

A Generic Framework for Modeling
User Interface Devices with UML

Zeljko Obrenovic

ABSTRACT
In this note we describe ideas about a generic modeling
framework for specification of user interface devices. Our
modeling framework does not define any specific input or
output device but instead defines a generic approach for
modeling such devices. It also enables description of a
wider class of user interface devices than existing solutions.
Proposed framework is based on the Unified Modeling
Language (UML), a widely adopted standard, familiar to
many practitioners. There is a good conceptual match
between the object paradigm of UML and user interface
devices concepts. With UML, we can make easier use of
device models for ordinary computing engineers, so results
of user interface device researches can have broader and
more practical effects. By providing a standard means for
representing multimodal interaction, we can seamlessly
transfer UML models of user interface devices between
design and specialized analysis tools. Using formal models
it is also possible to develop tools for repurposing of
existing user interfaces content to other platforms.

KEYWORDS: User-interface devices, Human-computer
interaction, Model-driven development, UML

INTRODUCTION
After almost two decades of WIMP (windows, icons,
menus, and pointer) paradigm dominance, with mice,
keyboards and monitors as standard user interface devices,
a bewildering variety of devices for human-computer
interaction again exists on the market. Hundreds of device
profiles are available for accessing online content and more
are introduced everyday [1]. All of these devices, such as
Internet-enabled cell phones, PDAs, desktop, laptop, and
wearable PCs have quite different requirements and
interaction capabilities. This variety significantly
complicates development of content and user interfaces,
especially in case of a multiplatform development. For
example, handcrafting content for each device and its
usage, as well as all of their combinations is just not
manageable; among other problems, this approach is too

expensive, takes too much time; and leads to multiple,
inconsistent versions of the content. In order to make sense
of this variety, it is necessary to create solutions that can
provide a generic and unified view on various classes of
user interface devices. In this note we present a generic
framework for specification of user interface devices with
the Unified Modeling Language (UML). Our modeling
framework does not define any specific device - such as a
mouse or keyboard - but instead defines a generic approach
for modeling such devices. The model, therefore, focuses
on the notion of an abstract device, which defines the
common characteristics of user interface devices regardless
of their specific manifestations. We used UML as it is a
widely adopted standard that is familiar to many
practitioners, widely taught in undergraduate courses,
supported by many books, training courses, and tools from
different vendors.

In next section we briefly discuss some of the existing
solutions. Then, we describe the proposed modeling
framework, where we present the metamodel of user
interface devices, and introduce UML modeling extensions.
After that, we illustrate our approach on several examples
of widely used user interface devices. In the end, we give
short discussion and conclusions.

EXISTING SOLUTIONS
In last two decades computer science researchers have
proposed and implemented various solutions for creating
frameworks for description of user interface devices. Most
of those solutions focus on input devices. Other approaches,
such as those from multimedia field, tried to separate
content form devices, allowing generic description of
content. Both of these areas have influenced our work.

Card, Mackinlay and Robertson proposed a framework for
characterization of computer input devices [2]. They did the
systematization of input devices through morphological
design space analysis, in which different input devices
designs, are taken as a points in a parametrically described
abstract design space. Authors defined a primitive
movement vocabulary, as well as a set of composition
operators for combining primitives from the vocabulary.
This input device framework is well suited for user-
manipulated event based interactive tools such as mice,
trackballs, tablets and light pens, but it does not easily
handle temporal and linguistic structures such as speech

[3]. Moreover, the authors used non-standard graphical
notation for the description of input devices, which makes it
less practical.

Allanson proposed the new sensor interaction model that is
more suitable for streaming-based input devices such as
physiological electrodes or microphones [4]. In this model,
a stream of raw data (such as electroencephalogram) from
the sensing hardware passes through up to two levels of
signal preprocessing before it is either passed to an
application or is presented directly to the user. The first
layer is the standard device layer and is mandatory. The
second command layer is optional, but it enables
integration of complex signal processing components such
as neural networks or pattern recognition modules. The
main purpose of the proposed framework is to alleviate
combining computing with physiological sensing
technologies, but the model has a potential to be used in a
wider range of applications. The main weaknesses of the
model are that it is a high-level approach, and primary
dedicated to electrophysiological devices.

Multimedia researchers have attempted to separate
knowledge content from devices and media. To this end,
Ashwin Ram and his colleagues used the Procedural
Markup Language (PML) [5]. PML lets developers specify
knowledge structures, the underlying physical media, and
the relationships between them using cognitive media roles.
Edward Posnak, Greg Lavender, and Harrick Vin proposed
a framework that simplifies multimedia software
component development by facilitating reuse of code,
design patterns, and domain expertise [6]. Their solution
lets components dynamically adapt presentation quality to
the available resources and devices in heterogeneous
environments

USER INTERFACE DEVICES MODELING FRAMEWORK
Trends and industry standards in software engineering, such
as model driven development, open new possibilities for
improving analysis, design, and implementation of
interactive systems. In this note we propose a generic
framework for specification of user interface devices with
Unified Modeling Language (UML). UML (see
www.omg.org/uml) is a good choice for modeling
interactive devices for several reasons. It is a widely
adopted standard that is familiar to many practitioners,
widely taught in undergraduate courses, supported by many
books, and training courses. In addition, many tools from
different vendors support UML. Our approach is tightly
coupled and inspired by the model-driven development,
where software development’s primary focus and products
are models rather than computer programs. In this way, it is

possible to use concepts that are much less bound to the
underlying implementation technology and are much closer
to the problem domain [7]. As user interface devices can be
viewed as objects with complex structure, there is a good
conceptual match between the object paradigm of UML and
user interface devices concepts.

Our modeling framework does not define any specific
device - such as a mouse or a keyboard - but instead defines
a generic approach for modeling such devices. The model,
therefore, focuses on the notion of an abstract device,
which defines the common characteristics of user interface
devices regardless of their specific manifestations. In order
to create this generic framework we have explored two
problems:

• Formal definition of user interface device concepts, and
• Definition of UML extension for modeling user interface

devices.

To define the concept of device, we have created the
metamodel of user interface devices. This metamodel
represents an abstract, higher-level, view on various aspects
of device specification. Based on this metamodel, we
introduced UML extensions, and used them for modeling
various input and output devices.

The Metamodel of User Interface Devices
In order to define device models, we need a vocabulary of
modeling primitives. Therefore, we defined a metamodel
where we formally described basic concepts of user
interface (UI) devices. Figure 1 shows simplified definition
of a UI device, from our metamodel, based on the
composite software designed pattern. According to our
model, a UI device can be input, output, or complex. A
complex UI device integrates other devices to create
simultaneous use of them, while a simple input and output
devices carry out more elementary actions.

Input devices transfer human output, such as hand
movement or speech, into a form suitable for computer
processing. We classified input devices into event-based
and streaming-based classes. Event-based input devices
produce discrete events in reaction to user actions. For
example, user input via a keyboard or a mouse, represents
event-based input style. Streaming-based devices sample
input signals, with some resolution and frequency,
producing a time-stamped array of sampled values. For
example, a computer detects a user's voice or psychological
signals by sampling input signals with sensors such as a
microphone or an electrode.

UI device

Integration mechanism

Complex UI device

1..*

1

1..*

1

Layout Merge Connect

Discrete input device Streaming input device

Human output

Input device

capturing

Output device

Virtual output device

Stimulus

Physical output device

excitation

Figure 1. Simplified metamodel of UI devices.

Output devices present data to a user. We introduced two
classes of output device: physical output device and
virtual output device. A physical output device is ordinary
device such as a monitor or speaker, and it is
characterized by type of stimulus it produce (light, sound,
movement, pressure, scent). A virtual output device
creates an illusion of more devices or bigger devices than
devices actually used. Examples of virtual devices include
virtual displays, which create illusions of desktop size
monitors using devices that are only few centimeters big
[8], and phantom speakers, which, based on how a brain
interprets the ears’ input, led to virtual surround, in which
two speakers sound like many more [9].

A complex device integrates many input or output devices
using some of integration mechanisms. Some complex
devices can be composed of only input or output devices
only, but some combine input and output elements. For
example, touch-screen device combines visual output with
haptic input. We defined three basic integration
mechanisms, based on framework proposed by Card et al
[2]: layout, merge, and connect. With layout integration
mechanism, complex devices are spatially grouped on a
common panel, for example, keys on a keyboard, or
mouse buttons. In this case, integration includes only
physical layout, while an application can treat each
devices independently. Merge layout mechanism joins
two or more devices, to produce a new one in which
resulting output domain of a device merges output
domains of constituting devices. For example, mouse
merges two orthogonal movement sensors to produce 2D
sensor. In this case mouse always sends integrated X and
Y values, so outputs of two 1D sensors cannot be viewed
as two independent channels. Connect mechanism
connect output domain of one device to input domain of
another. For example, a mouse is connected to a mouse

cursor.

UML Extensions
Although our metamodel's general nature makes it
independent of a specific modeling language, for our
purposes we wanted to apply it to UML. UML is a
general-purpose modeling language, but it includes built-
in facilities that allow customizations—or profiles—for a
particular domain. A profile fully conforms to the
semantics of general UML but specifies additional
constraints on selected general concepts to capture
domain-specific forms and abstractions. To address this
purpose, a formal extension mechanism was defined to
allow practitioners to extend the semantics of the UML.
The mechanism allows us to define stereotypes, tagged
values and constraints that can be applied to model
elements. A stereotype is an adornment that allows us to
define a new semantic meaning for a modeling element.
Tagged values are key value pairs that can be associated
with a modeling element that allow us to “tag” any value
onto a modeling element. Constraints are rules that define
the well-formedness of a model. They can be expressed as
free-form text or with the more formal Object Constraint
Language (OCL).

We defined a new UML profile where we have introduced
several UML extensions based on the proposed
metamodel. With these extensions, we can describe a
device at different levels of abstraction, with various
levels of details. Table 1 shows some of introduced UML
class and association stereotypes. As we do not describe
concrete devices, but some class of devices, such as
mouse or monitors, we propose modeling of UI devices
with class diagrams, In next section, we will demonstrate
usage of these stereotypes in class diagrams.

Table 1. UML stereotypes for modeling of user interface devices.

Package
stereotype

UI device All classes that describe some device may be grouped into a
package with this stereotype.

discrete input device Discrete input device such as a mouse or keyboard.

streaming input device Streaming input device such as a microphone or EEG electrode.

physical output device Physical output device such as speaker.

virtual output device Virtual output device such as virtual display.

complex device A device that integrates more other devices. For example, a
monitor integrates pixels, while a mouse integrates a movement
sensor with mouse buttons.

layout panel A panel used for layout of devices that complex device
integrates.

human output Human output captured by some input device, such as
movement or speech.

stimulus Stimulus produced by output device, such as light or sound.

data structure A data structure used for description of the device.

Class
stereotypes

device state A state maintained by device. This is important for devices such as
a mouse which detects only relative changes.

Attribute
stereotypes

device property An attribute that describes some characteristics of a device. For
example, a monitor has width and height dimensions, white mouse
may be defined by size, resolution and C:D ratio.

merge Connects a complex device with other devices it integrates by
merging.

layout Connects a complex device with other devices it integrates by
layout on common panel.

connect Connects a complex device with other devices it integrates by
connecting.

panel Connects a complex device with a panel used for layout of
devices it integrates.

media Connects a physical output device with a stimulus it produces.

capturing Connects input device with human output it captures.

data Connects a device with a data structure that describes it.

Association
stereotypes

state maintenance Connects a device with a state it maintains.

MODELING USER INTERFACE DEVICES
Our modeling framework defines a generic approach for
modeling user interface devices, where actual devices are
described with UML models defined with extensions
explained in the previous section. To illustrate some of the
possibilities of the proposed modeling framework, we have
applied it to several examples.

Figure 1a shows a model of a raster screen device, such as
monitor, developed using proposed UML stereotypes. Basic
element of a raster screen is a pixel, which can be viewed

as a complex device that merges three pixel parts (red,
green, and blue). Each pixel part is a physical output device
which produces light of some frequency, and with variable
intensity. Each pixel part is described with a pixel part data,
which simply describes intensity of light that the pixel part
produces. A pixel is defined with its shape and size. A pixel
data is described as an aggregation of three such pixel part
data structures. A raster screen is a complex device that
layouts pixels in rows and columns. A data structure for
whole raster screen is simply an array of pixel data
structures.

(a)

PixelData
<<device data>>

RasterMatrix
<<device data>>

*

1

*

1

RasterScreenPanel

<<device property>> rows
<<device property>> columns

<<layout panel>>

GreenPixel
<<physical output device>>

BluePixel
<<physical output device>>

RedPixel
<<physical output device>>

RasterScreen
<<complex output device>>

<<device property>> refreshFrequnency 11 11

<<data>>

1

1

1

1

<<panel>>

PixelData

red : PixelPartData
green : PixelPartData
blue : PixelPartData

<<device data>>

Pixel

<<device property>> size
<<device property>> shape

<<complex device>>

1

1

1

1

<<merge>>

1

1

1

1

<<merge>>

1

1

1

<<merge>>

**

<<layout>>

11

<<data>>

Light
<<st imulus>>

PixelPartData
<<device data>>

PixelPart
<<physical output device>>

11

<<media>>

11

<<data>>

1

(b)

<<connect>>

Hand movement
<<human output>>

Mouse posit ion
<<device data>>

1D movement sensor

resolut ion

<<discrete input device>>

<<capture>>

1 11 1

<<data>>

Force
<<human output>>

Mouse button state

id
isPressed

<<device data>>

Mouse button
<<discrete input device>>

1

1

1

1

<<capture>>

11 11

<<data>>

X movement sensor
<<discrete input device>>

Y movement sensor
<<discrete input device>>

Mouse posit ion

axis
posit ion

<<device data>>

Mouse button state
<<device data>>

XY movement sensor
<<complex input device>>

1

1

1

1

<<merge>>

1

1

1

1

<<merge>>

Cursor
<<discrete input device>>

MouseData
<<complex input device data>>

21 21

3

1

3

1

Mouse state
<<device state>>

Left mouse button
<<discrete input device>>

Right mouse button
<<discrete input device>>

Middle mouse button
<<discrete input device>>

Mouse
<<complex input device>>

1

1

1

1

<<merges>>

1

1

1

1 11 11

<<input data>>

1

1

1

1<<state maintance>>

Mouse buttons panel
<<input device panel>>

Mouse buttons
<<complex device>>

1

1

1

1

<<layout>>

1

1

1

1

<<layout>>

1

1

1

1

<<layout>>

1

1

1

1

<<merge>>

<<panel>>

Figure 1. Describing a raster screen (a) and a mouse (b) on a class diagram using proposed UML stereotypes.

Figure 1b shows a UML description of a mouse. A mouse
merges two complex devices: a XY movement sensor and
mouse buttons. The XY movement sensor merges two
orthogonally placed 1D movement sensors, capturing hand
movement. Each 1D movement sensor is a discrete input
device characterized with its resolution. A mouse buttons
panel layouts, usually three, mouse button devices, which
capture human force output. A mouse is connected to a
cursor, modeled as a virtual output device.

The model of a keyboard is shown of picture 2. A keyboard
is a complex device that layouts keys on common panel.
Each key is modeled as a discrete input device that detects
pressure. Each key is described by its code and current
state. Keyboard data represent a union of currently used
keys. A keyboard is additionally described by a keyboard
state, which, for example, keeps num lock, caps lock, and
scroll lock keys state. There are many types of keyboards,
according to the keys layout, such as QWERTY or
numerical keyboards.

Standard keyboard state

capsLockState
numLockState
scrollLockState

<<device state>>

Keyboard panel
<<layout panel>>

Key
<<discrete input device>>

Keyboard
<<complex device>>

1..*1..*

<<layout>>

<<panel>>

Key code

code
state

<<device data>>
<<input data>>

Keyboard state
<<device state>>

<<state maintance>>

Keyboard data
<<device data>>

*

1

1

1

QWERTY keyboard
<<complex device>>

Numerical keyboard
<<complex device>>

*

1

1

1 <<data>>

Figure 2. A model of keyboards.

Figure 3 shows a model of a 5.1 sound system. This system
merges sound produced by five ordinary speakers and one
subwoofer. A normal speaker is a complex device that
merges sound of woofer, which produces sounds of lower
frequencies, and tweeter, which produces higher
frequencies.

Sound
<<stimulus>>

Speaker
<<physical output device>> <<media>>

Woofer
<<physical output device>>

Tweeter
<<physical output device>>

Normal speaker
<<complex device>>

<<merge>> <<merge>>

Subwoofer
<<physical output device>>

5.1 sound system
<<complex device>>

5 15 1

<<merge>>

1

1

1

1

<<merge>>

Figure 3. A model of a 5.1 sound system.

Figure 4 presents the model of a virtual display [8]. A
virtual display simulates a raster screen device of some
width and height. A virtual device is produced by miniature
imager, a complex device that layouts LED pixels.
Minature imager is usually only few centimeters wide and
high.

Raster screen
(from raster screen)

<<complex device>>

Light
<<st imulus>>

VirtualDisplay

<<virtual property>> width
<<virtual property>> height

<<virtual device>>
<<virtual simulation>>

LED pixel
<<physical output device>> <<media>>

Miniature imager panel
<<layout panel>>

Miniature imager
<<complex device>>

<<virtual output>>

1..*

1

1..*

1

<<layout>>

<<layout panel>>

Figure 4. A model of a virtual display.

At the end, in figure 5 presents a model of an EEG input
device. A basic element of this system is an EEG electrode,
a streaming input device which captures human EEG
signals. EEG electrodes can be connected to some on-board
processing elements, such as FFT processor. More complex
processing using neural processing is also often part of
these systems [10].

EEG signal
<<human output>>

EEG sensor
<<st reaming input device>>

1

1

1

1
<<capture>>

FFT processing
<<processing function>>

EEG FFT processor
<<complex input device>>

1

1

1

1
<<connect>>

<<processing>>

Neural netowork
<<processing function>>

EEG neural processor
<<complex input device>>

1

16

1

16

<<connect>>

<<processing>>

Figure 5. A model of an EEG device.

DISCUSSION: MODEL TRANSFORMATIONS AND
ANALYSIS
Based on UML models, we can get a formal XML
description of various aspects of a user interface devices.
These descriptions can be transformed in any other form,
using various tools, such as XSLT translators. UML
supports both graphical and textual notations, as well as
compilers for generating code for multiple platforms. In
this way it is possible to create an architecture which can
enhance communication between users of different
notations for UML concepts by providing a standard,
centralized store for these concepts. In this way, it
facilitates the construction of formal model compilers, test-
case generators, and consistency checkers. The UML
provides basis for generating serialized formats, such as the
XML Metadata Interchange, with file based interchange in
XML Schema and application programming interfaces such
as the Java Metadata Interface, which provides dynamic
access to UML model storage from Java [11].

For example, based on class diagram descriptions of device,
we can create and object diagram where we can describe
concrete values of device properties. These class and object
diagrams can then be transformed into XML form, and be
used by tools that can analyse or transform content aimed at
presentation on some device. In this way, it is possible to
analyse models, do reverse engineering, or repurpose
existing content. For example, we used this approach to
create a model-driven framework for multimedia content
repurposing [12].

Device properties such as resolution, size, refresh
frequency or color depth, can be used as parameter for
repurposing content among devices. When repurposing, it
is often necessary to change the original presentation
dimensions. For instance, when transforming a Windows
bitmap into a wireless bitmap (WBMP) it is necessary to
map 24-bit color space into 1-bit black and white color
space of the WBMP. In addition, the transformation has to
shrink the picture in order to fit it into the smaller wireless
device presentation space. In this case we scale the original
dimensions to fit the range of target dimensions of the same
type. Alternatively, it is possible to change one presentation
dimension with the dimension of another type. For
example, if the presentation space is very small, then some
big picture can be transformed into an animated or user-
navigated picture. In this case, the space dimension is
replaced with the time dimension. The Multimedia
Metamodel can aid this process by providing formal models
of the content's presentation dimensions and the
presentation possibilities of target devices, as illustrated in
the previous section, where we described the presentation
device package.

CONCLUSIONS
In this note we have proposed a unique framework for
modeling multimodal human-computer interaction. Our
modeling framework does not define any specific
interaction modality but instead defines a generic approach
for modeling such modalities. In this way, it enables
description of broader classes of user interface devices than
existing solutions. Although our framework's general nature
makes it independent of a specific modeling language, we
applied it to UML. UML is a good choice for modeling
multimodal systems for several reasons. It is a widely
adopted standard that is familiar to many software
practitioners, widely taught in undergraduate courses, and
supported by many books, training courses, and tools from
different vendors. And what is the most important there is a
good conceptual match between the object paradigm of
UML and user interface device concepts, what we have
demonstrated on several examples. Our framework can be
easily extended with additional elements using UML
extension mechanisms.

By providing a standard means for representing multimodal
interaction, we can seamlessly transfer UML models of
user interface devices between design and specialized
analysis tools. Standardization provides a significant
driving force for further progress because it codifies best
practices, enables and encourages reuse, and facilitates
interworking between complementary tools. With UML, we
can jump on the bandwagon of new software development
technologies, such as model driven development. Our
modeling framework feats neatly in the model driven
development approach, and consequently, it will be able to
make use of the tools that support it.

Proposed solutions can serve several purposes. The

metamodel of multimodal interaction can provide the
context of multimodal concepts where we could perceive
many relations that are not always obvious. Definition of
semantic extensions of UML can be used for formal
description of user interface devices on various levels of
abstraction. These descriptions can be used as a meta-
description of these devices, but by using automation, it is
possible to create tools for analysis and transformations of
content created for these devices. Using formal models it is
also possible to develop tools for repurposing of existing
user interfaces to other platforms.

In our future work, we plan to extend existing software
development processes, such sa Rational Unified Process
with primitives for better description of interactive systems,
including used devices, and to integrate our solutions into
existing CASE tools.

REFERENCES

1. Gurminder S., "Content Repurposing", IEEE

Multimedia, Vol. 11, No. 1, January-March 2004, pp.
20-21.

2. Card S.K., Mackinlay J.D, Robertson G.G., "The
Design Space of Input Devices", in M.M. Blattner and
R.B. Dannenberg (Eds.), Multimedia Interface Design,
ACM Press and Addison Wesley, Reading, Mass.,
1992, pp. 217-232.

3. Blattner M.M., Glinter E.P., "Multimodal Integration",
IEEE Multimedia, Winter 1996, pp. 14-24.

4. Allanson J., "Electrophysiologically Interactive
Computer Systems", Computer, March 2002, pp. 60-
65.

5. Ram A. et al., “PML: Adding Flexibility to Multimedia
Presentations”, IEEE Multimedia, IEEE CS Press,
April-June 1999, pp. 40-52.

6. Posnak E.J., Lavender R.G., and Vin H.M., “An
Adaptive Framework for Developing Multimedia
Software Components”, Comm. of the ACM, ACM
Press, Vol. 40, No. 10, October 1997, pp. 43-47.

7. Selic B., "The Pragmatics of Model-Driven
Development", IEEE Software, Vol. 20, No. 5,
September / October 2003, pp. 19-25.

8. Edwards J., "New Interfaces: Making Computers More
Accessible", IEEE Computer, December 1997, pp. 12-
14;

9. Kraemer A., "Two Speakers Are Better Than 5.1",
IEEE Spectrum, IEEE Press, May 2001, pp. 71-74.

10. Millán J.R., "Adaptive Brain Interfaces", Comm. of the
ACM, Vol. 46, No. 3, March 2003, pp. 75-80.

11. Sendall S. and Kozaczynski W., "Model
Transformation; The Heart and Soul of Model-Driven
Software Development", IEEE Software, Vol. 20, No.
5, September / October 2003, pp. 42-45.

12. Obrenovic Z., Starcevic D., Selic B., "A Model Driven
Approach to Content Repurposing", IEEE Multimedia,
Vol. 11, No. 1, January-March 2004, pp. 62-71.

John Edwards, "New Interfaces: Making
Computers More Accessible", IEEE
Computer, December 1997, pp. 12-14;

