as

17

‘ Interoperator Parallelism

B Pipelined parallelism
* Consider a join of four relations

C Parallelism

B Pipeline parallelism is useful since it avoids writing intermediate
results to disk

m Useful with small number of processors, but does not scale up
well with more processors. One reason is that pipeline chains do

18

‘ Independent Parallelism

® Independent parallelism
* Consider a join of four relations
rXrz T34 g
> Let P1 be assigned the computation of
templ=ry X ry

‘ Query Optimization

® Query optimization in parallel databases is significantly more complex
than query optimization in sequential databases.

m Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.

® When scheduling execution tree in parallel system, must decide:

19

Query Optimization (Cont.)

B The number of parallel evaluation plans from which to choose from is
much larger than the number of sequential evaluation plans.

* Therefore heuristics are needed while optimization
B Two alternative heuristics for choosing parallel plans:

* No pipelining and inter-operation pipelining; just parallelize every operation
across all processors.

» Finding best plan is now much easier --- use standard optimization

Design of Parallel Systems

Some issues in the design of parallel systems:

m Parallel loading of data from external sources is needed in order
to handle large volumes of incoming data.

m Resilience to failure of some processors or disks.

20

‘ Design of Parallel Systems (Cont.)

B On-line reorganization of data and schema changes must be
supported.

* For example, index construction on terabyte databases can take
hours or days even on a parallel system.

21

