ADT 2010

Introduction to
(XML, XPath &) XQuery

Chapter 10 in
Silberschatz, Korth, Sudarshan
“Database System Concepts”

Stefan Manegold

Stefan.Manegold@cwi.nl
http://www.cwi.nl/~manegold/

XML Databases

why
Motivation & The Big Picture: XML, DTD, XML Schema, XPath

WHAT €& €&
Crash Course XQuery

who
XML files = Saxon, Galax, GNU Qexo
XML DBMS = eXist, BerkeleyDB, MonetDB, X-Hive, Tamino, Xyleme
XML RDBMS = Oracle10g, SQLserver 2005, DB2

how
Under The Hood of MonetDB/XQuery
Some Benchmarks

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XQuery

B XQuery Is currently being defined by the W3 Consortium as a standard means to query
XML databases:

http://www.w3.org/XML/Query

B While XPath forms the backbone of XQuery, some powerful new operators have
been added, as well as an elaborated type system.

B XQuery Is targeted to be a query language to access database systems with large
amounts of data.

B Only few prototype have been presented yet, with limited functionality, e. g.

> Galax: http://db.bell-1labs.com/galax/
> X-Hive: http://www.x-hive.com/xquery

B A full-fledged XQuery implementation is available:
> MonetDB/XQuery: http://monetdb-xquery.org/

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XQuery

B XQuery is a functional language.

> XQuery expressions are side-effect free.
> Expressions may be nested with full generality.

B Expressions always evaluate to sequences.

> A sequence Is an ordered collection of zero or more items.
> Sequences are flat, never nested.

(1, 2), 3) = (1, (2, 3)) = (1, 2, 3)

> A single item Is identical to a sequence containing just that item. We call such a
sequence a singleton sequence.

(42) = 42

> An item can either be an atomic value (integer, string, ...), or a node. Sequences
may be heterogeneous, €. g.

(42, "foo", 4.2, <a>)
Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XQuery: FLWOR Expressions

B The for-let-where-order by-return construct (FLWOR, pronounced “flower™)
provides a means to operate on XQuery sequences.

for $p in /strip/panels/panel
where contains ($p/scene/text(), "Dilbert")
return $p//bubble

> The for construct successively binds each item of an expression (result of
/strip/panels/panel) to a variable ($p), generating a so-called tuple stream.

> This tuple stream is then filtered by the where clause, retaining some tuples,
discarding others.

> The return clause is evaluated once for every tuple still in the stream.

> The result of the expression is an ordered sequence containing the concatenated
results of these evaluations.

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XQuery Example

What is the result of the following XQuery expression?

for $x in (1, 2, 3, 4) where $x < 4 return
for $y in (10, 20) return
($x, $y)

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XQuery Example

What is the result of the following XQuery expression?

for $x in (1, 2, 3, 4) where $x < 4 return
for $y in (10, 20) return
($x, $y)

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XQuery: FLWOR Expressions

B \While the for clause binds to each item In a sequence successively, the let clause
binds variables to whole sequences:

let $a := //bubbles/bubble
return count($a)

> $a Is bound to the sequence containing all event elements at once.

B Several for and/or 1let clauses may be given in a single FLWOR expression, e. g.

let $panels := /strip/panels,
for $panel in $panels/panel,
let $bubble := $panel//bubble
where contains ($bubble/@speaker, ’dilbert’)
return ($panel/Ono, count ($bubble))

B An order may be specified between where and return part using a order by clause.

for $c in //characters/character
order by $c/text()
return $c

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

XQuery: Element Construction

B XML tree fragments may be constructed “on the fly" in queries:

for $c in //characters/character
return
<person> { $c/text() } </person>

> |f you want to “escape” to XQuery in XML fragments, use the { / } characters.

B Element construction creates a deep copy of its arguments:
let $y := (<a> { $x })/child: :*

— $x and $y are not the same node!

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

10

Joins

® Joins are specified in a manner very similar to SQL

for $a in /bank/account,
$c in /bank/customer,
$d in /bank/depositor

where $a/account number = $d/account_number

and $c/customer_name = $d/customer_name
return <cust_acct> { $c $a } </cust_acct>

® The same query can be expressed with the selections
specified as XPath selections:

for $a in /bank/account
$c in /bank/customer
$d in /bank/depositor|
account_number = $a/account_number and
customer_name = $c/customer _name]
return <cust_acct> { $c $a } </cust_acct>

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

11

Nested Queries

® The following query converts data from the flat structure for
bank information into the nested structure used in bank-1
<bank-1> {
for $c in /bank/customer
return
<customer>
(o} |
$gc?urs (()j rr|]relr/_br?\anrlrglglle’posﬂor[customer_name
/bank?gclgount[account_number=$d/account_number]
return $a}

</customer>
} </bank-1>

m $c/* denotes all the children of the node to which $c is bound,
without the enclosing top-level tag

m $c/text() gives text content of an element without any
subelements / tags

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

Sorting in XQuery }

® The order by clause can be used at the end of any expression.
E.g. to return customers sorted by name

for $c in /bank/customer
order by $c/customer_name

return <customer> { $c/* } </customer>
® Use order by $c/customer_name to sort in descending order

® Can sort at multiple levels of nesting (sort by customer_name, and by
account_number within each customer)
<bank-1> {
for $c in /bank/customer
order by $c/customer_name
return
<customer>
{$c/*}
{ for $d in /bank/depositor[customer _name=%c/customer_name],
$a in /bank/account[account_number=$d/account_number]
order by $a/account_number

return <account> { $a/* } </account> }
</customer>

} </bank-1>

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

13

Functions and Other XQuery Features

m User defined functions
declare function balances($c as xs:string) as xs:decimal* {
for $d in /bank/depositor[customer _name = $c],
$a in /bank/account[account_number = $d/account_number]
return $a/balance

}

® Types are optional for function parameters and return values
® The * (as in decimal®) indicates a sequence of values of that type

® Universal and existential quantification in where clause predicates
some %e in path satisfies P
every $e in path satisfies P

® XQuery also supports If-then-else clauses

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

14

Further Reading Material

e FEasily digestable introductions to XML, XPath, and XQuery:
The Annotated XML Specification

Chapter 'XPath’ of XML in a Nutshell’ (O’Reilly)

XQuery: A Guided Tour

e . ..on XPath and XQuery:
kel XQuery from the Experts BUESEM The XML Query Language

Jonathan Robie et.al. ey Andrew Brundage

ISBN 0-321-18060-7 i€ |SBN 0-321-16581-0

Addison-Wesley, 2003 Addison-Wesley, 2004

Stefan.Manegold@CWI.nl Introduction to XML, XPath & XQuery ADT 2010

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

