
©Silberschatz, Korth and Sudarshan6.1Database System Concepts

Chapter 6: Integrity and SecurityChapter 6: Integrity and Security

! Domain Constraints

! Referential Integrity

! Assertions

! Triggers

! Security

! Authorization

! Authorization in SQL

©Silberschatz, Korth and Sudarshan6.2Database System Concepts

Domain ConstraintsDomain Constraints

! Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the database do
not result in a loss of data consistency.

! Domain constraints are the most elementary form of integrity
constraint.

! They test values inserted in the database, and test queries to
ensure that the comparisons make sense.

! New domains can be created from existing data types

" E.g. create domain Dollars numeric(12, 2)
create domain Pounds numeric(12,2)

! We cannot assign or compare a value of type Dollars to a value of
type Pounds.

" However, we can convert type as below
(cast r.A as Pounds)

(Should also multiply by the dollar-to-pound conversion-rate)

©Silberschatz, Korth and Sudarshan6.3Database System Concepts

Domain Constraints (Cont.)Domain Constraints (Cont.)

! The check clause in SQL-92 permits domains to be restricted:

" Use check clause to ensure that an hourly-wage domain allows only
values greater than a specified value.

create domain hourly-wage numeric(5,2)
constraint value-test check(value > = 4.00)

" The domain has a constraint that ensures that the hourly-wage is
greater than 4.00

" The clause constraint value-test is optional; useful to indicate which
constraint an update violated.

! Can have complex conditions in domain check

" create domain AccountType char(10)
constraint account-type-test

check (value in (‘Checking’, ‘Saving’))

" check (branch-name in (select branch-name from branch))

©Silberschatz, Korth and Sudarshan6.4Database System Concepts

Referential IntegrityReferential Integrity

! Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another
relation.

" Example: If “Perryridge” is a branch name appearing in one of the
tuples in the account relation, then there exists a tuple in the branch
relation for branch “Perryridge”.

! Formal Definition

" Let r1(R1) and r2(R2) be relations with primary keys K1 and K2
respectively.

" The subset α of R2 is a foreign key referencing K1 in relation r1, if for
every t2 in r2 there must be a tuple t1 in r1 such that t1[K1] = t2[α].

" Referential integrity constraint also called subset dependency since its
can be written as

∏α (r2) ⊆ ∏ K1 (r1)

©Silberschatz, Korth and Sudarshan6.5Database System Concepts

Referential Integrity in the EReferential Integrity in the E--R ModelR Model

! Consider relationship set R between entity sets E1 and E2. The
relational schema for R includes the primary keys K1 of E1 and
K2 of E2.
Then K1 and K2 form foreign keys on the relational schemas for
E1 and E2 respectively.

! Weak entity sets are also a source of referential integrity
constraints.

" For the relation schema for a weak entity set must include the
primary key attributes of the entity set on which it depends

RE1 E2

©Silberschatz, Korth and Sudarshan6.6Database System Concepts

Checking Referential Integrity on Checking Referential Integrity on
Database ModificationDatabase Modification

! The following tests must be made in order to preserve the
following referential integrity constraint:

∏α (r2) ⊆ ∏ K (r1)

! Insert. If a tuple t2 is inserted into r2, the system must ensure
that there is a tuple t1 in r1 such that t1[K] = t2[α]. That is

t2 [α] ∈ ∏ K (r1)

! Delete. If a tuple, t1 is deleted from r1, the system must
compute the set of tuples in r2 that reference t1:

σα = t1[K] (r2)

If this set is not empty

" either the delete command is rejected as an error, or

" the tuples that reference t1 must themselves be deleted
(cascading deletions are possible).

©Silberschatz, Korth and Sudarshan6.7Database System Concepts

Database Modification (Cont.)Database Modification (Cont.)

! Update. There are two cases:

" If a tuple t2 is updated in relation r2 and the update modifies values for
foreign key α, then a test similar to the insert case is made:

Let t2’ denote the new value of tuple t2. The system must ensure
that

t2’[α] ∈ ∏ K(r1)

" If a tuple t1 is updated in r1, and the update modifies values for the
primary key (K), then a test similar to the delete case is made:

1. The system must compute

σα = t1[K] (r2)
using the old value of t1 (the value before the update is applied).

2. If this set is not empty

1. the update may be rejected as an error, or

2. the update may be cascaded to the tuples in the set, or

3. the tuples in the set may be deleted.

©Silberschatz, Korth and Sudarshan6.8Database System Concepts

Referential Integrity in SQLReferential Integrity in SQL

! Primary and candidate keys and foreign keys can be specified as part of
the SQL create table statement:

" The primary key clause lists attributes that comprise the primary key.

" The unique key clause lists attributes that comprise a candidate key.

" The foreign key clause lists the attributes that comprise the foreign key and
the name of the relation referenced by the foreign key.

! By default, a foreign key references the primary key attributes of the
referenced table

foreign key (account-number) references account

! Short form for specifying a single column as foreign key

account-number char (10) references account

! Reference columns in the referenced table can be explicitly specified

" but must be declared as primary/candidate keys

foreign key (account-number) references account(account-number)

©Silberschatz, Korth and Sudarshan6.9Database System Concepts

Referential Integrity in SQL Referential Integrity in SQL –– ExampleExample

create table customer
(customer-name char(20),
customer-street char(30),
customer-city char(30),
primary key (customer-name))

create table branch
(branch-name char(15),
branch-city char(30),
assets integer,
primary key (branch-name))

©Silberschatz, Korth and Sudarshan6.10Database System Concepts

Referential Integrity in SQL Referential Integrity in SQL –– Example (Cont.)Example (Cont.)

create table account
(account-number char(10),
branch-name char(15),
balance integer,
primary key (account-number),
foreign key (branch-name) references branch)

create table depositor
(customer-name char(20),
account-number char(10),
primary key (customer-name, account-number),
foreign key (account-number) references account,
foreign key (customer-name) references customer)

©Silberschatz, Korth and Sudarshan6.11Database System Concepts

Cascading Actions in SQLCascading Actions in SQL

create table account

. . .
foreign key(branch-name) references branch

on delete cascade
on update cascade

. . .)

! Due to the on delete cascade clauses, if a delete of a tuple in
branch results in referential-integrity constraint violation, the
delete “cascades” to the account relation, deleting the tuple that
refers to the branch that was deleted.

! Cascading updates are similar.

©Silberschatz, Korth and Sudarshan6.12Database System Concepts

Cascading Actions in SQL (Cont.)Cascading Actions in SQL (Cont.)

! If there is a chain of foreign-key dependencies across multiple
relations, with on delete cascade specified for each dependency,
a deletion or update at one end of the chain can propagate across
the entire chain.

! If a cascading update to delete causes a constraint violation that
cannot be handled by a further cascading operation, the system
aborts the transaction.

" As a result, all the changes caused by the transaction and its
cascading actions are undone.

! Referential integrity is only checked at the end of a transaction

" Intermediate steps are allowed to violate referential integrity provided
later steps remove the violation

" Otherwise it would be impossible to create some database states, e.g.
insert two tuples whose foreign keys point to each other

E.g. spouse attribute of relation
marriedperson(name, address, spouse)

©Silberschatz, Korth and Sudarshan6.13Database System Concepts

Referential Integrity in SQL (Cont.)Referential Integrity in SQL (Cont.)

! Alternative to cascading:

" on delete set null

" on delete set default

! Null values in foreign key attributes complicate SQL referential
integrity semantics, and are best prevented using not null
" if any attribute of a foreign key is null, the tuple is defined to satisfy

the foreign key constraint!

©Silberschatz, Korth and Sudarshan6.14Database System Concepts

AssertionsAssertions

! An assertion is a predicate expressing a condition that we wish
the database always to satisfy.

! An assertion in SQL takes the form

create assertion <assertion-name> check <predicate>

! When an assertion is made, the system tests it for validity, and
tests it again on every update that may violate the assertion

" This testing may introduce a significant amount of overhead; hence
assertions should be used with great care.

! Asserting
for all X, P(X)

is achieved in a round-about fashion using
not exists X such that not P(X)

©Silberschatz, Korth and Sudarshan6.15Database System Concepts

Assertion ExampleAssertion Example

! The sum of all loan amounts for each branch must be less than
the sum of all account balances at the branch.

create assertion sum-constraint check
(not exists (select * from branch

where (select sum(amount) from loan
where loan.branch-name =

branch.branch-name)
>= (select sum(amount) from account

where loan.branch-name =
branch.branch-name)))

©Silberschatz, Korth and Sudarshan6.16Database System Concepts

Assertion ExampleAssertion Example

! Every loan has at least one borrower who maintains an account with
a minimum balance or $1000.00

create assertion balance-constraint check
(not exists (

select * from loan
where not exists (

select *
from borrower, depositor, account
where loan.loan-number = borrower.loan-number

and borrower.customer-name = depositor.customer-name
and depositor.account-number = account.account-number
and account.balance >= 1000)))

©Silberschatz, Korth and Sudarshan6.17Database System Concepts

TriggersTriggers

! A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database.

! To design a trigger mechanism, we must:

" Specify the conditions under which the trigger is to be executed.

" Specify the actions to be taken when the trigger executes.

! Triggers introduced to SQL standard in SQL:1999, but supported
even earlier using non-standard syntax by most databases.

©Silberschatz, Korth and Sudarshan6.18Database System Concepts

Trigger Example Trigger Example

! Suppose that instead of allowing negative account balances, the
bank deals with overdrafts by

" setting the account balance to zero

" creating a loan in the amount of the overdraft

" giving this loan a loan number identical to the account number of the
overdrawn account

! The condition for executing the trigger is an update to the
account relation that results in a negative balance value.

©Silberschatz, Korth and Sudarshan6.19Database System Concepts

Trigger Example in SQL:1999Trigger Example in SQL:1999

create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic

insert into borrower
(select customer-name, account-number
from depositor
where nrow.account-number =

depositor.account-number);
insert into loan values

(n.row.account-number, nrow.branch-name,
– nrow.balance);

update account set balance = 0
where account.account-number = nrow.account-number

end

©Silberschatz, Korth and Sudarshan6.20Database System Concepts

Triggering Events and Actions in SQLTriggering Events and Actions in SQL

! Triggering event can be insert, delete or update

! Triggers on update can be restricted to specific attributes

" E.g. create trigger overdraft-trigger after update of balance on
account

! Values of attributes before and after an update can be referenced

" referencing old row as : for deletes and updates

" referencing new row as : for inserts and updates

! Triggers can be activated before an event, which can serve as extra
constraints. E.g. convert blanks to null.

create trigger setnull-trigger before update on r
referencing new row as nrow
for each row

when nrow.phone-number = ‘ ‘
set nrow.phone-number = null

©Silberschatz, Korth and Sudarshan6.21Database System Concepts

Statement Level TriggersStatement Level Triggers

! Instead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a
transaction

" Use for each statement instead of for each row

" Use referencing old table or referencing new table to refer
to temporary tables (called transition tables) containing the
affected rows

" Can be more efficient when dealing with SQL statements that
update a large number of rows

©Silberschatz, Korth and Sudarshan6.22Database System Concepts

External World ActionsExternal World Actions

! We sometimes require external world actions to be triggered on a
database update
" E.g. re-ordering an item whose quantity in a warehouse has become

small, or turning on an alarm light,

! Triggers cannot be used to directly implement external-world
actions, BUT
" Triggers can be used to record actions-to-be-taken in a separate table

" Have an external process that repeatedly scans the table, carries out
external-world actions and deletes action from table

! E.g. Suppose a warehouse has the following tables
" inventory(item, level): How much of each item is in the warehouse

" minlevel(item, level) : What is the minimum desired level of each item

" reorder(item, amount): What quantity should we re-order at a time

" orders(item, amount) : Orders to be placed (read by external process)

©Silberschatz, Korth and Sudarshan6.23Database System Concepts

External World Actions (Cont.)External World Actions (Cont.)

create trigger reorder-trigger after update of amount on inventory
referencing old row as orow, new row as nrow
for each row

when nrow.level < = (select level
from minlevel
where minlevel.item = orow.item)

and orow.level > (select level
from minlevel
where minlevel.item = orow.item)

begin
insert into orders

(select item, amount
from reorder
where reorder.item = orow.item)

end

©Silberschatz, Korth and Sudarshan6.24Database System Concepts

Triggers in MSTriggers in MS--SQLServer SQLServer SyntaxSyntax

create trigger overdraft-trigger on account
for update
as
if inserted.balance < 0
begin

insert into borrower
(select customer-name,account-number
from depositor, inserted
where inserted.account-number =

depositor.account-number)
insert into loan values

(inserted.account-number, inserted.branch-name,
– inserted.balance)

update account set balance = 0
from account, inserted
where account.account-number = inserted.account-number

end

©Silberschatz, Korth and Sudarshan6.25Database System Concepts

When Not To Use TriggersWhen Not To Use Triggers

! Triggers were used earlier for tasks such as

" maintaining summary data (e.g. total salary of each department)

" Replicating databases by recording changes to special relations
(called change or delta relations) and having a separate process
that applies the changes over to a replica

! There are better ways of doing these now:

" Databases today provide built in materialized view facilities to
maintain summary data

" Databases provide built-in support for replication

! Encapsulation facilities can be used instead of triggers in many
cases

" Define methods to update fields

" Carry out actions as part of the update methods instead of
through a trigger

©Silberschatz, Korth and Sudarshan6.26Database System Concepts

SecuritySecurity

! Security - protection from malicious attempts to steal or modify data.

" Database system level

Authentication and authorization mechanisms to allow specific users
access only to required data

We concentrate on authorization in the rest of this chapter

" Operating system level

Operating system super-users can do anything they want to the
database! Good operating system level security is required.

" Network level: must use encryption to prevent

Eavesdropping (unauthorized reading of messages)

Masquerading (pretending to be an authorized user or sending
messages supposedly from authorized users)

©Silberschatz, Korth and Sudarshan6.27Database System Concepts

Security (Cont.)Security (Cont.)

" Physical level

Physical access to computers allows destruction of data by
intruders; traditional lock-and-key security is needed

Computers must also be protected from floods, fire, etc.

– More in Chapter 17 (Recovery)

" Human level

Users must be screened to ensure that an authorized users do
not give access to intruders

Users should be trained on password selection and secrecy

©Silberschatz, Korth and Sudarshan6.28Database System Concepts

AuthorizationAuthorization

Forms of authorization on parts of the database:

! Read authorization - allows reading, but not modification of data.

! Insert authorization - allows insertion of new data, but not
modification of existing data.

! Update authorization - allows modification, but not deletion of
data.

! Delete authorization - allows deletion of data

©Silberschatz, Korth and Sudarshan6.29Database System Concepts

Authorization (Cont.)Authorization (Cont.)

Forms of authorization to modify the database schema:

! Index authorization - allows creation and deletion of indices.

! Resources authorization - allows creation of new relations.

! Alteration authorization - allows addition or deletion of attributes in
a relation.

! Drop authorization - allows deletion of relations.

©Silberschatz, Korth and Sudarshan6.30Database System Concepts

Authorization and ViewsAuthorization and Views

! Users can be given authorization on views, without being given
any authorization on the relations used in the view definition

! Ability of views to hide data serves both to simplify usage of the
system and to enhance security by allowing users access only to
data they need for their job

! A combination or relational-level security and view-level security
can be used to limit a user’s access to precisely the data that
user needs.

©Silberschatz, Korth and Sudarshan6.31Database System Concepts

View ExampleView Example

! Suppose a bank clerk needs to know the names of the
customers of each branch, but is not authorized to see specific
loan information.

" Approach: Deny direct access to the loan relation, but grant access
to the view cust-loan, which consists only of the names of
customers and the branches at which they have a loan.

" The cust-loan view is defined in SQL as follows:

create view cust-loan as
select branchname, customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number

©Silberschatz, Korth and Sudarshan6.32Database System Concepts

View Example (Cont.)View Example (Cont.)

! The clerk is authorized to see the result of the query:

select *
from cust-loan

! When the query processor translates the result into a query on
the actual relations in the database, we obtain a query on
borrower and loan.

! Authorization must be checked on the clerk’s query before query
processing replaces a view by the definition of the view.

©Silberschatz, Korth and Sudarshan6.33Database System Concepts

Authorization on ViewsAuthorization on Views

! Creation of view does not require resources authorization since
no real relation is being created

! The creator of a view gets only those privileges that provide no
additional authorization beyond that he already had.

! E.g. if creator of view cust-loan had only read authorization on
borrower and loan, he gets only read authorization on cust-loan

©Silberschatz, Korth and Sudarshan6.34Database System Concepts

Granting of PrivilegesGranting of Privileges

! The passage of authorization from one user to another may be
represented by an authorization graph.

! The nodes of this graph are the users.

! The root of the graph is the database administrator.

! Consider graph for update authorization on loan.

! An edge Ui →Uj indicates that user Ui has granted update
authorization on loan to Uj.

U1 U4

U2 U5

U3

DBA

©Silberschatz, Korth and Sudarshan6.35Database System Concepts

Authorization Grant GraphAuthorization Grant Graph

! Requirement: All edges in an authorization graph must be part of
some path originating with the database administrator

! If DBA revokes grant from U1:

" Grant must be revoked from U4 since U1 no longer has authorization

" Grant must not be revoked from U5 since U5 has another
authorization path from DBA through U2

! Must prevent cycles of grants with no path from the root:

" DBA grants authorization to U7

" U7 grants authorization to U8

" U8 grants authorization to U7

" DBA revokes authorization from U7

! Must revoke grant U7 to U8 and from U8 to U7 since there is no
path from DBA to U7 or to U8 anymore.

©Silberschatz, Korth and Sudarshan6.36Database System Concepts

Security Specification in SQLSecurity Specification in SQL

! The grant statement is used to confer authorization

grant <privilege list>

on <relation name or view name> to <user list>

! <user list> is:

" a user-id

" public, which allows all valid users the privilege granted

" A role (more on this later)

! Granting a privilege on a view does not imply granting any
privileges on the underlying relations.

! The grantor of the privilege must already hold the privilege on
the specified item (or be the database administrator).

©Silberschatz, Korth and Sudarshan6.37Database System Concepts

Privileges in SQLPrivileges in SQL

! select: allows read access to relation,or the ability to query using
the view

" Example: grant users U1, U2, and U3 select authorization on the branch
relation:

grant select on branch to U1, U2, U3

! insert: the ability to insert tuples

! update: the ability to update using the SQL update statement

! delete: the ability to delete tuples.

! references: ability to declare foreign keys when creating relations.

! usage: In SQL-92; authorizes a user to use a specified domain

! all privileges: used as a short form for all the allowable privileges

©Silberschatz, Korth and Sudarshan6.38Database System Concepts

Privilege To Grant PrivilegesPrivilege To Grant Privileges

! with grant option: allows a user who is granted a privilege to
pass the privilege on to other users.

" Example:

grant select on branch to U1 with grant option

gives U1 the select privileges on branch and allows U1 to grant this

privilege to others

©Silberschatz, Korth and Sudarshan6.39Database System Concepts

RolesRoles

! Roles permit common privileges for a class of users can be
specified just once by creating a corresponding “role”

! Privileges can be granted to or revoked from roles, just like user

! Roles can be assigned to users, and even to other roles

! SQL:1999 supports roles

create role teller
create role manager

grant select on branch to teller
grant update (balance) on account to teller
grant all privileges on account to manager

grant teller to manager

grant teller to alice, bob
grant manager to avi

©Silberschatz, Korth and Sudarshan6.40Database System Concepts

Revoking Authorization in SQLRevoking Authorization in SQL

! The revoke statement is used to revoke authorization.

revoke<privilege list>

on <relation name or view name> from <user list> [restrict|cascade]

! Example:

revoke select on branch from U1, U2, U3 cascade

! Revocation of a privilege from a user may cause other users also
to lose that privilege; referred to as cascading of the revoke.

! We can prevent cascading by specifying restrict:

revoke select on branch from U1, U2, U3 restrict

With restrict, the revoke command fails if cascading revokes
are required.

©Silberschatz, Korth and Sudarshan6.41Database System Concepts

Revoking Authorization in SQL (Cont.)Revoking Authorization in SQL (Cont.)

! <privilege-list> may be all to revoke all privileges the revokee
may hold.

! If <revokee-list> includes public all users lose the privilege
except those granted it explicitly.

! If the same privilege was granted twice to the same user by
different grantees, the user may retain the privilege after the
revocation.

! All privileges that depend on the privilege being revoked are also
revoked.

©Silberschatz, Korth and Sudarshan6.42Database System Concepts

Limitations of SQL AuthorizationLimitations of SQL Authorization

! SQL does not support authorization at a tuple level
" E.g. we cannot restrict students to see only (the tuples storing) their own

grades

! With the growth in Web access to databases, database accesses come
primarily from application servers.
" End users don't have database user ids, they are all mapped to the same

database user id

! All end-users of an application (such as a web application) may be
mapped to a single database user

! The task of authorization in above cases falls on the application
program, with no support from SQL
" Benefit: fine grained authorizations, such as to individual tuples, can be

implemented by the application.

" Drawback: Authorization must be done in application code, and may be
dispersed all over an application

" Checking for absence of authorization loopholes becomes very difficult since
it requires reading large amounts of application code

©Silberschatz, Korth and Sudarshan6.43Database System Concepts

Audit TrailsAudit Trails

! An audit trail is a log of all changes (inserts/deletes/updates) to the
database along with information such as which user performed the
change, and when the change was performed.

! Used to track erroneous/fraudulent updates.

! Can be implemented using triggers, but many database systems
provide direct support.

©Silberschatz, Korth and Sudarshan6.44Database System Concepts

EncryptionEncryption

! Data may be encrypted when database authorization provisions
do not offer sufficient protection.

! Properties of good encryption technique:

" Relatively simple for authorized users to encrypt and decrypt data.

" Encryption scheme depends not on the secrecy of the algorithm but
on the secrecy of a parameter of the algorithm called the
encryption key.

" Extremely difficult for an intruder to determine the encryption key.

©Silberschatz, Korth and Sudarshan6.45Database System Concepts

Encryption (Cont.)Encryption (Cont.)

! Data Encryption Standard (DES) substitutes characters and rearranges
their order on the basis of an encryption key which is provided to
authorized users via a secure mechanism. Scheme is no more secure
than the key transmission mechanism since the key has to be shared.

! Advanced Encryption Standard (AES) is a new standard replacing DES,
and is based on the Rijndael algorithm, but is also dependent on shared
secret keys

! Public-key encryption is based on each user having two keys:
" public key – publicly published key used to encrypt data, but cannot be used

to decrypt data

" private key -- key known only to individual user, and used to decrypt data.
Need not be transmitted to the site doing encryption.

Encryption scheme is such that it is impossible or extremely hard to
decrypt data given only the public key.

! The RSA public-key encryption scheme is based on the hardness of
factoring a very large number (100's of digits) into its prime
components.

©Silberschatz, Korth and Sudarshan6.46Database System Concepts

AuthenticationAuthentication

! Password based authentication is widely used, but is susceptible
to sniffing on a network

! Challenge-response systems avoid transmission of passwords

" DB sends a (randomly generated) challenge string to user

" User encrypts string and returns result.

" DB verifies identity by decrypting result

" Can use public-key encryption system by DB sending a message
encrypted using user’s public key, and user decrypting and sending
the message back

! Digital signatures are used to verify authenticity of data

" E.g. use private key (in reverse) to encrypt data, and anyone can
verify authenticity by using public key (in reverse) to decrypt data.
Only holder of private key could have created the encrypted data.

" Digital signatures also help ensure nonrepudiation: sender
cannot later claim to have not created the data

©Silberschatz, Korth and Sudarshan6.47Database System Concepts

Digital CertificatesDigital Certificates

! Digital certificates are used to verify authenticity of public keys.

! Problem: when you communicate with a web site, how do you know
if you are talking with the genuine web site or an imposter?
" Solution: use the public key of the web site

" Problem: how to verify if the public key itself is genuine?

! Solution:
" Every client (e.g. browser) has public keys of a few root-level

certification authorities

" A site can get its name/URL and public key signed by a certification
authority: signed document is called a certificate

" Client can use public key of certification authority to verify certificate

" Multiple levels of certification authorities can exist. Each certification
authority

presents its own public-key certificate signed by a
higher level authority, and

Uses its private key to sign the certificate of other web
sites/authorities

End of ChapterEnd of Chapter

©Silberschatz, Korth and Sudarshan6.49Database System Concepts

Statistical DatabasesStatistical Databases

! Problem: how to ensure privacy of individuals while allowing use
of data for statistical purposes (e.g., finding median income,
average bank balance etc.)

! Solutions:

" System rejects any query that involves fewer than some
predetermined number of individuals.

∗ Still possible to use results of multiple overlapping queries to
deduce data about an individual

" Data pollution -- random falsification of data provided in response to
a query.

" Random modification of the query itself.

! There is a tradeoff between accuracy and security.

©Silberschatz, Korth and Sudarshan6.50Database System Concepts

An An nn--ary ary Relationship SetRelationship Set

©Silberschatz, Korth and Sudarshan6.51Database System Concepts

AuthorizationAuthorization--Grant GraphGrant Graph

©Silberschatz, Korth and Sudarshan6.52Database System Concepts

Attempt to Defeat Authorization RevocationAttempt to Defeat Authorization Revocation

©Silberschatz, Korth and Sudarshan6.53Database System Concepts

Authorization GraphAuthorization Graph

©Silberschatz, Korth and Sudarshan6.54Database System Concepts

Physical Level SecurityPhysical Level Security

! Protection of equipment from floods, power failure, etc.

! Protection of disks from theft, erasure, physical damage, etc.

! Protection of network and terminal cables from wiretaps non-
invasive electronic eavesdropping, physical damage, etc.

Solutions:

! Replicated hardware:

" mirrored disks, dual busses, etc.

" multiple access paths between every pair of devises

! Physical security: locks,police, etc.

! Software techniques to detect physical security breaches.

©Silberschatz, Korth and Sudarshan6.55Database System Concepts

Human Level SecurityHuman Level Security

! Protection from stolen passwords, sabotage, etc.

! Primarily a management problem:

" Frequent change of passwords

" Use of “non-guessable” passwords

" Log all invalid access attempts

" Data audits

" Careful hiring practices

©Silberschatz, Korth and Sudarshan6.56Database System Concepts

Operating System Level SecurityOperating System Level Security

! Protection from invalid logins

! File-level access protection (often not very helpful for database
security)

! Protection from improper use of “superuser” authority.

! Protection from improper use of privileged machine intructions.

©Silberschatz, Korth and Sudarshan6.57Database System Concepts

NetworkNetwork--Level SecurityLevel Security

! Each site must ensure that it communicate with trusted sites (not
intruders).

! Links must be protected from theft or modification of messages

! Mechanisms:

" Identification protocol (password-based),

" Cryptography.

©Silberschatz, Korth and Sudarshan6.58Database System Concepts

DatabaseDatabase--Level SecurityLevel Security

! Assume security at network, operating system, human, and
physical levels.

! Database specific issues:

" each user may have authority to read only part of the data and to
write only part of the data.

" User authority may correspond to entire files or relations, but it may
also correspond only to parts of files or relations.

! Local autonomy suggests site-level authorization control in a
distributed database.

! Global control suggests centralized control.

