.Chapter 8. Object-Oriented Databases

Need for Complex Data Types
The Object-Oriented Data Model
Object-Oriented Languages

Persistent Programming Languages

Persistent C++ Systems




- Need for Complex Data Types
~

® Traditional database applications in data processing had
conceptually simple data types

Relatively few data types, first normal form holds

® Complex data types have grown more important in recent years
E.g. Addresses can be viewed as a
> Single string, or
> Separate attributes for each part, or
> Composite attributes (which are not in first normal form)

E.g. it is often convenient to store multivalued attributes as-is,
without creating a separate relation to store the values in first
normal form

®m Applications
computer-aided design, computer-aided software engineering

multimedia and image databases, and document/hypertext
databases.

Database System Concepts 8.2 ©Silberschatz, Ko



- Object-Oriented Data Model

® Loosely speaking, an object corresponds to an entity in the E-
R model.

B The object-oriented paradigm is based on encapsulating code
and data related to an object into single unit.

® The object-oriented data model is a logical data model (like
the E-R model).

® Adaptation of the object-oriented programming paradigm (e.g.,
Smalltalk, C++) to database systems.

Database System Concepts 8.3 ©Silberschatz, Ko



- Object Structure

® An object has associated with it:

A set of variables that contain the data for the object. The value of
each variable is itself an object.

A set of messages to which the object responds; each message may
have zero, one, or more parameters.

A set of methods, each of which is a body of code to implement a
message; a method returns a value as the response to the message

® The physical representation of data is visible only to the
Implementor of the object

® Messages and responses provide the only external interface to an
object.

® The term message does not necessarily imply physical message
passing. Messages can be implemented as procedure
Invocations.

Database System Concepts 8.4 ©Silberschatz, Ko



- Messages and Methods

® Methods are programs written in general-purpose language
with the following features

only variables in the object itself may be referenced directly
data in other objects are referenced only by sending messages.

® Methods can be read-only or update methods
Read-only methods do not change the value of the object

m Strictly speaking, every attribute of an entity must be
represented by a variable and two methods, one to read and
the other to update the attribute

e.g., the attribute address is represented by a variable address
and two messages get-address and set-address.

For convenience, many object-oriented data models permit direct
access to variables of other objects. :

Database System Concepts 8.5 ©Silberschatz, Ko



- Object Classes

® Similar objects are grouped into a class; each such object is
called an instance of its class

®m All objects in a class have the same
* Variables, with the same types
* message interface
* methods
The may differ in the values assigned to variables
® Example: Group objects for people into a person class

m Classes are analogous to entity sets in the E-R model

Database System Concepts 8.6 ©Silberschatz, Ko



2 Class Definition Example
~
class employee {
[*Variables */
string name;
string address;
date  start-date;

int salary;
[* Messages */
int annual-salary();

string get-name();
string get-address();
int set-address(string new-address);
int employment-length();
¥
B Methods to read and set the other variables are also needed with
strict encapsulation

® Methods are defined separately

E.g. int employment-length() { return today() — start-date;}
int set-address(string new-address) { address = new-address;} -

Database System Concepts 8.7 ©Silberschatz, Ko



— Inheritance

m E.g., class of bank customers is similar to class of bank
employees, although there are differences

both share some variables and messages, e.g., name and address.

But there are variables and messages specific to each class e.g.,
salary for employees and credit-rating for customers.

m Every employee is a person,; thus employee is a specialization of
person

m Similarly, customer is a specialization of person.

® Create classes person, employee and customer

variables/messages applicable to all persons associated with class
person.

variables/messages specific to employees associated with class
employee; similarly for customer

Database System Concepts 8.8 ©Silberschatz, Ko



Inheritance (Cont.)

®m Place classes into a specialization/IS-A hierarchy

* variables/messages belonging to class person are
inherited by class employee as well as customer

B Resultis a class hierarchy

emp!oy ee customer

Z | T

teller secreta




Class Hierarchy Definition

class persory
string name;
string address:

class customerisa person {
INt creadit-rating,;




- Class Hierarchy Example (Cont.)
~

m Full variable list for objects in the class officer:
* office-number, expense-account-number: defined locally
* start-date, salary: inherited from employee

* name, address: inherited from person
® Methods inherited similar to variables.

m Substitutability — any method of a class, say person, can be invoked
equally well with any object belonging to any subclass, such as
subclass officer of person.

m Class extent: set of all objects in the class. Two options:

1. Class extent of employee includes all officer, teller and secretary objects.

2. Class extent of employee includes only employee objects that are not in a
subclass such as officer, teller, or secretary

¢  This is the usual choice in OO systems

# Can access extents of subclasses to find all objects of
subtypes of employee

Database System Concepts 8.11 ©Silberschatz, Ko



. Example of Multiple Inheritance

person

/N

employee  customer

temporary  permanent  officer  teller secretary

permanent-officer permanent-teller  permanent-secreta

temporary-teller

temporary-secretary



2 Multiple Inheritance
~

®  With multiple inheritance a class may have more than one superclass.

The class/subclass relationship is represented by a directed acyclic graph
(DAG)

Particularly useful when objects can be classified in more than one way,
which are independent of each other

> E.g. temporary/permanent is independent of Officer/secretary/teller
> Create a subclass for each combination of subclasses

Need not create subclasses for combinations that are not possible in
the database being modeled

®m A class inherits variables and methods from all its superclasses

®m There is potential for ambiguity when a variable/message N with the
same name is inherited from two superclasses A and B

No problem if the variable/message is defined in a shared superclass
Otherwise, do one of the following

> flag as an error,

> rename variables (A.N and B.N)

> choose one.

Database System Concepts

8.13 ©Silberschatz, Ko



~ More Examples of Multiple Inheritance
~

® Conceptually, an object can belong to each of several
subclasses

A person can play the roles of student, a teacher or footballPlayer,
or any combination of the three

> E.g., student teaching assistant who also play football

m Can use multiple inheritance to model “roles” of an object
That is, allow an object to take on any one or more of a set of types

® But many systems insist an object should have a most-specific
class

That is, there must be one class that an object belongs to which is
a subclass of all other classes that the object belongs to

Create subclasses such as student-teacher and
student-teacher-footballPlayer for each combination

When many combinations are possible, creating
subclasses for each combination can become cumbersome

Database System Concepts 8.14 ©Silberschatz, Ko



- Object ldentity

~

® An object retains its identity even if some or all of the values
of variables or definitions of methods change over time.

® Object identity is a stronger notion of identity than in

programming languages or data models not based on object
orientation.

Value — data value; e.g. primary key value used in relational
systems.

Name — supplied by user; used for variables in procedures.

Built-in — identity built into data model or programming
language.

> no user-supplied identifier is required.

> Is the form of identity used in object-oriented systems.

Database System Concepts 8.15 ©Silberschatz, Ko



- Object Identifiers
~

® Object identifiers used to unigquely identify objects
Object identifiers are unique:
> no two objects have the same identifier
> each object has only one object identifier

E.g., the spouse field of a person object may be an identifier of
another person object.

can be stored as a field of an object, to refer to another object.
Can be
> system generated (created by database) or
> external (such as social-security number)
System generated identifiers:
> Are easier to use, but cannot be used across database systems
> May be redundant if unique identifier already exists :

Database System Concepts 8.16 ©Silberschatz, Ko



. Object Containment

wheel brake

TN IR

rim spokes tire lever pad cable




- Object-Oriented Languages
~

® Object-oriented concepts can be used in different ways

* Object-orientation can be used as a design tool, and be
encoded into, for example, a relational database

# analogous to modeling data with E-R diagram and then
converting to a set of relations)

* The concepts of object orientation can be incorporated into a
programming language that is used to manipulate the
database.

> Object-relational systems — add complex types and
object-orientation to relational language.

> Persistent programming languages — extend object-
oriented programming language to deal with databases
by adding concepts such as persistence and collections.

Database System Concepts 8.18 ©Silberschatz, Ko



- Persistent Programming Languages
~

m Persistent Programming languages allow objects to be created
and stored in a database, and used directly from a programming
language

allow data to be manipulated directly from the programming language
> No need to go through SQL.

No need for explicit format (type) changes
> format changes are carried out transparently by system

> Without a persistent programming language, format changes
becomes a burden on the programmer

More code to be written
More chance of bugs
allow objects to be manipulated in-memory
> no need to explicitly load from or store to the database

Saved code, and saved overhead of loading/storing large
amounts of data ’

Database System Concepts 8.19 ©Silberschatz, Ko



- Persistent Prog. Languages (Cont.)
~

B Drawbacks of persistent programming languages

* Due to power of most programming languages, it is easy to make
programming errors that damage the database.

* Complexity of languages makes automatic high-level optimization
more difficult.

* Do not support declarative querying as well as relational databases

Database System Concepts 8.20 ©Silberschatz, Ko



- Persistence of Objects
~

® Approaches to make transient objects persistent include
establishing

* Persistence by Class — declare all objects of a class to be
persistent; simple but inflexible.

* Persistence by Creation — extend the syntax for creating objects to
specify that that an object is persistent.

* Persistence by Marking — an object that is to persist beyond
program execution is marked as persistent before program
termination.

* Persistence by Reachability - declare (root) persistent objects;
objects are persistent if they are referred to (directly or indirectly)
from a root object.

> Easier for programmer, but more overhead for database system

> Similar to garbage collection used e.g. in Java, which
also performs reachability tests

Database System Concepts 8.21 ©Silberschatz, Ko



- Object Identity and Pointers
~

m A persistent object is assigned a persistent object identifier.

® Degrees of permanence of identity:

* Intraprocedure — identity persists only during the executions of a
single procedure

* Intraprogram — identity persists only during execution of a single
program or query.

* Interprogram — identity persists from one program execution to
another, but may change if the storage organization is changed

* Persistent — identity persists throughout program executions and
structural reorganizations of data; required for object-oriented
systems.

Database System Concepts 8.22 ©Silberschatz, Ko



- Object Identity and Pointers (Cont.)

~

® In O-O languages such as C++, an object identifier is
actually an in-memory pointer.

B Persistent pointer — persists beyond program execution
* can be thought of as a pointer into the database
> E.g. specify file identifier and offset into the file

* Problems due to database reorganization have to be dealt
with by keeping forwarding pointers

Database System Concepts 8.23 ©Silberschatz, Ko



~ \/Storage and Access of Persistent Objects

How to find objects in the database:
® Name objects (as you would name files)
* Cannot scale to large number of objects.

* Typically given only to class extents and other collections of
objects, but not objects.

® EXpose object identifiers or persistent pointers to the objects
* Can be stored externally.
* All objects have object identifiers.

®m Store collections of objects, and allow programs to iterate
over the collections to find required objects

* Model collections of objects as collection types

* Class extent - the collection of all objects belonging to the
class; usually maintained for all classes that can have persistent
objects.

Database System Concepts 8.24 ©Silberschatz, Ko



- Persistent C++ Systems
~

B C++ language allows support for persistence to be added without
changing the language

Declare a class called Persistent Object with attributes and methods
to support persistence

Overloading — ability to redefine standard function names and
operators (i.e., +, —, the pointer deference operator —>) when applied
to new types

Template classes help to build a type-safe type system supporting
collections and persistent types.

® Providing persistence without extending the C++ language is
relatively easy to implement
but more difficult to use

®m Persistent C++ systems that add features to the C++ language
have been built, as also systems that avoid changing the
language

Database System Concepts 8.25 ©Silberschatz, Ko



~ ODMG C++ Object Definition Language

~

® The Object Database Management Group is an industry
consortium aimed at standardizing object-oriented databases

* in particular persistent programming languages

* Includes standards for C++, Smalltalk and Java

* ODMG-93

* ODMG-2.0 and 3.0 (which is 2.0 plus extensions to Java)
> Our description based on ODMG-2.0

® ODMG C++ standard avoids changes to the C++ language
* provides functionality via template classes and class libraries

Database System Concepts 8.26 ©Silberschatz, Ko



- ODMG Types

B Template class d Ref<class> used to specify references
(persistent pointers)

B Template class d Set<class> used to define sets of objects.
* Methods include insert_element(e) and delete _element(e)

m Other collection classes such as d Bag (set with duplicates
allowed), d_List and d_Varray (variable length array) also
provided.

® d_version of many standard types provided, e.g. d Long and
d_string

* Interpretation of these types is platform independent

* Dynamically allocated data (e.g. for d_string) allocated in the
database, not in main memory

Database System Concepts 8.27 ©Silberschatz, Ko



. ODMG C++ ODL: Example

class Branch : public d_Object {

}

class Person : public d_Object {
public:
d _String name; // should not use String!

d_String address;




. ODMG C++ ODL: Example (Cont.)

class Customer : public Person {

public:
d Date member_from;
d Long customer _id;

d Ref<Branch> home branch;




~

Database System Concepts 8.30 ©Silberschatz, Ko

Implementing Relationships

Relationships between classes implemented by references

m Special reference types enforces integrity by adding/removing

inverse links.

* Type d_Rel Ref<Class, InvRef> is a reference to Class, where
attribute InvRef of Class is the inverse reference.

* Similarly, d Rel Set<Class, InvRef> is used for a set of references

Assignment method (=) of class d_Rel Ref is overloaded

* Uses type definition to automatically find and update the inverse
link
* Frees programmer from task of updating inverse links

* Eliminates possibility of inconsistent links
Similarly, insert_element() and delete_element() methods of

d Rel Set use type definition to find and update the inverse link
automatically




. Implementing Relationships

m Eg.

extern const char _owners[ ], _accounts[ ];
class Account : public d.Object {

d _Rel Set <Customer, _accounts> owners;




~ ODMG C++ Object Manipulation Language
~

B Uses persistent versions of C++ operators such as new(db)

d_Ref<Account> account = new(bank_db, “Account”) Account;

new allocates the object in the specified database, rather than in
memory.

The second argument (“Account”) gives typename used in the
database.

m Dereference operator -> when applied on a d_Ref<Account>
reference loads the referenced object in memory (if not already
present) before continuing with usual C++ dereference.

m Constructor for a class — a special method to initialize objects
when they are created; called automatically on new call.

m Class extents maintained automatically on object creation and
deletion

Only for classes for which this feature has been specified
> Specification via user interface, not C++

Automatic maintenance of class extents not supported in
earlier versions of ODMG

Database System Concepts 8.32 ©Silberschatz, Ko



L » ODMG C++OML: Database and Object
~ Functions

m Class d Database provides methods to
* open a database: open(databasename)
* give names to objects:  set_object_name(object, name)
* look up objects by name: lookup object(name)
* rename objects: rename_object(oldname, newname)
* close a database (close());

m Class d_Object is inherited by all persistent classes.
* provides methods to allocate and delete objects

* method mark modified() must be called before an object is
updated.

> |s automatically called when object is created

Database System Concepts 8.33 ©Silberschatz, Ko



2 ODMG C++ OML: Example

~

Int create_account_owner(String name, String Address){

Database bank db.obj;

Database * bank db= & bank_db.obj;
bank_db =>open(“Bank-DB”);
d.Transaction Trans;

Trans.begin();

d_Ref<Account> account = new(bank_db) Account;
d_Ref<Customer> cust = new(bank_db) Customer;
cust->name - name;

cust->address = address;
cust->accounts.insert_element(account);

... Code to initialize other fields

Trans.commit();

Database System Concepts 8.34 ©Silberschatz, Ko



- ODMG C++ OML: Example (Cont.)

~

m Class extents maintained automatically in the database.

® To access a class extent:
d_Extent<Customer> customerExtent(bank_db);

m Class d_Extent provides method
d_Iterator<T> create_iterator()
to create an iterator on the class extent

®m Also provides select(pred) method to return iterator on objects that
satisfy selection predicate pred.

® lterators help step through objects in a collection or class extent.
m Collections (sets, lists etc.) also provide create _iterator() method.

Database System Concepts 8.35 ©Silberschatz, Ko



+~ ODMG C++ OML: Example of Iterators

~

Int print_customers() {
Database bank db_obj;
Database * bank db = &bank_db_obj;
bank_db->open (“Bank-DB”);
d_Transaction Trans; Trans.begin ();

d_Extent<Customer> all _customers(bank_db);
d_Iterator<d Ref<Customer>> iter;

iter = all_customers—>create _iterator();

d_Ref <Customer> p;

while{iter.next (p))
print_cust (p); // Function assumed to be defined elsewhere

Trans.commit();

Database System Concepts 8.36 ©Silberschatz, Ko



Y __ ODMG C++ Binding: Other Features

m Declarative query language OQL, looks like SQL

Form query as a string, and execute it to get a set of results
(actually a bag, since duplicates may be present)

d_Set<d Ref<Account>> result;
d_OQL_Query gl1("select a
from Customer c, c.accounts a
where c.name="'Jones’
and a.find_balance() > 100");
d_oqgl_execute(ql, result);

® Provides error handling mechanism based on C++ exceptions,
through class d_Error

® Provides API for accessing the schema of a database.

Database System Concepts 8.37 ©Silberschatz, Ko



L~ Making Pointer Persistence Transparent
~

® Drawback of the ODMG C++ approach:
* Two types of pointers

* Programmer has to ensure mark_modified() is called, else
database can become corrupted

® ObjectStore approach

* Uses exactly the same pointer type for in-memory and database
objects

* Persistence is transparent applications
> Except when creating objects

* Same functions can be used on in-memory and persistent objects
since pointer types are the same

* Implemented by a technique called pointer-swizzling which is
described in Chapter 11.

* No need to call mark_modified(), modification detected
automatically.

Database System Concepts 8.38 ©Silberschatz, Ko



- Persistent Java Systems
~

B ODMG-3.0 defines extensions to Java for persistence

Java does not support templates, so language extensions are
required

® Model for persistence: persistence by reachability
Matches Java’s garbage collection model
Garbage collection needed on the database also
Only one pointer type for transient and persistent pointers

m Class is made persistence capable by running a post-processor
on object code generated by the Java compiler

Contrast with pre-processor used in C++
Post-processor adds mark_modified() automatically
®m Defines collection types DSet, DBag, DList, etc.

B Uses Java iterators, no need for new iterator class

Database System Concepts 8.39 ©Silberschatz, Ko



- ODMG Java

~

B Transaction must start accessing database from one of the root
object (looked up by name)

finds other objects by following pointers from the root objects

B Objects referred to from a fetched object are allocated space in
memory, but not necessarily fetched

Fetching can be done lazily

An object with space allocated but not yet fetched is called a hollow
object

When a hollow object is accessed, its data is fetched from disk.

Database System Concepts 8.40 ©Silberschatz, Ko






Qpecialization Hierarchy for the Bank Example




person

™

employee customer

P N

teller secretari




. Class DAG for the Bank Example

person

/\

employee  customer

temporary  permanent  officer  teller secretary

permanent-officer

temporary-secretary  temporary-teller




.Containment Hierarchy for Bicycle-Design Database

wheel brake

o A

rim spokes tire lever pad cable




