¥, Chapter 3: Relational Model

Structure of Relational Databases
Relational Algebra

Tuple Relational Calculus

Domain Relational Calculus

Extended Relational-Algebra-Operations
Modification of the Database

Views
Database System Concepts 31 ©Silberschatz,
\/ -
A Basic Structure
Formally, given sets D;, D,, D, a relation ris a subset of
Dyx D, x...xD,
Thus a relation is a set of n-tuples (a, a,, ..., a,) where
each a; OD;
Example: if
customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}
Then r={ (Jones, Main, Harrison),
(Smith, North, Rye),
(Curry, North, Rye),
(Lindsay, Park, Pittsfield)}
is a relation over customer-name x customer-street x customer-city
Database System Concepts. 33
~ 2
. Relation Schema
A, A, ..., A, are attributes
R= (A, A, ..., A,) is a relation schema
E.g. Customer-schema =
(customer-name, customer-street, customer-city)
r(R) is a relation on the relation schema R
E.g. customer (Customer-schema)
Database System Concepts 3.5 ©Silberschatz,
~
~ Relations are Unordered
Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
E.g. account relation with unordered tuples
| account-number | branch-name | balance |
A-101 Downtown 500
A-215 Mianus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Brighton 900
A-222 Redwood 700
A-217 Brighton 750
Database System Concepts 37 ©silberschatz,

~ »
A Example of a Relation
| account-number | branch-name | balance |
A-101 Downtown 500
A-102 Perryridge 400
A-201 Brighton 900
A-215 Mianus 700
A-217 Brighton 750
A-222 Redwood 700
A-305 Round Hill 350
Database System Concepts 32 ©Silberschatz,
~ .
A Attribute Types
Each attribute of a relation has a name
The set of allowed values for each attribute is called the domain
of the attribute
Attribute values are (normally) required to be atomic, that is,
indivisible
E.g. multivalued attribute values are not atomic
E.g. composite attribute values are not atomic
The special value null is a member of every domain
The null value causes complications in the definition of many
operations
we shall ignore the effect of null values in our main presentation
and consider their effect later
Database System Concepts 34 ©Silberschatz, Kot
~ .
. Relation Instance
The current values (relation instance) of a relation are
specified by a table
An element t of ris a tuple, represented by a row in a table
attributes
(or columns)
‘ customer-name ‘ customer-street‘ customer-city ‘
Jones Main Harrison
Smith North Rye tuples
Curry North Rye (or rows)
Lindsay Park Pittsfield
customer
Database System Concepts 36 ©Silberschatz, Ko
~
A Database

A database consists of multiple relations

Information about an enterprise is broken up into parts, with each
relation storing one part of the information

E.g.: account: stores information about accounts
depositor : stores information about which customer
owns which account
customer : stores information about customers

Storing all information as a single relation such as
bank(account-number, balance, customer-name, ..)
results in
repetition of information (e.g. two customers own an account)
the need for null values (e.g. represent a customer without an
account)
Normalization theory (Chapter 7) deals with how to design
relational schemas

Database System Concepts 38 @Silberschatz, Ko

The customer Relation

-
customer-name | customer-street | customer-city

Adams Spring Pittsfield
Brooks Senator Brooklyn
Curry North Rye
Glenn Sand Hill Woodside
Green Walnut Stamford
Hayes Main Harrison
Johnson Alma Palo Alto
Jones Main Harrison
Lindsay Park Pittsfield
Smith North Rye
Turner Putnam Stamford
Williams Nassau Princeton

Database System Concepts. 39 ©Silberschatz,

4 E-R Diagram for the Banking Enterprise
_/a

Database System Concepts

e

_ Determining Keys from E-R Sets

Strong entity set. The primary key of the entity set becomes
the primary key of the relation.
Weak entity set. The primary key of the relation consists of the
union of the primary key of the strong entity set and the
discriminator of the weak entity set.
Relationship set. The union of the primary keys of the related
entity sets becomes a super key of the relation.
For binary many-to-one relationship sets, the primary key of the
“many” entity set becomes the relation’s primary key.
For one-to-one relationship sets, the relation’s primary key can be
that of either entity set.

For many-to-many relationship sets, the union of the primary keys
becomes the relation’s primary key

Database System Concepts 343 @Silberschatz,

<~

A Query Languages

Language in which user requests information from the database.
Categories of languages

procedural

non-procedural
“Pure” languages:

Relational Algebra

Tuple Relational Calculus

Domain Relational Calculus

Pure languages form underlying basis of query languages that
people use.

Database System Concepts 315 @Silberschatz,

~ . .
A The depositor Relation
| customer-name | account-number |
Hayes A-102
Johnson A-101
Johnson A-201
Jones A-217
Lindsay A-222
Smith A-215
Turner A-305
Database System Concepts 3.10 ©Silberschatz,
~
A Keys
LetKOR
K is a superkey of R if values for K are sufficient to identify a
unique tuple of each possible relation r(R)
by “possible I’ we mean a relation r that could exist in the enterprise
we are modeling.
Example: {customer-name, customer-streef} and
{customer-name}
are both superkeys of Customer, if no two customers can possibly
have the same name.
K is a candidate key if K is minimal
Example: {customer-name} is a candidate key for Customer,
since it is a superkey (assuming no two customers can possibly
have the same name), and no subset of it is a superkey.
Database System Concepts 3.12 ©Silberschatz, Ko

+ Schema Diagram for the Banking Enterprise

~
branch account depositor customer
branch-name account—number customer-name [—>| customer—name
branch—city <—\— branch-name (—I— account-number customer—streef
assets balance customer—city
loan borrower
loan—number <—| customer—name
branch-name loan—number
amount
Database System Concepts 314 ©Silberschatz,
~ .
Y Relational Algebra
Procedural language
Six basic operators
select
project
union
set difference
Cartesian product
rename
The operators take two or more relations as inputs and give a
new relation as a result.
Database System Concepts 3.16 ©Silberschatz, Ko

e Select Operation — Example Select Operation

[4]elc]o]
a| 1|7
al|B|5|7
Bl pl12| 3
B | B|23]|10

[4]]c]o)

117
23|10

e Project Operation — Example Project Operation

e Union Operation

Set Difference Operation

- Cartesian-Product Operation-Example

Relations r, s: ‘A‘B‘ ‘C‘D‘E‘
a a|10]| a
B 10| a
gz 8|20 b
g y| 10| b
s
rxs:
Als[c]o]e]
a 10| a
a 10| a
a 20| b
a 10| b
B 10| a
B 10| a
B 20| b
yii 10| b
Database System Concepts 325 ©Silberschatz,

~ sgw =
A Composition of Operations

Can build expressions using multiple operations

Example: g,_c(rx s)

e #[e]c[o]e]
a|1|a|10| a
al1|p|10]a
al|1|p|20|b
al|l1|y|10|b
B|2|a|10] a
Bl 2| pB|10]a
Bl 2| 8|20 b
Bl2] yl10lb

Op=c(r X S)

[4]slclo]e
al|1 | al10| a
B|l2|Bl20| a
B|2|B|20|b
Database System Concepts 3.27
~ H
W, Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

Database System Concepts. 3.29 ©Silberschatz,
~

Example Queries

Find the names of all customers who have a loan, an account, or
both, from the bank

[Meustomer-name (Porrower) LT ¢y stomer-name (depositor)

Find the names of all customers who have a loan and an
account at bank.

[Mcustomer-name (borrower) 0 Meystomer-name (depositor)

Database System Concepts 331 @Silberschatz, Koy

~

. Cartesian-Product Operation

Notation rx s
Defined as:
rxs={tq|tOrandq0Os}
Assume that attributes of r(R) and s(S) are disjoint. (That is,

Rn S=/)).
If attributes of r(R) and s(S) are not disjoint, then renaming must
be used.
Database System Concepts 3.26 ©Silberschatz, Ko
A Rename Operation
\/ p
Allows us to name, and therefore to refer to, the results of
relational-algebra expressions.
Allows us to refer to a relation by more than one name.
Example:
P (E)
returns the expression E under the name X
If a relational-algebra expression E has arity n, then
Px (a1, A2, ..., An)(E)
returns the result of expression E under the name X, and with the
attributes renamed to A1, A2,, An.
Database System Concepts 3.28 ©Silberschatz, Ko
~ =
Y Example Queries
Find all loans of over $1200
Oamount > 1200 (l0aN)
Find the loan number for each loan of an amount greater than
$1200
nloan-number (oamount > 1200 (Ioan))
Database System Concepts 3.30 ©Silberschatz, Ko
~ -
Y Example Queries
Find the names of all customers who have a loan at the Perryridge
branch.
ﬂcustomer—name (Gbranch-name=“Perryridge”
(Jborrower.loan-number= loan.loan-number(bor rower X Ioan)))
Find the names of all customers who have a loan at the
Perryridge branch but do not have an account at any branch of
the bank.
Mcustomer-name (Obranch-name = “Perryridge”
(Oborrower.loan-number =l loan.loan—number(b‘:)rrower X loan))) -
Meustomer-name(depositor)
Database System Concepts 3.32 ©Silberschatz, Ko

Example Queries e Example Queries

Formal Definition ‘e, Additional Operations

Set-Intersection Operation esa-lntersectlon Operation - Example

Natural-Join Operation ., Natural Join Operation — Example

BEEE

al|1|a|a
B2 a
y| 4 b
a| 1 a
Jd| 2 b

e Division Operation e Division Operation — Example

OO UG NS®RI QR H

N2 ORAW_ = 2AwWh n

e Another Division Example ‘e, Division Operation (Cont.)

e, Example Queries

Q Example Queries ./Extended Relational-Algebra-Operations

A Generalized Projection

Extends the projection operation by allowing arithmetic functions
to be used in the projection list.

rl F1,F2, ..., Fn(E)
E is any relational-algebra expression

Each of Fy, F,, ..., F, are are arithmetic expressions involving
constants and attributes in the schema of E.

Given relation credit-info(customer-name, limit, credit-balance),
find how much more each person can spend:

Mcustomer-name, limit - credit-balance (¢redit-info)

Database System Concepts 3.49 ©Silberschatz,

¥ Aggregate Operation — Example

Relation r:

g sum(c) ¥

Database System Concepts 351

~ :
- Aggregate Functions (Cont.)
Result of aggregation does not have a name
Can use rename operation to give it a name
For convenience, we permit renaming as part of aggregate
operation
branch-name 9 sum(balance) as sum-balance (account)
Database System Concepts 3.53 ©Silberschatz,
~ H
A Outer Join — Example

Relation loan

\ loan-number \ branch-name \ amount \

L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

Relation borrower

\customer—name loan-number

Jones L-170
Smith L-230
Hayes L-155

Database System Concepts 355 ©silberschatz,

¥ Aggregate Functions and Operations

Aggregation function takes a collection of values and returns a
single value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

Aggregate operation in relational algebra

E is any relational-algebra expression
G,, G, ..., G, is a list of attributes on which to group (can be empty)
Each F; is an aggregate function
Each A is an attribute name

Database System Concepts 3.50 ©Silberschatz,

~

. Aggregate Operation — Example

Relation account grouped by branch-name:

[branch-name [account-number| balance

Perryridge A-102 400
Perryridge A-201 900
Brighton A-217 750
Brighton A-215 750
Redwood A-222 700

branch-name 9 sum(balance) (account)

[branch-name | balance |

Perryridge 1300 4 P
Brighton 1500
Redwood 700

Database System Concepts 3.52 ©Silberschatz, Kor

W Outer Join

An extension of the join operation that avoids loss of information.
Computes the join and then adds tuples form one relation that
does not match tuples in the other relation to the result of the
join.
Uses null values:

null signifies that the value is unknown or does not exist

All comparisons involving null are (roughly speaking) false by
definition.

Will study precise meaning of comparisons with nulls later

Database System Concepts 3.54 @Silberschatz, Kor

Outer Join — Example

Inner Join

loan X Borrower

\ loan-number \ branch-name \ amount \customer—name\

L-170 Downtown 3000 Jones
L-230 Redwood 4000 | Smith

Left Outer Join

loan _1X| Borrower

\ loan-number \ branch-name \ amount \customer—name
L-170 Downtown 3000 | Jones

L-230 Redwood 4000 | Smith
L-260 Perryridge 1700 null

Database System Concepts 3.56 @Silberschatz,

~

A Outer Join — Example

Right Outer Join
loan XC borrower

[toan-number | branch-name | amount [customer-name
L-170 Downtown 3000 | Jones
L-230 Redwood 4000 Smith
L-155 null null Hayes
Full Outer Join
loan XC borrower

‘ loan-number ‘ branch-name | amount |customer-name

L-170 Downtown 3000 Jones
L-230 Redwood 4000 | Smith
L-260 Perryridge 1700 null

L-155 null null Hayes | ;

Database System Concepts 357 ©Silberschatz,

~

W Null Values

Comparisons with null values return the special truth value
unknown
If false was used instead of unknown, then not (A < 5)
would not be equivalent to A>=5
Three-valued logic using the truth value unknown:

OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

AND: (true and unknown) = unknown,

(false and unknown) = false,
(unknown and unknown) = unknown
NOT: (not unknown) = unknown

In SQL “P is unknown” evaluates to true if predicate P evaluates
to unknown
Result of select predicate is treated as false if it evaluates to
unknown i

Database System Concepts 3.59 ©Silberschatz,

A Deletion

A delete request is expressed similarly to a query, except instead
of displaying tuples to the user, the selected tuples are removed
from the database.

Can delete only whole tuples; cannot delete values on only
particular attributes

A deletion is expressed in relational algebra by:
r—r—E
where ris a relation and E is a relational algebra query.

Database System Concepts 361 ©silberschatz,

~

Y Insertion

To insert data into a relation, we either:
specify a tuple to be inserted
write a query whose result is a set of tuples to be inserted
in relational algebra, an insertion is expressed by:
r—rQ0E
where ris a relation and E is a relational algebra expression.

The insertion of a single tuple is expressed by letting E be a
constant relation containing one tuple.

Database System Concepts 363 @Silberschatz, Koy

A Null Values

It is possible for tuples to have a null value, denoted by null, for
some of their attributes

null signifies an unknown value or that a value does not exist.
The result of any arithmetic expression involving null is null.
Aggregate functions simply ignore null values
Is an arbitrary decision. Could have returned null as result instead.
We follow the semantics of SQL in its handling of null values

For duplicate elimination and grouping, null is treated like any
other value, and two nulls are assumed to be the same
Alternative: assume each null is different from each other
Both are arbitrary decisions, so we simply follow SQL

Database System Concepts 3.58 ©Silberschatz, Ko

~

- Modification of the Database

The content of the database may be modified using the following
operations:

Deletion

Insertion

Updating
All these operations are expressed using the assignment
operator.

Database System Concepts 3.60 ©Silberschatz, Ko

~

. Deletion Examples

Delete all account records in the Perryridge branch.

account — account—0 pronch name = “Perryridge” (account)
Delete all loan records with amount in the range of 0 to 50

loan « loan — O amount >0 and amount < 50 (loan)
Delete all accounts at branches located in Needham.

1 < O pranch-city = “Needham™ (account X branch)

Dok nbranch—name, account-number, balance (r 1)

I3~ 1 customer-name, account-number (2 X depositor)
account — account —r,

depositor — depositor — r; B

@silnerscnglumm

Database System Concepts 362

~

A Insertion Examples

Insert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.
account — account 0O {(“Perryridge”, A-973, 1200)}
depositor — depositor 0O {(“Smith”, A-973)}

Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account. Let the loan number serve
as the account number for the new savings account.

r < (Gbranch-name = “Perryridge” (bor rowerx Ioan))

account — account Erl branch-name, account-number, 200 (f1)
depositor — depositor [T customer-name, ioan-number()

Database System Concepts 3.64 @Silberschatz, Ko

A Updating

A mechanism to change a value in a tuple without charging all
values in the tuple

Use the generalized projection operator to do this task
rMeae..q)
Each F; s either
the ith attribute of r, if the ith attribute is not updated, or,

if the attribute is to be updated F; is an expression, involving only
constants and the attributes of r, which gives the new value for the
attribute

Database System Concepts 3.65 ©Silberschatz,

~

W Views

In some cases, it is not desirable for all users to see the entire
logical model (i.e., all the actual relations stored in the database.)
Consider a person who needs to know a customer’s loan number
but has no need to see the loan amount. This person should see
a relation described, in the relational algebra, by

ncustomer—name, loan-number (bor roweri loan)

Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

Database System Concepts 3.67 ©Silberschatz,

-

W, View Examples

Consider the view (named all-customer) consisting of branches
and their customers.

create view all-customer as
nbranch-name, customer-name (depos:tor MXaccoun t)

ol branch-name, customer-name (borrower Mloan)
We can find all customers of the Perryridge branch by writing:

[Mbranch-name
(Gbranch-name ="“Perryridge” (all-customer))

Database System Concepts 369 ©silberschatz,

~
~

Updates Through Views (Cont.)

The previous insertion must be represented by an insertion into the
actual relation loan from which the view branch-loan is constructed.

An insertion into loan requires a value for amount. The insertion
can be dealt with by either.

rejecting the insertion and returning an error message to the user.

inserting a tuple (“L-37", “Perryridge”, null) into the /oan relation
Some updates through views are impossible to translate into
database relation updates

create View V as Opanch-name = “Perryridge” (8¢count))

Vv « v [(L-99, Downtown, 23)
Others cannot be translated uniquely

all-customer — all-customer O {(“Perryridge”, “John”)}

Have to choose loan or account, and
create a new loan/account number!

Database System Concepts 37 @Silberschatz, Koy

A Update Examples

Make interest payments by increasing all balances by 5 percent.
account — [] an, BN, BAL * 1.05 (account)

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.

Pay all accounts with balances over $10,000 6 percent interest
and pay all others 5 percent

account — 1 an, gn, BAL * 1.06 (0 BAL > 10000 (&CCOUNT))
O an, B, BAL *1.05 (OpaL < 10000 (ACCOUN))

Database System Concepts 3.66 ©Silberschatz, Ko

A View Definition

A view is defined using the create view statement which has the
form

create view v as <query expression

where <query expression> is any legal relational algebra query
expression. The view name is represented by v.

Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.

View definition is not the same as creating a new relation by
evaluating the query expression

Rather, a view definition causes the saving of an expression; the
expression is substituted into queries using the view.

Database System Concepts 3.68 ©Silberschatz, Ko

Updates Through View

~

Database modifications expressed as views must be translated
to modifications of the actual relations in the database.

Consider the person who needs to see all loan data in the loan
relation except amount. The view given to the person, branch-
loan, is defined as:

create view branch-loan as
n branch-name, loan-number (I Oan)

Since we allow a view name to appear wherever a relation name
is allowed, the person may write:

branch-loan — branch-loan O {(“Perryridge”, L-37)}

@silnerscnglumm

Database System Concepts 370

~

_ Views Defined Using Other Views

One view may be used in the expression defining another view

A view relation v is said to depend directly on a view relation v,
if v, is used in the expression defining v,

A view relation v, is said to depend on view relation v, if either v,
depends directly to v, or there is a path of dependencies from
v, to v,

A view relation v is said to be recursive if it depends on itself.

Database System Concepts 372 @Silberschatz, Ko

A View Expansion

A way to define the meaning of views defined in terms of other
views.

Let view v, be defined by an expression e, that may itself contain
uses of view relations.

View expansion of an expression repeats the following
replacement step:

repeat

Find any view relation v; in e,

Replace the view relation v; by the expression defining v;
until no more view relations are present in e,

As long as the view definitions are not recursive, this loop will
terminate

Database System Concepts 373 ©Silberschatz,

-

W, Predicate Calculus Formula

. Set of attributes and constants
. Set of comparison operators: (e.g., <, <, =, %, >, 2)
. Set of connectives: and (0), or (v), not (=)

A WODN -

. Implication (): x vy, if x if true, then y is true
X y=E-axvy

[$)]

. Set of quantifiers:

Ot O r (Q(f) ="there exists” a tuple in ¢ in relation r
such that predicate Q(t) is true

Ot O r (Q(t)) = Q is true “for all” tuples t in relation r

Database System Concepts 375 ©Silberschatz,

-

. Example Queries

Find the loan-number, branch-name, and amount for loans of
over $1200

{t| t O loan Ot [amount] > 1200}

Find the loan number for each loan of an amount greater than $1200

{t| s [Jloan (f{loan-number] = s[loan-number] O0's [amount] > 1200)}

Notice that a relation on schema [loan-number] is implicitly defined
by the query

Database System Concepts 377 ©silberschatz,

~

A Example Queries

Find the names of all customers having a loan at the Perryridge
branch

{t | Os O borrower(t[customer-name] = s[customer-name]
[u O loan(u[branch-name] = “Perryridge”
O u[loan-number] = s[loan-number]))}

Find the names of all customers who have a loan at the
Perryridge branch, but no account at any branch of the bank

{t| Os O borrower(ticustomer-name] = s[customer-name]
[u O loan(u[branch-name] = “Perryridge”
O u[loan-number] = s[loan-number]))
Onot Ov O depositor (Vicustomer-name] =
f[customer-name]) }

Database System Concepts 379 @Silberschatz, Koy

A Tuple Relational Calculus

A nonprocedural query language, where each query is of the form
{tIP@®}

It is the set of all tuples t such that predicate P is true for t

tis a tuple variable, f{A] denotes the value of tuple t on attribute A

t O r denotes that tuple ¢ is in relation r

P is a formula similar to that of the predicate calculus

Database System Concepts 374 ©Silberschatz, Ko

A Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-city)
account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

Database System Concepts 376 ©Silberschatz, Ko

~

Y Example Queries

Find the names of all customers having a loan, an account, or
both at the bank

{t| Us O borrower(tcustomer-name] = s[customer-namel))
[u O depositor(ticustomer-name] = u[customer-namel)
Find the names of all customers who have a loan and an account

at the bank

{t| Os O borrower(ticustomer-name] = s[customer-name])
[u O depositor(ficustomer-name] = u[customer-name])

@silnerscng:ummm

Database System Concepts 378

~

Y Example Queries

Find the names of all customers having a loan from the
Perryridge branch, and the cities they live in

{t| Os O loan(s[branch-name] = “Perryridge”
[u O borrower (ufloan-number] = s[loan-number]
O t[customer-name] = u[customer-name])
[v O customer (u[customer-name] = v{customer-name]
O tlcustomer-city] = vicustomer-city])))}

Database System Concepts 3.80 @Silberschatz, Ko

~

A Example Queries

Find the names of all customers who have an account at all
branches located in Brooklyn:

{t| Oc O customer (flcustomer.name] = c[customer-name]) O

0 s O branch(s[branch-city] = “Brooklyn”
Ou O account (s[branch-name] = u[branch-name]
[s O depositor (tlcustomer-name] = s[customer-name]
O s[account-number] = u[account-number])))}

Database System Concepts 381 ©Silberschatz,

-

Y. Domain Relational Calculus

A nonprocedural query language equivalent in power to the tuple
relational calculus

Each query is an expression of the form:

{<X4, X0 oo X > | P(Xq, Xg, o0y Xp)}

X4, Xo, ..., X, represent domain variables
P represents a formula similar to that of the predicate calculus

Database System Concepts 383

-

A Example Queries

Find the names of all customers having a loan, an account, or
both at the Perryridge branch:

{<c>|0/({<c, [>0borrower
[b,a(</, b, a> Oloan O b = “Perryridge”))
[a(< ¢, a> 0O depositor
M b,n(<a, b, n>0account Ob = “Perryridge”))}

Find the names of all customers who have an account at all
branches located in Brooklyn:
{<c>|0Us, n(<c, s, n>0customer) O

0 x,y,z(< X, y, z> O branch Oy = “Brooklyn”)
Ua,b(< x, y, z> 0O account [k c,a > [depositor)}

Database System Concepts 385 ©silberschatz,

End of Chapter 3

~

A Safety of Expressions

It is possible to write tuple calculus expressions that generate
infinite relations.

For example, {t | = t O r} results in an infinite relation if the
domain of any attribute of relation ris infinite
To guard against the problem, we restrict the set of allowable
expressions to safe expressions.
An expression {t | P(t)} in the tuple relational calculus is safe if
every component of t appears in one of the relations, tuples, or
constants that appear in P

NOTE: this is more than just a syntax condition.

E.g. {t| fA]=5 Otrue } is not safe --- it defines an infinite set with

attribute values that do not appear in any relation or tuples or
constants in P.

Database System Concepts 3.82 ©Silberschatz, Ko

Wy Example Queries

Find the loan-number, branch-name, and amount for loans of over
$1200

{<I,b,a>|<I, b, a>0loan Oa> 1200}

Find the names of all customers who have a loan of over $1200

{<ec>|0lb,a(<c, I>0borrower (X I, b, a>0loan Oa > 1200)}

Find the names of all customers who have a loan from the
Perryridge branch and the loan amount:

{<c,a>|0l(<c, |>0borrower [(11b(< I, b, a>loan
b = “Perryridge”))}
or{<c,a>|0/(<c, I>0borrower [k I, “Perryridge”, a > [loan)}

Database System Concepts 384 ©Silberschatz, Ko

A Safety of Expressions

{<Xq, X, -0y Xy > | P(Xq, Xo, ..., X,)}

is safe if all of the following hold:

1.All values that appear in tuples of the expression are values
from dom(P) (that is, the values appear either in P or in a tuple
of a relation mentioned in P).

2.For every “there exists” subformula of the form Ox (P,(x)), the
subformula is true if and only if there is a value of x in dom(P;)
such that P(x) is true.

3. For every “for all” subformula of the form 0, (P, (x)), the
subformula is true if and only if P4(x) is true for all values x
from dom (P,).

Database System Concepts 3.86 @Silberschatz, Ko

Q ~ Result of O branch-name = “Perryridge” (Ioan)

| loan-number | branch-name | amount |

L-15 Perryridge | 1500
L-16 Perryridge | 1300

Database System Concepts 3.88 @Silberschatz, Ko

eLoan Number and the Amount of the Loan

| loan-number | amount |
L-11 900
L-14 1500
L-15 1500
L-16 1300
L-17 1000
L-23 2000
L-93 500

Qstomers With An Account But No Loan

Result of 7y,.nch-name = “Perryriage” (POrrower x loan)

customer-name

Johnson
Lindsay
Turner

nanm b branch-name

Adams Perryridge
Adams Perryridge
Curry Perryridge
Curry Perryridge
Hayes Perryridge
Hayes Perryridge
Jackson Perryridge

Jackson Perryridge
Jones - - Perryridge
Jones - - Perryridge
Smith - - Perryridge
Smith Perryridge
Smith Perryridge
Smith Perryridge
Williams Perryridge
Williams Perryridge

Q Result of the Subexpression

o Ill.‘l\-.'n el

Names of All Customers Who Have
Either a Loan or an Account

|
Adams
Curry
Hayes
Jackson
Jones
Smith
Williams
Lindsay
Johnson
Turner

-t 'MA‘—M S
!

‘e, Result of borrower x loan

e Result of ncustomersname

customer-name

Adams
Hayes

.Largest Account Balance in the Bank

balance
900

Akﬂ.‘thm-.._

e Customers Who Live on the Same Street and In the
Same City as Smith

customer-name

Curry
Smith

Result of M, omer-name, 1oan-number, amount
(borrower < loan)

customer-name | loan-number | amount
Adams L-16 1300
Curry L-93 500
Hayes L-15 1500
Jackson L-14 1500
Jones L-17 1000
Smith L-23 2000
Smith L-11 900
Williams L-17 1000

)

Result of My,.nch-name Foranch-city =
“Brooklyn?”(branch)

branch-name

Brighton
Downtown

. The credit-info Relation

| customer-name | branch-name |

Hayes Perryridge
Johnson Downtown
Johnson Brighton
Jones Brighton
Lindsay Redwood
Smith Mianus
Turner Round Hill

eCustomers With Both an Account and a Loan
at the Bank

| customer-name

Hayes
Jones
Smith

e Result of nbranch-name(acustomer-clty=
«Harrison(customer ><1 account ><idepositor))

| branch-name

Brighton
Perryridge

eesult of N

(depositor><account)

[customer-name [branch-name |

Hayes Perryridge
Johnson Downtown

Johnson Brighton
Jones Brighton
Lindsay Redwood
Smith Mianus

Turner Round Hill

.Resu“ of ncustomer-name, (lir_nit.— credit-balance) as
credit-available(Credit-info).

customer-name | credit-available

Curry 250
Jones 5300
Smith 1600

Hayes

)

The pt-works Relation

| employee-name | branch-name | salary |

Adams Perryridge | 1500
Brown Perryridge 1300
Gopal Perryridge | 5300
Johnson Downtown | 1500
Loreena Downtown | 1300
Peterson Downtown | 2500
Rao Austin 1500
Sato Austin 1600

eResu“ of branch-name (sum(salary) (pt-WO’kS)

| branch-name | sum of salary |
Austin 3100

Downtown 5300
Perryridge 8100

eThe employee and ft-works Relations

[employee-name | street | city |
Coyote Toon Hollywood
Rabbit Tunnel | Carrotville
Smith Revolver | Death Valley
Williams | Seaview | Seattle

employee-name | branch-name | salary

Coyote Mesa 1500
Rabbit Mesa 1300
Gates Redmond | 5300
Williams Redmond | 1500

.The Result of employee < ft-works

[employee-name | street | city [branch-name | salary |
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500
Smith Revolver | Death Valley null null

e The pt-works Relation After Grouping

| employee-name | branch-name | salary |

Rao Austin 1500
Sato Austin 1600
Johnson Downtown | 1500
Loreena Downtown | 1300
Peterson Downtown | 2500
Adams Perryridge | 1500

Brown Perryridge | 1300
Gopal Perryridge | 5300

eResu“ of branch-name ¢ sum salary, max(salary) as
max-salary (p t-works)

| branch-name | sum-salary | max-salary |
Austin 3100 1600
Downtown 5300 2500
Perryridge 8100 5300

e The Result of employee < ft-works

employee-name | street city branch-name | salary
Coyote Toon Hollywood | Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond | 1500

., Result of employee o< ft-works

employee-name | street city branch-name | salary
Coyote Toon Hollywood | Mesa 1500
Rabbit Tunnel | Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500
Gates null null Redmond

e Result of employee >< ft-works

employee-name street city branch-name | salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500

Smith Revolver | Death Valley | null null

Gates null null Redmond

Names of All Customers Who Have a
Loan at the Perryridge Branch

customer-name

Adams
Hayes

‘e The branch Relation

| branch-name | branch-city | assets |

Brighton Brooklyn 7100000
Downtown | Brooklyn 9000000
Mianus Horseneck | 400000
North Town | Rye 3700000
Perryridge | Horseneck | 1700000
Pownal Bennington | 300000
Redwood Palo Alto 2100000
Round Hill | Horseneck | 8000000

Q The borrower Relation

| customer-name | loan-number |

Adams L-16
Curry L-93
Hayes L-15
Jackson L-14
Jones L-17
Smith L-11
Smith L-23
Williams L-17

‘euples Inserted Into /oan and borrower

loan-number | branch-name | amount
L-11 Round Hill 900
L-14 Downtown | 1500
L-15 Perryridge | 1500
L-16 Perryridge | 1300
L-17 Downtown | 1000
L-23 Redwood 2000
L-93 Mianus 500

null null 1900

customer-name | loan-number
Adams L-16
Curry L-93
Hayes L-15
Jackson L-14
Jones L-17
Smith L-11
Smith L-23
Williams L-17
Johnson null

E-R Diagram

e The loan Relation

[loan-number | branch-name | amount |

L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500

