‘Chapter 8: Object-Oriented Databases

m Need for Complex Data Types

B The Object-Oriented Data Model
B Object-Oriented Languages
[

Persistent Programming Languages

‘ Need for Complex Data Types

B Traditional database applications in data processing had
conceptually simple data types

* Relatively few data types, first normal form holds
m Complex data types have grown more important in recent years

0 Add an pe Ned a

‘ Object-Oriented Data Model

B Loosely speaking, an object corresponds to an entity in the E-
R model.

® The object-oriented paradigm is based on encapsulating code
and data related to an object into single unit.

‘ Object Structure

B An object has associated with it:

* A set of variables that contain the data for the object. The value of
each variable is itself an object.

* A set of messages to which the object responds; each message may
have zero, one, or more parameters.

‘ Messages and Methods

® Methods are programs written in general-purpose language
with the following features

* only variables in the object itself may be referenced directly

* data in other objects are referenced only by sending messages.

‘ Object Classes

B Similar objects are grouped into a class; each such object is
called an instance of its class

m All objects in a class have the same
* Variables, with the same types

‘ Class Definition Example

class employee {
[*Variables */
string name;
string address;
date start-date;
int salary;
/* Messages */

‘ Inheritance

B E.g., class of bank customers is similar to class of bank
employees, although there are differences

* both share some variables and messages, e.g., name and address.

* But there are variables and messages specific to each class e.g.,
salary for employees and credit-rating for customers.

‘ Inheritance (Cont.)

B Place classes into a specialization/IS-A hierarchy

* variables/messages belonging to class person are
inherited by class employee as well as customer

‘ Class Hierarchy Definition

class person{
string name;
string address:
b

class customer isa

‘ Class Hierarchy Example (Cont.)

m Full variable list for objects in the class officer:
* office-number, expense-account-number: defined locally
 start-date, salary: inherited from employee
* name, address: inherited from person

® Methods inherited similar to variables.

‘ Example of Multiple Inheritance

/N

el Cusdone

Multiple Inheritance

® With multiple inheritance a class may have more than one superclass.

* The class/subclass relationship is represented by a directed acyclic graph
(DAG)

* Particularly useful when objects can be classified in more than one way,
which are independent of each other

> E.g. temporary/permanent is independent of Officer/secretary/teller
> Create a subclass for each combination of subclasses

‘More Examples of Multiple Inheritance

m Conceptually, an object can belong to each of several
subclasses

* A person can play the roles of student, a teacher or footballPlayer,
or any combination of the three

> E.g., student teaching assistant who also play football

‘ Object ldentity

B An object retains its identity even if some or all of the values
of variables or definitions of methods change over time.

B Object identity is a stronger notion of identity than in

programming languages or data models not based on object
orientation.

‘ Object ldentifiers

B Object identifiers used to uniquely identify objects
* Object identifiers are unique:
> no two objects have the same identifier
> each object has only one object identifier

‘ Object Containment

bicycle

‘ Object-Oriented Languages

B Object-oriented concepts can be used in different ways

* Object-orientation can be used as a design tool, and be
encoded into, for example, a relational database

¢ analogous to modeling data with E-R diagram and then
converting to a set of relations)

‘ Persistent Programming Languages

m Persistent Programming languages allow objects to be created
and stored in a database, and used directly from a programming
language

* allow data to be manipulated directly from the programming language

> No need to go through SQL.

‘ Persistent Prog. Languages (Cont.)

m Drawbacks of persistent programming languages

* Due to power of most programming languages, it is easy to make
programming errors that damage the database.

* Complexity of languages makes automatic high-level optimization
more difficult.

10

‘ Persistence of Objects

m Approaches to make transient objects persistent include
establishing

* Persistence by Class — declare all objects of a class to be
persistent; simple but inflexible.

* Persistence by Creation — extend the syntax for creating objects to

‘ Object Identity and Pointers

m A persistent object is assigned a persistent object identifier.

B Degrees of permanence of identity:

* Intraprocedure — identity persists only during the executions of a
single procedure

* Intraprogram — identity persists only during execution of a single

11

‘ Object Identity and Pointers (Cont.)

B |n O-O languages such as C++, an object identifier is
actually an in-memory pointer.

B Persistent pointer — persists beyond program execution
* can be thought of as a pointer into the database

‘torage and Access of Persistent Objects

How to find objects in the database:
® Name objects (as you would name files)
“ Cannot scale to large number of objects.

* Typically given only to class extents and other collections of
objects, but not objects.

‘ Persistent C++ Systems

B C++ language allows support for persistence to be added without
changing the language

* Declare a class called Persistent_Object with attributes and methods
to support persistence

* Overloading — ability to redefine standard function names and
operators (i.e., +, —, the pointer deference operator —>) when applied

Q)DMG C++ Object Definition Language

B The Object Database Management Group is an industry
consortium aimed at standardizing object-oriented databases

* in particular persistent programming languages

* Includes standards for C++, Smalltalk and Java
* ODMG-93

‘ ODMG Types

B Template class d_Ref<class> used to specify references
(persistent pointers)

® Template class d_Set<class> used to define sets of objects.
* Methods include insert_element(e) and delete_element(e)

‘ ODMG C++ ODL: Example

class Branch : public d_Object {

}

class Person : public d_Object {
public:

14

‘ ODMG C++ ODL: Example (Cont.)

class Customer : public Person {

public:
d_Date member_from;
d_Long customer _id;

‘ Implementing Relationships

B Relationships between classes implemented by references

B Special reference types enforces integrity by adding/removing
inverse links.

* Type d_Rel Ref<Class, InvRef> is a reference to Class, where
attribute InvRef of Class is the inverse reference.

‘ Implementing Relationships

m Eg.

extern const char _owners[], _accounts[|;
class Account : public d.Object {

d_Rel Set <Customer, _accounts> owners;

QDMG C++ Object Manipulation Language

m Uses persistent versions of C++ operators such as new(db)

d_Ref<Account> account = new(bank_db, “Account”) Account;

* new allocates the object in the specified database, rather than in
memory.

* The second argument (“Account”) gives typename used in the
database.

ODMG C++OML: Database and Object
Functions
B Class d_Database provides methods to

* open a database: open(databasename)
< give names to objects: set_object_name(object, name)

* look up objects by name: lookup_object(name)

‘ ODMG C++ OML: Example

int create_account_owner(String name, String Address){

Database bank_db.obj;

Database * bank_db= & bank_db.obj;
bank_db =>open(“Bank-DB”);
d.Transaction Trans;

17

‘ ODMG C++ OML: Example (Cont.)

B Class extents maintained automatically in the database.

B To access a class extent:
d_Extent<Customer> customerExtent(bank_db);

m Class d_Extent provides method

‘ODMG C++ OML: Example of Iterators

int print_customers() {
Database bank_db_obj;
Database * bank_db = &bank_db_obj;
bank_db->open (“Bank-DB”);
d_Transaction Trans; Trans.begin ();

‘ ODMG C++ Binding: Other Features

B Declarative query language OQL, looks like SQL

< Form query as a string, and execute it to get a set of results
(actually a bag, since duplicates may be present)

d_Set<d_Ref<Account>> result;
d_OQL_Query g1("select a

‘/laking Pointer Persistence Transparent

® Drawback of the ODMG C++ approach:
* Two types of pointers

* Programmer has to ensure mark_modified() is called, else
database can become corrupted

B ObjectStore approach

‘ Persistent Java Systems

m ODMG-3.0 defines extensions to Java for persistence

* Java does not support templates, so language extensions are
required

B Model for persistence: persistence by reachability

‘ ODMG Java

B Transaction must start accessing database from one of the root
object (looked up by name)

* finds other objects by following pointers from the root objects
B Objects referred to from a fetched object are allocated space in

memor\ D fle Nece a Nned

20

‘pecialization Hierarchy for the Bank Example

21

':Iass Hierarchy Corresponding to Figure 8.2

22

‘Containment Hierarchy for Bicycle-Design Database

23

