
21.1 ©Silberschatz, Korth and SudarshanDatabase System Concepts

Chapter 21: Chapter 21:
Application Development and Application Development and

AdministrationAdministration

2

©Silberschatz, Korth and Sudarshan21.2Database System Concepts

OverviewOverview

! Web Interfaces to Databases

! Performance Tuning

! Performance Benchmarks

! Standardization

! E-Commerce

! Legacy Systems

3

©Silberschatz, Korth and Sudarshan21.3Database System Concepts

The World Wide WebThe World Wide Web

! The Web is a distributed information system based on hypertext.

! Most Web documents are hypertext documents formatted via the
HyperText Markup Language (HTML)

! HTML documents contain

! text along with font specifications, and other formatting instructions

! hypertext links to other documents, which can be associated with
regions of the text.

! forms, enabling users to enter data which can then be sent back to
the Web server

4

©Silberschatz, Korth and Sudarshan21.4Database System Concepts

Web Interfaces to DatabasesWeb Interfaces to Databases

Why interface databases to the Web?

1. Web browsers have become the de-facto standard user
interface to databases

! Enable large numbers of users to access databases from
anywhere

! Avoid the need for downloading/installing specialized code, while
providing a good graphical user interface

! E.g.: Banks, Airline/Car reservations, University course
registration/grading, …

5

©Silberschatz, Korth and Sudarshan21.5Database System Concepts

Web Interfaces to Database (Cont.)Web Interfaces to Database (Cont.)

2. Dynamic generation of documents
! Limitations of static HTML documents

" Cannot customize fixed Web documents for individual users.

" Problematic to update Web documents, especially if multiple
Web documents replicate data.

! Solution: Generate Web documents dynamically from data
stored in a database.

" Can tailor the display based on user information stored in the
database.

– E.g. tailored ads, tailored weather and local news, …

" Displayed information is up-to-date, unlike the static Web
pages

– E.g. stock market information, ..

Rest of this section: introduction to Web technologies needed for
interfacing databases with the Web

6

©Silberschatz, Korth and Sudarshan21.6Database System Concepts

Uniform Resources LocatorsUniform Resources Locators

! In the Web, functionality of pointers is provided by Uniform
Resource Locators (URLs).

! URL example:

http://www.bell-labs.com/topics/book/db-book
! The first part indicates how the document is to be accessed

" “http” indicates that the document is to be accessed using the
Hyper Text Transfer Protocol.

! The second part gives the unique name of a machine on the
Internet.

! The rest of the URL identifies the document within the machine.

! The local identification can be:
" The path name of a file on the machine, or

" An identifier (path name) of a program, plus arguments to be
passed to the program

– E.g. http://www.google.com/search?q=silberschatz

7

©Silberschatz, Korth and Sudarshan21.7Database System Concepts

HTML and HTTPHTML and HTTP

! HTML provides formatting, hypertext link, and image display
features.

! HTML also provides input features

" Select from a set of options

– Pop-up menus, radio buttons, check lists

" Enter values

– Text boxes

! Filled in input sent back to the server, to be acted upon by an
executable at the server

! HyperText Transfer Protocol (HTTP) used for communication
with the Web server

8

©Silberschatz, Korth and Sudarshan21.8Database System Concepts

Sample HTML Source TextSample HTML Source Text

<html> <body>
<table border cols = 3>

<tr> <td> A-101 </td> <td> Downtown </td> <td> 500 </td> </tr>
…

</table>
<center> The <i>account</i> relation </center>

<form action=“BankQuery” method=get>

Select account/loan and enter number

<select name=“type”>
<option value=“account” selected> Account
<option> value=“Loan”> Loan

</select>

<input type=text size=5 name=“number”>
<input type=submit value=“submit”>

</form>
</body> </html>

9

©Silberschatz, Korth and Sudarshan21.9Database System Concepts

Display of Sample HTML SourceDisplay of Sample HTML Source

10

©Silberschatz, Korth and Sudarshan21.10Database System Concepts

Client Side Scripting and AppletsClient Side Scripting and Applets

! Browsers can fetch certain scripts (client-side scripts) or
programs along with documents, and execute them in “safe
mode” at the client site

! Javascript

! Macromedia Flash and Shockwave for animation/games

! VRML

! Applets

! Client-side scripts/programs allow documents to be active

! E.g., animation by executing programs at the local site

! E.g. ensure that values entered by users satisfy some correctness
checks

! Permit flexible interaction with the user.

" Executing programs at the client site speeds up interaction by
avoiding many round trips to server

11

©Silberschatz, Korth and Sudarshan21.11Database System Concepts

Client Side Scripting and SecurityClient Side Scripting and Security

! Security mechanisms needed to ensure that malicious scripts
do not cause damage to the client machine

! Easy for limited capability scripting languages, harder for general
purpose programming languages like Java

! E.g. Java’s security system ensures that the Java applet code
does not make any system calls directly

! Disallows dangerous actions such as file writes

! Notifies the user about potentially dangerous actions, and allows
the option to abort the program or to continue execution.

12

©Silberschatz, Korth and Sudarshan21.12Database System Concepts

Web ServersWeb Servers

! A Web server can easily serve as a front end to a variety of
information services.

! The document name in a URL may identify an executable
program, that, when run, generates a HTML document.

! When a HTTP server receives a request for such a document, it
executes the program, and sends back the HTML document that
is generated.

! The Web client can pass extra arguments with the name of the
document.

! To install a new service on the Web, one simply needs to
create and install an executable that provides that service.

! The Web browser provides a graphical user interface to the
information service.

! Common Gateway Interface (CGI): a standard interface
between web and application server

13

©Silberschatz, Korth and Sudarshan21.13Database System Concepts

ThreeThree--Tier Web ArchitectureTier Web Architecture

14

©Silberschatz, Korth and Sudarshan21.14Database System Concepts

TwoTwo--Tier Web ArchitectureTier Web Architecture
! Multiple levels of indirection have overheads

Alternative: two-tier architecture

15

©Silberschatz, Korth and Sudarshan21.15Database System Concepts

HTTP and SessionsHTTP and Sessions

! The HTTP protocol is connectionless

! That is, once the server replies to a request, the server closes the
connection with the client, and forgets all about the request

! In contrast, Unix logins, and JDBC/ODBC connections stay
connected until the client disconnects

" retaining user authentication and other information

! Motivation: reduces load on server

" operating systems have tight limits on number of open
connections on a machine

! Information services need session information

! E.g. user authentication should be done only once per session

! Solution: use a cookie

16

©Silberschatz, Korth and Sudarshan21.16Database System Concepts

Sessions and CookiesSessions and Cookies

! A cookie is a small piece of text containing identifying information

! Sent by server to browser on first interaction

! Sent by browser to the server that created the cookie on further
interactions

" part of the HTTP protocol

! Server saves information about cookies it issued, and can use it
when serving a request

" E.g., authentication information, and user preferences

! Cookies can be stored permanently or for a limited time

17

©Silberschatz, Korth and Sudarshan21.17Database System Concepts

ServletsServlets

! Java Servlet specification defines an API for communication
between the Web server and application program

! E.g. methods to get parameter values and to send HTML text back
to client

! Application program (also called a servlet) is loaded into the Web
server

! Two-tier model

! Each request spawns a new thread in the Web server

" thread is closed once the request is serviced

! Servlet API provides a getSession() method

! Sets a cookie on first interaction with browser, and uses it to identify
session on further interactions

! Provides methods to store and look-up per-session information

" E.g. user name, preferences, ..

18

©Silberschatz, Korth and Sudarshan21.18Database System Concepts

ExampleExample ServletServlet CodeCode
Public class BankQuery(Servlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse
result)

throws ServletException, IOException {

String type = request.getParameter(“type”);
String number = request.getParameter(“number”);

…code to find the loan amount/account balance …
…using JDBC to communicate with the database..
…we assume the value is stored in the variable balance

result.setContentType(“text/html”);
PrintWriter out = result.getWriter();
out.println(“<HEAD><TITLE>Query Result</TITLE></HEAD>”);
out.println(“<BODY>”);
out.println(“Balance on “ + type + number + “=“ + balance);
out.println(“</BODY>”);
out.close ();

}

}

19

©Silberschatz, Korth and Sudarshan21.19Database System Concepts

ServerServer--Side ScriptingSide Scripting

! Server-side scripting simplifies the task of connecting a database
to the Web

! Define a HTML document with embedded executable code/SQL
queries.

! Input values from HTML forms can be used directly in the
embedded code/SQL queries.

! When the document is requested, the Web server executes the
embedded code/SQL queries to generate the actual HTML
document.

! Numerous server-side scripting languages

! JSP, Server-side Javascript, ColdFusion Markup Language (cfml),
PHP, Jscript

! General purpose scripting languages: VBScript, Perl, Python

20

©Silberschatz, Korth and Sudarshan21.20Database System Concepts

Improving Web Server PerformanceImproving Web Server Performance

! Performance is an issue for popular Web sites

! May be accessed by millions of users every day, thousands of
requests per second at peak time

! Caching techniques used to reduce cost of serving pages by
exploiting commonalities between requests

! At the server site:

" Caching of JDBC connections between servlet requests

" Caching results of database queries

– Cached results must be updated if underlying database
changes

" Caching of generated HTML

! At the client’s network

" Caching of pages by Web proxy

21.21 ©Silberschatz, Korth and SudarshanDatabase System Concepts

Performance TuningPerformance Tuning

22

©Silberschatz, Korth and Sudarshan21.22Database System Concepts

Performance TuningPerformance Tuning

! Adjusting various parameters and design choices to improve
system performance for a specific application.

! Tuning is best done by

1. identifying bottlenecks, and

2. eliminating them.

! Can tune a database system at 3 levels:

! Hardware -- e.g., add disks to speed up I/O, add memory to
increase buffer hits, move to a faster processor.

! Database system parameters -- e.g., set buffer size to avoid
paging of buffer, set checkpointing intervals to limit log size. System
may have automatic tuning.

! Higher level database design, such as the schema, indices and
transactions (more later)

23

©Silberschatz, Korth and Sudarshan21.23Database System Concepts

BottlenecksBottlenecks

! Performance of most systems (at least before they are tuned)
usually limited by performance of one or a few components:
these are called bottlenecks

! E.g. 80% of the code may take up 20% of time and 20% of code
takes up 80% of time

" Worth spending most time on 20% of code that take 80% of time

! Bottlenecks may be in hardware (e.g. disks are very busy, CPU
is idle), or in software

! Removing one bottleneck often exposes another

! De-bottlenecking consists of repeatedly finding bottlenecks, and
removing them

! This is a heuristic

24

©Silberschatz, Korth and Sudarshan21.24Database System Concepts

Identifying BottlenecksIdentifying Bottlenecks

! Transactions request a sequence of services
! e.g. CPU, Disk I/O, locks

! With concurrent transactions, transactions may have to wait for a
requested service while other transactions are being served

! Can model database as a queueing system with a queue for each
service
! transactions repeatedly do the following

" request a service, wait in queue for the service, and get serviced

! Bottlenecks in a database system typically show up as very high
utilizations (and correspondingly, very long queues) of a particular
service
! E.g. disk vs CPU utilization

! 100% utilization leads to very long waiting time:

" Rule of thumb: design system for about 70% utilization at peak load

" utilization over 90% should be avoided

25

©Silberschatz, Korth and Sudarshan21.25Database System Concepts

Queues In A Database SystemQueues In A Database System

26

©Silberschatz, Korth and Sudarshan21.26Database System Concepts

Tunable ParametersTunable Parameters

! Tuning of hardware

! Tuning of schema

! Tuning of indices

! Tuning of materialized views

! Tuning of transactions

27

©Silberschatz, Korth and Sudarshan21.27Database System Concepts

Tuning of HardwareTuning of Hardware

! Even well-tuned transactions typically require a few I/O
operations

! Typical disk supports about 100 random I/O operations per second

! Suppose each transaction requires just 2 random I/O operations.
Then to support n transactions per second, we need to stripe data
across n/50 disks (ignoring skew)

! Number of I/O operations per transaction can be reduced by
keeping more data in memory

! If all data is in memory, I/O needed only for writes

! Keeping frequently used data in memory reduces disk accesses,
reducing number of disks required, but has a memory cost

28

©Silberschatz, Korth and Sudarshan21.28Database System Concepts

Hardware Tuning: FiveHardware Tuning: Five--Minute RuleMinute Rule
! Question: which data to keep in memory:

! If a page is accessed n times per second, keeping it in memory saves

" n * price-per-disk-drive

accesses-per-second-per-disk

! Cost of keeping page in memory

" price-per-MB-of-memory

ages-per-MB-of-memory

! Break-even point: value of n for which above costs are equal

" If accesses are more then saving is greater than cost

! Solving above equation with current disk and memory prices leads to:
5-minute rule: if a page that is randomly accessed is used
more frequently than once in 5 minutes it should be kept in
memory

" (by buying sufficient memory!)

29

©Silberschatz, Korth and Sudarshan21.29Database System Concepts

Hardware Tuning: OneHardware Tuning: One--Minute RuleMinute Rule

! For sequentially accessed data, more pages can be read per
second. Assuming sequential reads of 1MB of data at a time:
1-minute rule: sequentially accessed data that is accessed
once or more in a minute should be kept in memory

! Prices of disk and memory have changed greatly over the years,
but the ratios have not changed much

! so rules remain as 5 minute and 1 minute rules, not 1 hour or 1
second rules!

30

©Silberschatz, Korth and Sudarshan21.30Database System Concepts

Hardware Tuning: Choice of RAID LevelHardware Tuning: Choice of RAID Level

! To use RAID 1 or RAID 5?
! Depends on ratio of reads and writes

" RAID 5 requires 2 block reads and 2 block writes to write out one
data block

! If an application requires r reads and w writes per second
! RAID 1 requires r + 2w I/O operations per second

! RAID 5 requires: r + 4w I/O operations per second

! For reasonably large r and w, this requires lots of disks to handle
workload
! RAID 5 may require more disks than RAID 1 to handle load!

! Apparent saving of number of disks by RAID 5 (by using parity, as
opposed to the mirroring done by RAID 1) may be illusory!

! Thumb rule: RAID 5 is fine when writes are rare and data is very
large, but RAID 1 is preferable otherwise
! If you need more disks to handle I/O load, just mirror them since

disk capacities these days are enormous!

31

©Silberschatz, Korth and Sudarshan21.31Database System Concepts

Tuning the Database DesignTuning the Database Design

! Schema tuning
! Vertically partition relations to isolate the data that is accessed most

often -- only fetch needed information.

• E.g., split account into two, (account-number, branch-name) and
(account-number, balance).

• Branch-name need not be fetched unless required

! Improve performance by storing a denormalized relation

• E.g., store join of account and depositor; branch-name and
balance information is repeated for each holder of an account, but
join need not be computed repeatedly.

• Price paid: more space and more work for programmer to keep
relation consistent on updates

• better to use materialized views (more on this later..)

! Cluster together on the same disk page records that would
match in a frequently required join,

" compute join very efficiently when required.

32

©Silberschatz, Korth and Sudarshan21.32Database System Concepts

Tuning the Database Design (Cont.)Tuning the Database Design (Cont.)

! Index tuning
! Create appropriate indices to speed up slow queries/updates

! Speed up slow updates by removing excess indices (tradeoff between
queries and updates)

! Choose type of index (B-tree/hash) appropriate for most frequent types
of queries.

! Choose which index to make clustered

! Index tuning wizards look at past history of queries and updates
(the workload) and recommend which indices would be best for the
workload

33

©Silberschatz, Korth and Sudarshan21.33Database System Concepts

Tuning the Database Design (Cont.)Tuning the Database Design (Cont.)

Materialized Views

! Materialized views can help speed up certain queries
! Particularly aggregate queries

! Overheads
! Space

! Time for view maintenance

" Immediate view maintenance:done as part of update txn

– time overhead paid by update transaction

" Deferred view maintenance: done only when required

– update transaction is not affected, but system time is spent
on view maintenance

» until updated, the view may be out-of-date

! Preferable to denormalized schema since view maintenance
is systems responsibility, not programmers
! Avoids inconsistencies caused by errors in update programs

34

©Silberschatz, Korth and Sudarshan21.34Database System Concepts

Tuning the Database Design (Cont.)Tuning the Database Design (Cont.)

! How to choose set of materialized views

! Helping one transaction type by introducing a materialized view may
hurt others

! Choice of materialized views depends on costs

" Users often have no idea of actual cost of operations

! Overall, manual selection of materialized views is tedious

! Some database systems provide tools to help DBA choose views
to materialize

! “Materialized view selection wizards”

35

©Silberschatz, Korth and Sudarshan21.35Database System Concepts

Tuning of TransactionsTuning of Transactions

! Basic approaches to tuning of transactions
! Improve set orientation

! Reduce lock contention

! Rewriting of queries to improve performance was important in the
past, but smart optimizers have made this less important

! Communication overhead and query handling overheads
significant part of cost of each call
! Combine multiple embedded SQL/ODBC/JDBC queries into a

single set-oriented query

" Set orientation -> fewer calls to database

" E.g. tune program that computes total salary for each department
using a separate SQL query by instead using a single query that
computes total salaries for all department at once (using group
by)

! Use stored procedures: avoids re-parsing and re-optimization
of query

36

©Silberschatz, Korth and Sudarshan21.36Database System Concepts

Tuning of Transactions (Cont.)Tuning of Transactions (Cont.)

! Reducing lock contention

! Long transactions (typically read-only) that examine large parts
of a relation result in lock contention with update transactions

! E.g. large query to compute bank statistics and regular bank
transactions

! To reduce contention

! Use multi-version concurrency control

" E.g. Oracle “snapshots” which support multi-version 2PL

! Use degree-two consistency (cursor-stability) for long transactions

" Drawback: result may be approximate

37

©Silberschatz, Korth and Sudarshan21.37Database System Concepts

Tuning of Transactions (Cont.)Tuning of Transactions (Cont.)

! Long update transactions cause several problems
! Exhaust lock space

! Exhaust log space

" and also greatly increase recovery time after a crash, and may
even exhaust log space during recovery if recovery algorithm is
badly designed!

! Use mini-batch transactions to limit number of updates that a
single transaction can carry out. E.g., if a single large transaction
updates every record of a very large relation, log may grow too
big.
* Split large transaction into batch of ``mini-transactions,'' each

performing part of the updates

• Hold locks across transactions in a mini-batch to ensure serializability

• If lock table size is a problem can release locks, but at the cost of
serializability

* In case of failure during a mini-batch, must complete its
remaining portion on recovery, to ensure atomicity.

38

©Silberschatz, Korth and Sudarshan21.38Database System Concepts

Performance SimulationPerformance Simulation

! Performance simulation using queuing model useful to predict
bottlenecks as well as the effects of tuning changes, even
without access to real system

! Queuing model as we saw earlier
! Models activities that go on in parallel

! Simulation model is quite detailed, but usually omits some low
level details
! Model service time, but disregard details of service

! E.g. approximate disk read time by using an average disk read time

! Experiments can be run on model, and provide an estimate of
measures such as average throughput/response time

! Parameters can be tuned in model and then replicated in real
system
! E.g. number of disks, memory, algorithms, etc

21.39 ©Silberschatz, Korth and SudarshanDatabase System Concepts

Performance BenchmarksPerformance Benchmarks

40

©Silberschatz, Korth and Sudarshan21.40Database System Concepts

Performance BenchmarksPerformance Benchmarks

! Suites of tasks used to quantify the performance of software
systems

! Important in comparing database systems, especially as systems
become more standards compliant.

! Commonly used performance measures:

! Throughput (transactions per second, or tps)

! Response time (delay from submission of transaction to return of
result)

! Availability or mean time to failure

41

©Silberschatz, Korth and Sudarshan21.41Database System Concepts

Performance Benchmarks (Cont.)Performance Benchmarks (Cont.)

! Suites of tasks used to characterize performance

! single task not enough for complex systems

! Beware when computing average throughput of different transaction
types

! E.g., suppose a system runs transaction type A at 99 tps and transaction
type B at 1 tps.

! Given an equal mixture of types A and B, throughput is not (99+1)/2 =
50 tps.

! Running one transaction of each type takes time 1+.01 seconds, giving a
throughput of 1.98 tps.

! To compute average throughput, use harmonic mean:

n

! Interference (e.g. lock contention) makes even this incorrect if
different transaction types run concurrently

1/t1 + 1/t2 + … + 1/tn

42

©Silberschatz, Korth and Sudarshan21.42Database System Concepts

Database Application ClassesDatabase Application Classes

! Online transaction processing (OLTP)
! requires high concurrency and clever techniques to speed up

commit processing, to support a high rate of update transactions.

! Decision support applications
! including online analytical processing, or OLAP applications

! require good query evaluation algorithms and query optimization.

! Architecture of some database systems tuned to one of the two
classes

! E.g. Teradata is tuned to decision support

! Others try to balance the two requirements

! E.g. Oracle, with snapshot support for long read-only transaction

43

©Silberschatz, Korth and Sudarshan21.43Database System Concepts

Benchmarks SuitesBenchmarks Suites

! The Transaction Processing Council (TPC) benchmark suites
are widely used.

! TPC-A and TPC-B: simple OLTP application modeling a bank teller
application with and without communication

" Not used anymore

! TPC-C: complex OLTP application modeling an inventory system

" Current standard for OLTP benchmarking

44

©Silberschatz, Korth and Sudarshan21.44Database System Concepts

Benchmarks Suites (Cont.)Benchmarks Suites (Cont.)

! TPC benchmarks (cont.)

! TPC-D: complex decision support application

" Superceded by TPC-H and TPC-R

! TPC-H: (H for ad hoc) based on TPC-D with some extra queries

" Models ad hoc queries which are not known beforehand

– Total of 22 queries with emphasis on aggregation

" prohibits materialized views

" permits indices only on primary and foreign keys

! TPC-R: (R for reporting) same as TPC-H, but without any
restrictions on materialized views and indices

! TPC-W: (W for Web) End-to-end Web service benchmark modeling
a Web bookstore, with combination of static and dynamically
generated pages

45

©Silberschatz, Korth and Sudarshan21.45Database System Concepts

TPC Performance MeasuresTPC Performance Measures

! TPC performance measures

! transactions-per-second with specified constraints on response
time

! transactions-per-second-per-dollar accounts for cost of owning
system

! TPC benchmark requires database sizes to be scaled up with
increasing transactions-per-second

! reflects real world applications where more customers means more
database size and more transactions-per-second

! External audit of TPC performance numbers mandatory

! TPC performance claims can be trusted

46

©Silberschatz, Korth and Sudarshan21.46Database System Concepts

TPC Performance MeasuresTPC Performance Measures

! Two types of tests for TPC-H and TPC-R

! Power test: runs queries and updates sequentially, then takes
mean to find queries per hour

! Throughput test: runs queries and updates concurrently

" multiple streams running in parallel each generates queries, with
one parallel update stream

! Composite query per hour metric: square root of product of power
and throughput metrics

! Composite price/performance metric

47

©Silberschatz, Korth and Sudarshan21.47Database System Concepts

Other BenchmarksOther Benchmarks

! OODB transactions require a different set of benchmarks.

! OO7 benchmark has several different operations, and provides a
separate benchmark number for each kind of operation

! Reason: hard to define what is a typical OODB application

! Benchmarks for XML being discussed

21.48 ©Silberschatz, Korth and SudarshanDatabase System Concepts

StandardizationStandardization

49

©Silberschatz, Korth and Sudarshan21.49Database System Concepts

StandardizationStandardization

! The complexity of contemporary database systems and the need
for their interoperation require a variety of standards.

! syntax and semantics of programming languages

! functions in application program interfaces

! data models (e.g. object oriented/object relational databases)

! Formal standards are standards developed by a standards
organization (ANSI, ISO), or by industry groups, through a public
process.

! De facto standards are generally accepted as standards
without any formal process of recognition

! Standards defined by dominant vendors (IBM, Microsoft) often
become de facto standards

! De facto standards often go through a formal process of recognition
and become formal standards

50

©Silberschatz, Korth and Sudarshan21.50Database System Concepts

Standardization (Cont.)Standardization (Cont.)

! Anticipatory standards lead the market place, defining features
that vendors then implement

! Ensure compatibility of future products

! But at times become very large and unwieldy since standards
bodies may not pay enough attention to ease of implementation
(e.g.,SQL-92 or SQL:1999)

! Reactionary standards attempt to standardize features that
vendors have already implemented, possibly in different ways.

! Can be hard to convince vendors to change already implemented
features. E.g. OODB systems

51

©Silberschatz, Korth and Sudarshan21.51Database System Concepts

SQL Standards HistorySQL Standards History

! SQL developed by IBM in late 70s/early 80s

! SQL-86 first formal standard

! IBM SAA standard for SQL in 1987

! SQL-89 added features to SQL-86 that were already
implemented in many systems

! Was a reactionary standard

! SQL-92 added many new features to SQL-89 (anticipatory
standard)

! Defines levels of compliance (entry, intermediate and full)

! Even now few database vendors have full SQL-92 implementation

52

©Silberschatz, Korth and Sudarshan21.52Database System Concepts

SQL Standards History (Cont.)SQL Standards History (Cont.)

! SQL:1999

! Adds variety of new features --- extended data types, object
orientation, procedures, triggers, etc.

! Broken into several parts

" SQL/Framework (Part 1): overview

" SQL/Foundation (Part 2): types, schemas, tables, query/update
statements, security, etc

" SQL/CLI (Call Level Interface) (Part 3): API interface

" SQL/PSM (Persistent Stored Modules) (Part 4): procedural
extensions

" SQL/Bindings (Part 5): embedded SQL for different embedding
languages

53

©Silberschatz, Korth and Sudarshan21.53Database System Concepts

SQL Standards History (Cont.)SQL Standards History (Cont.)

! More parts undergoing standardization process

! Part 7: SQL/Temporal: temporal data

! Part 9: SQL/MED (Management of External Data)

" Interfacing of database to external data sources

– Allows other databases, even files, can be viewed as part of
the database

! Part 10 SQL/OLB (Object Language Bindings): embedding SQL in
Java

! Missing part numbers 6 and 8 cover features that are not near
standardization yet

54

©Silberschatz, Korth and Sudarshan21.54Database System Concepts

Database Connectivity StandardsDatabase Connectivity Standards

! Open DataBase Connectivity (ODBC) standard for database
interconnectivity
! based on Call Level Interface (CLI) developed by X/Open consortium

! defines application programming interface, and SQL features that
must be supported at different levels of compliance

! JDBC standard used for Java

! X/Open XA standards define transaction management standards
for supporting distributed 2-phase commit

! OLE-DB: API like ODBC, but intended to support non-database
sources of data such as flat files
! OLE-DB program can negotiate with data source to find what features

are supported

! Interface language may be a subset of SQL

! ADO (Active Data Objects): easy-to-use interface to OLE-DB
functionality

55

©Silberschatz, Korth and Sudarshan21.55Database System Concepts

Object Oriented Databases StandardsObject Oriented Databases Standards

! Object Database Management Group (ODMG) standard for
object-oriented databases

! version 1 in 1993 and version 2 in 1997, version 3 in 2000

! provides language independent Object Definition Language (ODL)
as well as several language specific bindings

! Object Management Group (OMG) standard for distributed
software based on objects

! Object Request Broker (ORB) provides transparent message
dispatch to distributed objects

! Interface Definition Language (IDL) for defining language-
independent data types

! Common Object Request Broker Architecture (CORBA) defines
specifications of ORB and IDL

56

©Silberschatz, Korth and Sudarshan21.56Database System Concepts

XMLXML--Based StandardsBased Standards

! Several XML based Standards for E-commerce

! E.g. RosettaNet (supply chain), BizTalk

! Define catalogs, service descriptions, invoices, purchase orders,
etc.

! XML wrappers are used to export information from relational
databases to XML

! Simple Object Access Protocol (SOAP): XML based remote
procedure call standard

! Uses XML to encode data, HTTP as transport protocol

! Standards based on SOAP for specific applications

" E.g. OLAP and Data Mining standards from Microsoft

21.57 ©Silberschatz, Korth and SudarshanDatabase System Concepts

EE--CommerceCommerce

58

©Silberschatz, Korth and Sudarshan21.58Database System Concepts

EE--CommerceCommerce

! E-commerce is the process of carrying out various activities
related to commerce through electronic means

! Activities include:

! Presale activities: catalogs, advertisements, etc

! Sale process: negotiations on price/quality of service

! Marketplace: e.g. stock exchange, auctions, reverse auctions

! Payment for sale

! Delivery related activities: electronic shipping, or electronic tracking
of order processing/shipping

! Customer support and post-sale service

59

©Silberschatz, Korth and Sudarshan21.59Database System Concepts

EE--CatalogsCatalogs

! Product catalogs must provide searching and browsing facilities

! Organize products into intuitive hierarchy

! Keyword search

! Help customer with comparison of products

! Customization of catalog

! Negotiated pricing for specific organizations

! Special discounts for customers based on past history

" E.g. loyalty discount

! Legal restrictions on sales

" Certain items not exposed to under-age customers

! Customization requires extensive customer-specific information

60

©Silberschatz, Korth and Sudarshan21.60Database System Concepts

MarketplacesMarketplaces

! Marketplaces help in negotiating the price of a product when there
are multiple sellers and buyers

! Several types of marketplaces
! Reverse auction

! Auction

! Exchange

! Real world marketplaces can be quite complicated due to product
differentiation

! Database issues:
! Authenticate bidders

! Record buy/sell bids securely

! Communicate bids quickly to participants

" Delays can lead to financial loss to some participants

! Need to handle very large volumes of trade at times

" E.g. at the end of an auction

61

©Silberschatz, Korth and Sudarshan21.61Database System Concepts

Types of MarketplaceTypes of Marketplace

! Reverse auction system: single buyer, multiple sellers.
! Buyer states requirements, sellers bid for supplying items. Lowest

bidder wins. (also known as tender system)

! Open bidding vs. closed bidding

! Auction: Multiple buyers, single seller
! Simplest case: only one instance of each item is being sold

! Highest bidder for an item wins

! More complicated with multiple copies, and buyers bid for specific
number of copies

! Exchange: multiple buyers, multiple sellers
! E.g., stock exchange

! Buyers specify maximum price, sellers specify minimum price

! exchange matches buy and sell bids, deciding on price for the trade

" e.g. average of buy/sell bids

62

©Silberschatz, Korth and Sudarshan21.62Database System Concepts

Order SettlementOrder Settlement

! Order settlement: payment for goods and delivery

! Insecure means for electronic payment: send credit card number

! Buyers may present some one else’s credit card numbers

! Seller has to be trusted to bill only for agreed-on item

! Seller has to be trusted not to pass on the credit card number to
unauthorized people

! Need secure payment systems

! Avoid above-mentioned problems

! Provide greater degree of privacy

" E.g. not reveal buyers identity to seller

! Ensure that anyone monitoring the electronic transmissions cannot
access critical information

63

©Silberschatz, Korth and Sudarshan21.63Database System Concepts

Secure Payment SystemsSecure Payment Systems

! All information must be encrypted to prevent eavesdropping

! Public/private key encryption widely used

! Must prevent person-in-the-middle attacks
! E.g. someone impersonates seller or bank/credit card company and

fools buyer into revealing information

" Encrypting messages alone doesn’t solve this problem

" More on this in next slide

! Three-way communication between seller, buyer and credit-card
company to make payment

! Credit card company credits amount to seller

! Credit card company consolidates all payments from a buyer and
collects them together

" E.g. via buyer’s bank through physical/electronic
check payment

64

©Silberschatz, Korth and Sudarshan21.64Database System Concepts

Secure Payment Systems (Cont.)Secure Payment Systems (Cont.)

! Digital certificates are used to prevent impersonation/man-in-
the middle attack

! Certification agency creates digital certificate by encrypting, e.g.,
seller’s public key using its own private key

" Verifies sellers identity by external means first!

! Seller sends certificate to buyer

! Customer uses public key of certification agency to decrypt
certificate and find sellers public key

" Man-in-the-middle cannot send fake public key

! Sellers public key used for setting up secure communication

! Several secure payment protocols

! E.g. Secure Electronic Transaction (SET)

65

©Silberschatz, Korth and Sudarshan21.65Database System Concepts

Digital CashDigital Cash

! Credit-card payment does not provide anonymity

! The SET protocol hides buyers identity from seller

! But even with SET, buyer can be traced with help of credit card
company

! Digital cash systems provide anonymity similar to that provided by
physical cash

! E.g. DigiCash

! Based on encryption techniques that make it impossible to find out
who purchased digital cash from the bank

! Digital cash can be spent by purchaser in parts

" much like writing a check on an account whose owner is
anonymous

21.66 ©Silberschatz, Korth and SudarshanDatabase System Concepts

Legacy SystemsLegacy Systems

67

©Silberschatz, Korth and Sudarshan21.67Database System Concepts

Legacy SystemsLegacy Systems

! Legacy systems are older-generation systems that are incompatible
with current generation standards and systems but still in
production use
! E.g. applications written in Cobol that run on mainframes

" Today’s hot new system is tomorrows legacy system!

! Porting legacy system applications to a more modern environment
is problematic
! Very expensive, since legacy system may involve millions of lines of

code, written over decades

" Original programmers usually no longer available

! Switching over from old system to new system is a problem

" more on this later

! One approach: build a wrapper layer on top of legacy application to
allow interoperation between newer systems and legacy application
! E.g. use ODBC or OLE-DB as wrapper

68

©Silberschatz, Korth and Sudarshan21.68Database System Concepts

Legacy Systems (Cont.)Legacy Systems (Cont.)

! Rewriting legacy application requires a first phase of
understanding what it does

! Often legacy code has no documentation or outdated
documentation

! reverse engineering: process of going over legacy code to

" Come up with schema designs in ER or OO model

" Find out what procedures and processes are implemented, to
get a high level view of system

! Re-engineering: reverse engineering followed by design of new
system

! Improvements are made on existing system design in this process

69

©Silberschatz, Korth and Sudarshan21.69Database System Concepts

Legacy Systems (Cont.)Legacy Systems (Cont.)

! Switching over from old to new system is a major problem

! Production systems are in every day, generating new data

! Stopping the system may bring all of a company’s activities to a
halt, causing enormous losses

! Big-bang approach:
1. Implement complete new system

2. Populate it with data from old system

1. No transactions while this step is executed

2. scripts are created to do this quickly

3. Shut down old system and start using new system

! Danger with this approach: what if new code has bugs or
performance problems, or missing features

" Company may be brought to a halt

70

©Silberschatz, Korth and Sudarshan21.70Database System Concepts

Legacy Systems (Cont.)Legacy Systems (Cont.)

! Chicken-little approach:
! Replace legacy system one piece at a time

! Use wrappers to interoperate between legacy and new code

" E.g. replace front end first, with wrappers on legacy backend

– Old front end can continue working in this phase in case of
problems with new front end

" Replace back end, one functional unit at a time

– All parts that share a database may have to be replaced
together, or wrapper is needed on database also

! Drawback: significant extra development effort to build wrappers and
ensure smooth interoperation

" Still worth it if company’s life depends on system

21.71 ©Silberschatz, Korth and SudarshanDatabase System Concepts

End of ChapterEnd of Chapter

