[]

Chapter 4: SQL

B Basic Structure
m Set Operations
® Aggregate Functions

Schema Used in Examples

aecamail deprasitar cualisiier

S - o) e—
Imiirece

‘ Basic Structure

B SQL is based on set and relational operations with certain
modifications and enhancements

m A typical SQL query has the form:
select A, A, ..., A,

‘ The select Clause

B The select clause list the attributes desired in the result of a
query
corresponds to the projection operation of the relational algebra

B E.g. find the names of all branches in the loan relation
select branch-name

‘ The select Clause (Cont.)

B SQL allows duplicates in relations as well as in query results.

B To force the elimination of duplicates, insert the keyword distinct
after select.

B Find the names of all branches in the loan relations, and remove

‘ The select Clause (Cont.)

B An asterisk in the select clause denotes “all attributes”

select *
from loan

B The select clause can contain arithmetic expressions involving

The where Clause

[]

B The where clause specifies conditions that the result must
satisfy

 corresponds to the selection predicate of the relational algebra.

m To find all loan number for loans made at the Perryridge branch

‘ The where Clause (Cont.)

B SQL includes a between comparison operator

B E.g. Find the loan number of those loans with loan amounts
between $90,000 and $100,000 (that is, 2$90,000 and <$100,000)

‘ The from Clause

m The from clause lists the relations involved in the query
¥ corresponds to the Cartesian product operation of the relational algebra.

B Find the Cartesian product borrower x loan
select

‘ The Rename Operation

B The SQL allows renaming relations and attributes using the as
clause:
old-name as new-name

Tuple Variables

B Tuple variables are defined in the from clause via the use of the
as clause.

B Find the customer names and their loan numbers for all
customers having a loan at some branch.

String Operations

B SQL includes a string-matching operator for comparisons on character
strings. Patterns are described using two special characters:

¥ percent (%). The % character matches any substring.
¥ underscore (). The _ character matches any character.
® Find the names of all customers whose street includes the substring

‘ Ordering the Display of Tuples

m List in alphabetic order the names of all customers having a loan
in Perryridge branch
select distinct customer-name

from borrower, loan
where borrower loan-number - loan.loan-number and

‘ Duplicates

® In relations with duplicates, SQL can define how many copies of
tuples appear in the result.

m Multiset versions of some of the relational algebra operators —
given multiset relations r, and r,:

‘ Duplicates (Cont.)

B Example: Suppose multiset relations r, (A, B) and r, (C)
are as follows:

n={12a) @a} r,={2), @) 3}
B Then Mg(ry) would be {(a), (a)}, while Mg(r,) x r, would be

‘ Set Operations

B The set operations union, intersect, and except operate on

relations and correspond to the relational algebra operations
Lin, -

m Each of the above operations automatically eliminates

Set Operations

[]

® Find all customers who have a loan, an account, or both:

(select customer-name from depositor)
union

‘ Aggregate Functions

B These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average value

‘ Aggregate Functions (Cont.)

® Find the average account balance at the Perryridge branch.

select avg (balance)
from account
where branch-name = ‘Perryridge’

‘ Aggregate Functions — Group By

® Find the number of depositors for each branch.

select branch-name, count (distinct customer-name)

Q«ggregate Functions — Having Clause

B Find the names of all branches where the average account
balance is more than $1,200.

select branch-name, avg (balance)
from account

‘ Null Values

B |t is possible for tuples to have a null value, denoted by null, for
some of their attributes

m null signifies an unknown value or that a value does not exist.
B The predicate is null can be used to check for null values.

‘ Null Values and Three Valued Logic

B Any comparison with null returns unknown
¥ E.g. 5<null or null<>null or null=nul
B Three-valued logic using the truth value unknown:
¥ OR: (unknown or true) = true, (unknown or false) = unknown

‘ Null Values and Aggregates

H Total all loan amounts

select sum (amount)
from loan

¥ Above statement ignores null amounts

‘ Nested Subqueries

B SQL provides a mechanism for the nesting of subqueries.

B A subquery is a select-from-where expression that is nested
within another query.

‘ Example Query

B Find all customers who have both an account and a loan at the
bank.

select distinct customer-name

‘ Example Query

B Find all customers who have both an account and a loan at the
Perryridge branch

select distinct customer-name
from borrower, loan

‘ Set Comparison

® Find all branches that have greater assets than some branch
located in Brooklyn.

select distinct T.branch-name
from branch as T, branch as S

[]

B F <comp>somer = Ot0Or s.t. (F <comp>t)
Where <comp> can be: <, <, >, =, #

Definition of Some Clause

(63}

o] o] e [o]rlo]

‘ Definition of all Clause

B F<comp>allr = OtOr (F<comp>t)

o]] Bp] [=]wlo]

Example Query

[]

® Find the names of all branches that have greater assets than all
branches located in Brooklyn.

‘ Test for Empty Relations

B The exists construct returns the value true if the argument
subguery is nonempty.

B existsre rz@

‘ Example Query

® Find all customers who have an account at all branches located
in Brooklyn.

select distinct S.customer-name

‘Test for Absence of Duplicate Tuples

B The unique construct tests whether a subquery has any
duplicate tuples in its result.

B Find all customers who have at most one account at the
Perryridge branch.

Example Query

[]

B Find all customers who have at least two accounts at the
Perryridge branch.

select distinct T.customer-name

‘ Views

B Provide a mechanism to hide certain data from the view of
certain users. To create a view we use the command:

create view v as <query expression>

‘ Example Queries

®m A view consisting of branches and their customers

create view all-customer as
(select branch-name, customer-name
from depositor, account

‘ Derived Relations

® Find the average account balance of those branches where the
average account balance is greater than $1200.

select branch-name, avg-balance
from (select branch-name, avg (balance)
from account

‘ With Clause

m With clause allows views to be defined locally to a query, rather

than globally. Analogous to procedures in a programming
language.

B Find all accounts with the maximum balance

‘ Complex Query using With Clause

®m Find all branches where the total account deposit is greater than
the average of the total account deposits at all branches.

with branch-total (branch-name, value) as

‘Modification of the Database — Deletion

m Delete all account records at the Perryridge branch

delete from account
where branch-name = ‘Perryridge’

B Delete all accounts at every branch located in Needham city.

delete from account

‘ Example Query

m Delete the record of all accounts with balances below the
average at the bank.

delete from account
where balance < (select avg (balance

‘Modification of the Database — Insertion

B Add a new tuple to account

insert into account
values (‘A-9732’, ‘Perryridge’,1200)
or equivalently

‘Modification of the Database — Insertion

B Provide as a gift for all loan customers of the Perryridge branch, a
$200 savings account. Let the loan number serve as the account
number for the new savings account

insert into account
select loan-number, branch-name, 200

‘Modification of the Database — Updates

® Increase all accounts with balances over $10,000 by 6%, all
other accounts receive 5%.

? Write two update statements:

‘ Case Statement for Conditional Updates

B Same query as before: Increase all accounts with balances over
$10,000 by 6%, all other accounts receive 5%.

Update of a View

m Create a view of all loan data in loan relation, hiding the amount
attribute

create view branch-loan as
select branch-name, loan-number
from loan

Transactions

® A transaction is a sequence of queries and update statements executed
as a single unit

¥ Transactions are started implicitly and terminated by one of

commit work: makes all updates of the transaction permanent in the
database

‘ Transactions (Cont.)

B In most database systems, each SQL statement that executes
successfully is automatically committed.

¥ Each transaction would then consist of only a single statement

¥ Automatic commit can usually be turned off, allowing multi-
statement transactions, but how to do so depends on the database

‘ Joined Relations

®m Join operations take two relations and return as a result another
relation.

B These additional operations are typically used as subquery
expressions in the from clause

Join Types Join Conditions

inner join natural

left outer join on <predicate>
right outer join using (A, A, ..., A)
full outer join

‘Joined Relations — Datasets for Examples

® Relation loan

| loan-number | branch-name | amount |
L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

customer-name | loan-number

L-170
L-230

L-155

‘ Joined Relations — Examples

B [oan inner join borrower on
loan.loan-number = borrower.loan-number

loan-number branch-name amount customer-name | loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230

loan-number branch-name amount customer-name | loan-number

Downtown
Redwood
Perryridge

‘ Joined Relations — Examples

B |oan natural inner join borrower

loan-number branch-name amount customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

loan-number branch-name amount customer-name

L-170 Downtown 3000
L-230 Redwood 4000
L-155 null null

‘ Joined Relations — Examples

m |oan full outer join borrower using (loan-number)

| loan-number | branch-name | amount |customer-name|
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null

null

‘ Data Definition Language (DDL)

Allows the specification of not only a set of relations but also
information about each relation, including:

B The schema for each relation.

B The domain of values associated with each attribute.

‘ Domain Types in SQL

m char(n). Fixed length character string, with user-specified length n.

m varchar(n). Variable length character strings, with user-specified maximum
length n.

® int. Integer (a finite subset of the integers that is machine-dependent).

m smallint. Small integer (a machine-dependent subset of the integer
domain type).

‘ Date/Time Types in SQL (Cont.)

m date. Dates, containing a (4 digit) year, month and date
P E.g. date ‘2001-7-27

m time. Time of day, in hours, minutes and seconds.
¥ E.g. time '09:00:30’ time '09:00:30.75’

‘ Create Table Construct

B An SQL relation is defined using the create table
command:
create tabler (A, D,, A, D,, ..., A, D,,
(integrity-constraint,),

‘Integrity Constraints in Create Table

m not null
m primary key (A, ..., A,)
m check (P), where P is a predicate

Example: Declare branch-name as the primary key for

‘ Drop and Alter Table Constructs

B The drop table command deletes all information about the
dropped relation from the database.

B The alter table command is used to add attributes to an
existing relation.

‘ Embedded SQL

B The SQL standard defines embeddings of SQL in a variety of
programming languages such as Pascal, PL/I, Fortran, C, and
Cobol.

B A language to which SQL queries are embedded is referred to as
a host language, and the SQL structures permitted in the host

‘ Example Query

From within a host language, find the names and cities of
customers with more than the variable amount dollars in some
account.

m Specify the query in SQL and declare a cursor for it

‘ Embedded SQL (Cont.)

B The open statement causes the query to be evaluated
EXEC SQL open ¢ END-EXEC

B The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

‘ Updates Through Cursors

m Can update tuples fetched by cursor by declaring that the cursor
is for update

declare c cursor for
select *

‘ Dynamic SQL

m Allows programs to construct and submit SQL queries at run
time.

m Example of the use of dynamic SQL from within a C program.

[) obBC

B Open DataBase Connectivity(ODBC) standard

? standard for application program to communicate with a database
server.

? application program interface (API) to

‘ ODBC (Cont.)

m Each database system supporting ODBC provides a "driver" library that
must be linked with the client program.

® When client program makes an ODBC API call, the code in the library
communicates with the server to carry out the requested action, and
fetch results.

‘ ODBC Code

m int ODBCexample()
{
RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */

‘ ODBC Code (Cont.)

® Program sends SQL commands to the database by using SQLExecDirect
B Result tuples are fetched using SQLFetch()
B SQLBindCol() binds C language variables to attributes of the query result

When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

‘ ODBC Code (Cont.)

B Main body of program

char branchname[80];
float balance;
int lenOutl, lenOut2;
HSTMT stmt;

SQLAllocStmt(conn, &stmt);

‘ More ODBC Features

B Prepared Statement
? SQL statement prepared: compiled at the database
Can have placeholders: E.g. insert into account values(?,?,?)
? Repeatedly executed with actual values for the placeholders

B Metadata features

‘ ODBC Conformance Levels

m Conformance levels specify subsets of the functionality defined
by the standard.

? Core

¥ Level 1 requires support for metadata querying

[) JDBC

m JDBC is a Java API for communicating with database systems
supporting SQL

m JDBC supports a variety of features for querying and updating
data, and for retrieving query results

‘ JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)

{

try {
Class.forName ("oracle.jdbc.driver.OracleDriver");
Connection conn = DriverManager.getConnection(

ole’ 0O a “(0) he H ole'

‘ JDBC Code (Cont.)

B Update to database

try {
stmt.executeUpdate("insert into account values
'A-9732', 'Perryridge’, 1200)");

‘ JDBC Code Details

B Getting result fields:

¥ rs.getString(“branchname”) and rs.getString(1) equivalent if
branchname is the first argument of select result.

‘ Prepared Statement

®m Prepared statement allows queries to be compiled and executed
multiple times with different arguments

PreparedStatement pStmt = conn.prepareStatement(

“insert into account values(?,?,?)");
pStmt.setString(1, "A-9732");

‘ Other SQL Features

B SQL sessions
? client connects to an SQL server, establishing a session
? executes a series of statements
disconnects the session

‘Schemas, Catalogs, and Environments

B Three-level hierarchy for naming relations.
? Database contains multiple catalogs

¥ each catalog can contain multiple schemas
? SQL objects such as relations and views are contained within a

Procedural Extensions and Stored
Procedures

B SQL provides a module language

¥ permits definition of procedures in SQL, with if-then-else statements,
for and while loops, etc.

¥ more in Chapter 9

‘ Transactions in JDBC

m As with ODBC, each statement gets committed automatically in
JDBC

B To turn off auto commit use
conn.setAutoCommit(false);

‘rocedure and Function Calls in JDBC

® JDBC provides a class CallableStatement which allows SQL stored
procedures/functions to be invoked.

CallableStatement cs1 = conn.prepareCall(“{call proc (?,?)}") ;

‘ Result Set MetaData

B The class ResultSetMetaData provides information about all the
columns of the ResultSet.

m Instance of this class is obtained by getMetaData() function of
ResultSet.

‘ Database Meta Data

B The class DatabaseMetaData provides information about database relations
m Has functions for getting all tables, all columns of the table, primary keys etc.

m E.g. to print column names and types of a relation
DatabaseMetaData dbmd = conn.getMetaData();

‘ Application Architectures

m Applications can be built using one of two architectures
¥ Two tier model

Application program running at user site directly uses
JDBC/ODBC to communicate with the database

[]

m E.g. Java code runs at client site and uses JDBC to
communicate with the backend server

Two-tier Model

B Benefits:

‘ Three Tier Model
=N

DR Database

‘ Three-tier Model (Cont.)

B E.g. Web client + Java Servlet using JDBC to talk with database
server

m Client sends request over http or application-specific protocol
m Application or Web server receives request

‘ The loan and borrower Relations

he Result of loan inner join borrower
n loan.loan-number = borrower.loan-
number

The Result of loan left outer join
borrower on loan-number

The Result of loan natural inner join
borrower

L-170 Downtown
Redwood

‘ Join Types and Join Conditions

inner join natural

left outer join on < predicate>
right outer join using (A, Ay, ..., A,)
full outer join

The Result of loan natural right outer
join borrower

The Result of loan full outer join
borrower using(loan-number)

L-170 Dhowntown 300 Jomes

L-23 Bedwood 2000 Smith

L-260 Perryridge 1700 nueli
el

creabe table ety

