.Chapter 5. Other Relational Languages

® Query-by-Example (QBE)
m Datalog

. Query-by-Example (QBE)

Basic Structure
Queries on One Relation
Queries on Several Relations
The Condition Box
The Result Relation

. QBE — Basic Structure

®m A graphical query language which is based (roughly) on the
domain relational calculus

m Two dimensional syntax — system creates templates of relations
that are requested by users

® Queries are expressed “by example”

Example

QBE Skeleton Tables for the Bank

branch-name

branch-city

customer

customer-name

customer-street

customer-city

loan-number

branch-name

; QBE Skeleton Tables (Cont.)
o~

borrower customer-naie loan-number

account account-number branch-name

depositor customer-name account-number

- Queries on One Relation
~

® Find all loan numbers at the Perryridge branch.

loan-number branch-name amount |

P_x Perryridge |

_Xis a variable (optional; can be omitted in above query)
P. means print (display)

duplicates are removed by default

To retain duplicates use P.ALL

loan-number branch-name anioumnt

P.ALL. Perryridge

Database System Concepts 5.6 ©Silberschatz, Ko

. Queries on One Relation (Cont.)
L~

m Display full details of all loans

"Method 1:

loan-number branch-name

P.y

Queries on One Relation (Cont.)

®m Find the loan number of all loans with a loan amount of more than $700

loan-number branch-name
P.

® Find names of all branches that are not located in Brooklyn

branch branch-name branch-city
E: — Brooklyn

Queries on One Relation (Cont.)

® Find the loan numbers of all loans made jointly to Smith
and Jones.

customer-name loan-number
“Smith” P.x
T4 CI'I"[E 5'! k]

customer-street

Queries on Several Relations

® Find the names of all customers who have a loan from

the Perryridge branch.

loan loan-number

branch-name

amount

X

Perryridge

borrower customer-namnie

loan-number

P._y

X

. Queries on Several Relations (Cont.)
L~

® Find the names of all customers who have both an account and
a loan at the bank.

loan-number

; Negation in QBE
N /4

® Find the names of all customers who have an account at the
bank, but do not have a loan from the bank.

loan-number

. Negation in QBE (Cont.)

® Find all customers who have at least two accounts.

- The Condition Box
~

m Allows the expression of constraints on domain variables
that are either inconvenient or impossible to express within
the skeleton tables.

m Complex conditions can be used in condition boxes

®m E.g. Find the loan numbers of all loans made to Smith, to
Jones, or to both jointly

borrower customer-name loan-number
N P_x

conditions

_n = Smith or _n = Jones

Database System Concepts 5.14 ©Silberschatz, Ko

. Condition Box (Cont.)

®m QBE supports an interesting syntax for expressing alternative
values

_x = (Brooklyn or Queens)

~
~

Condition Box (Cont.)

m Find all account numbers with a balance between $1,300 and

$1,500

account

account-nnumber

branch-name

P.

conditions

_x =2 1300
_x < 1500

mFind all account numbers with a balance between $1,300 and
$2,000 but not exactly $1,500.

account

account-number branch-name

balance

Database System Concepts

P,

conditions

_x = (21300 and <2000 and — 1500)

©Silberschatz, Korth_an

. Condition Box (Cont.)

®m Find all branches that have assets greater than those of at least
one branch located in Brooklyn

Brooklyn

_y."} i

- The Result Relation
~

® Find the customer-name, account-number, and balance for alll
customers who have an account at the Perryridge branch.

We need to:

Join depositor and account.

Project customer-name, account-number and balance.
To accomplish this we:

Create a skeleton table, called result, with attributes customer-
name, account-number, and balance.

Write the query.

Database System Concepts 5.18 ©Silberschatz, Ko

; The Result Relation (Cont.)
N /4

®m The resulting query is:

account account-number branch-name
-y Perryridge

depositor account-number
X Y

customer-name account-number
X y

2 Ordering the Display of Tuples

~

m AO = ascending order; DO = descending order.

m E.qg. list in ascending alphabetical order all customers who have an
account at the bank

depositor customer-name account-number
P.AO.

® When sorting on multiple attributes, the sorting order is specified by

including with each sort operator (AO or DO) an integer surrounded
by parentheses.

®m E.g. List all account numbers at the Perryridge branch in ascending
alphabetic order with their respective account balances in
descending order.

account account-number branch-name
P.AO(1). Perryridge

Database System Concepts 5.20

~ Aggregate Operations

B The aggregate operators are AVG, MAX, MIN, SUM, and CNT

® The above operators must be postfixed with “ALL” (e.g.,

SUM.ALL.or AVG.ALL. Xx) to ensure that duplicates are not
eliminated.

m E.g. Find the total balance of all the accounts maintained at
the Perryridge branch.

account account-nuniber branch-name balance

Perryridge P.SUM.ALL.

Database System Concepts 5.21 ©Silberschatz, Ko

. Aggregate Operations (Cont.)

® UNQ is used to specify that we want to eliminate duplicates
®m Find the total number of customers having an account at the bank.

account-number

- Query Examples

® Find the average balance at each branch.

account account-nuntber branch-name balance
P(. PAVG.ALL._x

®m The “G”in “P.G” is analogous to SQL’s group by construct

® The “ALL” in the “P.AVG.ALL” entry in the balance column
ensures that all balances are considered

® To find the average account balance at only those branches
where the average account balance is more than $1,200, we
simply add the condition box:

| conditions

| AVG.ALL._x > 1200

Database System Concepts 5.23 ©Silberschatz, Ko

2 Query Example
~

®m Find all customers who have an account at all branches located
In Brooklyn.

Approach: for each customer, find the number of branches in
Brooklyn at which they have accounts, and compare with total
number of branches in Brooklyn

QBE does not provide subquery functionality, so both above tasks
have to be combined in a single query.

Can be done for this query, but there are queries that require
subqueries and cannot be expressed in QBE always be done.

® In the query on the next page

® CNT.UNQ.ALL. w specifies the number of distinct branches in

Brooklyn. Note: The variable _w is not connected to other variables
in the query

® CNT.UNQ.ALL._z specifies the number of distinct branches in
Brooklyn at which customer x has an account.

Database System Concepts 5.24 ©Silberschatz, Ko

Query Example (Cont.)

account-number
-y

-Z

balance |

Brooklyn
Brooklyn

L+ Modification of the Database — Deletion

~

m Deletion of tuples from a relation is expressed by use of a D.
command. In the case where we delete information in only some
of the columns, null values, specified by —, are inserted.

m Delete customer Smith

customer

customer-name

customer-street

customer-city

D.

Smith

®m Delete the branch-city value of the branch whose name is
“Perryridge”.

branch

branch-name

branch-city

assets

Database System Concepts

Perryridge

5.26

D.

©Silberschatz, Ko

% Deletion Query Examples
o~

m Delete all loans with a loan amount between $1300 and $1500.

¥ For consistency, we have to delete information from loan and
borrower tables

loan-number branch-name
-y

customer-name loan-numiber
-Y

conditions

_x =(=1300 and < 1500)

; Deletion Query Examples (Cont.)
e

®m Delete all accounts at branches located in Brooklyn.

branch-name balance

=

account-number
-y

branch-city assets
Brooklyn

£ Modification of the Database — Insertion
N~

®m Insertion is done by placing the I. operator in the query
expression.

®m Insert the fact that account A-9732 at the Perryridge
branch has a balance of $700.

L Modification of the Database — Insertion (Cont.)
~

® Provide as a gift for all loan customers of the Perryridge branch, a
new $200 savings account for every loan account they have, with
the loan number serving as the account number for the new
savings account.

account

account-number

branch-name

balance

Database System Concepts

I

o 4

Perryridge

200

depositor

customer-nanie

account-number

L

Y

X

loan

loan-number

branch-name

amount

X

Perryridge

borrower

customer-name

loan-number

Y

_X

©Silberschatz, Ko

L~ Modification of the Database — Updates
~

m Use the U. operator to change a value in a tuple without changing
all values in the tuple. QBE does not allow users to update the
primary key fields.

m Update the asset value of the Perryridge branch to $10,000,000.

branch branch-name branch-city assets

Perryridge U.10000000

®m Increase all balances by 5 percent.

account account-number branch-name balance
U._x*1.05

Database System Concepts ©Silberschatz, Ko

- Microsoft Access QBE
~

B Microsoft Access supports a variant of QBE called Graphical
Query By Example (GQBE)
m GQBE differs from QBE in the following ways

Attributes of relations are listed vertically, one below the other,
instead of horizontally

Instead of using variables, lines (links) between attributes are used
to specify that their values should be the same.

Links are added automatically on the basis of attribute name,
and the user can then add or delete links

By default, a link specifies an inner join, but can be modified to
specify outer joins.

Conditions, values to be printed, as well as group by attributes are all
specified together in a box called the design grid

Database System Concepts 5.32 ©Silberschatz, Ko

+~ An Example Query in Microsoft Access QBE
~

m Example query: Find the customer-name, account-number and
balance for all accounts at the Perryridge branch

*

'__. customer-name

account-number

branch-name
balance

account-number balance branch-name
. | depositor account account account

M O]
"Permridge"

§ET

Database System Concepts 5.33 ©Silberschatz, Korth_and , ;n

€ An Aggregation Query in Access QBE

~
® Find the name, street and city of all customers who have more
than one account at the bank

s
customer depositor____| [

sh i —
Ot Oomer-name custorner-name

cuskomer-skreest account-number

l:l.I'Stl:lI'I'lEr'-l:it':.-'

< | ’
Figld: | sl el s * | customer-strest cuztomer-city account-numoer ﬂ
Table: | customer cushomer customer depositor
Tokal: | Group By Group By Group By Count
Sort;
Show: m
Criteria: »1
o ll
« | b

<

Database System Concepts 5.34 ©Silberschatz, Ko

- Aggregation in Access QBE

~

® The row labeled Total specifies
¥ which attributes are group by attributes

» which attributes are to be aggregated upon (and the aggregate
function).

¥ For attributes that are neither group by nor aggregated, we can still
specify conditions by selecting where in the Total row and listing the
conditions below

® Asin SQL, if group by is used, only group by attributes and
aggregate results can be output

Database System Concepts 5.55 ©Silberschatz, Ko

. Datalog

Basic Structure

Syntax of Datalog Rules
Semantics of Nonrecursive Datalog
Safety

- Basic Structure
~

® Prolog-like logic-based language that allows recursive queries;
based on first-order logic.

m A Datalog program consists of a set of rules that define views.

m Example: define a view relation v1 containing account numbers
and balances for accounts at the Perryridge branch with a
balance of over $700.

v1(A, B) :(— account(A, “Perryridge”, B), B > 700.

B Retrieve the balance of account number “A-217" in the view
relation v1.

? v1("A-217", B).

m To find account number and balance of all accounts in v1 that
have a balance greater than 800
? v1(A,B), B > 800

Database System Concepts 5.37 ©Silberschatz, Ko

- Example Queries
~

B Each rule defines a set of tuples that a view relation must contain.

E.g. V1(A, B) .—account(A, “Perryridge”, B), B> 700 is
read as

for all A, B
If (A, “Perryridge”, B) [accountand B > 700
then (A, B) vl

®m The set of tuples in a view relation is then defined as the union of
all the sets of tuples defined by the rules for the view relation.

® Example:

Interest-rate(A, 5) .— account(A, N, B), B < 10000
Interest-rate(A, 6) .— account(A, N, B), B >= 10000

Database System Concepts 5.38 ©Silberschatz, Ko

2 Negation in Datalog
~

m Define a view relation c that contains the names of all customers
who have a deposit but no loan at the bank:

c(N) :— depositor(N, A), not is-borrower(N).
Is-borrower(N) :—borrower (N,L).

®m NOTE: using not borrower (N, L) in the first rule results in a
different meaning, namely there is some loan L for which N is not

a borrower.

To prevent such confusion, we require all variables in negated
“predicate” to also be present in non-negated predicates

Database System Concepts 5.39 ©Silberschatz, Ko

- Named Attribute Notation
~

m Datalog rules use a positional notation, which is convenient for
relations with a small number of attributes

B Itis easy to extend Datalog to support named attributes.
¢ E.g., vl can be defined using named attributes as

vl(account-number A, balance B) —
account(account-number A, branch-name “Perryridge”, balance B),
B > 700.

Database System Concepts 5.40 ©Silberschatz, Ko

~ \/Formal Syntax and Semantics of Datalog

m We formally define the syntax and semantics (meaning) of
Datalog programs, in the following steps

We define the syntax of predicates, and then the syntax of rules
We define the semantics of individual rules

We define the semantics of non-recursive programs, based on a
layering of rules

It is possible to write rules that can generate an infinite number of
tuples in the view relation. To prevent this, we define what rules are
“safe”. Non-recursive programs containing only safe rules can only
generate a finite number of answers.

It is possible to write recursive programs whose meaning is unclear.
We define what recursive programs are acceptable, and define their
meaning.

Database System Concepts 5.41 ©Silberschatz, Ko

- Syntax of Datalog Rules
~

®m A positive literal has the form
p(ty, ty .)
¥ p is the name of a relation with n attributes
» each t is either a constant or variable

® A negative literal has the form
not p(t,, t, ..., t,)
® Comparison operations are treated as positive predicates

" E.g. X >Yistreated as a predicate >(X,Y)

© “>"is conceptually an (infinite) relation that contains all pairs of
values such that the first value is greater than the second value

= Arithmetic operations are also treated as predicates

" E.g. A=B + C istreated as +(B, C, A), where the relation “+”
contains all triples such that the third value is the
sum of the first two

Database System Concepts 5.42 ©Silberschatz, Ko

- Syntax of Datalog Rules (Cont.)

~

m Rules are built out of literals and have the form:
p(ty, ty, ..., t) == Lq, Lo, .., Ly

- N\ J

~ ~
head body

¢ each of the L/'s is a literal

¢ head - the literal p(t,, t,, ..., t.)

© body — the rest of the literals

m A factis a rule with an empty body, written in the form:
P(Vq, Vo, ooy V).
© indicates tuple (vq, V,, ..., V) is in relation p

®m A Datalog program is a set of rules

Database System Concepts 5.43 ©Silberschatz,

- Semantics of a Rule
~

B A ground instantiation of a rule (or simply instantiation) is the
result of replacing each variable in the rule by some constant.

¥ Eg. Rule defining v1
v1(A,B) :— account (A,“Perryridge”, B), B > 700.
¥ An instantiation above rule:

v1(“*A-217”, 750) :—account(“A-217”, “Perryridge”, 750),
750 > 700.

® The body of rule instantiation R’ is satisfied in a set of facts
(database instance) | if

1. For each positive literal g;(v; 4, -.., Vi i) In the body of R’, | contains
the fact g;(V; 1, --s Vi ni)-

2. For each negative literal not g;(v; 4, ..., V; y) in the body of R’, | does
not contain the fact gy(v; ;, ..., Vj).

Database System Concepts 5.44 ©Silberschatz, Ko

2 Semantics of a Rule (Cont.)
~

® We define the set of facts that can be inferred from a given set of
facts | using rule R as:

infer(R, 1) = {p(ty, ..., t,) | there is a ground instantiation R’ of R
where p(t,, ..., t,) Is the head of R’, and
the body of R’ is satisfied in | }

m Given an set of rules O = {Ry, R,, ..., R}, we define
infer(d, I) = infer(Ry, 1) O infer(R,,) U ... O infer(R,, 1)

Database System Concepts 5415 ©Silberschatz, Ko

~ Layering of Rules
~

®m Define the interest on each account in Perryridge

interest(A, |) :— perryridge-account(A,B),
interest-rate(A,R), | = B * R/100.
perryridge-account(A,B) :—account(A, “Perryridge”, B).
interest-rate(A,5) :—account(N, A, B), B < 10000.
interest-rate(A,6) :—account(N, A, B), B >= 10000.

®m Layering of the view relations

interest

interest-rate

perry rid ge-account

Database account

Database System Concepts 5.46 ©Silberschatz, Ko

~ Layering Rules (Cont.)

~

Formally:

®m Arelation is a layer 1 if all relations used in the bodies of rules
defining it are stored in the database.

®m Arelation is a layer 2 if all relations used in the bodies of rules
defining it are either stored in the database, or are in layer 1.

m Arelationpisinlayeri+ 1if
itis notin layers 1, 2, ...,

all relations used in the bodies of rules defining a p are either stored
in the database, or are in layers 1, 2, ..., i

Database System Concepts 5.47 ©Silberschatz, Ko

2 Semantics of a Program
~

Let the layers in a given program be 1, 2, ..., n. Let [I; denote the
set of all rules defining view relations in layer |.

m Define lg = set of facts stored in the database.
m Recursively define [, = I O infer(0;,4, ;)

m The set of facts in the view relations defined by the program
(also called the semantics of the program) is given by the set of
facts |, corresponding to the highest layer n.

Note: Can instead define semantics using view expansion like
in relational algebra, but above definition is better for handling

extensions such as recursion.

Database System Concepts 5.48 ©Silberschatz, Ko

~ Safety

~

B It is possible to write rules that generate an infinite number of
answers.

gt(X,Y) = X>Y
not-in-loan(B, L) :— not loan(B, L)

To avoid this possibility Datalog rules must satisfy the following
conditions.

Every variable that appears in the head of the rule also appears in a
non-arithmetic positive literal in the body of the rule.

This condition can be weakened in special cases based on the
semantics of arithmetic predicates, for example to permit the rule
p(A) :- q(B),A=B+1

Every variable appearing in a negative literal in the body of the rule
also appears in some positive literal in the body of the rule.

Database System Concepts 5.49 ©Silberschatz, Ko

- Relational Operations in Datalog
~

® Project out attribute account-name from account.
qguery(A) :—account(A, N, B).
m Cartesian product of relations r; and r,.

query(Xy, X,y o0 X0, Y1, Y, Yo, o, Y) ==
(X, Xy, ooy X)), (Y1, Yo, o Y.

®m Union of relations r; and r,.

query(Xy, X,, ..., X)) =1(Xy, X5, o0y X)),
query(Xy, Xo, oy X)) —1(Xy, X5, oony X1),

m Set difference of r, and r,.

query(Xy, X,, ..., X)) =1 (X{, X5, ..oy X)),
not r (X, X5, ..., X,),

Database System Concepts 5.50 ©Silberschatz, Ko

~ Updates in Datalog

~

B Some Datalog extensions support database modification using + or
— in the rule head to indicate insertion and deletion.

m E.g. to transfer all accounts at the Perryridge branch to the
Johnstown branch, we can write

+ account(A, “Johnstown”, B) :- account (A, “Perryridge”, B).
— account(A, “Perryridge”, B) :- account (A, “Perryridge”, B)

Database System Concepts 5.5 ©Silberschatz, Ko

- Recursion in Datalog
~

B Suppose we are given a relation
manager(X, Y)
containing pairs of names X, Y such that Y is a manager of X (or
equivalently, X is a direct employee of Y).

®m Each manager may have direct employees, as well as indirect
employees

Indirect employees of a manager, say Jones, are employees of
people who are direct employees of Jones, or recursively,
employees of people who are indirect employees of Jones

m Suppose we wish to find all (direct and indirect) employees of
manager Jones. We can write a recursive Datalog program.

empl-jones (X) :- manager (X, Jones).
empl-jones (X) :- manager (X, Y), empl-jones(Y).

Database System Concepts 5.52 ©Silberschatz, Ko

- Semantics of Recursion in Datalog
~

m Assumption (for now): program contains no negative literals

B The view relations of a recursive program containing a set of
rules [0 are defined to contain exactly the set of facts |
computed by the iterative procedure Datalog-Fixpoint

procedure Datalog-Fixpoint
| = set of facts in the database

repeat
Old_| =1
| =10 infer(7,)
until 1 = Old_|
®m At the end of the procedure, infer(//, 1) £/ |
© infer(7, 1) = | if we consider the database to be a set of facts that

are part of the program
®m |is called a fixed point of the program.

Database System Concepts 5.53 ©Silberschatz, Ko

Example of Datalog-FixPoint Iteration

employee-name | manager-name
Alon Barinsky
Barinsky Estovar
Corbin Duarte
Duarte Jones
Estovar Jones
Jones Klinger

Rensal Klinger

Iteration number | Tuples in empl-jones |

(Duarte), (Estovar)

(Duarte), (Estovar), (Barinsky), (Corbin)
(Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
(Duarte), (Estovar), (Barinsky), (Corbin), (Alon)

- A More General View

®m Create a view relation empl that contains every tuple (X, Y)
such that X is directly or indirectly managed by Y.

empl(X, Y) :(—manager(X, Y).
empl(X, Y) :(—manager(X, Z), empl(Z, Y)

® Find the direct and indirect employees of Jones.
? empl(X, “Jones”).
® Can define the view empl in another way too:

empl(X, Y) :(—manager(X, Y).
empl(X, Y) :—empl(X, Z), manager(Z, Y.

Database System Concepts 5.55 ©Silberschatz, Ko

— The Power of Recursion
~

B Recursive views make it possible to write queries, such as
transitive closure queries, that cannot be written without
recursion or iteration.

Intuition: Without recursion, a non-recursive non-iterative program
can perform only a fixed number of joins of manager with itself

This can give only a fixed number of levels of managers

Given a program we can construct a database with a greater
number of levels of managers on which the program will not work

Database System Concepts 5.56 ©Silberschatz, Ko

. Recursion in SQL

m SQL:1999 permits recursive view definition
m E.g. query to find all employee-manager pairs

with recursive empl (emp, mgr) as (
select emp, mgr
from manager

- Monotonicity
~

B Aview V is said to be monotonic if given any two sets of facts
l, and I, such that |, O I,, then E,(1;) T E,(l,), where E,, is the
expression used to define V.

B A setof rules R is said to be monotonic if
|, O 1, implies infer(R, 1,) U infer(R, L,),
®m Relational algebra views defined using only the operations:

[1, O, %, [, ,n, and p (as well as operations like natural join
defined in terms of these operations) are monotonic.

®m Relational algebra views defined using — may not be monotonic.

m Similarly, Datalog programs without negation are monotonic, but
Datalog programs with negation may not be monotonic.

Database System Concepts 5158 ©Silberschatz, Ko

- Non-Monotonicity
~

B Procedure Datalog-Fixpoint is sound provided the rules in the
program are monotonic.

Otherwise, it may make some inferences in an iteration that cannot
be made in a later iteration. E.g. given the rules

a:- noth.
b:- c.
C.

Then a can be inferred initially, before b is inferred, but not later.

® We can extend the procedure to handle negation so long as the
program is “stratified”: intuitively, so long as negation is not
mixed with recursion

Database System Concepts 5.59 ©Silberschatz, Ko

- Stratified Negation
~

m A Datalog program is said to be stratified if its predicates can be
given layer numbers such that

For all positive literals, say g, in the body of any rule with head, say, p

p(..):-....,q(.), ...

then the layer number of p is greater than or equal to the layer
number of g

Given any rule with a negative literal
[2CoI S e QTG (G
then the layer number of p is strictly greater than the layer number of g
m Stratified programs do not have recursion mixed with negation

® We can define the semantics of stratified programs layer by layer,
from the bottom-most layer, using fixpoint iteration to define the
semantics of each layer.

Since lower layers are handled before higher layers, their facts will not
change, so each layer is monotonic once the facts for lower layers are
fixed. !

Database System Concepts 5.60 ©Silberschatz, Ko

- Non-Monotonicity (Cont.)
~

B There are useful queries that cannot be expressed by a stratified
program

E.g., given information about the number of each subpart in each
part, in a part-subpart hierarchy, find the total number of subparts of
each part.

A program to compute the above query would have to mix
aggregation with recursion

However, so long as the underlying data (part-subpart) has no
cycles, it is possible to write a program that mixes aggregation with
recursion, yet has a clear meaning

There are ways to evaluate some such classes of non-stratified
programs

Database System Concepts 5.61 ©Silberschatz, Ko

+~ Forms and Graphical User Interfaces
~

B Most naive users interact with databases using form interfaces
with graphical interaction facilities

¥ Web interfaces are the most common kind, but there are many
others

¥ Forms interfaces usually provide mechanisms to check for
correctness of user input, and automatically fill in fields given key
values

¥ Most database vendors provide convenient mechanisms to create
forms interfaces, and to link form actions to database actions
performed using SQL

Database System Concepts 5.62 ©Silberschatz, Ko

- Report Generators
~

B Report generators are tools to generate human-readable
summary reports from a database

They integrate database querying with creation of formatted text and
graphical charts

Reports can be defined once and executed periodically to get
current information from the database.

Example of report (next page)

Microsoft's Object Linking and Embedding (OLE) provides a
convenient way of embedding objects such as charts and tables
generated from the database into other objects such as Word
documents.

Database System Concepts 5.63 ©Silberschatz, Ko

g A Formatted Report
N /4

Acme Supply Company Inc.
Quarterly Sales Report

Period: Jan. 1 to March 31, 2001

Region Category Sales Subtotal
North Computer Hardware 1,000,000

Computer Software 500,000

All categories 1,500,000
South Computer Hardware 200,000

Computer Software 400,000

All categories 600,000

2,100,000

QBE Skeleton Tables for the Bank
Example

customer

s s e e T

+~ An Example Query in Microsoft Access QBE
~

&, Microzoft Access _ [Of x|

Elle Edt Yiew [nsert Query Tools Window Help
B E&EV| R < Bt |mE A % |z =2

g=! Penpridge-info - Select Query

depositor

*

CLUSEOMEr=ram e
branch-name account-number
Ftlalance

Ll |

Feld:

= | secaunt-rumbe balarce bearch-nams
acoount aooount oot

= ! L]

“Permyndgs"

Database System Concepts ©Silberschatz, Ko

LAn Aggregation Query in Microsoft Access QBE

~

@, Microzoll Access
| Ble Edt Wiew Insert Query Tooks Wrdow Help |
: ™ | E = |- -\.-'- R F il |) @ - ! ':hm = Al - ﬁ - @ .

pz? multiple-accts © Select Uueny

W

L TR -ThaiTe CLISE O rmesr =N e
ClUSbomer-Strest sccounk-rumbsr

oustomer-city

L
Fieid: m = | cuslomer-shest cLshames-city A court-numbes -2
Table: | customer cuslomer | customer_ _| depasitor 1—
Totak | Group By Group By Grouz By Count
Soit:
how: b] v Ll
Crternia: 1]

Database System Concepts ©Silberschatz, Ko

. The account Relation

account-number ‘branch-name balance
A-101 Downtown 500
A-215 Mianus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Perryridge 900
A-222 Redwood 700
A-217 Perryridge 750

. The v1 Relation

. Result of infer(R, 1)

loan-number

branch-name

P Perryridge
loan loan-number branch-name amount
X Perryridge

branch-name

branch-city

Capital

Queens

conditions

Y= 2%z

