
Copyright: Silberschatz, Korth and
Sudarshan

1

Chapter 23: Advanced Data Types and Chapter 23: Advanced Data Types and
New ApplicationsNew Applications

2

©Silberschatz, Korth and Sudarshan23.2Database System Concepts

OverviewOverview

! Temporal Data

! Spatial and Geographic Databases

! Multimedia Databases

! Mobility and Personal Databases

3

©Silberschatz, Korth and Sudarshan23.3Database System Concepts

Time In DatabasesTime In Databases

! While most databases tend to model reality at a point in time (at
the ``current'' time), temporal databases model the states of the
real world across time.

! Facts in temporal relations have associated times when they are
valid, which can be represented as a union of intervals.

! The transaction time for a fact is the time interval during which
the fact is current within the database system.

! In a temporal relation, each tuple has an associated time when
it is true; the time may be either valid time or transaction time.

! A bi-temporal relation stores both valid and transaction time.

4

©Silberschatz, Korth and Sudarshan23.4Database System Concepts

Time In Databases (Cont.)Time In Databases (Cont.)

! Example of a temporal relation:

! Temporal query languages have been proposed to simplify modeling of time

as well as time related queries.

5

©Silberschatz, Korth and Sudarshan23.5Database System Concepts

Time Specification in SQLTime Specification in SQL--9292

! date: four digits for the year (1--9999), two digits for the month
(1--12), and two digits for the date (1--31).

! time: two digits for the hour, two digits for the minute, and two
digits for the second, plus optional fractional digits.

! timestamp: the fields of date and time, with six fractional digits
for the seconds field.

! Times are specified in the Universal Coordinated Time,
abbreviated UTC (from the French); supports time with time
zone.

! interval: refers to a period of time (e.g., 2 days and 5 hours),
without specifying a particular time when this period starts; could
more accurately be termed a span.

6

©Silberschatz, Korth and Sudarshan23.6Database System Concepts

Temporal Query LanguagesTemporal Query Languages

! Predicates precedes, overlaps, and contains on time intervals.

! Intersect can be applied on two intervals, to give a single
(possibly empty) interval; the union of two intervals may or may
not be a single interval.

! A snapshot of a temporal relation at time t consists of the tuples
that are valid at time t, with the time-interval attributes projected
out.

! Temporal selection: involves time attributes

! Temporal projection: the tuples in the projection inherit their
time-intervals from the tuples in the original relation.

! Temporal join: the time-interval of a tuple in the result is the
intersection of the time-intervals of the tuples from which it is
derived. It intersection is empty, tuple is discarded from join.

7

©Silberschatz, Korth and Sudarshan23.7Database System Concepts

Temporal Query Languages (Cont.)Temporal Query Languages (Cont.)

! Functional dependencies must be used with care: adding a time
field may invalidate functional dependency

! A temporal functional dependency x →→→→ Y holds on a relation
schema R if, for all legal instances r of R, all snapshots of r
satisfy the functional dependency X →Y.

! SQL:1999 Part 7 (SQL/Temporal) is a proposed extension to
SQL:1999 to improve support of temporal data.

τ

Copyright: Silberschatz, Korth and
Sudarshan

8

Spatial and Geographic DatabasesSpatial and Geographic Databases

9

©Silberschatz, Korth and Sudarshan23.9Database System Concepts

Spatial and Geographic DatabasesSpatial and Geographic Databases

! Spatial databases store information related to spatial
locations, and support efficient storage, indexing and querying
of spatial data.

! Special purpose index structures are important for accessing
spatial data, and for processing spatial join queries.

! Computer Aided Design (CAD) databases store design
information about how objects are constructed E.g.: designs of
buildings, aircraft, layouts of integrated-circuits

! Geographic databases store geographic information (e.g.,
maps): often called geographic information systems or GIS.

10

©Silberschatz, Korth and Sudarshan23.10Database System Concepts

Represented of Geometric InformationRepresented of Geometric Information

! Various geometric constructs can be represented in a database in a
normalized fashion.

! Represent a line segment by the coordinates of its endpoints.

! Approximate a curve by partitioning it into a sequence of segments

! Create a list of vertices in order, or

! Represent each segment as a separate tuple that also carries with it the
identifier of the curve (2D features such as roads).

! Closed polygons

! List of vertices in order, starting vertex is the same as the ending vertex, or

! Represent boundary edges as separate tuples, with each containing
identifier of the polygon, or

! Use triangulation — divide polygon into triangles

" Note the polygon identifier with each of its triangles.

11

©Silberschatz, Korth and Sudarshan23.11Database System Concepts

Representation of Geometric ConstructsRepresentation of Geometric Constructs

12

©Silberschatz, Korth and Sudarshan23.12Database System Concepts

Representation of Geometric Information (Cont.)Representation of Geometric Information (Cont.)

! Representation of points and line segment in 3-D similar to 2-D,
except that points have an extra z component

! Represent arbitrary polyhedra by dividing them into tetrahedrons,
like triangulating polygons.

! Alternative: List their faces, each of which is a polygon, along with
an indication of which side of the face is inside the polyhedron.

13

©Silberschatz, Korth and Sudarshan23.13Database System Concepts

Design DatabasesDesign Databases

! Represent design components as objects (generally
geometric objects); the connections between the objects
indicate how the design is structured.

! Simple two-dimensional objects: points, lines, triangles,
rectangles, polygons.

! Complex two-dimensional objects: formed from simple
objects via union, intersection, and difference operations.

! Complex three-dimensional objects: formed from simpler
objects such as spheres, cylinders, and cuboids, by union,
intersection, and difference operations.

! Wireframe models represent three-dimensional surfaces
as a set of simpler objects.

14

©Silberschatz, Korth and Sudarshan23.14Database System Concepts

Representation of Geometric ConstructsRepresentation of Geometric Constructs

! Design databases also store non-spatial information about
objects (e.g., construction material, color, etc.)

! Spatial integrity constraints are important.
! E.g., pipes should not intersect, wires should not be too close to

each other, etc.

(a) Difference of cylinders (b) Union of cylinders

15

©Silberschatz, Korth and Sudarshan23.15Database System Concepts

Geographic DataGeographic Data

! Raster data consist of bit maps or pixel maps, in two or more
dimensions.

! Example 2-D raster image: satellite image of cloud cover, where
each pixel stores the cloud visibility in a particular area.

! Additional dimensions might include the temperature at different
altitudes at different regions, or measurements taken at different
points in time.

! Design databases generally do not store raster data.

16

©Silberschatz, Korth and Sudarshan23.16Database System Concepts

Geographic Data (Cont.)Geographic Data (Cont.)

! Vector data are constructed from basic geometric objects:
points, line segments, triangles, and other polygons in two
dimensions, and cylinders, speheres, cuboids, and other
polyhedrons in three dimensions.

! Vector format often used to represent map data.

! Roads can be considered as two-dimensional and represented
by lines and curves.

! Some features, such as rivers, may be represented either as
complex curves or as complex polygons, depending on whether
their width is relevant.

! Features such as regions and lakes can be depicted as
polygons.

17

©Silberschatz, Korth and Sudarshan23.17Database System Concepts

Applications of Geographic DataApplications of Geographic Data

! Examples of geographic data

! map data for vehicle navigation

! distribution network information for power, telephones, water
supply, and sewage

! Vehicle navigation systems store information about roads
and services for the use of drivers:

! Spatial data: e.g, road/restaurant/gas-station coordinates

! Non-spatial data: e.g., one-way streets, speed limits, traffic
congestion

! Global Positioning System (GPS) unit - utilizes
information broadcast from GPS satellites to find the
current location of user with an accuracy of tens of meters.

! increasingly used in vehicle navigation systems as well as
utility maintenance applications.

18

©Silberschatz, Korth and Sudarshan23.18Database System Concepts

Spatial QueriesSpatial Queries

! Nearness queries request objects that lie near a specified
location.

! Nearest neighbor queries, given a point or an object, find
the nearest object that satisfies given conditions.

! Region queries deal with spatial regions. e.g., ask for
objects that lie partially or fully inside a specified region.

! Queries that compute intersections or unions of regions.

! Spatial join of two spatial relations with the location playing
the role of join attribute.

19

©Silberschatz, Korth and Sudarshan23.19Database System Concepts

Spatial Queries (Cont.)Spatial Queries (Cont.)

! Spatial data is typically queried using a graphical query
language; results are also displayed in a graphical manner.

! Graphical interface constitutes the front-end

! Extensions of SQL with abstract data types, such as lines,
polygons and bit maps, have been proposed to interface
with back-end.

! allows relational databases to store and retrieve spatial
information

! Queries can use spatial conditions (e.g. contains or overlaps).

! queries can mix spatial and nonspatial conditions

20

©Silberschatz, Korth and Sudarshan23.20Database System Concepts

Indexing of Spatial DataIndexing of Spatial Data

! k-d tree - early structure used for indexing in multiple dimensions.

! Each level of a k-d tree partitions the space into two.

! choose one dimension for partitioning at the root level of the tree.

! choose another dimensions for partitioning in nodes at the next level
and so on, cycling through the dimensions.

! In each node, approximately half of the points stored in the sub-
tree fall on one side and half on the other.

! Partitioning stops when a node has less than a given maximum
number of points.

! The k-d-B tree extends the k-d tree to allow multiple child nodes
for each internal node; well-suited for secondary storage.

21

©Silberschatz, Korth and Sudarshan23.21Database System Concepts

Division of Space by a kDivision of Space by a k--d Treed Tree

! Each line in the figure (other than the outside box)
corresponds to a node in the k-d tree
! the maximum number of points in a leaf node has been set to 1.

! The numbering of the lines in the figure indicates the level of
the tree at which the corresponding node appears.

22

©Silberschatz, Korth and Sudarshan23.22Database System Concepts

Division of Space by QuadtreesDivision of Space by Quadtrees

Quadtrees

! Each node of a quadtree is associated with a rectangular region of space;
the top node is associated with the entire target space.

! Each non-leaf nodes divides its region into four equal sized quadrants
! correspondingly each such node has four child nodes corresponding to the four

quadrants and so on

! Leaf nodes have between zero and some fixed maximum number of points
(set to 1 in example).

23

©Silberschatz, Korth and Sudarshan23.23Database System Concepts

Quadtrees (Cont.)Quadtrees (Cont.)

! PR quadtree: stores points; space is divided based on regions,
rather than on the actual set of points stored.

! Region quadtrees store array (raster) information.
! A node is a leaf node is all the array values in the region that it

covers are the same. Otherwise, it is subdivided further into four
children of equal area, and is therefore an internal node.

! Each node corresponds to a sub-array of values.

! The sub-arrays corresponding to leaves either contain just a single
array element, or have multiple array elements, all of which have
the same value.

! Extensions of k-d trees and PR quadtrees have been proposed
to index line segments and polygons
! Require splitting segments/polygons into pieces at partitioning

boundaries

" Same segment/polygon may be represented at several leaf
nodes

24

©Silberschatz, Korth and Sudarshan23.24Database System Concepts

RR--TreesTrees

! R-trees are a N-dimensional extension of B+-trees, useful for
indexing sets of rectangles and other polygons.

! Supported in many modern database systems, along with
variants like R+ -trees and R*-trees.

! Basic idea: generalize the notion of a one-dimensional
interval associated with each B+ -tree node to an
N-dimensional interval, that is, an N-dimensional rectangle.

! Will consider only the two-dimensional case (N = 2)

! generalization for N > 2 is straightforward, although R-trees
work well only for relatively small N

25

©Silberschatz, Korth and Sudarshan23.25Database System Concepts

R Trees (Cont.)R Trees (Cont.)

! A rectangular bounding box is associated with each tree
node.

! Bounding box of a leaf node is a minimum sized rectangle that
contains all the rectangles/polygons associated with the leaf node.

! The bounding box associated with a non-leaf node contains the
bounding box associated with all its children.

! Bounding box of a node serves as its key in its parent node (if any)

! Bounding boxes of children of a node are allowed to overlap

! A polygon is stored only in one node, and the bounding box of
the node must contain the polygon

! The storage efficiency or R-trees is better than that of k-d trees or
quadtrees since a polygon is stored only once

26

©Silberschatz, Korth and Sudarshan23.26Database System Concepts

Example RExample R--TreeTree

! A set of rectangles (solid line) and the bounding boxes (dashed line) of the
nodes of an R-tree for the rectangles. The R-tree is shown on the right.

27

©Silberschatz, Korth and Sudarshan23.27Database System Concepts

Search in RSearch in R--TreesTrees

! To find data items (rectangles/polygons) intersecting
(overlaps) a given query point/region, do the following,
starting from the root node:

! If the node is a leaf node, output the data items whose keys
intersect the given query point/region.

! Else, for each child of the current node whose bounding box
overlaps the query point/region, recursively search the child

! Can be very inefficient in worst case since multiple paths may
need to be searched

! but works acceptably in practice.

! Simple extensions of search procedure to handle predicates
contained-in and contains

28

©Silberschatz, Korth and Sudarshan23.28Database System Concepts

Insertion in RInsertion in R--TreesTrees

! To insert a data item:
! Find a leaf to store it, and add it to the leaf

" To find leaf, follow a child (if any) whose bounding box contains
bounding box of data item, else child whose overlap with data
item bounding box is maximum

! Handle overflows by splits (as in B+ -trees)

" Split procedure is different though (see below)

! Adjust bounding boxes starting from the leaf upwards

! Split procedure:
! Goal: divide entries of an overfull node into two sets such that the

bounding boxes have minimum total area

" This is a heuristic. Alternatives like minimum overlap are
possible

! Finding the “best” split is expensive, use heuristics instead

" See next slide

29

©Silberschatz, Korth and Sudarshan23.29Database System Concepts

Splitting an RSplitting an R--Tree NodeTree Node

! Quadratic split divides the entries in a node into two new nodes
as follows
1. Find pair of entries with “maximum separation”

" that is, the pair such that the bounding box of the two would
has the maximum wasted space (area of bounding box – sum
of areas of two entries)

2. Place these entries in two new nodes

3. Repeatedly find the entry with “maximum preference” for one of the
two new nodes, and assign the entry to that node

Preference of an entry to a node is the increase in area of
bounding box if the entry is added to the other node

4. Stop when half the entries have been added to one node

Then assign remaining entries to the other node

! Cheaper linear split heuristic works in time linear in number of
entries,
! Cheaper but generates slightly worse splits.

30

©Silberschatz, Korth and Sudarshan23.30Database System Concepts

Deleting in RDeleting in R--TreesTrees

! Deletion of an entry in an R-tree done much like a B+-tree
deletion.

! In case of underfull node, borrow entries from a sibling if possible,
else merging sibling nodes

! Alternative approach removes all entries from the underfull node,
deletes the node, then reinserts all entries

Copyright: Silberschatz, Korth and
Sudarshan

31

Multimedia DatabasesMultimedia Databases

32

©Silberschatz, Korth and Sudarshan23.32Database System Concepts

Multimedia DatabasesMultimedia Databases

! To provide such database functions as indexing and
consistency, it is desirable to store multimedia data in a
database

! rather than storing them outside the database, in a file
system

! The database must handle large object representation.

! Similarity-based retrieval must be provided by special
index structures.

! Must provide guaranteed steady retrieval rates for
continuous-media data.

33

©Silberschatz, Korth and Sudarshan23.33Database System Concepts

Multimedia Data FormatsMultimedia Data Formats

! Store and transmit multimedia data in compressed form

! JPEG and GIF the most widely used formats for image data.

! MPEG standard for video data use commonalties among a
sequence of frames to achieve a greater degree of
compression.

! MPEG-1 quality comparable to VHS video tape.

! stores a minute of 30-frame-per-second video and audio in
approximately 12.5 MB

! MPEG-2 designed for digital broadcast systems and digital
video disks; negligible loss of video quality.

! Compresses 1 minute of audio-video to approximately 17 MB.

! Several alternatives of audio encoding

! MPEG-1 Layer 3 (MP3), RealAudio, WindowsMedia format,
etc.

34

©Silberschatz, Korth and Sudarshan23.34Database System Concepts

ContinuousContinuous--Media DataMedia Data

! Most important types are video and audio data.

! Characterized by high data volumes and real-time information-
delivery requirements.

! Data must be delivered sufficiently fast that there are no gaps in the
audio or video.

! Data must be delivered at a rate that does not cause overflow of
system buffers.

! Synchronization among distinct data streams must be maintained

" video of a person speaking must show lips moving
synchronously with the audio

35

©Silberschatz, Korth and Sudarshan23.35Database System Concepts

Video ServersVideo Servers

! Video-on-demand systems deliver video from central video
servers, across a network, to terminals

! Must guarantee end-to-end delivery rates

! Current video-on-demand servers are based on file systems;
existing database systems do not meet real-time response
requirements.

! Multimedia data are stored on several disks (RAID
configuration), or on tertiary storage for less frequently accessed
data.

! Head-end terminals - used to view multimedia data

! PCs or TVs attached to a small, inexpensive computer called a set-
top box.

36

©Silberschatz, Korth and Sudarshan23.36Database System Concepts

SimilaritySimilarity--Based RetrievalBased Retrieval

Examples of similarity based retrieval

! Pictorial data: Two pictures or images that are slightly different as
represented in the database may be considered the same by a
user.

! E.g., identify similar designs for registering a new trademark.

! Audio data: Speech-based user interfaces allow the user to give a
command or identify a data item by speaking.

! E.g., test user input against stored commands.

! Handwritten data: Identify a handwritten data item or command
stored in the database

Copyright: Silberschatz, Korth and
Sudarshan

37

MobilityMobility

38

©Silberschatz, Korth and Sudarshan23.38Database System Concepts

Mobile Computing EnvironmentsMobile Computing Environments

! A mobile computing environment consists of mobile
computers, referred to as mobile hosts, and a wired
network of computers.

! Mobile host may be able to communicate with wired
network through a wireless digital communication network

! Wireless local-area networks (within a building)

" E.g. Avaya’s Orinico Wireless LAN

! Wide areas networks

" Cellular digital packet networks

– 3 G and 2.5 G cellular networks

39

©Silberschatz, Korth and Sudarshan23.39Database System Concepts

Mobile Computing Environments (Cont.)Mobile Computing Environments (Cont.)

! A model for mobile communication

! Mobile hosts communicate to the wired network via computers
referred to as mobile support (or base) stations.

! Each mobile support station manages those mobile hosts within its
cell.

! When mobile hosts move between cells, there is a handoff of
control from one mobile support station to another.

! Direct communication, without going through a mobile support
station is also possible between nearby mobile hosts

! Supported, for e.g., by the Bluetooth standard (up to 10 meters, atup
to 721 kbps)

40

©Silberschatz, Korth and Sudarshan23.40Database System Concepts

Database Issues in Mobile ComputingDatabase Issues in Mobile Computing

! New issues for query optimization.
! Connection time charges and number of bytes transmitted

! Energy (battery power) is a scarce resource and its usage must be
minimized

! Mobile user’s locations may be a parameter of the query
! GIS queries

! Techniques to track locations of large numbers of mobile hosts

! Broadcast data can enable any number of clients to receive the
same data at no extra cost
! leads to interesting querying and data caching issues.

! Users may need to be able to perform database updates even while
the mobile computer is disconnected.
! e.g., mobile salesman records sale of products on (local copy of)

database.

! Can result in conflicts detected on reconnection, which may need to be
resolved manually.

41

©Silberschatz, Korth and Sudarshan23.41Database System Concepts

Routing and Query ProcessingRouting and Query Processing

! Must consider these competing costs:

! User time.

! Communication cost

" Connection time - used to assign monetary charges in
some cellular systems.

" Number of bytes, or packets, transferred - used to
compute charges in digital cellular systems

" Time-of-day based charges - vary based on peak or off-
peak periods

! Energy - optimize use of battery power by minimizing
reception and transmission of data.

" Receiving radio signals requires much less energy than
transmitting radio signals.

42

©Silberschatz, Korth and Sudarshan23.42Database System Concepts

Broadcast DataBroadcast Data

! Mobile support stations can broadcast frequently-requested data

! Allows mobile hosts to wait for needed data, rather than having to
consume energy transmitting a request

! Supports mobile hosts without transmission capability

! A mobile host may optimize energy costs by determining if a query
can be answered using only cached data

! If not then must either;

" Wait for the data to be broadcast

" Transmit a request for data and must know when the relevant data
will be broadcast.

! Broadcast data may be transmitted according to a fixed schedule or
a changeable schedule.

! For changeable schedule: the broadcast schedule must itself be
broadcast at a well-known radio frequency and at well-known time
intervals

! Data reception may be interrupted by noise

! Use techniques similar to RAID to transmit redundant data (parity)

43

©Silberschatz, Korth and Sudarshan23.43Database System Concepts

Disconnectivity and ConsistencyDisconnectivity and Consistency

! A mobile host may remain in operation during periods of
disconnection.

! Problems created if the user of the mobile host issues
queries and updates on data that resides or is cached
locally:

! Recoverability: Updates entered on a disconnected machine
may be lost if the mobile host fails. Since the mobile host
represents a single point of failure, stable storage cannot be
simulated well.

! Consistency : Cached data may become out of date, but the
mobile host cannot discover this until it is reconnected.

44

©Silberschatz, Korth and Sudarshan23.44Database System Concepts

Mobile UpdatesMobile Updates

! Partitioning via disconnection is the normal mode of operation in
mobile computing.

! For data updated by only one mobile host, simple to propagate
update when mobile host reconnects

! in other cases data may become invalid and updates may conflict.

! When data are updated by other computers, invalidation reports
inform a reconnected mobile host of out-of-date cache entries

! however, mobile host may miss a report.

! Version-numbering-based schemes guarantee only that if two hosts
independently update the same version of a document, the clash will
be detected eventually, when the hosts exchange information either
directly or through a common host.

! More on this shortly

! Automatic reconciliation of inconsistent copies of data is difficult

! Manual intervention may be needed

45

©Silberschatz, Korth and Sudarshan23.45Database System Concepts

Detecting Inconsistent UpdatesDetecting Inconsistent Updates

! Version vector scheme used to detect inconsistent updates to
documents at different hosts (sites).

! Copies of document d at hosts i and j are inconsistent if

1. the copy of document d at i contains updates performed by host k
that have not been propagated to host j (k may be the same as i),
and

2. the copy of d at j contains updates performed by host l that have not
been propagated to host i (l may be the same as j)

! Basic idea: each host i stores, with its copy of each document d, a
version vector - a set of version numbers, with an element Vd,i [k]
for every other host k

! When a host i updates a document d, it increments the version
number Vd,i [i] by 1

46

©Silberschatz, Korth and Sudarshan23.46Database System Concepts

Detecting Inconsistent Updates (Cont.)Detecting Inconsistent Updates (Cont.)

! When two hosts i and j connect to each other they check if the
copies of all documents d that they share are consistent:

1. If the version vectors are the same on both hosts (that is, for each k,
Vd,i [k] = Vd,j [k]) then the copies of d are identical.

2. If, for each k, Vd,i [k] ≤ Vd,j [k], and the version vectors are not
identical, then the copy of document d at host i is older than the
one at host j

" That is, the copy of document d at host j was obtained by one
or more modifications of the copy of d at host i.

" Host i replaces its copy of d, as well as its copy of the version
vector for d, with the copies from host j.

3. If there is a pair of hosts k and m such that Vd,i [k]< Vd,j [k], and
Vd,i [m] > Vd,j [m], then the copies are inconsistent

! That is, two or more updates have been performed
on d independently.

47

©Silberschatz, Korth and Sudarshan23.47Database System Concepts

Handling Inconsistent UpdatesHandling Inconsistent Updates

! Dealing with inconsistent updates is hard in general. Manual
intervention often required to merge the updates.

! Version vector schemes

! were developed to deal with failures in a distributed file system,
where inconsistencies are rare.

! are used to maintain a unified file system between a fixed host and
a mobile computer, where updates at the two hosts have to be
merged periodically.

" Also used for similar purposes in groupware systems.

! are used in database systems where mobile users may need to
perform transactions.

" In this case, a “document” may be a single record.

! Inconsistencies must either be very rare, or fall in special cases
that are easy to deal with in most cases

Copyright: Silberschatz, Korth and
Sudarshan

48

End of ChapterEnd of Chapter

