Chapter 21:

‘ Overview

B Web Interfaces to Databases
® Performance Tuning

‘ The World Wide Web

® The Web is a distributed information system based on hypertext.

B Most Web documents are hypertext documents formatted via the
HyperText Markup Language (HTML)

B HTML documents contain

‘ Web Interfaces to Databases

Why interface databases to the Web?

1. Web browsers have become the de-facto standard user
interface to databases

* Enable large numbers of users to access databases from

‘ Web Interfaces to Database (Cont.)

2. Dynamic generation of documents
* Limitations of static HTML documents
» Cannot customize fixed Web documents for individual users.

> Problematic to update Web documents, especially if multiple
Web documents replicate data.

* Solution: Generate Web documents dynamically from data

‘ Uniform Resources Locators

m In the Web, functionality of pointers is provided by Uniform
Resource Locators (URLS).

m URL example:

http://www.bell-labs.com/topics/book/db-book
* The first part indicates how the document is to be accessed

‘ HTML and HTTP

® HTML provides formatting, hypertext link, and image display
features.

m HTML also provides input features
> Select from a set of options

‘ Sample HTML Source Text

<htmI> <body>
<table border cols = 3>
<tr> <td> A-101 </td> <td> Downtown </td> <td> 500 </td> </tr>

</table>
<center> The <i>account</i> relation </center>

‘ Display of Sample HTML Source

‘ Client Side Scripting and Applets

B Browsers can fetch certain scripts (client-side scripts) or
programs along with documents, and execute them in “safe
mode” at the client site

* Javascript

* Macromedia Flash and Shockwave for animation/games

‘ Client Side Scripting and Security

B Security mechanisms needed to ensure that malicious scripts
do not cause damage to the client machine

* Easy for limited capability scripting languages, harder for general
purpose programming languages like Java

B E.g. Java’s security system ensures that the Java applet code

‘ Web Servers

B A Web server can easily serve as a front end to a variety of
information services.

B The document name in a URL may identify an executable
program, that, when run, generates a HTML document.

* When a HTTP server receives a request for such a document, it
executes the program, and sends back the HTML document that

Two-Tier Web Architecture

D

m Multiple levels of indirection have overheads

¢ Alternative: two-tier architecture

[applimﬁunsen’ar

welb server and J

[damhmI;E server]

‘ HTTP and Sessions

B The HTTP protocol is connectionless

* That is, once the server replies to a request, the server closes the
connection with the client, and forgets all about the request

* In contrast, Unix logins, and JDBC/ODBC connections stay
connected until the client disconnects

‘ Sessions and Cookies

m A cookie is a small piece of text containing identifying information
* Sent by server to browser on first interaction

* Sent by browser to the server that created the cookie on further
interactions

‘ Servlets

®m Java Servlet specification defines an API for communication
between the Web server and application program

* E.g. methods to get parameter values and to send HTML text back
to client

m Application program (also called a servlet) is loaded into the Web
server

‘ Example Servilet Code

Public class BankQuery(Servlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServietResponse
result)
throws ServletException, IOException {

String type = request.getParameter(“type”);
String number = request.getParameter(“number”);

...code to find the loan amount/account balance ...

‘ Server-Side Scripting

m Server-side scripting simplifies the task of connecting a database
to the Web

* Define a HTML document with embedded executable code/SQL
queries.

* Input values from HTML forms can be used directly in the

‘Improving Web Server Performance

B Performance is an issue for popular Web sites

* May be accessed by millions of users every day, thousands of
requests per second at peak time

‘ Performance Tuning

B Adjusting various parameters and design choices to improve
system performance for a specific application.

B Tuning is best done by

1. identifying bottlenecks, and

11

‘ Bottlenecks

®m Performance of most systems (at least before they are tuned)
usually limited by performance of one or a few components:
these are called bottlenecks

* E.g. 80% of the code may take up 20% of time and 20% of code
takes up 80% of time

> Worth spending most time on 20% of code that take 80% of time

‘ Identifying Bottlenecks

B Transactions request a sequence of services
* e.g. CPU, Disk I/O, locks

® With concurrent transactions, transactions may have to wait for a
requested service while other transactions are being served

® Can model database as a queueing system with a queue for each
service

Queues In A Database System

mtl..l.rm‘l.l:r:mﬂ:rnl
manager
ik ok
pogussst grant

LU manager
Iraisackion
Panagir
trarsactiom

page
reguest

baiffer
manager

a3|1e2
ollL;

‘ Tunable Parameters

B Tuning of hardware
B Tuning of schema

B Tuning of indices

13

‘ Tuning of Hardware

® Even well-tuned transactions typically require a few 1/O
operations

* Typical disk supports about 100 random I/O operations per second

* Suppose each transaction requires just 2 random I/O operations.
Then to support n transactions per second, we need to stripe data

‘ Hardware Tuning: Five-Minute Rule

B Question: which data to keep in memory:
* |If a page is accessed n times per second, keeping it in memory saves
> n* price-per-disk-drive

accesses-per-second-per-disk

* Cost of keeping page in memory

14

‘ Hardware Tuning: One-Minute Rule

®m For sequentially accessed data, more pages can be read per
second. Assuming sequential reads of 1MB of data at a time:
1-minute rule: sequentially accessed data that is accessed
once or more in a minute should be kept in memory

m Prices of disk and memory have changed greatly over the years,

‘Hardware Tuning: Choice of RAID Level

B To use RAID 1 or RAID 5?
* Depends on ratio of reads and writes

> RAID 5 requires 2 block reads and 2 block writes to write out one
data block

m If an application requires r reads and w writes per second

‘ Tuning the Database Design

® Schema tuning

* Vertically partition relations to isolate the data that is accessed most
often -- only fetch needed information.

- E.g., split account into two, (account-number, branch-name) and
(account-number, balance).

« Branch-name need not be fetched unless required

‘Tuning the Database Design (Cont.)

B Index tuning
* Create appropriate indices to speed up slow queries/updates

* Speed up slow updates by removing excess indices (tradeoff between
queries and updates)

‘Tuning the Database Design (Cont.)

Materialized Views

B Materialized views can help speed up certain queries
* Particularly aggregate queries

B Overheads

‘Tuning the Database Design (Cont.)

B How to choose set of materialized views

* Helping one transaction type by introducing a materialized view may
hurt others

* Choice of materialized views depends on costs

‘ Tuning of Transactions

B Basic approaches to tuning of transactions
* Improve set orientation
* Reduce lock contention

m Rewriting of queries to improve performance was important in the
past, but smart optimizers have made this less important

‘ Tuning of Transactions (Cont.)

® Reducing lock contention

B Long transactions (typically read-only) that examine large parts
of a relation result in lock contention with update transactions

* E.g. large query to compute bank statistics and regular bank
transactions

18

~

.~ Tuning of Transactions (Cont.)

B | ong update transactions cause several problems
* Exhaust lock space
* Exhaust log space

> and also greatly increase recovery time after a crash, and may
even exhaust log space during recovery if recovery algorithm is
badly designed!

B Use mini-batch transactions to limit number of updates that a
single transaction can carry out. E.g., if a single large transaction
updates every record of a very large relation, log may grow too
big.

* Split large transaction into batch of ““mini-transactions,” each
performing part of the updates
* Hold locks across transactions in a mini-batch to ensure serializability
- If lock table size is a problem can release locks, but at the
serializability

* In case of failure during a mini-batch, must complete its
remaining portion on recovery, to ensure atomicity.

ost of

Database System Concepts 21.37 ©Silberschatz, Ko

~ o =
A Performance Simulation
m Performance simulation using queuing model useful to predict
bottlenecks as well as the effects of tuning changes, even
without access to real system
B Queuing model as we saw earlier
* Models activities that go on in parallel
B Simulation model is quite detailed, but usually omits some low
level details
* Model service time, but disregard details of service
* E.g. approximate disk read time by using an average disk read time
B Experiments can be run on model, and provide an estimate of
measures such as average throughput/response time
B Parameters can be tuned in model and then replicated in real
system
* E.g. number of disks, memory, algorithms, etc
Database System Concepts 21.38 ©Silberschatz,

19

‘ Performance Benchmarks

m Suites of tasks used to quantify the performance of software
systems

B Important in comparing database systems, especially as systems
become more standards compliant.

‘ Performance Benchmarks (Cont.)

B Suites of tasks used to characterize performance
* single task not enough for complex systems

B Beware when computing average throughput of different transaction
types

‘ Database Application Classes

B Online transaction processing (OLTP)

* requires high concurrency and clever techniques to speed up
commit processing, to support a high rate of update transactions.

m Decision support applications

‘ Benchmarks Suites

B The Transaction Processing Council (TPC) benchmark suites
are widely used.

* TPC-A and TPC-B: simple OLTP application modeling a bank teller
application with and without communication

> Not used anymore

‘ Benchmarks Suites (Cont.)

m TPC benchmarks (cont.)
* TPC-D: complex decision support application
> Superceded by TPC-H and TPC-R
* TPC-H: (H for ad hoc) based on TPC-D with some extra queries

‘ TPC Performance Measures

® TPC performance measures

* transactions-per-second with specified constraints on response
time

* transactions-per-second-per-dollar accounts for cost of owning

‘ TPC Performance Measures

B Two types of tests for TPC-H and TPC-R

* Power test: runs queries and updates sequentially, then takes
mean to find queries per hour

* Throughput test: runs gqueries and updates concurrently

‘ Other Benchmarks

m OODB transactions require a different set of benchmarks.

* 007 benchmark has several different operations, and provides a
separate benchmark number for each kind of operation

* Reason: hard to define what is a typical OODB application

24

‘ Standardization

B The complexity of contemporary database systems and the need
for their interoperation require a variety of standards.

* syntax and semantics of programming languages
* functions in application program interfaces

* data models (e.g. object oriented/object relational databases)

‘ Standardization (Cont.)

B Anticipatory standards lead the market place, defining features
that vendors then implement

* Ensure compatibility of future products

* But at times become very large and unwieldy since standards
bodies may not pay enough attention to ease of implementation
O Ol -

25

‘ SQL Standards History

SQL developed by IBM in late 70s/early 80s

SQL-86 first formal standard

IBM SAA standard for SQL in 1987

SQL-89 added features to SQL-86 that were already

‘ SQL Standards History (Cont.)

® SQL:1999

* Adds variety of new features --- extended data types, object
orientation, procedures, triggers, etc.

* Broken into several parts

‘ SQL Standards History (Cont.)

B More parts undergoing standardization process
* Part 7: SQL/Temporal: temporal data
* Part 9: SQL/MED (Management of External Data)
> Interfacing of database to external data sources

— Allows other databases, even files, can be viewed as part of

‘ Database Connectivity Standards

B Open DataBase Connectivity (ODBC) standard for database
interconnectivity

* based on Call Level Interface (CLI) developed by X/Open consortium

* defines application programming interface, and SQL features that
must be supported at different levels of compliance

® JDBC standard used for Java

27

‘iject Oriented Databases Standards

B Object Database Management Group (ODMG) standard for
object-oriented databases

* version 1in 1993 and version 2 in 1997, version 3 in 2000

* provides language independent Object Definition Language (ODL)
as well as several language specific bindings

‘ XML-Based Standards

B Several XML based Standards for E-commerce
* E.g. RosettaNet (supply chain), BizTalk

* Define catalogs, service descriptions, invoices, purchase orders,
etc.

* XML wrappers are used to export information from relational

28

‘ E-Commerce

B E-commerce is the process of carrying out various activities
related to commerce through electronic means

B Activities include:
* Presale activities: catalogs, advertisements, etc

‘ E-Catalogs

B Product catalogs must provide searching and browsing facilities
* Organize products into intuitive hierarchy
* Keyword search

* Help customer with comparison of products

‘ Marketplaces

m Marketplaces help in negotiating the price of a product when there
are multiple sellers and buyers

m Several types of marketplaces
* Reverse auction
* Auction

‘ Types of Marketplace

B Reverse auction system: single buyer, multiple sellers.

* Buyer states requirements, sellers bid for supplying items. Lowest
bidder wins. (also known as tender system)

* Open bidding vs. closed bidding
® Auction: Multiple buyers, single seller

‘ Order Settlement

B Order settlement: payment for goods and delivery

B Insecure means for electronic payment: send credit card number
* Buyers may present some one else’s credit card numbers
* Seller has to be trusted to bill only for agreed-on item

‘ Secure Payment Systems

m All information must be encrypted to prevent eavesdropping
* Public/private key encryption widely used
m Must prevent person-in-the-middle attacks

* E.g. someone impersonates seller or bank/credit card company and
fools buyer into revealing information

‘ Secure Payment Systems (Cont.)

m Digital certificates are used to prevent impersonation/man-in-
the middle attack

* Certification agency creates digital certificate by encrypting, e.g.,
seller’s public key using its own private key

> Verifies sellers identity by external means first!

‘ Digital Cash

m Credit-card payment does not provide anonymity
* The SET protocol hides buyers identity from seller

* But even with SET, buyer can be traced with help of credit card
company

‘ Legacy Systems

B |egacy systems are older-generation systems that are incompatible
with current generation standards and systems but still in
production use

* E.g. applications written in Cobol that run on mainframes
> Today's hot new system is tomorrows legacy system!

‘ Legacy Systems (Cont.)

B Rewriting legacy application requires a first phase of
understanding what it does

* Often legacy code has no documentation or outdated
documentation

* reverse engineering: process of going over legacy code to

‘ Legacy Systems (Cont.)

m Switching over from old to new system is a major problem
* Production systems are in every day, generating new data

* Stopping the system may bring all of a company’s activities to a
halt, causing enormous losses

‘ Legacy Systems (Cont.)

m Chicken-little approach:
* Replace legacy system one piece at a time
* Use wrappers to interoperate between legacy and new code

> E.g. replace front end first, with wrappers on legacy backend

36

