
 1

A2OP: Aspect+Agent Oriented Programming
Z. Obrenovic

Abstract:
In this paper we present a hybrid approach to software development based on aspect-
oriented programming (AOP) and software agents. Joining aspect-oriented and agent-
oriented software development paradigms could provide more powerful approach to
development of complex software systems. While AOP can significantly improve the
modularity of programs, usage of agents can improve the flexibility and robustness. We
propose a framework where aspect's implementation is not fixed in the code, but is
instead implemented by software agents. We have defined a generic mechanism that
enables the agents to access functionality of the system over aspects' join points. Aspects
behaviour is defined by agents that could be replaced or reorganized, so the programs
behavior can be both added and removed at runtime by adding or removing agents. We
also show how proposed approach has been implemented using two popular Java based
AOP and agent technologies, AspectJ and Aglets.

1. Introduction

Aspect-oriented programming (AOP) is a promising new programming technique based
on the idea that computer systems are better programmed by separately and explicitly
specifying the different concerns or aspects of a system [1]. We then weave or compose
aspects together into a program using mechanisms in the underlying AOP environment.
AOP has received lots of attention in last few years. Special issues of the
Communications of the ACM in October 2001, and IEEE Software in January 2006 cover
this issue while International Conference of Aspect-Oriented Software Development
conference has been organized annually since 2002.

AOP has opened many novel possibilities for improving organization and modularity of
program systems. Many researchers also discussed how AOP could provide programmers
with the abilities to modify the default behavior of a program system, further increasing
flexibility of programs. In view of that, in this paper we present a hybrid approach to
software development based on AOP and software agents. We propose a framework
where aspect's implementation is not fixed in the code, but is instead implemented by
software agents. While AOP can significantly improve the modularity of programs, usage
of agents can improve its flexibility and robustness.

Many researchers have explored usage of aspect-oriented approach to deal with
crosscutting concerns in multi-agents systems, but usage of agent to improve flexibility
of AOP has received less attention [2, 3]. Others also emphasis that analyzing, designing,
and implementing complex software systems as a collection of interacting, autonomous
agents affords software engineers a number of significant advantages over contemporary
methods, but these systems have to solve many practical problems, such as integration
with legacy components, which are better addressed with AOP [4, 5]. Joining aspect-

 2

oriented and agent-oriented software development paradigms could provide more
powerful hibrid approach to development of complex software systems.

In next section we present some of the existing solutions. Then we present the basic idea
of our solution. After that, we show how proposed approach has been implemented using
AspectJ and Aglets, two popular Java-based AOP and agent technologies. In the end, we
give conclusion and discussion.

2. Existing solution
The basic idea of our approach is to increase the flexibility of programs, enabling runtime
change and adaptation of its implementation [6]. Several other technologies can also be
used to provide similar results, but with various drawbacks.

For example, one approach is to design programs so that the main functionality is
implemented on a remote server, and the program only consists of interfaces or aspects
that call these remote services. It is possible to use various technologies to achieve this,
such as remote procedure call (RPC), remote method invocation (RMI), or Web services
[7]. In this way it is easy to change the implementation, as it is centralized, and changing
it immediately affects all the instances of the programs. However, this approach
introduces various problems. There is network latency in service calls, it is hard to
personalize and adapt the services, complex session management is usually required,
while applications are less fault-tolerant as problems on the server or on the network
could disable many applications. In order to address complexity caused by network
communication, Nishizawa et al proposed an interesting concept of a remote pointcut that
enables developers to modularize crosscutting concerns distributed on multiple hosts [8].

Sullivan discussed benefits of using reflection and metaobject protocols (MOP) in AOP
[9]. Computational reflection enables a program to access its internal structure and
behavior, and also to modify its behavior by programmatically manipulating the structure
[10]. In this way, it is possible to implement and change aspect code without a static
compilation phase, making aspect behavior more robust and adaptive, while the places
where this instrumentation can happen are not restricted by points defined by a static
compilation process. However, MOP has several practical problems. Most of existing
widely used programming languages support reflection and metaobject protocols in a
limited amount. Java’s reflection is "read-only", a program can query the methods of a
class, but it cannot dynamically change the implementation of methods of a class. Full
reflection allows modification of any program metainformation. Other languages have
even less support for reflection than Java. There is also research in reflective middleware
that adds flexibility to middleware by exploiting the concept of the meta-object protocol
[11, 12]. Several other AOP approaches apply aspects at runtime. Popovici et al proposed
dynamic weaving for aspect oriented programming allowing aspects to be woven,
unwoven, or replaced at run-time [13].

 3

Many developers have also exploited usage of aspects in development of multi-agent
systems [14, 15], but these systems do not exploit usage of agents for implementing
agents.

3. Aspect-Oriented Programming with Software Agents
In AOP we define join points, places where aspect code interacts with the rest of the
system, and code that can run before, after or instead of the code at the join points. The
main idea of our approach is to enable that aspect implementation be defined by agents
which can be dynamically added or removed, instead of being fixed in the aspect code.
We have defined a generic mechanism that enables the agents to access functionality of
the system over aspects' join points, exploiting the fact that AOP systems offer implicit
invocation mechanisms for invoking behavior in code whose writers often were unaware
of the additional concerns.

3.1. Basic terms
In AspectJ, and other languages, you define the pointcuts (or join points), advices,
aspects that group pointcuts and advices [16]. Pointcut are defined by designators that
identify particular join points by filtering out a subset of all the join points in the program
flow. For example, in AspectJ the pointcut designator:

call (void *.set*(int)) || call(void *.get*(int))

identifies any call to either the set or get methods defined by any class. Advice
declarations are used to define additional code that runs at join points. Before advice runs
just before the method begins to run. After advice just after the method has run, but
before control is returned to the caller. Around advice runs when the join point is reached,
and has explicit control over whether the method is allowed to run. This advice check
values right before any set method call:

before(): call(void *.set*(int)) {
 <code to check value>
}

More detailed description of Aspect oriented programming with AspectJ can be found in
[17].

3.2. Architecture
Figure 1 illustrates basic architecture of our approach. The central concept in our
architecture is the agent aspect. This aspect provides definition of pointcuts at which the
agents will access the systems functionality, as well as mechanisms for registering and
invoking agents from aspects. Agent aspect keeps the list of registered agents, and
accesses them over the aspect agent interface, which defines basic methods that each
agent has to implement in order to be accepted by the aspect. Each pointcut is identified
by its signature, and, when registering, agents can specify for which pointcuts they are
interested. Optionally, agent aspect can provide the agents with a reference to the

 4

application context, where the aspect can put and maintain additional references to the
objects which agent can access. Agent aspect also has a reference to the agent server
interface, which concrete agents server has to implement in order to be started and
stopped by the aspect. The functional link between the aspect and the agents is achieved
by aspect advices, which call appropriate agent methods.

Agent aspect could also provide default implementation of the advices, and use generic
mechanisms for registration, and invocation of the agents, to extend or replace this
default behaviour. When there are no agents registered, the default code of the aspects is
unaffected.

Agents can be pre-registered by the system, and launched when the systems starts, while
the other can run temporary, when they arrive from other machines. Agents that arrive at
the system can be saved and launched when the system starts again. Agents can also be
organized in a complex multi-agent system, where functionality is achieved by
interaction among many agents. We are also working on hierarchically organized multi-
agent systems that process data according to model-driven principles [18, 19].

Figure 1. The architecture of proposed aspect-agent architecture.

 5

Proposed model is flexible, as neither the aspect nor the agents do not have to know the
details of the other side. When you want to introduce a novel type of agents platform,
agent server adapter has to implement agents server interface, while new agents has to
implement aspect agent interface, and they will be automatically accepted by the system.

3.3. Expected benefits
With the proposed framework, it is possible to create flexible, easily extensible programs,
with several advantages:

• The programs could be more functional but better organized, inheriting this from
aspect-oriented treatment of cross-cutting concerns.

• The programs could be more flexible, as aspects are defined in agents that can
register/unregister in a central aspect to demonstrate interest in specific system
joinpoints. Therefore, the programs could evolve over time, even based on runtime
data. The programs behavior can be both added and removed at runtime by adding
or removing agents.

• Existing applications could be easily extended in a flexible way without actually
being reprogrammed (just a few generic aspects should be introduced).

Especially useful component of agents can be their mobility, which enables agents to
reduce network load, and overcome network latency. Mobile agents can also be used to
encapsulate protocols [20]. In a distributed system, each host has the implementation of
the protocols required to correctly encode outgoing data and decode incoming data.
However, it is often cumbersome to upgrade protocol code as it progresses in order to
support various requirements such as efficiency or security. Consequently, protocols
often turn into a legacy problem. Mobile agents can solve this problem by moving to
remote hosts, and establishing channels based on proprietary protocols. Aspect-oriented
approach can provide them with points of access to parts of the system that need to be
updated.

Compared with "pure" multi-agent systems, using AOP approach can enable better
integration with legacy applications, and with the code that is build on conventional,
more stabile development platforms.

4. Implementation
We have implemented proposed approach using AspectJ and Aglets, two popular Java-
based AOP and agent technologies.

AspectJ is a general-purpose AO extension to Java, originally developed by the PARC
group [16, 21]. It is distributed under the terms and conditions of the Common Public
License Version (CPL), and has gain developing support in most of popular Java
developing environments.

Aglets is a Java mobile agent platform and library that facilitates the development of
agent based applications, originally developed at the IBM Tokio Research Laboratory
[22]. An aglet is a Java agent able to autonomously and spontaneously move from one

 6

host to another. Aglets technology is now hosted at sourceforge.net as open source
project, and is distributed under the IBM Public License.

4.1. Aspect Agent Interface
AspectAgentInterface is a Java interface that represents the link between the
aspects and the agents. It introduces five methods implemented by agents and called by
aspects (Figure 2). Each of these methods receives the signature of the pointcut, a
reference to the object whose method is called, as well as the arguments of the method
call.

public interface AspectAgentInterface {
 public void before(String pointcutSignature, Object target, Object[] args);
 public void after(String pointcutSignature, Object target, Object[] args);
 public void afterReturning(String pointcutSignature, Object target, Object[] args);
 public void afterThrowing(String pointcutSignature, Object target, Object[] args);
 public Object[] around(String pointcutSignature, Object target, Object[] args);
 public String[] getSignatures();
 public void setApplicationContext(ApplicationContext appContext);
}

Figure 2. Simplified Java code of AspectAgentInterface.

4.2. Aspect Agents
In Aglets, every agent has to extend the Aglet glass. Our agents additionally have to
implement AspectAgentInterface (Figure 3). The agent code is the application
specific, and when the system is established, should be the only part of the code that
should be changed or extended.

public class AspectAglet extends Aglet implements AspectAgentInterface {
 public void before(String pointcutSignature, Object target, Object[] args) { }
 public void after(String pointcutSignature, Object target, Object[] args) { }
 public void afterReturning(String pointcutSignature, Object target, Object[] args) { }
 public void afterThrowing(String pointcutSignature, Object target, Object[] args) { }
 public Object[] around(String pointcutSignature, Object target, Object[] args) { }
 public String[] getSignatures() {
 return { "void javax.swing.JFrame.pack()",
 "javax.swing.JFrame.setDefaultCloseOperation(int)", … };
 }
 public void setApplicationContext(ApplicationContext appContext) { }
}

Figure 3. Simplified code of AspectAgent implementation.

 7

4.3. Agents Server
Aglets enable development of customized extensions of its agent server. The key
component for integration of custom code is the ContextAdapter class, which has to
be registered with the agent server instance. Figure 4 shows how we have extended this
adapter class to enable integration of agents with our aspects.

class AspectAgentContextAdapter extends ContextAdapter {
 public void agletCreated(ContextEvent ev) { registerAgent(ev); }
 public void agletArrived(ContextEvent ev) { registerAgent(ev); }
 public void agletDisposed(ContextEvent ev) {
 Aglet agent = ev.getAgletProxy().getAglet();
 if (agent instanceof AspectAgentInterface)
 AgentAspect.unregisterAgent((AspectAgentInterface) agent);
 }
 private void registerAgent(ContextEvent ev) {
 Aglet agent = ev.getAgletProxy().getAglet();
 if (agent instanceof AspectAgentInterface) {
 AgentAspect.registerAgent((AspectAgentInterface) agent);
 }
 }

}

Figure 4. Simplified code of AspectAgentContextAdapter implementation.

This extension is simple and straightforward. When agents arrive at the server or when it
is created, it calls the registerAgent method, which registers all the agents that
implement AspectAgentInterface interface.

4.4. Agent Aspects
Figure 5 and 6 shows simplified AspectJ code for integration of agents into code via
aspects.

aspect AgentAspectBeforeAfter {
 pointcut allCalls(): call(* *(..)) && !cflow(adviceexecution());

 before(): allCalls() {
 AgentAspect.processBefore(thisJoinPoint.getSignature().toString(),
 thisJoinPoint.getTarget(), thisJoinPoint.getArgs());
 }

 after(): allCalls() { … }
}

aspect AgentAspectAround {

 8

 int around(): call(int *(..)) && !cflow(adviceexecution()) {
 Object intValue = (Integer) aai.processAround(thisJoinPoint.getSignature().toString(),
 thisJoinPoint.getTarget(), thisJoinPoint.getArgs());
 if (intValue == null) {
 return proceed();
 } else {
 return ((Integer) intValue[0]).intValue();
 }
 }
 …
}

Figure 5. Simplified code of the AgentAspectBeforeAfter and
AgentAspectAround aspects.

We developed three aspects to support this integration:

• AgentAspectBeforeAfter, device before and after advices to call registered
agents using AgentAspect methods before and after given pointcut has been
reached.

• AgentAspectAround, define around advices to call registered agents instead of
the code at a given pointcut. The code at the pointcut will be proceeded or
bypassed, based on the values that agents returns. This aspect is more complicated
as it is necessary to support all the types which can be returned by methods (Object
is used for all object types, but it is necessary to support all the primitive types).

• AgentAspect, which provides mechanisms for registration and deregistration of
agents, starting of the agent server, and service functions for calling agents based on
pointcut signatures. When agent is registered from the
AspectAgentContextAdapter class, it firstly receives the reference to the
application context. After that, it is registered in a hash table for every signature,
and will be called when pointcuts with a given signatures are reached. If it returns
null for signatures, it is registered in the allJointPointsAgents vector, and
will be notified for every pointcut call. One agent can be registered for many join
points, while one join point can be processed bay many agents. When there are
many agents for one join point, agents are called as they have registered.

All presented aspects are generic, and define pointcuts that capture all method calls -
call(* *(..)). However, it is also possible to extend these examples so that they
be more appropriate for concrete context or application, and for other joinpoints types
except method calls. If some existing application wants to use proposed framework, its
code does not have to be changes. Instead, its code just has to be recompiled using
AspectJ compiler, adding aspects code on the list of the files that have to be compiled.

 9

public aspect AgentAspect {
 private static Vector allJoinPointsAgents = new Vector();
 private static Hashtable signatureJoinPointsAgents = new Hashtable();
 private static ApplicationContext appContext;

 public static void registerAgent(AspectAgentInterface agent) {
 agent.setApplicationContext(appContext);
 String signatures[] = agent.getSignatures();
 if (signatures == null) { // if there is no signatures, than calls from all join points
 allJoinPointsAgents.addElement(agent);
 } else { // if there are signatures, register agent for each of these signature
 for (int i = 0; i < signatures.length; i++) {
 Vector v = (Vector) signatureJoinPointsAgents.get(signatures[i]);
 if (v == null)
 signatureJoinPointsAgents.put(signatures[i], v = new Vector());
 v.addElement(agent);
 }
 }
 }
 public static void unregisterAgent(AspectAgentInterface agent) { … }
 public static void processBefore(String signature, Object target, Object[] args) {
 processBeforeVector(allJoinPointsAgents, target, args);
 processBeforeVector((Vector) signatureJoinPointsAgents.get(signature), target, args);
 }
 private static void processBeforeVector(Vector v, Object target, Object args[]) {
 Iterator e = allJoinPointsAgents.iterator();
 while (e.hasNext()) {
 AspectAgentInterface agent = (AspectAgentInterface) e.next();
 agent.before(target, args);
 }
 }

 public static void processAfter(String signature, Object target, Object[] args) { … }
 private static void processAfterVector(Vector v, Object target, Object args[]) { … }
 public static Object[] processAround(String signature, Object target, Object[] args) { … }
 private static Object[] processAroundVector(Vector v, Object target, Object args[]) { … }

 pointcut appStart() : execution(public static void *.main(String[]));

 before(): appStart() { AgentServer.start(); // Start the agent server }
}

Figure 6. Simplified code of the AgentAspect aspect.

 10

4.5. Performance evaluation
Having in mind that aspects introduce additional code before, after, and around each
method, it is important to see how this affects the performance of the system. We
particularly wanted to see how this affects the performance when there are no agents in
the system, e.g., what is the cost of the proposed system, compared with the same version
of the system compiled without our generic aspects.

We did several tests, using the HP OmniBook notebook computer with a Pentium III
processor on 800 Mhz, and with 375 MB RAM memory, using a test program shown on
the Figure 7. This program calls dummy method test 10000000 times, while each method
call also introduce three aspect method calls: after, before, and around.

public class Test {
 public static void main(String args[]) {
 Test t = new Test();
 long startTime = System.currentTimeMillis();
 for (int i = 0; i < 10000000; i++) {
 t.test();
 }
 long endTime = System.currentTimeMillis();
 System.out.println(endTime - startTime);
 }
 public void test() {}
}
Figure 7. A test program. Each method call introduces three aspect advices method
calls: after, before, and around.

Initial tests showed us that there is 0.0165ms average overhead per method call,
compared with the same program compiled without aspect code. However, when we
introduced small changes in aspect code, introducing a logical variable that described if
there are agents in the system, and when we call the routines of the AspectAgent class
methods only if this variable is true, this overhead was reduced to 0.0012ms per method
call. Starting of the Aglets agent server introduced memory overhead of about 3 MBs.

5. Applications

We are currently applying proposed approach in several application domains:

Adaptive monitoring and notification. Incorporation of generic aspects in program
enables users, administrator or developer to send agents at any time to monitor the
program behaviour and state, or to send notification when some event happens. For
example, a simple agent can register to receive a call after the main method throws,
which correspond to abnormal program termination, and can send notification to the

 11

administrator or other agents (Figure 8). It is also possible to send agents to monitor
particular program behaviour in detail. This way of monitoring and notification is much
more flexible. In classical AOP approach, you could define the debugging aspect, which
could monitor the system during development and testing, but it is necessary to recompile
the code each time when you want to apply different debugging policy, or when you want
to remove monitoring.

public class ThrowingAglet extends AspectAglet {

 // send a UDP package to the server each time when some method end throwing
 public void afterThrowing(String pointcutSignature, Object target, Object[] args) {
 String message = System. + "; " + pointcutSignature;
 DatagramSocket socket = new DatagramSocket();
 byte[] buf = new byte[256];

 DatagramPacket packet = new DatagramPacket(
 message.getBytes(), // content
 message.getBytes().length, // content size
 address, // address of the client
 7778); // port
 socket.send(packet);
 socket.close();
 }
 public String[] getSignatures() {
 return null; // We are interested in all signatures
 }
}

Figure 8. Simplified ThrowingAglet notification agent, which sends UDP packages
to the server each time when some method ends throwing.

Upgrading and patch distribution. Due to marketing pressure, many software products are
distributed with many known and even more unknown bugs. Correcting these errors,
often mean reinstalling the application, or installation of various "patches", which in
many situations is not convenient. However, if the program has support for aspect as we
have described it, it is possible to send an agent that can replace the wrong code, or
upgrade it to a new version.

Adaptive fault-tolerant applications. By combining adaptive monitoring and upgrading, it
is possible to create more robust applications, than can adapt its behaviour. For example,
when an error occurs, the agent can create or call a new agent to replace a code that
produced the error. This new agent could provide safe or dummy behaviour, for example,
by returning a constant value, enabling the application to function until the patch agent is
received. Similarly, the agent could have several versions of the code, for example, from
previous version stabile version of the product, and try to use this version when there are
problems.

 12

Adaptive performance tuning of applications. It is often hard to predict how some
component will work when integrated with the rest of the system, and when used in real-
world situations. With the proposed framework, it is possible to have several alternative
implementations of some component, represented with different agents. The agents could
use several versions, and monitor program performance, analyzing which one produce
better performance. Finally, it can register component with best results. It is possible that
the same applications in different environments will use different versions of the
components, due to various limitations. For example, some recursive algorithms could
produce stack-overflow on one system, but function without problems on the other.

Computer supported collaborative work. Proposed framework can also support
integration of various communication protocols that can support interaction among
distributed user. Agents could enable recording of user interaction, simultaneous work, or
introduction of various communication channel such as chat, email, blogging or voice.
Introduction of new communication protocol only requires replacing of the agents, which
can be made automatically by the server.

6. Conclusion
In this paper we have presented a hybrid approach to software development based on
aspect-oriented programming (AOP) and software agents. In our framework aspect's
implementation is not fixed in the code, but is instead implemented by software agents.
We defined a generic mechanism that enables the agents to access functionality of the
system over aspects' join points, exploiting the fact that AOP systems offer implicit
invocation mechanisms for invoking behavior in code whose writers often were unaware
of the additional concerns. We also showed how proposed approach has been
implemented using AspectJ and Aglets, two popular Java based AOP and agent
technologies, and described some of the areas in which we are currently applying these
ideas.

Program system build in this way can get several advantages for practitioners in software
engineering and software agents community. The programs could be more functional but
simpler and better organized, inheriting this from aspect-oriented treatment of cross-
cutting concerns. The programs could be more flexible, as aspects are defined in agents
that could be replaced or reorganized. And, existing applications could be easily extended
in a flexible way without actually being reprogrammed.

In our future work, we plan to introduce support for other agent platforms, and to
continue applying of our framework to various novel practical situations. One of the open
problems is a problem of security, which we also plan to address in more details in our
futur work.

 13

7. References
1. T. Elrad, R.E. Filman, A. Bader, "Aspect-oriented programming: Introduction", Communications of the ACM,

Vol. 44, No. 10, pp. 29 - 32 (2001).

2. C.W. Thompson. "Agents, Grids, and Middleware," IEEE Internet Computing, vol. 08, no. 5, pp. 97-99,
September/October (2004).

3. U. Kulesza, A. Garcia, C. Lucena, "An aspect-oriented generative approach", Conference on Object Oriented
Programming Systems Languages and Applications, Vancouver, BC, Canada, pp. 166 - 167 (2004).

4. N. R. Jennings, "An Agent-based Approach for Building Complex Software Systems", Comm. of the ACM,
Vol. 44, No. 6, April 2001, pp. 35-41;

5. M.J. Wooldrige, Nicholas R. Jennings, "Software Engineering with Agents: Pitfalls and Pratfalls", IEEE
Internet Computing, May/June 1999, pp. 20-27;

6. P. K. McKinley, S. M. Sadjadi, E. P. Kasten, B. H. C. Cheng, "Composing Adaptive Software", IEEE
Computer, 37(7):56-64, July 2004.

7. K.J. Ma. "Web Services: What's Real and What's Not?," IT Professional, vol. 07, no. 2, pp. 14-21, March/April
2005.

8. M. Nishizawa, Shigeru Chiba, Michiaki Tatsubori, "Remote pointcut: a language construct for distributed
AOP", Proceedings of the 3rd international conference on Aspect-oriented software development table of
contents. Lancaster, UK, 2004, pp. 7 - 15.

9. G.T. Sullivan, "Aspect-oriented programming using reflection and metaobject protocols", Communications of
the ACM, Vol. 44, No. 10 (October 2001), pp. 95 - 97

10. S. Vinoski. "A Time for Reflection," IEEE Internet Computing, vol. 09, no. 1, pp. 86-89, January/February
2005.

11. M. Román, F. Kon, R. Campbell. "Reflective Middleware: From Your Desk to Your Hand". IEEE Distributed
Systems Online (Special Issue on Reflective Middleware). Vol. 2, No. 5. July, 2001. ISSN: 1541-4922.

12. F. Kon, F. Costa, R. Campbell, G. Blair. "The Case for Reflective Middleware". Communications of the ACM.
Vol. 45, No. 6, pp. 33-38. June, 2002.

13. A .Popovici, T. Gross, G. Alonso. "Dynamic Weaving for Aspect Oriented Programming". In: 1st International
Conference on Aspect-Oriented Software Development (AOSD), Enschede, The Netherlands, April 2002.

14. A. Pace, F. Trilnik, M. Campo. "Assisting the Development of Aspect-based MAS using the SmartWeaver
Approach". In: "Software Engineering for Large-Scale Multi-Agent Systems", LNCS 2603, March 2003.

15. A. Garcia, C. Lucena, D. Cowan. "Agents in Object-Oriented Software Engineering". Software: Practice and
Experience, Volume 34, Issue 5, April 2004, pp. 489-521.

16. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, "Getting started with AspectJ",
Communications of the ACM, Vol. 44, No. 10 (October 2001), pp. 59 - 65.

17. A. Colyer, A. Clement, "Aspect-oriented programming with AspectJ", Volume 44, Number 2 (2005), Special
Issue on Open Source Software, pp. 301-308.

18. Z. Obrenovic, D. Starcevic, E. Jovanov, V. Radivojevic, "An Agent-Based Framework for Virtual Medical
Devices", Proceedings of The First International Joint Conference on Autonomous Agents and Multiagent
Systems: Part 2, July 15-19, 2002, Bologna, Italy, pp. 659 - 660.

19. Z. Obrenovic, D. Starcevic, B. Selic, "A Model Driven Approach to Content Repurposing", IEEE Multimedia,
Vol. 11, No. 1, January-March 2004, pp. 62-71;

20. D.B. Lange, M. Ochima, "Seven Good Reasons for Mobile Agents", Comm. of the ACM, Vol. 42, No. 3,
March 1999, pp. 88-89.

21. AspectJ Web Site, http://eclipse.org/aspectj/, Last visited: November 11, 2005

22. The Aglets Web Site, http://aglets.sourceforge.net/, last visited November 11, 2005

