Q Overview

Web Interfaces to Databases

Chapter 21:
Application Devel

Performance Tuning

[
[
m Performance Benchmarks
[

Standardization

LY
A= ISIR

Q The World Wide Web Q Web Interfaces to Databases

® The Web is a distributed information system based on hypertext. Why interface databases to the Web?
B Most Web documents are hypertext documents formatted via the 1
HyperText Markup Language (HTML) interface to databases
® HTML documents contain * Enable large numbers of users to access databases from
* text along with font specifications, and other formatting instructions anywhere
* hypertext links to other documents, which can be associated with

. Web browsers have become the de-facto standard user

A A
il e

Web Interfaces to Database (Cont.)

~
~
2. Dynamic generation of documents
* Limitations of static HTML documents
> Cannot customize fixed Web documents for individual users.
> Problematic to update Web documents, especially if multiple
Web documents replicate data.
* Solution: Generate Web documents dynamically from data
stored in a database.
> Can tailor the display based on user information stored in the
database.
E.g. tailored ads, tailored weather and local news, ...
> Displayed information is up-to-date, unlike the static Web
pages
E.g. stock market information, ..
Rest of this section: introduction to Web technologies needed for
interfacing databases with the Web 1: ¢ \
Database System Concepts 215 ©Silberschatz, Ko an

~ HTML and HTTP

m HTML provides formatting, hypertext link, and image display
features.

® HTML also provides input features
> Select from a set of options
Pop-up menus, radio buttons, check lists
> Enter values
Text boxes

* Filled in input sent back to the server, to be acted upon by an
executable at the server

m HyperText Transfer Protocol (HTTP) used for communication
with the Web server

S

Database System Concepts 21.7 il , KO

£ Uniform Resources Locators
~
® In the Web, functionality of pointers is provided by Uniform
Resource Locators (URLS).
m URL example:

* The first part indicates how the document is to be accessed

> “http” indicates that the document is to be accessed using the
Hyper Text Transfer Protocol.

* The second part gives the unique name of a machine on the
Internet.

* The rest of the URL identifies the document within the machine.
B The local identification can be:
> The path name of a file on the machine, or

> An identifier (path name) of a program, plus arguments to be
passed to the program

E.g. http://www.google.com/search?g=silberschatz

HL—A

©Si|bersch®

02 Sample HTML Source Text

~
<html> <body>
<table border cols = 3>
<tr> <td> A-101 </td> <td> Downtown </td> <td> 500 </td> </tr>

\

Database System Concepts 21.6

</table>
<center> The <i>account</i> relation </center>

<form action="BankQuery” method=get>
Select account/loan and enter number

<select name="type”>
<option value=“account” selected> Account
<option> value=“Loan”> Loan
</select>

<input type=text size=5 name="number’>
<input type=submit value="submit”>
</form>
</body> </html>

. \

H-EA

©Si|berschm

Database System Concepts 21.8

~

~ Display of Sample HTML Source

|A-101 |Downtown {500
M@ Pyide (40
AX1T (g |90 |

The acoount relation
Select acoount/loan and enter number
Account submit
A ¥
> \; ,
Database System Concepts 219 ©Silberschatz, Ko an

~ Client Side Scripting and Security

~

B Security mechanisms needed to ensure that malicious scripts
do not cause damage to the client machine

* Easy for limited capability scripting languages, harder for general
purpose programming languages like Java

m E.g. Java’s security system ensures that the Java applet code
does not make any system calls directly

* Disallows dangerous actions such as file writes

* Notifies the user about potentially dangerous actions, and allows
the option to abort the program or to continue execution.

‘
D\J\j
Database System Concepts 21.11 i é:h‘u 1

~

_ Client Side Scripting and Applets

® Browsers can fetch certain scripts (client-side scripts) or
programs along with documents, and execute them in “safe
mode” at the client site

* Javascript
* Macromedia Flash and Shockwave for animation/games
* VRML
* Applets
m Client-side scripts/programs allow documents to be active
* E.g., animation by executing programs at the local site

* E.g. ensure that values entered by users satisfy some correctness
checks

* Permit flexible interaction with the user.

\

> Executing programs at the client site speeds up interaction by
avoiding many round trips to server B4 \

) %
©Si|hersch®

Database System Concepts 21.10

Z Web Servers

m A Web server can easily serve as a front end to a variety of
information services.

® The document name in a URL may identify an executable
program, that, when run, generates a HTML document.

* When a HTTP server receives a request for such a document, it
executes the program, and sends back the HTML document that
is generated.

* The Web client can pass extra arguments with the name of the
document.

B To install a new service on the Web, one simply needs to
create and install an executable that provides that service.

* The Web browser provides a graphical user interface to the
information service.

® Common Gateway Interface (CGI): a standard interface
between web and application server il \

- \\

() 3
©Si|berschm

Database System Concepts 21.12

. Three-Tier Web Architecture Q, Two-Tier Web Architecture

_, -
® Multiple levels of indirection have overheads
¥ Alternative: two-tier architecture

)

(app]jcation server)

(web server

1
[web server and]

[database server) application server

(database server)

browser data é@

data

server

Q HTTP and Sessions Q Sessions and Cookies

m The HTTP protocol is connectionless m A cookie is a small piece of text containing identifying information
* That is, once the server replies to a request, the server closes the * Sent by server to browser on first interaction
connection with the client, and forgets all about the request * Sent by browser to the server that created the cookie on further
* In contrast, Unix logins, and JDBC/ODBC connections stay interactions
connected until the client disconnects > part of the HTTP protocol

> retaining user authentication and other information # Server saves information about cookies it issued, and can use it

LY LR
ATV HRIR AT =SSR

~
A Serviets
B Java Servlet specification defines an API for communication
between the Web server and application program
* E.g. methods to get parameter values and to send HTML text back
to client
B Application program (also called a servlet) is loaded into the Web
server
* Two-tier model
* Each request spawns a new thread in the Web server
> thread is closed once the request is serviced
m Servlet API provides a getSession() method
* Sets a cookie on first interaction with browser, and uses it to identify
session on further interactions
* Provides methods to store and look-up per-session information :
> E.g. user name, preferences, .. 4 y
Database System Concepts 2117 ©Silberschatz, Ko an
~

Server-Side Scripting

~

m Server-side scripting simplifies the task of connecting a database
to the Web

* Define a HTML document with embedded executable code/SQL
queries.

* Input values from HTML forms can be used directly in the
embedded code/SQL queries.

* When the document is requested, the Web server executes the
embedded code/SQL queries to generate the actual HTML
document.

B Numerous server-side scripting languages

* JSP, Server-side Javascript, ColdFusion Markup Language (cfml),
PHP, Jscript

* General purpose scripting languages: VBScript, Perl, Python

\

f=A

©Si|berschm

Database System Concepts 21.19

~

A Example Servlet Code

Public class BankQuery(Servlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse
result)
throws ServletException, IOException {

String type = request.getParameter(“type”);
String number = request.getParameter(“number”);

...code to find the loan amount/account balance ...
...using JDBC to communicate with the database..
...we assume the value is stored in the variable balance

result.setContentType(“text/html”);

PrintWriter out = result.getWriter();
out.printin(“<HEAD><TITLE>Query Result</TITLE></HEAD>");
out.printin(“<BODY>");

out.printin(“Balance on “ + type + number + “=“ + balance);
out.printin(“</BODY>");
out.close (); {
) ¥ =«
} i
Database System Concepts 21.18 ©Silberschatz, Ko an

Y _ Improving Web Server Performance

m Performance is an issue for popular Web sites

* May be accessed by millions of users every day, thousands of
requests per second at peak time

m Caching techniques used to reduce cost of serving pages by
exploiting commonalities between requests
* At the server site:
> Caching of JDBC connections between servlet requests
> Caching results of database queries

Cached results must be updated if underlying database
changes
> Caching of generated HTML
* At the client’s network
> Caching of pages by Web proxy 4 -

H-EA

©Si|berschm

Database System Concepts 21.20

Performance Tuning

Database System Concepts 21.21 ©Silberschatz, Korth and Sudarshan

A Bottlenecks

B Performance of most systems (at least before they are tuned)
usually limited by performance of one or a few components:
these are called bottlenecks

* E.g. 80% of the code may take up 20% of time and 20% of code
takes up 80% of time

> Worth spending most time on 20% of code that take 80% of time

m Bottlenecks may be in hardware (e.g. disks are very busy, CPU
is idle), or in software

Removing one bottleneck often exposes another

m De-bottlenecking consists of repeatedly finding bottlenecks, and
removing them

* This is a heuristic

f=A

©Si|berschm

Database System Concepts 21.23

Y Performance Tuning

® Adjusting various parameters and design choices to improve
system performance for a specific application.

B Tuning is best done by
1. identifying bottlenecks, and
2. eliminating them.
B Can tune a database system at 3 levels:

* Hardware -- e.g., add disks to speed up I/O, add memory to
increase buffer hits, move to a faster processor.

* Database system parameters -- e.g., set buffer size to avoid
paging of buffer, set checkpointing intervals to limit log size. System
may have automatic tuning.

* Higher level database design, such as the schema, indices and
transactions (more later)

it \

HL—A

©Si|berschm

Database System Concepts 21.22

~

A Ildentifying Bottlenecks

Transactions request a sequence of services
* e.g. CPU, Disk I/O, locks

With concurrent transactions, transactions may have to wait for a
requested service while other transactions are being served

m Can model database as a queueing system with a queue for each
service

* transactions repeatedly do the following
> request a service, wait in queue for the service, and get serviced

m Bottlenecks in a database system typically show up as very high
utilizations (and correspondingly, very long queues) of a particular
service

* E.g. disk vs CPU utilization

* 100% utilization leads to very long waiting time:
> Rule of thumb: design system for about 70% utilization at peak load |
> utilization over 90% should be avoided AN

©Si|berschm

Database System Concepts 21.24

Q Queues In A Database System

concurrency control
manager

5 B

lock lock
request grant

transaction
manager

' page
page | | TPl
request |

' page
buffer 19U
ma.l'lagel' pa ge

reply

Q Tuning of Hardware

® Even well-tuned transactions typically require a few I/O
operations
* Typical disk supports about 100 random /O operations per second

* Suppose each transaction requires just 2 random 1/O operations.
Then to support n transactions per second, we need to stripe data
across n/50 disks (ignoring skew)

(VSRR

Q Tunable Parameters

Tuning of hardware

Tuning of schema

Tuning of indices

Tuning of materialized views

Tuning of transactions

LY
il

Q Hardware Tuning: Five-Minute Rule

B Question: which data to keep in memory:
* If a page is accessed n times per second, keeping it in memory saves
> n* price-per-disk-drive

accesses-per-second-per-disk
* Cost of keeping page in memory

> price-per-MB-of-memory

RV

~

_, Hardware Tuning: One-Minute Rule

m For sequentially accessed data, more pages can be read per
second. Assuming sequential reads of 1MB of data at a time:
1-minute rule: sequentially accessed data that is accessed
once or more in a minute should be kept in memory

m Prices of disk and memory have changed greatly over the years,
but the ratios have not changed much

* so rules remain as 5 minute and 1 minute rules, not 1 hour or 1
second rules!

§ A

©Si|berschatz.<o:>:g

Database System Concepts 21.29

~

A Tuning the Database Design

m Schema tuning

* Vertically partition relations to isolate the data that is accessed most
often -- only fetch needed information.

- E.g., split account into two, (account-number, branch-name) and
(account-number, balance).

Branch-name need not be fetched unless required
* Improve performance by storing a denormalized relation

- E.g., store join of account and depositor; branch-name and
balance information is repeated for each holder of an account, but
join need not be computed repeatedly.

Price paid: more space and more work for programmer to keep
relation consistent on updates

- better to use materialized views (more on this later..)

#* Cluster together on the same disk page records that would
match in a frequently required join,

> compute join very efficiently when required. 1 4 §

Database System Concepts 21.31 il , KO

~ \/Hardware Tuning: Choice of RAID Level

m To use RAID 1 or RAID 57
* Depends on ratio of reads and writes

> RAID 5 requires 2 block reads and 2 block writes to write out one
data block

m |f an application requires r reads and w writes per second
* RAID 1 requires r+ 2w 1/O operations per second
* RAID 5 requires: r + 4w 1/O operations per second

m For reasonably large r and w, this requires lots of disks to handle
workload

* RAID 5 may require more disks than RAID 1 to handle load!

* Apparent saving of number of disks by RAID 5 (by using parity, as
opposed to the mirroring done by RAID 1) may be illusory!

B Thumb rule: RAID 5 is fine when writes are rare and data is very
large, but RAID 1 is preferable otherwise

* If you need more disks to handle I/O load, just mirror them smqe 5

disk capacities these days are enormous! Q:::;?
©Silberschatz, Ko an

\

Database System Concepts 21.30

~

_, Tuning the Database Design (Cont.)

B Index tuning
* Create appropriate indices to speed up slow queries/updates

* Speed up slow updates by removing excess indices (tradeoff between
queries and updates)

* Choose type of index (B-tree/hash) appropriate for most frequent types
of queries.

* Choose which index to make clustered
B |ndex tuning wizards look at past history of queries and updates

(the workload) and recommend which indices would be best for the
workload

. \

H-EA

©Si|berschm

Database System Concepts 21.32

_, Tuning the Database Design (Cont.)

Materialized Views

m Materialized views can help speed up certain queries
* Particularly aggregate queries
m Overheads
* Space
* Time for view maintenance
> Immediate view maintenance:done as part of update txn
time overhead paid by update transaction
> Deferred view maintenance: done only when required

update transaction is not affected, but system time is spent
on view maintenance

» until updated, the view may be out-of-date

m Preferable to denormalized schema since view malntenance
is systems responsibility, not programmers ‘ \

* Avoids inconsistencies caused by errors in update programs 17)

©Si|berschatz.<o:>:g

Database System Concepts 21.33

~

A Tuning of Transactions

B Basic approaches to tuning of transactions
* Improve set orientation
* Reduce lock contention
m Rewriting of queries to improve performance was important in the
past, but smart optimizers have made this less important

B Communication overhead and query handling overheads
significant part of cost of each call

* Combine multiple embedded SQL/ODBC/JDBC queries into a
single set-oriented query

> Set orientation -> fewer calls to database

> E.g. tune program that computes total salary for each department
using a separate SQL query by instead using a single query that
computes total salaries for all department at once (using group
by)

#* Use stored procedures: avoids re-parsing and re-optimization: \
of query iy e

Database System Concepts 21.35 il (J(—‘“ha\uv_/\j

, Ko 1

_, Tuning the Database Design (Cont.)

B How to choose set of materialized views

* Helping one transaction type by introducing a materialized view may
hurt others

* Choice of materialized views depends on costs
> Users often have no idea of actual cost of operations
* OQverall, manual selection of materialized views is tedious

B Some database systems provide tools to help DBA choose views
to materialize

* “Materialized view selection wizards”

it \

HL—A

©Si|berschm

Database System Concepts 21.34

. Tuning of Transactions (Cont.)

® Reducing lock contention
B Long transactions (typically read-only) that examine large parts
of a relation result in lock contention with update transactions

* E.g. large query to compute bank statistics and regular bank
transactions

B To reduce contention
* Use multi-version concurrency control
> E.g. Oracle “snapshots” which support multi-version 2PL

* Use degree-two consistency (cursor-stability) for long transactions
> Drawback: result may be approximate

. \

H-EA

©Si|berschm

Database System Concepts 21.36

~

_ Tuning of Transactions (Cont.)

B Long update transactions cause several problems
* Exhaust lock space
* Exhaust log space

> and also greatly increase recovery time after a crash, and may
even exhaust log space during recovery if recovery algorithm is
badly designed!

® Use mini-batch transactions to limit number of updates that a
single transaction can carry out. E.g., if a single large transaction
updates every record of a very large relation, log may grow too
big.

* Split large transaction into batch of “*mini-transactions," each
performing part of the updates
* Hold locks across transactions in a mini-batch to ensure serializability

- If lock table size is a problem can release locks, but at the cost of
serializability

* In case of failure during a mini-batch, must complete its
remaining portion on recovery, to ensure atomicity.

§ A

©Si|berschatz.<o:>:g

Database System Concepts 21.37

Performance Benchmarks

Database System Concepts 21.39 ©Silberschatz, Korth and Sudarshan

~ H 2
A Performance Simulation
m Performance simulation using queuing model useful to predict
bottlenecks as well as the effects of tuning changes, even
without access to real system
B Queuing model as we saw earlier
* Models activities that go on in parallel
® Simulation model is quite detailed, but usually omits some low
level details
* Model service time, but disregard details of service
* E.g. approximate disk read time by using an average disk read time
B Experiments can be run on model, and provide an estimate of
measures such as average throughput/response time
m Parameters can be tuned in model and then replicated in real
system
* E.g. number of disks, memory, algorithms, etc 4 b
WA
el
Database System Concepts 21.38 ©Silberschatz, Ko an
~
A Performance Benchmarks
m Suites of tasks used to quantify the performance of software
systems
B [Important in comparing database systems, especially as systems
become more standards compliant.
m Commonly used performance measures:
* Throughput (transactions per second, or tps)
* Response time (delay from submission of transaction to return of
result)
* Availability or mean time to failure
. \
A
Database System Concepts 21.40 ©Silberschatz, Ko an

~

_ Performance Benchmarks (Cont.)

m Suites of tasks used to characterize performance
* single task not enough for complex systems
m Beware when computing average throughput of different transaction
types

* E.g., suppose a system runs transaction type A at 99 tps and transaction
type B at 1 tps.

* Given an equal mixture of types A and B, throughputis not (99+1)/2 =
50 tps.

* Running one transaction of each type takes time 1+.01 seconds, giving a
throughput of 1.98 tps.

* To compute average throughput, use harmonic mean:

n
Ut + 1/t + ...+ 1/,

* Interference (e.g. lock contention) makes even this incorrect if \
different transaction types run concurrently A<

©Si|berschm

Database System Concepts 21.41

~

A Benchmarks Suites

m The Transaction Processing Council (TPC) benchmark suites
are widely used.

* TPC-A and TPC-B: simple OLTP application modeling a bank teller
application with and without communication

> Not used anymore
* TPC-C: complex OLTP application modeling an inventory system
> Current standard for OLTP benchmarking

Database System Concepts 21.43 il m

~

- Database Application Classes

® Online transaction processing (OLTP)

* requires high concurrency and clever techniques to speed up
commit processing, to support a high rate of update transactions.

m Decision support applications
* including online analytical processing, or OLAP applications
* require good query evaluation algorithms and query optimization.

®m Architecture of some database systems tuned to one of the two
classes

* E.g. Teradata is tuned to decision support
m Others try to balance the two requirements

* E.g. Oracle, with snapshot support for long read-only transaction

it \

HL—A

©Si|bersch®

Database System Concepts 21.42

~

A Benchmarks Suites (Cont.)

m TPC benchmarks (cont.)

* TPC-D: complex decision support application
> Superceded by TPC-H and TPC-R

* TPC-H: (H for ad hoc) based on TPC-D with some extra queries
> Models ad hoc queries which are not known beforehand

Total of 22 queries with emphasis on aggregation

> prohibits materialized views
> permits indices only on primary and foreign keys

* TPC-R: (R for reporting) same as TPC-H, but without any
restrictions on materialized views and indices

* TPC-W: (W for Web) End-to-end Web service benchmark modeling
a Web bookstore, with combination of static and dynamically
generated pages]
il \

H-EA

©Si|berschm

Database System Concepts 21.44

Q TPC Performance Measures Q TPC Performance Measures

m TPC performance measures m Two types of tests for TPC-H and TPC-R
* transactions-per-second with specified constraints on response * Power test: runs queries and updates sequentially, then takes
time mean to find queries per hour
* transactions-per-second-per-dollar accounts for cost of owning * Throughput test: runs queries and updates concurrently
system

> multiple streams running in parallel each generates queries, with
m TPC benchmark requires database sizes to be scaled up with one parallel update stream

2710 LY
A= AR AR

Q Other Benchmarks

m OODB transactions require a different set of benchmarks.

* 007 benchmark has several different operations, and provides a
separate benchmark number for each kind of operation

* Reason: hard to define what is a typical OODB application
B Benchmarks for XML being discussed

LAY
ke

~

A Standardization

® The complexity of contemporary database systems and the need
for their interoperation require a variety of standards.

* syntax and semantics of programming languages
* functions in application program interfaces
* data models (e.g. object oriented/object relational databases)

B Formal standards are standards developed by a standards
organization (ANSI, ISO), or by industry groups, through a public
process.

B De facto standards are generally accepted as standards
without any formal process of recognition

* Standards defined by dominant vendors (IBM, Microsoft) often
become de facto standards

* De facto standards often go through a formal process of recognition
and become formal standards 1 {

©Si|berschatz.<o:>:g

Database System Concepts 21.49

A SQL Standards History

SQL developed by IBM in late 70s/early 80s
SQL-86 first formal standard
IBM SAA standard for SQL in 1987

SQL-89 added features to SQL-86 that were already
implemented in many systems

* Was a reactionary standard

B SQL-92 added many new features to SQL-89 (anticipatory
standard)

* Defines levels of compliance (entry, intermediate and full)
* Even now few database vendors have full SQL-92 implementation

f=A

Database System Concepts 21.51 il (,J(—:ha\uv_/\j

O\

~

A Standardization (Cont.)

® Anticipatory standards lead the market place, defining features
that vendors then implement

* Ensure compatibility of future products

* But at times become very large and unwieldy since standards
bodies may not pay enough attention to ease of implementation
(e.g.,SQL-92 or SQL:1999)

B Reactionary standards attempt to standardize features that
vendors have already implemented, possibly in different ways.

* Can be hard to convince vendors to change already implemented
features. E.g. OODB systems

it \

HL—A

©Si|berschm

Database System Concepts 21.50

Y SQL Standards History (Cont.)

m SQL:1999

* Adds variety of new features --- extended data types, object
orientation, procedures, triggers, etc.

* Broken into several parts
> SQL/Framework (Part 1): overview

> SQL/Foundation (Part 2): types, schemas, tables, query/update
statements, security, etc

> SQL/CLI (Call Level Interface) (Part 3): API interface
> SQL/PSM (Persistent Stored Modules) (Part 4): procedural

extensions
> SQL/Bindings (Part 5): embedded SQL for different embedding
languages
. \
==y
Database System Concepts 21.52 ©Silberschatz, Ko an

Y SQL Standards History (Cont.)

® More parts undergoing standardization process
* Part 7: SQL/Temporal: temporal data
* Part 9: SQL/MED (Management of External Data)
> Interfacing of database to external data sources

Allows other databases, even files, can be viewed as part of
the database

* Part 10 SQL/OLB (Object Language Bindings): embedding SQL in
Java

* Missing part numbers 6 and 8 cover features that are not near
standardization yet

\

§ A

©Si|berschm

Database System Concepts 21.53

Y _DObject Oriented Databases Standards

m Object Database Management Group (ODMG) standard for
object-oriented databases

* version 1 in 1993 and version 2 in 1997, version 3 in 2000

* provides language independent Object Definition Language (ODL)
as well as several language specific bindings

B Object Management Group (OMG) standard for distributed
software based on objects

* Object Request Broker (ORB) provides transparent message
dispatch to distributed objects

* Interface Definition Language (IDL) for defining language-
independent data types

* Common Object Request Broker Architecture (CORBA) defines
specifications of ORB and IDL

f=A

Database System Concepts 21.55 il m

~

_ Database Connectivity Standards

® Open DataBase Connectivity (ODBC) standard for database
interconnectivity

* based on Call Level Interface (CLI) developed by X/Open consortium

* defines application programming interface, and SQL features that
must be supported at different levels of compliance

m JDBC standard used for Java

m X/Open XA standards define transaction management standards
for supporting distributed 2-phase commit

m OLE-DB: API like ODBC, but intended to support non-database
sources of data such as flat files

* OLE-DB program can negotiate with data source to find what features
are supported

* Interface language may be a subset of SQL

= ADO (Active Data Objects): easy-to-use interface to OLE-DB
functionality 1 \

©Si|berschm

Database System Concepts 21.54

A XML-Based Standards

B Several XML based Standards for E-commerce
* E.g. RosettaNet (supply chain), BizTalk

* Define catalogs, service descriptions, invoices, purchase orders,
etc.

* XML wrappers are used to export information from relational
databases to XML

m Simple Object Access Protocol (SOAP): XML based remote
procedure call standard

* Uses XML to encode data, HTTP as transport protocol
* Standards based on SOAP for specific applications
> E.g. OLAP and Data Mining standards from Microsoft

. \

H-EA

@Silberschm

Database System Concepts 21.56

E-Catalogs

® Product catalogs must provide searching and browsing facilities
* Organize products into intuitive hierarchy
* Keyword search
* Help customer with comparison of products
m Customization of catalog
* Negotiated pricing for specific organizations

LAY
ATV ARIR

;, E-Commerce

B E-commerce is the process of carrying out various activities
related to commerce through electronic means

m Activities include:
* Presale activities: catalogs, advertisements, etc
* Sale process: negotiations on price/quality of service

* Marketplace: e.g. stock exchange, auctions, reverse auctions

LY
itkemen =

Marketplaces

S~
m Marketplaces help in negotiating the price of a product when there
are multiple sellers and buyers
m Several types of marketplaces
* Reverse auction

* Auction
* Exchange

PN
AT RSN

~

A Types of Marketplace

B Reverse auction system: single buyer, multiple sellers.

* Buyer states requirements, sellers bid for supplying items. Lowest
bidder wins. (also known as tender system)

* Open bidding vs. closed bidding
m Auction: Multiple buyers, single seller

* Simplest case: only one instance of each item is being sold
* Highest bidder for an item wins

* More complicated with multiple copies, and buyers bid for specific
number of copies

B Exchange: multiple buyers, multiple sellers
* E.g., stock exchange
* Buyers specify maximum price, sellers specify minimum price
* exchange matches buy and sell bids, deciding on price for the trade
> e.g. average of buy/sell bids !

§ A

21.61 ©Si|berschm

Database System Concepts

~

A Secure Payment Systems

m All information must be encrypted to prevent eavesdropping
* Public/private key encryption widely used
m Must prevent person-in-the-middle attacks

* E.g. someone impersonates seller or bank/credit card company and
fools buyer into revealing information

> Encrypting messages alone doesn’t solve this problem
> More on this in next slide

B Three-way communication between seller, buyer and credit-card
company to make payment

* Credit card company credits amount to seller

* Credit card company consolidates all payments from a buyer and
collects them together

> E.g. via buyer’s bank through physical/electronic
check payment

f=A

O\

Database System Concepts

~

A Order Settlement

m Order settlement: payment for goods and delivery

B |nsecure means for electronic payment: send credit card number
* Buyers may present some one else’s credit card numbers
* Seller has to be trusted to bill only for agreed-on item

* Seller has to be trusted not to pass on the credit card number to
unauthorized people

® Need secure payment systems
* Avoid above-mentioned problems
* Provide greater degree of privacy
> E.g. not reveal buyers identity to seller

* Ensure that anyone monitoring the electronic transmissions cannot
access critical information

it \

HL—A

21.62 ©Si|bersch®

Database System Concepts

~

_ Secure Payment Systems (Cont.)

m Digital certificates are used to prevent impersonation/man-in-
the middle attack

* Certification agency creates digital certificate by encrypting, e.g.,
seller’s public key using its own private key

> Verifies sellers identity by external means first!
* Seller sends certificate to buyer

* Customer uses public key of certification agency to decrypt
certificate and find sellers public key

> Man-in-the-middle cannot send fake public key
* Sellers public key used for setting up secure communication
m Several secure payment protocols

* E.g. Secure Electronic Transaction (SET)

. \

H-EA

21.64 ©Si|berschm

Database System Concepts

Digital Cash

-

m Credit-card payment does not provide anonymity
* The SET protocol hides buyers identity from seller

* But even with SET, buyer can be traced with help of credit card
company
m Digital cash systems provide anonymity similar to that provided by
physical cash

* E.g. DigiCash

LN
SRR

Legacy Systems

S

B Legacy systems are older-generation systems that are incompatible
with current generation standards and systems but still in
production use

* E.g. applications written in Cobol that run on mainframes
> Today’s hot new system is tomorrows legacy system!

m Porting legacy system applications to a more modern environment
is problematic

LY
~ithene o

Legacy Systems (Cont.)

m Rewriting legacy application requires a first phase of
understanding what it does

* Often legacy code has no documentation or outdated
documentation

* reverse engineering: process of going over legacy code to
> Come up with schema designs in ER or OO model

> Find out what procedures and processes are implemented, to

PN
~itdene =

Q Legacy Systems (Cont.)

m Switching over from old to new system is a major problem
* Production systems are in every day, generating new data

* Stopping the system may bring all of a company’s activities to a
halt, causing enormous losses

m Big-bang approach:

L)Y
< (LA i i

Q Legacy Systems (Cont.)

m Chicken-little approach:
* Replace legacy system one piece at a time
* Use wrappers to interoperate between legacy and new code
> E.g. replace front end first, with wrappers on legacy backend
— Old front end can continue working in this phase in case of

270
4 (LAENE, i e

