‘apter 24: Advanced Transaction Processing

B Transaction-Processing Monitors
B Transactional Workflows

‘ Transaction Processing Monitors

B TP monitors initially developed as multithreaded servers to
support large numbers of terminals from a single process.

®m Provide infrastructure for building and administering complex
transaction processing systems with a large number of clients
and multiple servers.

‘ TP Monitor Architectures

ek SUTVET Files

clients
ib} Single-prooss model

[} Process-per-client model

remots pouher HETVETE file= rEaEe FoabeTs SETVETE files
clienks clenis

(e Blany-server, single-rouber model {d} Many-=server, many-router sl

‘ TP Monitor Architectures (Cont.)

B Process per client model - instead of individual login session
per terminal, server process communicates with the terminal,
handles authentication, and executes actions.

* Memory requirements are high

* Multitasking- high CPU overhead for context switching between
processes

‘ TP Monitor Architectures (Cont.)

® Many-server single-router model - multiple application
Server processes access a common database; clients
communicate with the application through a single
communication process that routes requests.

* Independent server processes for multiple applications

* Multithread server process

‘ Detailed Structure of a TP Monitor

NPl queie
L]
autharization

.

= lock miamnager

|application ; i

RCIVEDS

log manager

database and

FEROUIRCE M gers
=i |

‘ Detailed Structure of a TP Monitor

B Queue manager handles incoming messages

B Some queue managers provide persistent or durable
message gueueing contents of queue are safe even if
systems fails.

m Durable queueing of outgoing messages is important
* application server writes message to durable queue as part of a

‘plication Coordination Using TP Monitors

®m A TP monitor treats each subsystem as a resource manager
that provides transactional access to some set of resources.

B The interface between the TP monitor and the resource
manager is defined by a set of transaction primitives

B The resource manager interface is defined by the X/Open
Distributed Transaction Processing standard.

‘ Transactional Workflows

m Workflows are activities that involve the coordinated execution of
multiple tasks performed by different processing entities.

®m With the growth of networks, and the existence of multiple
autonomous database systems, workflows provide a convenient
way of carrying out tasks that involve multiple systems.

B Example of a workflow delivery of an email message, which goes

‘ Examples of Workflows

application task entity
electranic-mail roufing electronic-mail message | mailers
humans,
Ioan processing form processing application software
humans, application
purchase-veder processang | form processing software, DEMSs

‘ Transactional Workflows

B Must address following issues to computerize a workflow.

* Specification of workflows - detailing the tasks that must be carried out
and defining the execution requirements.

* Execution of workflows - execute transactions specified in the workflow
while also providing traditional database safeguards related to the
correctness of computations, data integrity, and durability.

‘ Workflow Specification

B Static specification of task coordination:

* Tasks and dependencies among them are defined before the execution
of the workflow starts.

* Can establish preconditions for execution of each task: tasks are
executed only when their preconditions are satisfied.

‘ Workflow Specification (Cont.)

m Dynamic task coordination
E.g. Electronic mail routing system in which the text to be
schedule for a given mail message depends on the
destination address and on which intermediate routers are
functioning.

‘ Failure-Automicity Requirements

m Usual ACID transactional requirements are too
strong/unimplementable for workflow applications.

m However, workflows must satisfy some limited transactional
properties that guarantee a process is not left in an
inconsistent state.

‘ Execution of Workflows

Workflow management systems include:

B Scheduler - program that process workflows by submitting
various tasks for execution, monitoring various events, and
evaluation conditions related to intertask dependencies

'orkflow Management System Architectures

m Centralized - a single scheduler schedules the tasks for all
concurrently executing workflows.

* used in workflow systems where the data is stored in a central
database.

~

Database System Concepts 24.19 ©Silberschatz, Ko

Workflow Scheduler

~
m |deally scheduler should execute a workflow only after
ensuring that it will terminate in an acceptable state.

B Consider a workflow consisting of two tasks S, and S,. Let the
failure-atomicity requirement be that either both or neither of
the subtransactions should be committed.

* Suppose systems executing S, and S, do not provide prepared-
to-commit states and S, or S, do not have compensating
transactions.

* |t is then possible to reach a state where one subtransaction is
committed and the other aborted. Both cannot then be brought to
the same state.

* Workflow specification is unsafe, and should be rejected.

® Determination of safety by the scheduler is not possible in
general, and is usually left to the designer of the workflow

Database System Concepts 24.20 ©Silberschatz,

Recovery of a Workflow

® Ensure that is a failure occurs in any of the workflow-
processing components, the workflow eventually reaches
an acceptable termination state.

B Failure-recovery routines need to restore the state
information of the scheduler at the time of failure, including
the information about the execution states of each task.
Log status information on stable storage.

® Handoff of tasks between agents should occur exactly
once in spite of failure.

® Problem: Repeating handoff on recovery may lead to
duplicate execution of task; not repeating handoff may lead
to task not being executed.

* Solution: Persistent messaging systems

10

‘ Recovery of a Workflow (Cont.)

B Persistent messages: messages are stored in permanent
message queue and therefore not lost in case of failure.

* Described in detail in Chapter 19 (Distributed Databases)

m Before an agent commits, it writes to the persistent message
gueue whatever messages need to be sent out.

® The persistent message system must make sure the messages

‘igh-Performance Transaction Systems

® High-performance hardware and parallelism help improve
the rate of transaction processing, but are insufficient to
obtain high performance:

* Disk I/O is a bottleneck — 1/O time (10 milliseconds) has no
decreased at a rate comparable to the increase in processor

‘ Main-Memory Database

m Commercial 64-bit systems can support main memories of
tens of gigabytes.

B Memory resident data allows faster processing of
transactions.

m Disk-related limitations:

12

+~ Main-Memory Database Optimizations
\/

B To reduce space overheads, main-memory databases can
use structures with pointers crossing multiple pages. In disk
databases, the I/O cost to traverse multiple pages would be
excessively high.

B No need to pin buffer pages in memory before data are
accessed, since buffer pages will never be replaced.

B Design query-processing techniques to minimize space
overhead - avoid exceeding main memory limits during
query evaluation.

B Improve implementation of operations such as locking and
latching, so they do not become bottlenecks.

B Optimize recovery algorithms, since pages rarely need to
be written out to make space for other pages.

Database System Concepts 24.25 ©Silberschatz,

~ Group Commit
\/

Idea: Instead of performing output of log records to stable
storage as soon as a transaction is ready to commit, wait until
* log buffer block is full, or
* a transaction has been waiting sufficiently long after being ready to
commit
B Results in fewer output operations per committed transaction,
and correspondingly a higher throughput.
® However, commits are delayed until a sufficiently large group of
transactions are ready to commit, or a transaction has been
waiting long enough-leads to slightly increased response time.

m Above delay acceptable in high-performance transaction
systems since log buffer blocks will fill up quickly.

Database System Concepts 24.26 ©Silberschatz,

13

‘ Real-Time Transaction Systems

B |n systems with real-time constraints, correctness of execution
involves both database consistency and the satisfaction of
deadlines.

* Hard deadline — Serious problems may occur if task is not completed
within deadline

* Firm deadline - The task has zero value if it completed after the
deadline.

‘ Long Duration Transactions

Traditional concurrency control techniques do not work
well when user interaction is required:
B Long duration: Design edit sessions are very long

B Exposure of uncommitted data: E.g., partial update to
a design

14

‘ Long-Duration Transactions

B Represent as a nested transaction
* atomic database operations (read/write) at a lowest level.

m |f transaction fails, only active short-duration transactions
abort.

B Active long-duration transactions resume once any short

‘ Concurrency Control

m Correctness without serializability:
* Correctness depends on the specific consistency constraints
for the databases.

* Correctness depends on the properties of operations
performed by each transaction.

15

‘ Concurrency Control (Cont.)
A non-conflict-serializable L Tg:-:
schedule that preserves | read(A)
the sum of A + B Ax=4-50
write(A)
read(E)

read(B)
B:=E+ 50
write(B)

‘ Nested and Multilevel Transactions

m A nested or multilevel transaction T is represented by a set
T ={t,, t,, ..., t,} of subtransactions and a partial order P on T.

B A subtransaction t; in T may abort without forcing T to abort.
® [nstead, T may either restart t;, or simply choose not to run t;.
m If t commits, this action does not make t, permanent (unlike

16

‘sted and Multilevel Transactions (Cont.)

B Subtransactions can themselves be nested/multilevel
transactions.

* Lowest level of nesting: standard read and write operations.

® Nesting can create higher-level operations that may enhance
concurrency.

‘ Example of Nesting

B Rewrite transaction T, using subtransactions T, and T,
that perform increment or decrement operations:

* T, consists of
> T,,,, Which subtracts 50 from A
> T,,,, Which adds 50 to B

‘ Compensating Transactions

B Alternative to undo operation; compensating transactions deal
with the problem of cascading rollbacks.

m Instead of undoing all changes made by the failed transaction,
action is taken to “compensate” for the failure.

B Consider a long-duration transaction T, representing a travel
reservation, with subtransactions T,,, which makes airline

‘ Implementation Issues

B For long-duration transactions to survive system crashes, we
must log not only changes to the database, but also changes to
internal system data pertaining to these transactions.

B |ogging of updates is made more complex by physically large
data items (CAD design, document text); undesirable to store both
old and new values.

‘ Transaction Management in
Multidatabase Systems

B Transaction management is complicated in multidatabase
systems because of the assumption of autonomy
* Global 2PL -each local site uses a strict 2PL (locks are released at

the end); locks set as a result of a global transaction are released
only when that transaction reaches the end.

‘ Transaction Management

m Local transactions are executed by each local DBMS, outside of
the MDBS system control.

B Global transactions are executed under multidatabase control.

B Local autonomy - local DBMSs cannot communicate directly to
synchronize global transaction execution and the multidatabase

19

‘ Two-Level Serializability

m DBMS ensures local serializability among its local transactions,
including those that are part of a global transaction.

B The multidatabase ensures serializability among global
transactions alone- ignoring the orderings induced by local
transactions.

‘ Two-Level Serializability (Cont.)

B |ocal-read protocol : Local transactions have read access to
global data; disallows all access to local data by global
transactions.

m A transaction has a value dependency if the value that it writes to
a data item at one site depends on a value that it read for a data
item on another site.

‘ Global Serializability

®m Even if no information is available concerning the structure of the
various concurrency control schemes, a very restrictive protocol
that ensures serializability is available.

B Transaction-graph : a graph with vertices being global
transaction names and site names.

‘ Ensuring Global Serializability

B Each site S; has a special data item, called ticket
® Every transaction T, that runs at site S, writes to the ticket at site

B Ensures global transactions are serialized at each site,

‘ Weak Levels Consistency

B Use alternative notions of consistency that do not ensure
serializability, to improve performance.

B Degree-two consistency avoids cascading aborts without
necessarily ensuring serializability.

22

‘mple Schedule with Degree-Two Consistency

Nonserializable schedule with degree-two consistency (Figure 20.5)
where T, reads the value if Q before and after that value is written
by T,

‘ Cursor Stability

® Form of degree-two consistency designed for programs
written in general-purpose, record-oriented languages (e.g.,
Pascal, C, Cobol, PL/I, Fortran).

®m Rather than locking the entire relation, cursor stability
ensures that

23

