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1 Executive Summary

In ID4.3, the state of the art in multimedia reasoning is discussed. This deliverable complements ID4.1, which focuses on knowledge assisted multimedia analysis. The topics that ID4.3 considers include the types, the challenges and the requirements of multimedia reasoning, along with the main reasoning techniques, based either on implicit knowledge and statistical methods, or on explicit knowledge and matching processes). This report firstly presents an overview of such techniques, focusing also on techniques that can handle uncertainty and fuzziness, and then presents examples of applications to the multimedia domain.

Abbreviations and Acronyms

	CLIPS
	C Language Integrated Production System

	CSP
	Constraint Satisfaction Problem

	DLs
	Description Logics

	EXIF
	Exchangeable Image File Format

	F-Logic
	Frame Logic

	FOL
	First Order-predicate Logic

	ICA
	Independent Component Analysis

	IPCT
	

	JPEG
	Joint Photographic Experts Group

	k-NN
	k-Nearest Neighbour

	LHS
	Left Hand Side

	OWA
	Open World Assumption

	OWL
	Web Ontology Language

	PEM
	Path Enhanced Media

	RBR
	Rule Based Reasoning

	RDF(S)
	Resource Description Framework (Schema)

	RHS
	Right Hand Side

	SL resolution
	Linear resolution with selection function

	SLD resolution
	SL resolution for definite clauses

	SLDNF resolution
	SLD resolution with negation as failure

	SVM
	Support Vector Machine

	SWRL 
	Semantic Web Rule Language

	URI
	Uniform Resource Identifier

	WFF 
	Well Formed Formula

	XML
	eXtensible Markup Language


Introduction 

Moving from low-level perceptual features to high-level semantic descriptions that match human cognition is the final frontier in computer vision, and consequently to any multimedia application targeting efficient and effective access and manipulation of the available content. The early efforts targeting this so called semantic gap formed what is known as content-based (analysis and) retrieval approaches, where focus is on extracting the most representative numerical descriptions and defining similarity metrics that emulate the human notion of similarity. The limitations of such numerical-based methodologies however, led to the investigation of ways to enhance their performance. Relevance feedback and incremental learning are two common such enhancements. However, the developed systems still could not meet realistic user needs, although some have proven particularly effective within certain application context. As a result research focus shifted to the exploitation of implicit and/or prior knowledge that could guide the process of analysis and semantics extraction. Numerous approaches have been proposed building on this principle, exploiting varying methods for modelling this knowledge, varying representations and consequent handling techniques. 

In this deliverable, we present an overview of the current state-of-the-art in reasoning for multimedia analysis and understanding. By reasoning in this context, we refer to the automatic derivation of high-level semantic annotations from low-level multimedia data (raw and/or pre-processed to acquire audiovisual or conceptual descriptions of varying abstraction levels) through the utilization of the provided (general, domain, structural, etc.) knowledge. Moreover, reasoning includes the case in which semantic information is further extended to identify and detect complex objects and events at an even higher level. To better identify reasoning in the context of multimedia, the role and challenges of reasoning in multimedia applications are discussed first and corresponding requirements are drawn (Section 4). Since knowledge representation is intertwined to the subsequent inferencing, the deliverable continues with an overview of the most common knowledge representation formalisms, followed by the presentation of the main reasoning methodologies that can be applied to the multimedia domain (Section 5). Next, the current literature is briefly overviewed (Section 6). The reviewed literature includes approaches to multimedia (image and video) annotation and classification, usage of context information provided with image metadata, and additionally, approaches to text annotation in order to highlight similarities and reveal possible useful guidelines/coupling. Finally, Section 7 concludes the deliverable.

2 Reasoning requirements in multimedia 

The high complexity of the multimedia content requires representation formalisms of high expressiveness that are capable of supporting efficient reasoning support. In most cases, description logic (DL) reasoning technologies are used to perform inferencing for modeling languages of high expressiveness, such as the languages developed for the Semantic Web (e.g., OWL flavors). This is due to the fact that DLs build upon a strong theoretical background, provide sound and complete decision procedures, and have been implemented in optimized and thus practical systems. However, DL–based reasoning still suffers from numerous limitations and cannot offer satisfactory results in large and complicated ontological applications, such as semantic multimedia processing. As a result, a changeover or a combination with other more scalable reasoning methodologies is necessary. 

More specifically, the interest of the research community concerning DL – based reasoning, aims at the development of decision support systems, due to the high inferencing capability of the DLs. In many cases, especially where there is a need to express and reason based on numerical values, such as in the medical domain, rule extensions can be also considered. Finally, it is often the case for multimedia applications to involve uncertainties and fuzziness. For instance, automatic annotation tools may provide various interpretations for the same image/image region with different degrees of confidence. This type of uncertain information is of great significance in reasoning and therefore, it needs to be taken into account and explicitly represented. 

In this section, reasoning is investigated within the context of multimedia understanding in order to allow the designation of its role and further potential, and thus to enable the identification of the specific requirements that need to be met. Reasoning generally refers to the derivation of additional, explicitly represented knowledge from the implicit one through the application of inference methodologies. Apparently, given the variety of different tasks involved in multimedia understanding, reasoning can be perceived in different ways depending on the specific application context. In the following, the possible applications of reasoning with respect to multimedia understanding are examined first, along with the presented challenges. Based on this analysis, a list of concrete requirements is assembled and further discussed.

2.1 Types of reasoning

Roughly speaking, multimedia understanding can be deemed as the process of moving from raw signal (numerical) data to symbolic visual representations (such as blue colour, large size and so on), which in turn are translated into higher level representations at a conceptual level that better matches human cognition (such as person, car, beach, horse in a green field, etc.). As summarized in Fig. 4.1-1, different levels of representation are involved. 
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Fig. 4.1-1 Levels of representation.

Consequently, a first classification of the application of reasoning in multimedia understanding can be carried based on the level of representation on which it performs:

· Reasoning on low- and/or mid-level descriptions. This type of reasoning is typically found in the majority of machine learning-based approaches that aim to extract semantic descriptions in a single step based on the associations learned between visual features and semantic concepts. It is also the case of the knowledge-driven approaches that make use of explicitly defined models that provide the link between the automatically extracted representations and the supported semantic descriptions.

· Reasoning on top of already existing (automatically derived or explicitly provided) semantic descriptions targeting the inference of additional semantic descriptions. This type of reasoning typically is either completely decoupled from the visual aspect of the analyzed content, e.g., exploiting solely the provided domain conceptualization or spatiotemporal contextual knowledge, or interacts partially with visual features at a symbolic level, e.g., given the semantic concepts of “sea” and the mid-level descriptions of “dark blue” and “wrinkled”, the more abstract description “stormy sea” can be inferred. 

Another classification can be made based on the specific goal that reasoning targets. Thus, we can identify:

· Reasoning applied for the recognition of semantic concepts. As aforementioned, this can be achieved by performing on top of different levels of representation. A further distinction can be made based on the level of the targeted semantic concepts, i.e., local as is the case of object/event recognition tasks and global as in scene classification ones.

· Reasoning applied for refining and checking the consistency of already annotated semantic concepts.

· Reasoning applied for determining the representations (i.e., features) and algorithms that best address the multimedia understanding tasks at hand. 

In accordance with the aforementioned classification schemes, a number of interesting dimensions include: 

· The type of multimedia document under consideration, i.e., still image or video, accompanied or not with text and/or audio data. Obviously, the media type determines the different modalities that reasoning needs to perform on and subsequently integrate. 

· The integration of representations, and thus descriptions, resulting from different processing modules addressing the same modality, as opposed to the integration of different modalities information. 

· The type of knowledge that reasoning exploits, such as domain, audiovisual, contextual, structural, provenance, etc., as it determines the requirements in terms of the inference functionalities and of course the required knowledge representation expressivity. 

2.2 Challenges

As described in the following, and extensively detailed in the literature, the challenges in multimedia understanding originate in the very nature of multimedia. Multimedia documents comprise extremely rich sources of information subject to inherent ambiguity. The conveyed meaning varies depending on the given context of usage thus rendering hard the deterministic specification of a common set of important aspects. In addition, the problem of automatically moving from raw data to meaningful representations is in itself incomplete as the available information express very little of what needed to explicitly interpret it.   

The main challenges are summarized briefly in the following:

· Objects in real world are usually not homogeneous but tend to consist of parts with differing visual features. As a result, the produced segmentation masks fail to capture the depicted objects as single segments. Instead, a set of segments may be produced for a single concept, corresponding in the ideal case to its constituent parts.
· The transition from the three-dimensional space to the two-dimensional image plane results in loss of one of the fundamental real-world object properties: the object connectivity.
· Besides some primitive concepts that cannot be decomposed to any smaller semantic units, there is a wide variety of complex objects and events, often referred to as composite (e.g., the event of a player hitting the ball, the concept of an island, etc.). Due to their high abstraction level, their detection cannot be reliably performed through a matching process against the respective models included in the domain knowledge or the associations learned, as it requires understanding and reasoning over the underlying conceptualization to provide methodologies beyond ad hoc solutions. Instead, their detection has to be performed as part of a higher-level analysis that includes the identification of their constituent spatial and/or temporal parts and the use of contextual knowledge already derived about the neighbouring segments.
· A given concept may have completely different appearances under different contexts, thus, requiring for particularly detailed knowledge modelling in order to cover for all possible instantiations (intra-class variability). However, even in the rare cases where building such detailed knowledge base is feasible for given semantic entities, the performance acquired eventually may be severely degraded due to overspecification issues or, more importantly, due to the further reduced ability in discriminating between the different semantic entities (inter-class variability).
2.3 Requirements

Building on the aforementioned issues, the following requirements can be identified with respect to the application of reasoning in multimedia understanding in a way that ensures maximum added value. 

Uncertainty support. Given the fact that what multimedia data practically provide is cues that support or deny evidence on the plausibility of the conveyed semantics, rather than proofs, handling uncertainty within reasoning is a crucial requirement.  Although uncertainty has been incorporated to a significant extend in a large part of the reported literature (typical examples include probabilistic and statistical reasoning) the majority of the presented approaches follow ad hoc notations and methodologies, thus limiting reusability and interoperability. 

Iterative reasoning. Given the complexity of the problem, the incompleteness of the available data and the inherent ambiguity, is hardly possible to expect that the interpretation process will take place in a single step. Instead an iterative, hypothesize-and-test framework appears to conform better to the challenges faced in multimedia understanding tasks. Further support for adhering to such an approach provides the fact that interpretation needs to perform on cross-modal level where the cues provided by the different modalities come to affect the interpretation tasks at different points requiring consistency checking and backtracking functionalities. The latter is of course a general requirement for handling multimedia data as the information captured in the different descriptions is heterogeneous and cannot be combined in a single step to produce a deterministic result. 

Hierarchical reasoning. Intertwined with providing support for uncertainty within an iterative hypothesize-and-test procedure, is the need for allowing reasoning to proceed in successively higher levels of abstraction of the inferred descriptions. Thus, more reliable semantics extraction can be achieved as, while moving from one representation level to the other, information loss and uncertainty are minimized compared to approaches that build on direct associations between measurable features and the targeted semantics. 

Reasoning with multimedia-related datatypes. Unlike typical knowledge-based applications, in multimedia processing, the conceptualization and the knowledge base to which reasoning is applied needs to support the datatypes used for capturing the multimedia aspect of the data (such as vectors with numerical values) in order to provide uniform knowledge management. Defining symbolic representations in a way that will allow typical reasoning methodologies, an application solves the problem only partially, but it is unrealistic to expect to bring the full potential by leaving out the multimedia-related aspects of the data. 

Hybrid reasoning. The different levels on which reasoning needs to perform in combination with the different tasks targeted within the entire interpretation process present varying requirements that cannot be met by a single type of reasoning. What is rather needed is a framework under which different reasoning approaches can interact, complementing and supporting each of the inferences, towards achieving the final goal. 

Distributed reasoning. In accordance with the recent outcomes of the initiative for a common multimedia ontology framework
, reasoning in multimedia interpretation tasks needs to take into account the different types of knowledge (e.g., domain, contextual, general, etc.) that are likely to be shared within a distributed environment. Thus, providing support for a distributed reasoning framework may form a prerequisite for certain applications. 

3 Knowledge representation and reasoning

The complex nature of the multimedia content imposes new challenges in the knowledge representation of the domain. Multimedia data belong to two different though interlaced layers, the multimedia-layer and the content-layer. The multimedia-layer deals with the semantics of properties and actions involved in the representation of the content of the data, while the content-layer handles the semantics of the actual content as it is conceptualised by humans. Moreover, explicit knowledge representation aims among others at facilitating and enabling the extraction of new knowledge via reasoning processes. Consequently, this multidimensional structure must be necessarily reflected in the representation of multimedia content. In the following we briefly review the common approaches to knowledge representation.

3.1 Ontology-based 

Ontologies are the basic structure of every system that handles explicit knowledge representation. An ontology is defined as the explicit specification of a conceptualization [Gru89]. Ontologies describe objects of the domain of interest and the relations between them in a formal way. They provide a common, machine readable view of the content of the specified domain and a means of communication between systems and humans on a common understanding. They are capable of representing complex relationships between instances of these concepts and may include rules and axioms in order to express additional knowledge. 

However, we need to define what should be included in a multimedia ontology and the aim of its usage. Multimedia ontologies can be used in many of the phases of multimedia processing, including annotation, analysis, reasoning and retrieval. It is important to mention that precise and consistent characterization of the relation terms between the concepts of the ontology, leads to a more precise definition and description of the information represented and therefore stronger and more effective reasoning support. 

In k-space, we need ontologies in order to support multimedia knowledge analysis, semantic inferencing and high-level semantic reasoning, which will provide the means for automatic content annotation.

3.1.1 DL-based

Description Logics (DLs) are a family of logic-based knowledge representation formalisms characterized by logically founded formal semantics and inference capabilities [Baa03, Pan04]. DLs are used to reason about the knowledge included in a specified domain of interest, in a structured and well-formed manner. They describe the domain of interest in terms of concepts, relationships and individuals. They supply an alphabet of unlimited symbols for concepts, roles and individuals and a set of terms forming operator symbols. The concepts represent sets of domain elements, the roles denote binary relations over the domain of interest and definitions are expressed by the set equality. Individuals are usually referred to as the Assertion KB or A-box, while the concept/role definitions are usually referred to as the Terminological KB or T-box.

DL-based reasoning is useful for checking the consistency of the ontology, classifying terms and detecting implicit hierarchies. Applications of DLs include Databases and the Semantic Web. Basically, reasoning with DL knowledge bases refers to extracting implicit knowledge involved in the knowledge base. Reasoning support via DLs emphasizes on key problems, such as knowledge base satisfiability, concept satisfiability, subsumption and instance checking. 

Inferencing in DLs is essentially different from any other inference support in AI or in logic databases. The main difference is that DLs consider definitions in the vocabulary, instead of temporary populations in a knowledge base. The main advantages of DLs are the high and well-defined semantic expressiveness and the powerful reasoning support. They focus on providing clear semantics, decision procedures and flexible reasoning services. In the following paragraphs we present a more analytical description of the several inference services using DLs.

3.1.1.1 Inferential Services of a DL system

Subsumption of concepts refers to determining whether
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holds for concepts C and D. In this case, D subsumes C, C is subsumed by D, or C is more specific than D [Baa02]. On the other hand, subsumption of concepts with respect to a TBox determines whether the following holds
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where T is a TBox. For example, given the following:
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we can see that, in the subsumption among concepts,  person
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hasChild.person is subsumed by person, whereas parent 
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 male is subsumed by both parent and male. In the subsumption with a TBox, parent is subsumed by person, determining that every parent is a person and father is subsumed by both parent and male.  
Equivalence of concepts (with respect to a TBox) determines for two given concepts C and D whether D subsumes C and C subsumes D, with respect to the TBox [Baa02].

Classification of a TBox determines for all the concept names A and B included in the TBox, whether A subsumes B or B subsumes A. For instance, given the ABox and TBox of the previous example, the classification procedure gives the following result [Baa02]:
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Instance checking determines whether a given KB involves a given concept assertion:
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where K is the given KB and a : C represents the concept assertion.                               

Consistency testing of a concept aims at determining for a given concept C, whether there is a terminological interpretation (satisfying the TBox), such as that CI is not empty, where I represents the terminological interpretation. Consistency checking is useful for flaw detection in the definition of concepts. Given the abovementioned ABox and TBox example, consistency checking determines that the concept 
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is inconsistent, with respect to the given TBox. However, the concept  
[image: image18.wmf]female

father

Ç

 is consistent, due to the fact that there is no indication that female and male exclude each other in the corresponding example.

Consistency of an ABox determines whether the given ABox is satisfiable, with respect to the corresponding TBox [Baa02].

Realisation includes computation for a given object name in a KB of the set of most specific concept names, such that 
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where a is the object name, K the KB and A the set of the most specific concept names, with respect to the subsumption relation.

Finally, retrieval refers to computing for a given concept C in a KB those object names that satisfy the relation
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where K is the KB, C the given concept and a the set of the object names [Baa02].                  

At this point, it is important to mention that all inferential services with DLs can be reduced to consistency checking of an ABox, with respect to a given TBox.  

3.1.2 F-logic

3.1.2.1 F-Logic concepts and representations
Frame Logic or F-Logic
 is an inferential, object-oriented database language. F-Logic combines the high semantics expressive power of the inferential database languages with the high data representation capabilities of the object-oriented formalisms. It can be described as a logic designed for reasoning about object-oriented domains. An F-Logic domain consists of objects and methods, associated with the objects. In addition, there are object constructors, understood as functions defined on objects, a partial ordering, defined as the subset relationship (≤U), a binary relation for membership relationships (єU) and a condition set on the later two relations, which guarantees that membership in an object is extended to a super-class object.

Objects represent real world entities: they can be just anything that we need to express, for example a person, a car, the motherhood concept, etc. Furthermore, there is no distinction between individuals and class objects. An object can be both, depending on its relationships with other objects. This representation is very powerful, since an entity can be viewed both as a class of objects and as an individual object, which can also be part of another class. 

Methods are functions related with objects: they describe the behavior of the objects and provide some information about them. There are two categories of methods, scalar and set-valued. Methods of one argument are called attributes (e.g. Name-of, Age-of). Methods that describe actions need additional parameters and are called n-ary functions (n>1), e.g. buy, meet etc.

Methods are also classified into inheritable and non-inheritable. For instance, color is an inheritable attribute of car, while children-of is a non-inheritable set-valued method of mother.

Furthermore, class membership and subclass relations in F-Logic are expressed by   Is-a-F-atoms/assertions and subclass-F-atoms/assertions and are represented by ‘:’ and ‘::’ respectively:

Subclass-assertions:
man :: person





woman :: person





employee :: person

Is-a-assertions:

bob : employee





“Bob” : string





20 : young

F-Logic provides the possibility of expressing information about an object via the so called F-molecules, instead of parsing this information in several individual atoms. Additionally, predicates in F-Logic are called P-atoms, in order to distinguish them from F-atoms. Just like F-molecules, P-molecules are groups of F-atoms and F-molecules incarnated in P-atoms.  

Someone could easily assume that F-Logic ontology is description language ontology. However, as mentioned above, description language ontologies consist of concepts, roles and individuals, while in F-Logic ontologies we have objects and methods, with objects capturing both the meaning of concepts and individuals. Moreover, F-Logic descriptions are expressed with methods, while in DLs, they are formed with roles. The following table represents the main differences between F-Logic and DLs:

	F-Logic
	DLs

	scalar method
	n-ary feature

	set-valued method
	n-ary role

	single-valued attribute
	(binary) feature

	set-valued attribute
	(binary) role


Further information about the syntax and the semantics of F-Logic can be found in the F- Logic Tutorial, http://www.informatik.uni-freiburg.de/~dbis/florid/ 
3.1.2.2 Rules and Queries in F-Logic
F-Logic is used within Ontoprise Ontobroker, in order to express inference rules and ask queries. It provides a means for typing and type checking and supports reasoning about inheritance of types and methods. In F-Logic representations, rules offer the possibility to extract new information from a given object-base. Rules include generic information and appear syntactically as:

Precondition ← Conclusion.  

Whenever the precondition is satisfied, the conclusion is correct as well. The precondition is the rule-body and is structured by P- or F- molecules [Pan04]. The conclusion is called the rule-head and consists of a conjunction of P- and F-molecules. The head is separated from the body by an arrow and the rule always ends with a dot. Below we present some examples of F-Logic rules:

FORALL X, Y X[son –>> Y]  <–  Y : man[father–>X].

FORALL X, Y X[son –>> Y]  <–  Y : man[mother–>X].

FORALL X, Y X[daughter –>> Y]  <–  Y : woman[father–>X].

FORALL X, Y X[daughter –>> Y]  <–  Y : woman[mother–>X].

Queries can be considered as special rules that have no head. 

FORALL X, Y  <–  X : woman[son–>>Y[father–>abraham] ].

The query returns all the variable bindings in the object-base, for which the corresponding instance contained in the body of the rule is true.

F-Logic provides namespace-queries as well. Namespaces in F-Logic are important in order to distinguish the names in different ontologies. Namespace queries enable users to ask queries about namespaces (URIs) and return variables in namespaces.

3.2 Rule-based

Ontologies play a key part in knowledge representation and reasoning in many applications and especially in the Semantic Web. However, sometimes ontologies alone are not enough. Using rules in combination with ontologies is a major challenge in these applications with a focus on the Semantic Web. There are several rule representation formalisms for expressing additional knowledge. Some of them are described in the following paragraphs. 

3.2.1 Logic Programming, Datalog, Horn 

Logic Programming and databases were, for a long time, two independently pushed areas in computer science that have found a happy marriage 10 – 20 years ago under the heading of deductive databases
. Two main reasons have primarily lead to a unification of both areas:

1. To develop a solid logical foundation for more advanced database systems, and

2. To carry out new forms of logical inference in commercial database systems, in order to ease database querying and furthermore, to enlarge the horizon of what can be queried.
This area of research has even gained more importance with the proposal of the Semantic Web [B-L01] and the promotion of XML, RDF, RDFS and OWL, as its basic syntactic and semantic layer (XML/RDF databases).
ProLog, as the most famous language in the logic programming paradigm, and DataLog have many things in common. Both can be given a first-order predicate logic interpretation and share a common concrete syntax. However, DataLog is a query and rule language for deductive databases that is only a subset of ProLog. In fact, it is a function-free fragment of first-order logic. Query evaluation in DataLog is sound and complete (as is the case for ProLog's proof procedure) and can be done efficiently even for large databases. Queries in DataLog will always terminate which is not the case for ProLog.
Logic programming started in the early 1970s as result of even earlier work in automatic (or automated or mechanical) theorem proving and Artificial Intelligence that can be traced back to theoretical work by Jacques Herbrand in 1930s. The immense potential of (first-order) logic as a programming language, hence logic programming has been recognized first by Robert Kowalsi and Alain Colmerauer in several seminal papers. ProLog, as an acronym for Programmation en Logique (Programming in Logic) – a term coined by Philippe Roussel – was the first instance of a language in the logic programming paradigm and was developed by Colmerauer and colleagues at the University of Marseilles in 1972
. 
ProLog builds on Kowalski & Kuehner’s SL resolution method (linear resolution with selection function) [Kow71] that has its origin in the groundbralking work by John Alan Robinson in 1965 who invented the resolution principle [Rob65]. Resolution is a legal rule of inference, that is, it tells us how one proposition can be deduced from others. When using resolution, we can prove theorems in a purely mechanical fashion from our axioms, whereas the selection function is intended to choose the ``right'' rule that is applied to the current goal. ProLog extends SL resolution by SL resolution for Definite Clauses, hence SLD resolution, and is due to work by Kowalski, Apt, and van Emden. Essentially, SLD resolution derives a goal G’ (a so-called resolvent) 

← ( (A1,...,Ak-1,B1,...,Bm,Ak+1,...,An)
from an already existing goal G 

← A1,...,Ak,...An
with the help of a definite program clause C 

H ← B1,...,Bm 

whereas substitution σ in G’ is the most general unifier for the selected atom Ak in G and the head H of C: σ=mgu(Ak, H). Now, to shorten the length of a goal (e.g., G’ above), grounded unit clauses H ←, i.e., facts, replace an atom by the empty word.
ProLog's linear resolution processes the result of the last derivation step, whereas the selection function always chooses the first rule that matches the active goal.  In order to prove several goals, the literals are computed from left to right. ProLog interpreters are usually backward chainers that apply a depth-first strategy and recover from failures through the use of backtracking.
Kowalski, again, together with Maarten van Emden were the first who have defined the modern fixpoint semantics for Horn clause programming [Emd76]. SLD resolution is only suitable for positive logic programs, i.e. programs without negation. Clark [Cla78] extended SLD resolution to SLDNF resolution by introducing the negation as failure rule, which is used to infer negative information. 
In [Kow74], Kowalski developed a procedural interpretation for Horn clause logic, in which predicates are interpreted as procedures that can compute bindings, as is known from imperative programming languages. To be more specific, a program clause (n ≥ 0). 

H  ← B1,...,Bn
can be regarded as a procedure definition, whereas as a goal 

← B1,...,Bn

would then be a procedure call. A program is started by giving it an initial goal and is halted in case the empty goal, indicating a failure, has been deduced (proof by refutation). By separating an algorithm into a logic and a control part, Kowalski has further opened the road for purely declarative systems: the logic says what the problem is, whereas control addresses how a problem is going to be solved [Kow79a, Kow79b]. Ideally, a programmer only has to specify the problem part, but additional control information can clearly speed up the runtime performance.
In the very early history of ProLog, it has been recognized that a logic program can be regarded as a data base - in fact, the First Workshop on Logic in Databases took place in1977. Given this database interpretation of logic, one can obtain a very natural and powerful extension of relational databases, viz., deductive databases, whereas the DataLog family is closely related to ProLog, as we will see soon. Informally, we have the following slogan: 

ProLog = Programming +Logic

DataLog = Databases + Logic

From the very beginning, ProLog has been primarily pushed in Europe (e.g., Prolog II, III [Col82]), even though American researchers were heavily involved in theorem proving and some of the earliest and most famous provers were developed in the US, e.g., the Boyer-Moore prover or Larry Wos’Otter. In1982, ProLog was chosen by the Japanese Ministry of International Trade and Industry as a basis for their 5th Generation Computer Systems project. The goal of the project was the development of a so-called parallel inference machine utilizing a concurrent ProLog dialect. Such a computer was assumed to implement a reasonable large (AND/OR parallel) subset of ProLog in hardware. However, it has been shown in 1983 that even logic programs can be compiled like any imperative or functional languages, so that one can obtain reasonable fast ProLog programs that need no longer be interpreted. The first such abstract machine was named after its inventor, David Warren [Aït91], and a large number of extensions have been developed so far. 
Nowadays, logic programming has resulted into constraint logic programming (CLP) [Jaf87, Jaf94], a framework that replaces the Herbrand structure of ProLog by other constraints systems (e.g., the equational theory of typed feature structures [Kri01]) and that incorporates ideas from constraint solving. Important extensions concern the use of types (sorted logic) and finite domains as a means to narrow down the search space. Unification in this framework is one special case of constraint solving, hence constraint logic programs have clearly superior expressive power when compared to ordinary logic programs.
Today, at the same time, both extensions, broadening the expressivity towards 2nd-order logic or non-monotonic frameworks, as well as restrictions, like description logics are hot research topics. Luckily, these research territories are no longer exclusively visited by Europeans and Japanese, but are now investigated world-wide.
In the following, we will quickly develop the usual model-theoretic framework for characterizing the syntax and semantics of first-order predicate logic (PL1) in order to characterize both ProLog and DataLog (section 
 \* MERGEFORMAT 5.2.2
). After that, section 5.2.3 is more verbose on the practical aspects, explaining the many differences between ProLog and DataLog, looking on the concrete syntax, giving pointers to relevant systems, etc. 
3.2.2  Mathematical Apparatus 

This section is devoted to establish a common language for Logic Programming in general, and for DataLog & ProLog in particular. This language will be used throughout this report. A thorough treatment of the relevant concepts can be found, e.g., in [Llo87, Gen87, Fit96, Hut04]. Essentially, we will characterize function-free first-order predicate logic (FOL) under the usual Tarski-style model-theoretic semantics. Definitions are sometimes followed by examples which we have taken from Jerry Hobb’s work on OWL-Time [Hob04a, Hob04b].  In section 5.2.3, we will then see that DataLog can be viewed as a function free subset of Prolog, so that we have the following informal ``equation'':

ProLog / DataLog = FOL / function-free FOL
3.2.2.1 The Syntactic Layer

Definition (First-Order Theory). A first-order theory consists of:

1. an alphabet, 

2. a first-order language, 

3. a set of axioms, and 

4. a set of inference rules. 

Definition (First-Order Alphabet). The first-order alphabet of a first-order theory consists of pair wise disjoint sets V, C, F, P, K, and Q, such that: 
1. V is a countable set of variables {x, y ...}, 

2. C is a countable set of constants {c, d ...}, 

3. F is a finite set of function symbols {f, g …},

4. P is a finite set of predicate symbols {p, q ...}, 

5. K is the set of connectives {¬, ^, ν, >, <, ←, →, ↔}, and 

6. Q is the set of quantifiers  
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Definition (First-Order Language). A first-order language consists of the syntactically well-formed formulae (WFF) of a first-order theory. 

In order to define WFF, we need the notion of a term.

Definition (Term).
· a variable from V  is a term;

· a constant from C is a term;

· if f  ( F is an n-ary function symbol and t1,  …., tn are terms, then f(t1,  …., tn) is a term.

Definition (Variable Assignment). A variable assignment (or valuation)
 is a function from variables of a first-order language to constants: a : V → C.

Definition (Atomic Formula). If p is an n-ary predicate symbol and t1, ..., tn are terms, then p(t1, ..., tn) is called an atomic formula or simply, an atom. 

Three specific atomic formulae stand out: the two propositional constants ┬ and ┴, denoting the Boolean values true and false, and t1= t2 (t1,t2 terms), using a special infix operator/predicate =, denoting equality. 

Definition (Well-Formed Formula). A well-formed formula is inductively defined as follows: 

–  every atomic formula p(t1, ..., tn) is a WFF; 

–  if F and G are WFF, so are ¬F, F(G, FνG, F→G, and F↔G; 

–  if F is aWFF and x a sequence of variables x1,...,xn, then 
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x. F and 
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x .F are WFF
.

Informally, ¬ means negation, ( conjunction, v disjunction, → implication, and ↔ equivalence. Given truth values for the arguments of the connectives, a global truth value can be computed from the parts. The universal quantifier
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 x. F expresses the statement for all variables x, F holds, whereas 
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x. F says there exist variables x, such that F holds. 

We will write t1 ≠ t2 to denote ¬(t1 = t2). We sometimes write G ← F for depicting F →G. 

Example (Well-Formed Formula). 
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T. TemporalEntity(x) → Instant(x) v Interval(x)

Instant(y) ↔ begins(y,y)

TemporalEntity(x) ^ begins(y1,x) ^ begins(y2,x) → y1 =  y2
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y1, y2 . [y1 ≠ y2 → [
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x. timeBetween(x,y1,y2) ↔ begins(y1,x) ^ ends(y2,x)]]

Definition (Universal / Existential Closure). If F is a formula, we use 
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(F) to denote the universal closure of F. 
[image: image30.wmf]"

(F) is obtained from F by adding a universal quantifier in front of F for every free variable occurring in F. In the same manner, the existential closure of F is obtained from F by adding existential quantifiers. 

Definition (Closed Formula). A closed formula F is a formula that has no free occurrences of any variable, i.e., each variable x occurring in F must be in the scope of some quantifier, thus we either must have 
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x. F or 
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x. F . We often refer to set of closed formulae as a logic program. 

Definition (Literal). A literal is either an atom or the negation of an atom. 

Definition (Clause). A clause is a special kind of closed formula of the syntactic form 
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x. L1 v ... v Ln, such that L1,...,Ln are literals and there are no other variables than x in L1,...,Ln. 

Since clauses have proven to be extremely useful, a special notation has been adopted in logic programming. 

Definition (Clause, Reformulated). Each clause 
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x. L1 v ... v Ln 

can be reformulated by separating the literals into positive and negative atoms: 
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x.A1 v ... vAk v ¬ Ak+1 v ... v ¬An
by preserving the semantics, this notation can be rewritten to 
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x. A1 v ... vAk ← Ak+1 ^ ... ^ An
or more simpler, since all variables are universally quantified, as 

A1,...,Ak ← Ak+1,...,An
Note that the commas on the left-hand side (the consequent) denote logical disjunction, whereas the right-hand side (the antecedent) expresses a logical conjunction. 

Definition (Definite Program Clause). A definite program clause is a clause of the following form (n ≥ 0): 

H ← B1,...,Bn
H is said to be the head and B1,...,Bn the body of the clause.

This definite program clause can be read as if B1,...,Bn are all true for each assignment of each variable, then H is also true.

Definition (Unit Clause). A unit clause is a definite program clause with an empty body:

H ←

Since an empty conjunction (the antecedent) is always true, a unit clause H ← thus is always true for arbitrary variable assignments. 

Definition (Fact). If the head H of a unit clause is a ground atom, H ← is called a fact. 

Example (Fact). 

Intstant(c) ←

Interval(d) ←

begins(c,d) ←

Note that c and d are constants here, not variables. Informally, the above three facts say that the instant c is the beginning of interval d. 

Definition (Definite Program). A definite program is a finite set of definite program clauses. 

Example (DefiniteProgram). Consider the following definite program which tests for membership of an element, the first argument, in a first-rest list[x |y] (x is the first element, y the rest list): 

member (x, [x|y]) ←

member (x, [x’ |y]) ← member(x,y)

Definition (Definite Goal). A definite goal is a clause that is missing a head: 

← B1,..., Bn

We often use the term query when we refer to a definite goal. Informally, a definite goal is a call to the underlying logical calculus of a definite program in order to prove whether there exists a deduction to make that goal true. 
Rather than trying to show that a query ( holds, given a set of assertions ( (we use the  ├ symbol to depicts this)
( ├ (
a proof by refutation negates the query and then attempts to derive a contradiction: ( 
( 
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{¬(}├ ┴ 

The logical consequence relation ├ is explained in the next subsection.
Example (DefiniteGoal). 

← member (2,[12,2,4,2])

This goal can be proven to be true, since 2 occurs (twice) in the list [12, 2, 4, 2]. 

Definition (Horn Clause). A Horn clause (named after the logician Alfred Horn) is either a definite program clause or a definite goal. 
We have already said that the head of a definite program clause must be a single atom. However, we can easily allow for a conjunction of atoms in the head position, since this can be seen as pure-syntactic sugar, leading to the following rewrite step (Lloyd-Topor transformation) [Top84]: 
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x.H1 ^ ... ^ Hk ← β
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x.H1 ← β
...
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x.Hk ← β
 In the same manner, one can rewrite disjunctions in the body of a program clause:
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x .α ← B1 v ... v Bn
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x. α ← B1
...
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x. α ← Bn
Example (Lloyd-Topor). The following slightly simplified example is taken from OWL-Time in order to illustrate more complex rewriting. It fully defines a new predicate in terms of two existing predicates: 


[image: image44.wmf]"

T, t1, t2 .timeBetween(T, t1, t2) ↔ begins(t1, T) ^ ends(t2, T)
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timeBetween(T, t1, t2) ← begins(t1, T) ^ ends(t2, T)

begins(t1, T) ^ ends(t2, T) ← timeBetween(T, t1, t2)
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timeBetween(T, t1, t2) ← begins(t1, T), ends(t2, T)

begins(t1, T) ← timeBetween(T, t1, t2)

ends(t2, T) ← timeBetween(T, t1, t2)

However, there is no syntactic way of rewriting disjunctions in the head of a program clause in order to obtain a definite program clause. In fact, such disjunctions will ultimately lead us to disjunctive logic programs. Even negated atoms in the body of a program clause are allowed in this framework. Given this fact, it is now clear that definite programs can only express a subset of statements of first order logic. 

Example (Disjunctive Logic Program). Again, here is an example taken from OWL-Time that would require a disjunction in the head of a program clause. I.e., this bidirectional can not be rewritten into a definite program, but in fact is a disjunctive logic program: 
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T,t. beginsOrIn(T, t) ↔ begins(t, T) v insides(t, T)


beginsOrIn(T, t) ← begins(t, T) v insides(t, T)

? begins(t, T) v insides(t, T) ← beginsOrIn(T, t) ?


beginsOrIn(T, t) ←  begins(t, T)

beginsOrIn(T, t) ← insides(t, T)

? begins(t, T) v insides(t, T) ←  beginsOrIn(T, t) ?

3.2.2.2 The Semantic Layer

In general, a programmer has a fine grasp (at least, he/she should!) of the meaning of a definite program. However, the declarative semantics of a definite program is clearly more than an intuition and is usually given in terms of a model-theoretic semantics, using interpretations.
 An interpretation simply assigns a meaning to the symbols of a first-order language over a specific domain.  More formally, we have the following definition.
Definition (Interpretation). An interpretation (or first-order structure) I is given by the pair <DI ,·I > where DI is some domain of discourse over which the variables range and ·I an interpretation function for the symbols of a first-order language. 

Definition (Ground Atom). A ground atom is an atom, where t1,...,tn are only constants. 

Definition (Herbrand Base). The Herbrand base B(L) for a first-order language L is the set of all ground atoms. 

Definition (Herbrand Interpretation). A Herbrand interpretation for a first order language L is any interpretation which is based on the mapping of constants in L to themselves. Hence, since the assignment to constant symbols is fixed, we can identify a Herbrand interpretation with a subset of the Herbrand base, i.e., with the subset of all ground atoms. 

Definition (Variable Assignment, Redefined). A variable assignment (or valuation) α: V → DI is a mapping from the set of variable of a first-order language to the objects in the intended domain of discourse DI. 
In logic programming and in the examples above, we usually deal with closed (universally quantified) formulae, formulae that do not contain a free variable. Since the truth value of a closed formula does not depend on a specific variable assignment, we can always (unambiguously) speak about the truth value of a formula w.r.t. an interpretation. 

Definition (Satisfiability / Validity of a Formula). Let I be an interpretation of a first-order language L and F a formula of L. We then say: 

– F is satisfiable in Ι iff 
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(F) is true w.r.t. I 

– F is valid in I iff 
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(F) is true w.r.t. I 

– F is unsatisfiable in I iff 
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(F) is false w.r.t. I 

– F is nonvalid in I iff 
[image: image49.wmf]"

(F) is false w.r.t. I 

Definition (Model). Let I be an interpretation and F a closed formula. We say that I is a model for F iff F is true w.r.t. I and write I|= F. If F is a set of closed formula of a first-order language L and I an interpretation of L, written ₣(L), then I is a model for F iff I is a model for each formula from F: 

           Def.

I |= F         
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 F 
[image: image51.wmf]Î

 F. I|= F

A model for a first-order theory T is an interpretation for L which is a model for each axiom of T .If T has a model, we say that T is consistent. It is clear that if F = {F1,...,Fn}, then I is a model for F iff I is a model for F1 ^ ... ^ Fn. 

Definition (Herbrand Model). Let L be a first order language and F a set of closed formula of L. An Herbrand model for F is an Herbrand interpretation H, such that H|= F. 

Definition (Satisfiability/Validity of a Logic Program). Let F be a set of closed formulae of a first-order language L. We then say 

– F is satisfiable iff 
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 ₣(L). I|= F 

– F is valid iff 
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 ₣(L). I|= F 

– F is unsatisfiable iff ¬
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 ₣(L). I|= F or equivalently 
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 ₣(L). I |= F 

– F is nonvalid iff 
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 ₣(L). I |= F or equivalently ¬
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 ₣(L). I|= F 

Definition (Logical Consequence). Let F be a set of closed formaulae and F a closed formula of a first-order language L. We say that F is a logical consequence of F iff, for every interpretation I of L, I is a model for F implies that I is a model for F: 

        Def.
       F ├  F           
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I 
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 ₣(L). I|= F  → I |= F 

3.2.3 ProLog and DataLog

As we have already learned from section 
 \* MERGEFORMAT 5.2.1
 and section 5.2.2 both ProLog and DataLog are true subsets of first-order predicate logic (FOL).  Even more, DataLog is not even a syntactical subset of ProLog (no function symbols), but also lacks expressivity (depicted by ():

DataLog ( ProLog ( FOL

The forward-chaining procedure that computes the deductive closure in DataLog from a given set of facts and a set of rules always guarantees terminating queries and sound and complete answer sets. ProLog's SLD resolution is also sound and complete for Horn clauses, but will not always terminates.
 Unfortunately, FOL not even comes with a decidable proof procedure; in fact, only FOL entailment is semi-decidable [Her78]: if a sentence is true w.r.t. a set of axioms, there exists a procedure that will uncover this; if the sentence is false, however, there is no guarantee that a procedure will ever determine this, i.e., the decision procedure may never halt.

The abstract FOL syntax we have already introduced in section 5.2.2 is not that far away from ProLog and DataLog. Instead of writing a definite program clause (a rule) as

H ← B1, . . . ,Bn
the implication sign ← is replaced by :- and the end of the body of the clause is terminated by the full stop character ’.’:

h :- b1, ..., bn.

A fact 

H ←

is simply notated as

h.

A definite goal (or query)

H ← B1,  . . . , Bn
finally is written as follows:

?- b1, ...,  bn.

We already see here that the names of the predicates (and objects) must begin with a lowercase letter in ProLog and DataLog. Variables in the abstract syntax (e.g., var) start with an uppercase letter (e.g., Var).

It is important to note that ProLog and DataLog handle answers to a goal/query differently. Consider the following synthetic example from OWL-Time:

begins(t1, i1).

begins(t1, i2).

that says that both interval i1 and i2 start with instant t1. Now, querying for all intervals I that start with t1
?- begins(t1, I).

DataLog returns the facts that fulfil the query all at once:

{

    begins(t1, i1)

    begins(t1, i2)

}

yes

The yes here simply indicates that DataLog can prove the query, i.e., there is at least one fact that fulfil the query. Consequently, we are returned a no for the following query (assuming that there is no instant t2 in our database):

?- begins(t2, I).

{ }

no

ProLog’s strategy is totally different here. Instead of returning tuples, we are given back variable assigments,

?- begins(t1, I).

I = i1;

I = i2;

No

and only one after another. Thus i1 is returned and the ProLog interpreter waits whether a user requests a further solution. This can be achieved by entering a ’;’ character. When all solutions are presented, ProLog outputs a No.

The different answer set behavior comes from the proof strategies of ProLog and DataLog. As we have already noted, DataLog is function-free, meaning that it has no means to model dynamic data structures (e.g., lists) nor does it allows counting. This means that no new predicate or constant symbols can be introduced in rules. As a consequence of this fact, the deductive closure of the initial database according to the set of rules is finite. This means that all valid tuples can be computed offline in finite time.

Given the set of constant symbols C, the set of predicate symbols P, and the arity function ar: P → N, the cardinality card of the deductive closure DC is given by the following sum:

card(DC) =( card(C)ar (p)

(p( P)
A simplified and naïve algorithm for computing the deductive closure is given by the following pseudo-code:

 input:

R: set of rules

T ′: set of initial ground tuples

repeat

T := T ′
   for each r = (h :- b1, ..., bn.) ( R

      for each possible tuple <t1, . . . , tn> (Tn
         if <t1, . . . , tn> unifies with <b1, . . . , bn>, leading to MGU (
then T ′ := T ′  ( {( (h)}

until T ′ = T

Consequently, DataLog engines are forward chainers (as are often rule based production engines in AI expert systems; see, e.g., [Hay83, Cha85]). Answering a query in DataLog thus reduces to an (complex) indexing problem. Hence it is natural for DataLog to return all tuples that fulfill a query, as is the case for ordinary relational database systems. Clearly, a lot of useless tuples will be computed, answers that will never be queried, at the cost of fast query processing at runtime.

Contrary to this, ProLog has function symbols that can help to emulate, dynamic data structures and even has built-in arithmetics that can introduce new constant symbols. Hence it is usually impossible to compute a finite deductive closure for a ProLog program. Thus ordinary ProLog interpreters are backward chainers, employing a depth-first strategy together with backtracking in order to recover from failures or to compute alternate answers. So it makes perfect sense to return one answer after another. We have already said that ProLog implementations are refutation-based provers and usually do not directly show that a query Q is entailed by a given definite program P

P ├ Q
but instead negates the query and then tries to derive a contradiction ┴  (actually the empty clause):

P  ( {¬Q} ├  ┴
But what is the gain here? If P ( {¬Q} is unsatisfiable, then some finite subset is unsatisfiable.

Given this proof-by-contradiction idea, we can derive a very simple resolution-based ProLog interpreter by employing the idea of a resolvent as already introduced in section 5.2.1:

input:

   P: consistent definite program

   Q: definite goal

  P := P  ( {¬Q
while   ┴ ( P do
if ¬c1, c2  ( (c1 (c2), such that c1 and c2 unify

      then return “Failure”

    r := apply resolution rule to c1 and c2
   P := P ( {r}
return “Success”

3.2.4 Rules on top of ontologies 

The history of rule-based reasoning (RBR) in Artificial Intelligence goes back to late 70th, to the field of expert systems (MYCIN [Sho76], PROSPECTOR [Dud79] or R1/XCON being good examples). Knowledge represented in the form of IF-THEN rules has different interpretation, and is used for reasoning in different ways. So let us start with a brief review of basic notions from the perspective of expert systems. We also present some examples of rule-based reasoning systems that are under development by the partners of the K-Space project. 

3.2.4.1 Rule syntax
The rule syntax is:

LHS ( RHS

where 

· LHS is left-hand side of a rule (also called condition, antecedent, body or situation)

· RHS is the right-hand side of a rule (also called conclusion, consequent, head or action)

both LHS and RHS are usually composed of conjunctions of literals (atoms or negations of atoms), atoms can have a form of:

· propositions (e.g. )

· attribute-value pairs (e.g. )

· object-attribute-value triples (e.g )

· or predicates (e.g. )

3.2.4.2 Declarative vs. procedural interpretation of rules
There are two basic interpretations of the rules given above: declarative or procedural. In declarative interpretation the rule is understood as an implication:

condition ( conclusion

An example of such a rule (taken from MYCIN [Sho76]) is shown bellow. Notice that the rule expresses uncertainty about the conclusion.


In procedural interpretation the rule is understood as 

situation ( action

An example of such a rule (taken from R1/XCON) is shown bellow.


3.2.4.3 Basic inference step
The basic inference step (checking the applicability and applying single rule) differs according to the two basic interpretations of rules. 

For declarative interpretation, the basic inference step is modus ponens, a logical reasoning step in which conclusions must follow from conditions (as is the case for implication in prepositional logic)


modus ponens

A ( B, A
B
For procedural interpretation, the actions in the RHS of a rule are performed iff the situation described in the LHS of a rule holds.

3.2.4.4 Inference and rule chaining
Two basic methods rule chaining are used in expert systems: forward chaining and backward chaining.

Forward chaining (also called data-driven
 inference) is closely related to the procedural interpretation of rules. Forward chaining starts with the data available in working memory and searches the rule base for applicable rules (rules that describe a situation that occurs in the data). When found it then performs the respective actions, resulting in the addition of new information to the working memory. The basic inference cycle is the so-called recognize-act cycle:


Remark: OPS5, CLIPS or JESS are programming environments, that directly implement this type of inference.

Backward chaining (also called goal-driven inference) is closely related to the declarative interpretation of rules. Backward chaining starts with a list of goals (or a hypothesis) and works backwards to see if there are data available that will support any of these goals. An inference engine using backward chaining would search the rule base until it finds a rule with conclusion that matches a desired goal. If the condition of that rule is not known to be true, then it is added to the list of goals as a current (sub) goal that must be proved first.

Remark: Prolog is a programming language that directly implements this type of inference.

3.2.4.5 Semantic Web rule languages 

3.2.4.5.1 RuleML

RuleML
 is a significant standardization attempt in the region of rules in the context of the Semantic Web. RuleML combines features of XML and RDF. 

RuleML outlines a hierarchy of rules, rooted in general rules, followed by reaction rules (event-condition-action rules) and transformation rules. In the next level, transformation rules are specialized in the subclass of derivation rules (implicational-inference rules), which are divided in facts (premiseless derivation rules) and queries. Finally queries are specialized in integrity-constraint rules (consistency-maintenance rules). Till now, greater attention has been given in derivation rules and facts.

The overall RuleML state is shown bellow.


[image: image60]
Whereas General syntax of rules could implement all the other rule categories, RuleML introduces a specialized syntax for each of them, which can be at every circumstance simplified in the primitive rule form. A general example of a derivation rule follows:

         <imp> 

           <_head> conclusion </_head> 

           <_body> 

                <and> premise1…premiseN</and> 

           </_body> 

        </imp>

The head of the rule stands for the THEN part, while the body constitutes the preconditions. 

RuleML is based on XML syntax but uses RDF-like "role-tags", which oddly are position independent. This means that RuleML ignores the order of elements against XML syntax (the head can follow the body).

RuleML can also be expressed by means of object oriented structure. OO RuleML considers URIs as objects which can take predefined value types.

An example of such a rule follows: 


If 



a Book was published in 2003 
(constant)


   and




the Book’s name is V


(variable)


Then

the class Book2003 is created, 

with instances all books which were published in 2003

In RuleML:

        <_head>

            <atom>

                <_opr>

                    <rel>

                        <ind>Book2003</ind>

                    </rel>

                </_opr>

                <_slot name="publicationYear">

                    <ind>2003</ind>

                </_slot>

                <_slot name="publicationTitle">

                    <var type="single">V1</var>

                </_slot>

            </atom>

        </_head>

        <_body>

            <atom>

                <_opr>

                    <rel>

                        <ind>Book</ind>

                    </rel>

                </_opr>

                <_slot name="publicationYear">

                    <ind>2003</ind>

                </_slot>

                <_slot name="publicationTitle">

                    <var type="single">V1</var>

                </_slot>

            </atom>

        </_body>

Information itself is sometimes inherently imprecise or vague, like the concepts of a “tall” person or a "partly cloudy" sky. Even though the combination of ontology and rule languages in the web results to the creation of a highly expressive knowledge representation framework, there are still many cases where the language fail to represent knowledge of our world. In particular these languages are not able to face the uncertainty introduced in real application knowledge and information (like multimedia processing, pattern recognition and many more). The need for covering uncertainty in the Semantic Web context has been stressed out in literature many times the last years.

3.2.4.5.2 SWRL

Semantic Web Rule Language (SWRL) is based on a combination of the OWL DL and OWL Lite sublanguages of the OWL Web Ontology Language with the Unary/Binary Datalog RuleML sublanguages of the Rule Markup Language. SWRL includes a high-level abstract syntax for Horn-like rules in both the OWL DL and OWL Lite sublanguages of OWL. 

An OWL ontology in the abstract syntax contains a sequence of axioms and facts. Axioms may be of various kinds, e.g., subClass axioms and equivalentClass axioms. It is proposed to extend this with rule axioms. 

axiom ::= rule 

A rule axiom consists of an antecedent (body) and a consequent (head), each of which consists of a (possibly empty) set of atoms. A rule axiom can also be assigned a URI reference, which could serve to identify the rule. 

rule      ::= 'Implies(' [ URIreference ] { annotation } antecedent consequent ')'

antecedent ::= 'Antecedent(' { atom } ')'

consequent ::= 'Consequent(' { atom } ')'

Informally, a rule may be read as meaning that if the antecedent holds (is "true"), then the consequent must also hold. An empty antecedent is treated as trivially holding (true), and an empty consequent is treated as trivially not holding (“false”). Rules with an empty antecedent can thus be used to provide unconditional facts; however such unconditional facts are better stated in OWL itself, i.e., without the use of the rule construct. Non-empty antecedents and consequents hold iff all of their constituent atoms hold, i.e., they are treated as conjunctions of their atoms. As mentioned above, rules with conjunctive consequents could be easily transformed into multiple rules each with an atomic consequent.

 atom ::= description '(' i-object ')'


 | dataRange '(' d-object ')'


 | individualvaluedPropertyID '(' i-object i-object ')'


 | datavaluedPropertyID '(' i-object d-object ')'


 | sameAs '(' i-object i-object ')'


 | differentFrom '(' i-object i-object ')'


 | builtIn '(' builtinID { d-object } ')'

builtinID ::= URIreference

Atoms can be of the form C(x), P(x,y), sameAs(x,y) differentFrom(x,y), or builtIn(r,x,...) where C is an OWL description or data range, P is an OWL property, r is a built-in relation, x and y are either variables, OWL individuals or OWL data values, as appropriate. In the context of OWL Lite, descriptions in atoms of the form C(x) may be restricted to class names. 

Informally, an atom C(x) holds if x is an instance of the class description or data range C, an atom P(x,y) holds if x is related to y by property P, an atom sameAs(x,y) holds if x is interpreted as the same object as y, an atom differentFrom(x,y) holds if x and y are interpreted as different objects, and builtIn (r,x,...) holds if the built-in relation r holds on the interpretations of the arguments. Note that the sameAs and differentFrom two forms can be seen as "syntactic sugar": they are convenient, but do not increase the expressive power of the language (i.e., such (in) equalities can already be expressed using the combined power of OWL and rules without explicit (in) equality atoms). 

i-object ::= i-variable | individualID
d-object ::= d-variable | dataLiteral
Atoms may refer to individuals, data literals, individual variables or data variables. Variables are treated as universally quantified, with their scope limited to a given rule. As usual, only variables that occur in the antecedent of a rule may occur in the consequent (a condition usually referred to as "safety"). This safety condition does not, in fact, restrict the expressive power of the language (because existentials can already be captured using OWL someValuesFrom restrictions). 

i-variable ::= 'I-variable(' URIreference ')'

d-variable ::= 'D-variable(' URIreference ')'

3.2.4.5.3 Human readable syntax

While the abstract syntax is consistent with the OWL specification, and is useful for defining XML and RDF serialisations, it is rather verbose and not particularly easy to read. In the following it is, therefore, often use a relatively informal "human readable" form similar to that used in many published works on rules. 

In this syntax, a rule has the form: 

antecedent ⇒ consequent
where both antecedent and consequent are conjunctions of atoms written a1 ∧ ... ∧ an. Variables are indicated using the standard convention of prefixing them with a question mark (e.g., ?x). Using this syntax, a rule asserting that the composition of parent and brother properties implies the uncle property would be written: 

parent(?x,?y) ∧ brother(?y,?z) ⇒ uncle(?x,?z)

In this syntax, built-in relations that are functional can be written in functional notation, i.e., op:numeric-add(?x,3,?z) can be written instead as   

?x = op:numeric-add(3,?z)

Some additional examples of rules and their use are presented below:

Example 1
A simple use of these rules would be to assert that the combination of the hasParent and hasBrother properties implies the hasUncle property. Informally, this rule could be written as: 

hasParent(?x1,?x2) ∧ hasBrother(?x2,?x3) ⇒ hasUncle(?x1,?x3) 

In the abstract syntax the rule would be written like: 

Implies(Antecedent(hasParent(I-variable(x1) I-variable(x2))



   hasBrother(I-variable(x2) I-variable(x3)))


Consequent(hasUncle(I-variable(x1) I-variable(x3))))

From this rule, if John has Mary as a parent and Mary has Bill as a brother then John has Bill as an uncle. 

Example 2 

An even simpler rule would be to assert that Students are Persons, as in Student(?x1) ⇒ Person(?x1). 

Implies(Antecedent(Student(I-variable(x1)))


Consequent(Person(I-variable(x1))))

However, this kind of use for rules in OWL just duplicates the OWL subclass facility. It is logically equivalent to write instead 

Class(Student partial Person)

or 

SubClassOf(Student Person)

which would make the information directly available to an OWL reasoner. 

Example 3 

A very common use for rules is to move property values from one individual to a related individual, as in the following example that expresses the fact that the style of an art object is the same as the style of the creator. 

Artist(?x) & artistStyle(?x,?y) & Style(?y) & creator(?z,?x) ⇒ style/period(?z,?y)

Implies(Antecedent(Artist(I-variable(x)) 



   artistStyle(I-variable(x) I-variable(y))



   Style(I-variable(y))



   creator(I-variable(z) I-variable(x)))


Consequent(style/period(I-variable(z) I-variable(y))))

Example 4 

It is useful to include OWL descriptions in rules, instead of using named classes. The above rule could be augmented with a separate rule to provide information about exclusivity of style (assuming that style is not always exclusive). 

Artist(?x) & (≤1 artistStyle)(?x) & creator(?z,?x) ⇒ (≤1 style/period)(?z)

Implies(Antecedent(Artist(I-variable(x)) 



   (restriction(artistStyle maxCardinality(1)))(I-variable(x))



   Style(I-variable(y))



   creator(I-variable(z) I-variable(x)))


Consequent((restriction(style/period maxCardinality(1)))(I-variable(z))))

 Later in this document (Subsection 5.5), we will present a relevant rule-based system shell, developed at the Dept. of Information and Knowledge Engineering, University of Economics, Prague [Ber04]. 
3.3 Other Types of reasoning 

3.3.1 Constraint-based 

In this report, we give an overview of Constraint Reasoning. We will shortly present Constraint Satisfaction Problems (CSPs) and then Constraint Reasoning as a means to solve CSPs. Subsequently we will discuss two kinds of constraint satisfaction problems, namely Crisp CSPs and Soft CSPs. We will conclude with an introduction of how to apply constraint reasoning to multimedia analysis.

3.3.1.1 Constraint Satisfaction Problems

A constraint satisfaction problem consists of a number of variables and a number of constraints. A variable is defined by its domain, i.e. the set of values that can be assigned to the variable. A constraint relates several variables and defines which assignments to a variable are legal with respect to the other related variables. A constraint reasoner now reduces the domain of each variable to a list of values that possibly satisfy all constraints the variable participates in. In order to compute all solutions to a constraint satisfaction problem, search techniques like backtracking have to be employed. However, this usually is only feasible in finite constraint satisfaction problems, i.e. where the domains are of finite size.

EXAMPLE

Consider a simple CSP with three variables x, y, and z and two constraints. The domains of x, y and z are D(x)={1,2,3}, D(y)={2,3,4} and D(z)={2,3}. The constraints are x=y and y=z, so that in a solution to the problem, the values of x, y and z must be equal. The domains of x would be reduced to D(x)={2,3} and the domain of y to D(y)={2,3}. However, this step only removes values from the domains that never take part in a valid solution, but it does not mean that a solution to the CSP is found solely by assigning an arbitrary value from the domain to the variable. Assigning x=2, y=3, z=3 would apparently not be a solution, although all values are members of the domain. A valid solution would be x=2, y=2 and z=2, which can be found using search techniques such as backtracking or branch-and-bound.

A formal definition of a CSP, based on [Apt03], consists of a set of variables
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 is defined as a subset of the cross product of the domains of the related variables, i.e.
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and cj is non-empty. A CSP is solved if both all of its constraints are solved and no domain is empty, and failed if it contains either an empty domain or an empty constraint.
3.3.1.2 Constraint Reasoning

Constraint reasoning denotes the process of solving a CSP, i.e. reducing the domains and computing the solutions if feasible. It basically consists of two steps: consistency checking and search. We will shortly outline these two steps in the following, for details the reader might refer to the extensive literature on the subject, e.g. [Apt03].
3.3.1.2.1 Consistency Checking

During consistency checking values are removed from the domains that are inconsistent with respect to the constraints. This step is usually carried out locally, i.e. it does not try to ensure global consistency of the CSP, but only local consistency.

Several notions of local consistency exist, e.g. arc consistency or different forms of path consistency. In general, local consistency verifies the consistency of a sub-part of the CSP, whereas global consistency refers to the consistency of the whole CSP. It is important to note, that local consistency implies global consistency only under certain conditions, which have to be determined for each CSP separately. In the following we will introduce the notion of local consistency informally based on the aforementioned arc consistency. 

Arc consistency is defined on binary constraints, i.e. constraints involving exactly two variables. The term arc consistency here refers to the graphical representation of CSPs, where the variables are often depicted as nodes of a graph, and the constraints as arcs between those nodes. Such a constraint is said to be arc consistent, if all values of the domains are involved in at least one solution. This is expressed more formally, if for two variables
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 defined on those variables, the following two requirements hold:

· 
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· 
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In order to transform a given CSP into an arc consistent CSP, an arc consistency algorithm has to be used. Such an algorithm removes iteratively all values from the variable domains until no further reductions are possible. If no empty domain was produced during this algorithm, the CSP is arc consistent, otherwise it is considered failed. The method for transforming a CSP into a locally consistent CSP, independently of the specific type of local consistency, is called constraint propagation as the domain reductions are propagated through the CSP.
3.3.1.2.2 Search

The search step tries to find the specific solutions to a CSP. As mentioned above, a locally consistent CSP usually is not globally consistent, nor can values from the domain arbitrarily be assigned to the variables. A search algorithm now traverses a search tree, assigning subsequently values to the variables and checking the constraints. Once a value was assigned to each variable and no constraint is violated, a solution is found.

This problem can e.g. be solved using the well known backtracking algorithm, or branch&bound and a number of others. Which algorithm is the best choice heavily depends on the concrete problem and the objective. Especially in infinite domains backtracking usually is not feasible and more sophisticated search techniques have to be employed, often optimized using domain specific heuristics.

3.3.1.3 Soft Constraints

So far the violation of a single constraint leads to an unsolvable CSP. For instance, consider again the example introduced in the beginning. If the domain of x would have been D(x)={6,7,8}, there would have been no assignment of values to x and y, that would have satisfied the constraint x=y. However, in many domains it is more desirable to find a solution that satisfies as much of the constraints as possible than finding no solution at all. In these domains one can often find two types of constraints: crisp constraints that always have to be satisfied and soft constraints that are more relaxed and might be violated.

A good example are for instance scheduling problems. If you want to schedule a number of meetings you usually have to meet several requirements. Some meetings need to have rooms of certain size, you only have a limited number of rooms, some people are only available at certain days and so on. Typical hard constraints are the number of rooms and the room sizes. Soft constraints are availability (at least often) because it might be feasible that some meetings can be missed. So the objective would be to find a schedule that violates as few soft constraints as possible and satisfies all hard constraints.

Several approaches have been proposed and we will present shortly two of them. max-CSP which directly refers to the example and Fuzzy CSPs which are based on fuzzy theory.
3.3.1.3.1 max-CSP

One approach to deal with over-constrained problems was proposed in [Fre92] by Eugene C. Freuder and is usually called Partial Constraint Satisfaction, or in short max-CSP. The purpose of this approach is roughly to find the maximum set of constraints, such that the problem is satisfiable.

In his paper, Freuder introduces modified versions of several algorithms to search for a best solution and also to apply local consistency checks. He introduces Branch-and-Bound as the most intuitive algorithm to solve max-CSP problems, but also provided modified versions of Backjumping and Backmarking algorithms. In principle he works towards a generic framework for solving partial constraint satisfaction problems. In the case of max-CSP the goal is to find a solution that violates as few constraints as possible, but other metrics for testing solutions against each other are possible.

Weighted CSPs are such an example. In this case each constraint is is assigned a weight, basically expressing the importance of the given constraint. An overall objective function is defined, that assesses the quality of the currently considered instantiation of the variables. The goal is to find a solution that maximizes the objective function, yielding the best solution. max-CSP can be seen as a special case of a weighted CSP, where each soft constraint has the same weight.

3.3.1.4 Constraint Reasoning for Multimedia

Constraint reasoning can be used for automatic annotation of images in order to check for the consistency of annotations. In [Pet06] a framework for the knowledge based annotation of image regions was proposed. Within this framework a constraint reasoner is employed in order to refine the proposed labeling of the image and to check whether the labels comply with spatial knowledge about the domain.

The aim of this framework is to generate a region-based labeling for an image, based on a flexible and knowledge-driven approach. The process consists of the following steps:

1. Segmentation of input image

2. Extraction of spatial relations

3. Generation of a set of hypotheses for each segment

4. Refinement of hypotheses using spatial knowledge

The first two steps are carried out using standard techniques. The third step can either be carried out using standard classification techniques, or using a knowledge-based analysis like proposed in [Pet06], that is more flexible in the respect that it employs prototypical knowledge stored in a knowledge base, and thus needs no training. Additionally the algorithm can be applied on different domains using different prototypes and can also be easily extended to new concepts by extending the knowledge base accordingly. However, this step is not supposed to generate a final labeling, but to provide a set of hypotheses, i.e. propose a number of labels that are likely to be depicted in the given segment. For instance, for a blue region, the third step should provide a hypothesis set {sea, sky} and for a sand-colored region {beach,cliff} would be appropriate. Spatial knowledge now defines which combinations of labels are legal. As an example, sky is always above sea or the topmost segment is always a sky segment. This kind of knowledge is obviously of heuristic nature, so that employing soft constraints is considered as the next step.

The last step finally employs spatial knowledge and constraint reasoning to check for inconsistent labels. In order to accomplish this, the segmented image with the hypothesis sets is transformed into a constraint satisfaction problem. Each segment si with a assigned hypothesis set Hi is considered to be a variable vi with a corresponding domain D(vi)=Hi of a CSP. The spatial knowledge mentioned above is treated as the constraints of the problem. A constraint like “sky is above sea” is transformed into a constraint above:={(sky,sky), (sky,sea), (sky,beach), (sky,cliff), ...}, i.e. it is defined as a list of ordered tuples. Such a constrained is also called a good list, since it defines the pairs of variable assignments that satisfy the constraint.

After the transformation, the problem can be solved using standard constraint reasoning techniques. In general this approach allows for the easy integration of background knowledge into the image labeling process in order to ensure consistent labellings. However, due to the heuristic nature of the knowledge, the approach has to be leveraged to soft constraint reasoning that will allow for more flexible and on the fly selection of the most appropriate constraints. Further, often more than one solution is found, and one would be interested in some kind of ordering among different solution, so that for further processing not all possible labellings, but only a subset of the most probable ones has to be considered. Finally, this approach of multimedia reasoning does apparently not generate any higher level annotations, but only checks for the consistency of automatically generated annotations.

3.3.2 Reasoning Support for Semantic Nets 

Semantic Networks include a multitude of graphical knowledge representation mechanisms. For an overview the reader is referred to ID4.1 chapter 2.2 or to the overview by Sowa [Sow06]. In the following we will give an overview of reasoning mechanisms applicable to several kinds of semantic networks as defined in ID4.1:

· Definitional networks basically describe subtype relationships resulting in a subsumption hierarchy. 

· Assertional networks are graphical notations for expressing predicate calculus. 
An important field of application is expressing the semantic structure of natural language sentences.

· "Implicational networks use implication as the primary relation for connecting nodes. They may be used to represent patterns of beliefs, causality, or inferences." [Sow06]

· Executable networks include some mechanism like marker passing or triggers which can perform reasoning or arbitrary operations based on the structure of the network.
3.3.2.1 Definitional Networks
While earlier versions of definitional networks were not necessarily logically grounded, current work in definitional networks mostly bases on some kind of description logic. There are basically two approaches for reasoning with Definitional Networks: On the one hand graph matching can be applied, on the other hand reasoning with description logics, which included structural subsumption and tableau reasoning can be done [Baa03]. Reasoning with description logics has been explained in section 5.1.1.
3.3.2.2 Assertional Networks  

Assertional networks are mostly based on predicate calculus and some modal logic. [Sow79, Sow06], so corresponding logical reasoning as described for example in [Bra04] can be applied.

3.3.2.3 Implicational Networks
Implicational networks represent implications between situations. They can be interpreted in various ways:

· parts of the graph can be interpreted as rules. Taking into acount a single arc representing a single implication very simple Horn clauses can be derived. More complex patterns like multiple arcs having the same end node can be interpreted as complex rules: From the example network in ID4.1 we can derive
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. Again some logic machinery, for example Prolog can then be used for reasoning.

· If propability if added to the implicational network nodes can be interpreted as events which can be assigned a propability by following paths along the weighted arcs. Bayes Networks are an example for reasoning with implicational networks with propability.

· Benjamin Kuipers (1984, 1994), developed methods of qualitative reasoning, which serve as a bridge between the symbolic methods of AI and the differential equations used in physics and engineering“ [Sow06]

3.3.2.4 Executable Networks

Executable networks include some kind of marker passing or triggers to execute some procedures based on the structure of the network. During reasoning the executable network may be changed through the application of triggers. 

An example of using triggers for reasoning is forward chaining in production systems. The basic mechanism of production systems is forward chaining application of rules, as described in chapter 5.2.2.3. possible rule types are 

· ADD pattern: Add a new element satisfying pattern to the working memory if the rule is fired

· REMOVE i: remove the i-th condition matched by the rule antecedent from the working memory

· MODIFY i: modify the i-th condition matched by the rule antecedent.

While these types of rules are sufficient to fulfil the definition of executable networks given in [Sow06], executable networks become more powerful, if an additional rule type 

· EXECUTE

is added, which executes some procedure when the corresponding rule is fired, thus allowing for actions performed, whose execution is controlled by the reasoning process. An advantage of production systems is that they can be used to model “rule-of-thumb” based reasoning similar to that performed by humans [Bra04].

A second prominent example of executable networks are Petri Nets, which use marker passing plus procedures. The following description id based on [Sow06].

Petri Nets are graphs consisting of two kinds of nodes called places (drawn as circles) and transitions (drawn as lines). Places are passive and can hold an arbitrary number of marks called tokens. A place represents a state while a transition models the circumstances necessary for a transition from one state to another. A transition rule can fire, if all places which serve as input to the transition hold at least one marker. When the transition fires, one marker is removed from each input place and one marker is added to each output place. 

Petri nets can be used to model processes or data flows. If different types of markers are allowed (“colored petri nets”) multiple processes can be modelled within one network. 

In the example Petri Net shown below [Sow06] the process of persons entering a bus at a bus stop is modelled. The “bus arriving” place holds one token, so the “bus stops” transition can fire. As a result the place “bus waiting” holds a token and thus “one person gets on the bus” may fire up to three times, until the “bus starts”. After that the place “bus leaving” will hold one toked and “person on bus” will hold a number of tokens corresponding to the number of times “one person gets on bus” has fired. Please note, that in this example the number of persons actually entering the bus is not clearly defined, as the bus may start as soon as one person has entered.


Petri nets have been a basis for a number of semantic network systems called procedural semantic networks. 

While Petri nets are usually not called semantic networks they have influenced semantic networks. For example Sowa allowed relation nodes to be replaced by actors in conceptual graphs which equivalent functions [Sow79, Sow84].

3.3.3 Description Logics and Constraints Programming 

As described in section 5.3.1.1, the idea of constraint-based programming is to solve problems by simply stating constraints (conditions, properties), which must be satisfied by a solution of the problem. Constraints can be considered as pieces of partial information, which describe properties of unknown objects and relationships between them.
Two types of relations between objects are often distinguished: the ontological relation and mereonomic relations. The ontological relation is the classic is-a (or subsumption) relation and is fully taken into account in DLs. On the other hand, mereonomic relations (or part-of relations) are quite various and difficult to express and to reason with. A lot of work has been done to deal with “part-of hierarchies” and to extend DLs to part-of relations. For a survey, see [Art96]. In particular, extensions of DLs dealing with temporal relations, or temporal description logics, have been proposed [Art00].

Some experiments have been done in the French National Institute of Audiovisual (http://www.ina.fr) which aim at using DLs and temporal extensions of DLs for audiovisual contents description and representation. [Car98] presents the use of the CLASSIC DL system [Bor89] for representing basic audiovisual concepts. Fig. 5.3.3-1 presents some concepts from a taxonomy of punctuation effects.
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Fig. 5.3.3-1: taxonomy of punctuation effects
The paper also presents an attempt to use CLASSIC rule-based mechanisms to implement temporal grouping rules and shows the limitation of this approach.
[Car00a] proposes to represent complex classes of audiovisual objects as templates. A template is Constraint Satisfaction Problem (CSP) where nodes are concepts in DL formalism or another template, and edges are temporal constraints. These temporal constraints can be:

· a disjunction of Allen’s temporal constraint [All84], i.e. a binary constraint in full Allen temporal algebra;

· a meets+ unary constraint, which means: one or more consecutive instances of the concept linked to the node, these instance being linked with the classical meets Allen’s temporal relation.

Fig. 5.3.3-2 gives an example of a template defining a Report, where a Report is a succession of consecutive instances of the Shot concept, and where an instance of the Logo concept is shown during the first shot of the report.

Report

nodes: 
s1 [Shot]


s2 [Shot+]


s3 [Logo]

constraints :
s1 {meets} s2


s3 {starts ( during ( finishes} s1


s1 {starts} this


s3 {finishes} this

Fig.  5.3.3-2: a template defining a Report

In a traditional DL paradigm, two problems have then to be solved: instanciation and classification. The instanciation problem concerns the automatic recognition of a template given a set of instances of the concepts linked to the nodes of the template (Shot and Logo in the example above). This problem is very combinatory and an implementation of a solution using CSP filtering technique in the BackJava framework [Roy99] is given in [Car00b]. The classification problem concerns the computation of subsumption relations between templates and has not been completely solved.
3.4 Statistical Methods 

Statistical methods have been used for a long time, and have proven to be very successful for a number of difficult tasks. They are especially useful to solve problems where a large quantity of examples is available, but the real model is unknown, as it is the case for a lot of perception tasks. A great advantage of these methods is that, as computers steadily increase their computing power and memory, applications which use statistical methods are able to process larger problems with greater accuracy.

The basics of statistical reasoning are to formalize the current state of the problem as a n-dimensional vector, and the possible decision outcomes as classes over this vector space. The decision process is therefore translated into a classification process. 

We will not discuss here the formalization of a problem into a vector space, as this is very dependent on particular aspects of each problem. Rather, we will focus on the classification from a set of vectors.

We will use the following presentation (figure taken from Jain, [Ani00]) to expose the various approaches to statistical modelling:

[image: image76.emf]
Four aspects are important in the choice of a classification method:

· In the (rare) case where the class conditional probabilities p(c | x) are known, the Bayes decision rule provides an optimal classifier: 

c* = argmax p(c | x)

When those probabilities are unknown, they can be estimated using several possible methods and the Bayes rule still provides an indication towards the optimal classifier.

· Supervised versus unsupervised classification: Supervised classification is the case where the set of classes to be recognized is known in advance. In particular, this means that the training examples are composed of example of n-dimensional vectors xi together with their corresponding class ci. The role of the classification procedure is to define the class boundaries in the n-dimensional space, so that new samples can be assigned a class automatically. 

Unsupervised classification is the case where the classes are unknown and have to be defined by the classification procedure. This situation often arises in applications such as data mining, where a huge amount of data is available, and classification is used to reduce the complexity of the training data by arranging the samples into coherent categories which can then be examined in further details. Unsupervised classification may reuse some of the models proposed in supervised classification, but also require special processing. An important problem is that the number of classes is generally not known in advance, and has to be determined by the classification process. This is a difficult issue, because a large number of classes induces a precise description of the data but also a higher complexity. A trade-off has to be found between precision and complexity.

· Parametric versus non-parametric methods: in some problems, the probability distribution of the feature vectors is known to belong to some parametric family of models, or can be assumed to belong to such a family. The problem of modelling becomes the problem of choosing the most adequate values for the parameters. When this assumption is not true, as is the case when the actual distribution is far too complex, one has to rely on non-parametric methods to estimate these probability distributions.

· Some approaches try to estimate the probability density of the distribution, and then use this density to define the classification decision rule. Other approaches are based on a geometric approach and try to directly estimate the decision boundaries in the feature vector space. 

3.4.1 Statistical classifiers

Following Jain [Ani00], we will consider three generic approaches to construct statistical classifiers.

3.4.2 Classifiers based on similarity

A simple idea is that similar patterns should belong to the same class. Of course, a key issue here is to define the concept of similarity, generally through one of the common metrics. A pattern is assigned the class of the training pattern which is closest with respect to the chosen metrics. Sometimes, several prototypes can be kept for each class, sometimes a mean vector can be used as a reference instead

3.4.3 Classifiers based on probabilities

Those classifiers rely on probabilities densities which can be either parametric or non-parametric. Examples of parametric distributions are the Gaussian distributions, binomial distributions, and multi-normal distributions. The most common non-parametric models are the k-nearest neighbour (k-NN) rule, and the Parzen estimators [Tay94].

3.4.4 Classifiers based on decision boundaries

Those classifiers intend to estimate directly the decision boundaries between classes. This boundary may be simple, for an example a hyper plane, in the case of the Fisher linear discriminant or the single-layer perceptron. It can also be more complex, as for multi-layer perceptrons. Decision trees use combination of decision boundaries that are parallel to the axes. Finally, the Support Vector Machines (SVM)  try to maximize the margin around a boundary which is defined by support vectors. SVM have exhibited excellent performance in a large number and variety of classification tasks.

3.5 Reasoning with Uncertainty 

In rule-based reasoning, uncertainty can be related both to the rules and to the data obtained during consultation. Various approaches to uncertainty processing have been proposed in the early expert systems. So PROSPECTOR [Dud79] uses odds derived from Bayesian theorem, MYCIN [Sho76] uses measures of belief, measures of disbelieve and uncertainty factors derived from subjective probabilities. Other approaches are based on fuzzy theory or possibility theory.

We will review here the algebraic theory of P. Hajek [Haj85] that generalizes the methods of uncertainty processing used in the early expert systems. Algebraic theory assumes that the rules are in the form

condition ( conclusion(weight)

where condition is a conjunction of literals, conclusion is a single proposition and weight from the interval [-1,1] expresses the uncertainty of the rule.

Four combination functions are defined to process the uncertainty in such knowledge base:

1. NEG(w) - to compute the weight of negation of a literal,

2. CONJ(w1,w2,...,wn) - to compute the weight of conjunction of literals,

3. CTR(a,w) - to compute the contribution of the rule to the weight of the conclusion (this is computed from the weight of the rule w and the weight of the condition a),

4. GLOB(w1,w2,...,wn) - to compose the contributions of more rules with the same conclusion.

The algebraic theory defines axioms that these combination functions must fulfill.  So, e.g. 

 CTR(1,w) = w
for a < 0
 CTR(a,w)  = 0

for a1 < a2
 CTR(a1,w) < CTR(a2,w)

are the axioms for the function CTR.

Remark: We should notice, that beside expressing uncertainty using numbers (probabilities, uncertainty factors, weights…) as shown above, we can deal with uncertain (i.e. not valid in all situations) knowledge using non-monotonic reasoning. Recall here the famous example of non-flying penguins where we can explicitly quote all exceptions form a general rule. So the rules for this example can be:


If X is penguin THEN X does not fly


IF X is bird THEN X flies

And the inference mechanism must choose first applicable rule from the list.

3.5.1 Compositional or non-compositional approach

By compositional inference we will understand inference, where more rules are applied simultaneously. So, the compositional approach is closely related to uncertainty processing: more rules can contribute to the confirmation of a goal with some certainty and these contributions should be combined.  Such combination can be realized using the function GLOB shown above.

Non-compositional inference is thus inference, where single (first or best according to some heuristics) rule is chosen and applied in given reasoning step. This is the way how CLIPS or Prolog work.

3.5.2 Naïve Bayesian 

Naive Bayesian classifiers compute the aposteriori (conditional) probability of a hypothesis H given evidences E1, … Ek using the formula

 EQ P(H|E1,…,EK)  =  \F(P(E1,…,EK |H) ( P(H);P(E1,…,EK))  =  \F((i P(Ei |H) ( P(H);P(E1,…,EK))
When classifying between more hypotheses, we then use the one that maximizes the a posteriori probability.

The probabilities P(Ei|H) that build the classifier, can be understood as characteristics of association rules that relate together evidence Ei and hypothesis H. Building the naïve Bayesian classifier from data (as is the case in machine learning), P(Ei|H) = a/(a+c) is the coverage of the association rule Ei ( H, (or  the confidence of the association rule H  ( Ei)
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3.5.3 Fuzzy control 

One approach to fuzzy control is based on rules in the form:

IF  A is x  and  B is y  THEN  C is z

(e.g. if temperature is high and pressure is medium then flow is medium).

The so called Mamdani’s inference evaluates the conjunction (its truth degree) in the condition using min and conclusion of more rules using max. This is illustrated on the figure bellow (taken from [Nau97]).

[image: image77.jpg]IF
1

6,

induced output
fuzzy set

AND THEN
A 14
NS AN

—>

0 0
& 14
Af min
—>

\ /1 A\ :
) 6

crisp input values

F
F
v
defuzzified
output value

max




3.5.4 Fuzzy Constraint 

3.5.4.1 Fuzzy CSP

Fuzzy CSPs employ fuzzy set theory in order to define soft constraint reasoning. Fuzzy constraint reasoning was introduced in [Dub93] and [Rut94]. The core idea is to express preferences among different instantiations of variables with respect to the constraints. Therefore, for each Instantiation I and constraint C a degree of satisfaction sat(C,I) is defined. This degree denotes to what extend the values assigned to the variables satisfy the constraint C.

The goal of fuzzy constraint reasoning is now, to find a solution to the problem, where the minimum degree of satisfaction sat(C,I) for a given instantiation I with C ranging over all constraints is maximal. In other words, one tries to find a solution where each constraint is least violated. Again, standard search techniques and local consistency notions can be adjusted in order to handle the fuzzy case.

3.5.5 Fuzzy Rules

Fuzzy rules are often considered to be a basic concept in fuzzy logic. “If...Then…” rules have been widely used for knowledge representation in AI since the late 1960s. Nowadays, they are considered to be a convenient means for describing interpretable knowledge derived from data. The extraction of fuzzy rules from data and their use in inference processes demands a clear understanding over the existing structure of fuzzy rules, their formal models and their various purposes. Fuzzy Logic is concerned with reasoning about “fuzzy” events or concepts. Examples of fuzzy concepts are “temperature is high” and “person is tall”. These concepts do not specify when we consider that the temperature is high or that a person is tall. For instance, if we define the threshold of tallness at 180 cm, then the implication is that a person of 179.9 cm is not considered to be tall. When humans reason with terms such as “tall” they do not have a fixed threshold in mind, but a smooth fuzzy definition. Humans can reason very effectively with such fuzzy definitions. Below we present an example of a fuzzy rule, which contains a fuzzy condition and a fuzzy conclusion:

IF salary is high THEN credit risk is low

Basically, there are three methodologies for fuzzy inference and they seem to be in discord with each other. The Mamdani approach [Mam77] is the oldest one and the first one used in real control systems. This approach is a bit peculiar, due to the fact that it uses a conjunction for modeling rules, instead of the material implication and a disjunction for aggregating rules. However, formal difficulties with the use of the current approach have lead in the early 1980’s to the abandonment of this reasoning method. 

In the Zadeh approach [Zad79], each piece of information can be represented as a fuzzy restriction on a set of possible “expressions”. In this approach, a rule is modeled by the fuzzy extension of a material implication and the inference procedure is a generalized process of classical logic inference.

The third fuzzy reasoning method is based upon the use of fuzzy rules with precise, numerical conclusion parts [Tag85], which will be discussed in more details later.  

Fuzzy reasoning involves three steps:
1. Fuzzification of the terms that appear in the conditions of rules

2. Inference with fuzzy rules and

3. Defuzzification of the fuzzy terms that appear in the conclusions of the rules 

Fuzzification process was proposed by Zadeh’s approach of fuzzy reasoning. It is a method of modelling human imprecise reasoning using fuzzy sets. This way, the concept “tall” is related to the underlying objective term, which describes namely the actual height in centimetres. This transformation of an objective term into a fuzzy concept is the fuzzification procedure. Returning to our example, full membership of the class “tall” is represented by the value 1, while no membership by the value 0. For instance, a person at 150 cm and below does not belong to the class “tall”, at 210 cm and above, a person fully belongs to the class “tall”. Between 150cm and 210cm, the membership increases linearly from 0 to 1. This degree of membership is called the confidence value or the membership value. The role of the fuzzification is to allow a fuzzy condition to be interpreted. Fuzzy concepts have a number of values to describe the range of values of the objective term they represent. The real power of fuzzy logic lies in their ability to represent a concept using a small number of fuzzy values. As a result, this capability reduces the number of rules required to capture the knowledge related to the described concept.

Inference with fuzzy rules includes fuzzification of the conditions of the rules and propagating the confidence values of the conditions to the corresponding conclusions. We will describe the inference procedure via an example:  


IF (applicant is young) AND (income is low) THEN credit limit is low


The first step is to find the membership value of the condition “applicant is young”, given the applicant’s age, as well as the membership value of the condition “income is low”, given the applicant’s income. According to the fuzzification procedure presented, the minimum of all the conditions involved in the rule is taken and assigned to the conclusion “credit limit is low”. An enhancement of this method involves having a weight for each rule between 0 and 1. This weight is multiplied with the membership value assigned to the conclusion of the rule. 

In a fuzzy rule base, a number of rules, which include the conclusion “credit limit is low” wil be activated and the inference procedure will assign the maximum membership value of all the activated rules to the conclusion “credit limit is low”. 

Finally, if the conclusion of the fuzzy rule set involves fuzzy concepts, these concepts need to be translated back to objective term expressions, before they can be used in practice. In the “credit limit is low” example, the results of the inference mechanism are : “credit limit is low”, “credit limit is medium” and “credit limit is high” with corresponding membership values. In the defuzzification procedure, the abovementioned membership values are placed at the point where the membership function has the maximum value. The required defuzzified value is calculated as the centre of gravity of the three membership vectors. The function that calculates the defuzzified value is:

Defuzzified value = (HV_low * MV_low + HV_med * MV_med + HV_high * MV_high) /              (MV_low + MV_med + MV_high)


HV_low, HV_med , HV_high are the values of credit limit that give the highest membership values for low, medium and high credit. MV_low, MV_med , MV_high are the membership values, generated by fuzzy inference for low, medium and high credit outcomes.

We should note that the defuzzification step is not required if the conclusions are 
explicit concepts. In this case, the inferencing provides the confidence values assigned to the various conclusions. 

Although the main principles of Fuzzy Logic are wide;y accepted and agreed, there are various methodologies of fuzzy inference and defuzzification. The abovementioned approaches are the most common.

In the following subsections we present some representative Fuzzy rule formalisms.

3.5.5.1 Fuzzy RuleML

In Fuzzy RuleML, facts about the world can include a specification of a “degree” (a truth value between 0 and 1) of confidence with which one can assert that a combination of facts. For example, the following fuzzy rule asserts that being healthy is more important than being rich to determine if one is happy: 

Rich (? p) 0.5 ^Healthy (? p) 0.9 -> Happy (? p) 

where Rich, Healthy and Happy are unary predicates, and 0.5 and 0.9 are the weights for the atoms Rich (? p) and Healthy(?p), respectively. Predicates Rich, Healthy and Happy are represented by fuzzy predicates, since the degree to which someone is Rich is both subjective and varies according to the level that one is rich. The same property holds for the predicates “Happy” and “Healthy”, where one cannot assign absolute degrees of membership of an individual to such predicates. Hence, it would be best for someone to be able to assign a degree to which a particular individual belongs to the above predicates (concepts). 
3.5.5.2 Fuzzy SWRL

In fuzzy SWRL a weight representing the degree of importance of an atom is added. The syntax is changed as follows:

rule            ::= ’Implies(’ f annotation g antecedent consequent ’)’

antecedent ::= ’Antecedent(’ fatomg, [weight] ’)’

consequent ::= ’Consequent(’ f atom g ’)’

The syntax in SWRL becomes as follows:

<owlr:classAtom>

<owlx:Class owlx:name="Person" />

<owlr:Variable owlr:name="x1" />

<owlx:weight owlx:datatype=”xsd;float”>0.8/>

</owlr:classAtom>

Analogously is changed for each kind of atoms (individualPropertyAtom j datavalued-Property j sameIndividualAtom j differentIndividualAtom )

In fuzzy SWRL a rule may be read as meaning that if the antecedent is activated to a degree of confidence (membership) a 2 [0; 1], and has a degree of importance (weight) b 2 [0; 1] then the consequent must also hold to a degree of confidence (membership) c 2 [0; 1]. An empty antecedent is treated as trivially holding (true), and an empty consequent is treated as trivially not holding (false). Non-empty antecedents and consequents hold iff all of their constituent atoms hold. Atoms in fuzzy rules can be of the form C(x), P(x,y), Q(x,z), sameAs(x,y) or differentFrom(x,y), where C is an OWL DL. The syntax of a rule that both antecedent and consequent are relations becomes as follows:

t [(P(?a; ?b) weight(i)]; [P(?b; ?c) weight(j))]

! P(?a; ?c)

where t is a t-norm and i; j 2 [0; 1]. The output of a rule is a new relation equipped with a degree of confidence. The degree of importance of an antecedent atom, is omitted in case the value is 1 or 0 where we have the classical case of a SWRL rule.

Example

Consider, for example, the rule”If a person (a) has its eyebrows raised enough and his mouth open then is happy. Assuming that EyebrowsRaised, MoutOpen and Happy are ClassesIDs, then given an interpretation I = R; ECf ; ERf ; L; S; LV i, a binding B(I) extends S to map the variable ?a to elements of EC(owl:Thing); is used a respectively to denote these elements. The antecedent of the rule is satisfied by B(I) iff (a) 2 EC(EyebrowsRaised) with the degree of importance ”0.8” and (a) 2 EC(OpenMouth) with the degree of importance ”1”. The consequent of the rule is satisfied by B(I) iff (a) 2 EC(Happy). Thus the rule, as in classical case is satisfied by I iff for every binding B(I) such that (a) 2 EC(EyebrowsRaised) and (a) 2 EC(MouthOpen), then it is also the case that (a) 2 EC(Happy), i.e.:

(a(ECf (owl : Thing):

t(t(ECf (EyebrowsRaised)(a); 0:8); t(ECf (MouthOpen)(a); 1))

= ECf (Happy)(a)

where t is a t-norm. The value 0.8 is the degree of importance(weight) of the antecedent atom, ”RaiseEybrow”. This value corresponds to the degree that the eyebrows must be raised in order to detect that the individual(a) is happy. The degree of importance (weight) of the”openMouth” can be omitted since it has the value 1. In order to compute this rule the assertion degree (membership) of the atoms is needed. For example, the assertion of the specific atoms might be:

Individual(a) = [Type(RaiseEyebrows), 0.9]

and

Individual(a) = [Type(OpenMouth), 0.5]

The difference between the degree of confidence and the degree of importance is that the first value (0.9) shows the degree that a belongs the set RaiseEyebrows, and the second value (0.8) shows how important is the antecedent atom RaiseEyebrow in order to detect the expression Happy. The SWRL syntax of the rule is as follows:

<owlx:Rule>

<owlr:antecedent>

<owlr:ClassAtom>

<owlr:Class owlr:name="RaiseEyebrows">

<owlr:Variable owlr:name="a" />

<owlx:weight owlx:datatype=”xsd;float”>0.8/>

</owlr:ClassAtom>

<owlr:ClassAtom>

<owlr:Class owlr:name="MouthOpen">

<owlr:Variable owlr:name="a" />

</owlr:ClassAtom>

</owlr:antecedent>

<owlr:consequent>

<owlr:ClassAtom>

<owlr:Class owlr:name="Happy">

<owlr:Variable owlr:name="a" />

</owlr:ClassAtom>

</owlr:consequent>

</owlr:Rule>

3.5.5.3 NEST – An example of a rule-based system shell
NEST is a rule-based system shell developed at the Dept. of Information and Knowledge Engineering, University of Economics, Prague [Ber04].

3.5.5.3.1 Knowledge representation

NEST uses attributes and propositions, rules, integrity constraints and contexts to express the task-specific (domain) knowledge. 

Four types of attributes can be used in the system: binary, single nominal, multiple nominal, and numeric. According to the type of attribute, the derived propositions correspond to:

· values True and False for a binary attribute.

· each value for a nominal attribute. The difference between single and multiple nominal attribute is apparent only when answering the question about value of the attribute.

· fuzzy intervals for a numeric attribute. Each interval has a membership function defined using four points: fuzzy lower bound, crisp lower bound, crisp upper bound, and fuzzy upper bound; these values need not to be distinct - this allows to create rectangular, trapezoidal and triangular fuzzy intervals.

Rules are defined in the form:

condition ( conclusion(weight), action

where condition is disjunctive form (disjunction of conjunctions) of literals (atoms with or without negation), conclusion is a list of literals and action is a list of actions (external programs).

We distinguish three types of rules:

· compositional - each literal in conclusion has a weight which expresses the uncertainty of the conclusion if the condition holds with certainty. The term compositional denotes the fact, that to evaluate the weight of a proposition, all rules with this proposition in the conclusion are evaluated and combined.

· apriori - compositional rules without condition; these rules can be used to assign implicit weights to  goals or intermediate propositions,

· logical - non-compositional rules without weights; only these rules can infer the conclusion with the weight true or false. One activated rule thus fully evaluates the proposition in conclusion.

A list of actions (external programs) can be associated with each rule. These programs are executed if the rule is activated.

An example of a (compositional) rule can be:

IF   smoking 

AND  cholesterol_level is high 

THEN atherosclerosis_risk is high (with the weight 0.8)

Another example is the pair of rules:


IF  rich
THEN happy (0.5)


IF  healthy
THEN happy (0.9)

We use XML to express the rules, so the rule given above will be written in the form (for binary attributes we use just the attribute name):

 <compositional_rule>

    <id>rule20</id>

    <condition>

    
<conjunction>

     

<literal>

      

<id_attribute>smoking</id_attribute>

      <negation>0</negation>

      </literal>

      <literal>

      
<id_attribute>cholesterol_level</id_attribute>

      <id_proposition>high</id_proposition>

      
<negation>0</negation>

      </literal>

      </conjunction>

    </condition>

    <conclusions>

      <conclusion>

      
<id_attribute> atherosclerosis_risk</id_attribute>

      <id_proposition>high</id_proposition>

      <negation>0</negation>

      <weight>0.800</weight>

      </conclusion>

    </conclusions>

</compositional_rule>

When comparing the expressive power rules in NEST with the rules expressed in RuleML or SWRL, we can see, that the atoms in NEST have the form of attribute-value pairs (i.e. unary predicates) only.

As additional knowledge base elements we introduced integrity constraints allowing to detect inconsistent patterns of weights and contexts that are used to condition the evaluation of attributes or rules.

3.5.5.3.2 Inference mechanism

During consultation, the system uses rules to compute weights of goals from the weights of questions. This is accomplished by (1) selecting relevant rule during current state of consultation, and (2) applying the selected rule to infer the weight of its conclusion.

(1) The selection of relevant rule can be done using either backward or forward chaining. The actual direction is determined by the user when selecting the consultation mode.

(2) For rules with weights (compositional and a-priori ones), the system combines contributions of rules using compositional approach. For rules without weights, the system uses non-compositional approach based on (crisp) modus ponens - to evaluate the weight of a conclusion, and (crisp) disjunction - to evaluate a set of rules with the same conclusion.

3.5.5.3.3 Uncertainty processing

Uncertainty processing in NEST is based on the algebraic theory of P. Hajek given above. This theory defines a set of axioms, the combination functions must fulfill. Different sets of combination functions can thus be implemented. We call these sets "inference mechanisms". The NEST system uses "standard", "logical" and "neural" one. These mechanisms differ in the definition of the functions CTR and GLOB (the respective formulas are shown in table bellow): 

· Standard inference mechanism is based on "classical" approach of MYCIN [Sho76] and PROSPECTOR [Dud79] expert systems. The contribution of a rule is computed Mycin-like, the combination of contributions of rules with the same conclusion is computed Prospector-like.

· Logical inference mechanism is based on an application of the completeness theorem for Lukasiewicz many-valued logic. The task of the inference mechanism is to determine the degree in which each goal logically follows from the set of rules (understood as a fuzzy axiomatic theory) and user's answers during consultation [Ber92]. This degree can be obtained by using the fuzzy modus ponens} inference rule. To combine contributions of more rules, logical inference mechanism uses the fuzzy disjunction.

· Neural inference mechanism is based on an analogy with active dynamics of neural networks. To obtain results that correspond to the output of a neuron, the contribution of a rule is computed as a weighted input of the neuron and the global effect of all rules with  the same conclusion is computed as piecewise linear transformation of the sum of weighted inputs.

	Inference mechanism
	CTR(a,w) for  a>0
	GLOB(w1 ,…, wk)

	standard
	a w
	(w1+w2) / (1 + w1 w2)

	logical
	sign(w) max(a+|w|-1)
	min((w>0w, 1) - min((w<0 |w|, 1)

	neural
	a w
	min(max((i wi, -1),1)


The remaining functions are defined in the same way for all three mechanisms: weight of negation of w is evaluated as -w, weight of conjunction is evaluated as minimum, and weight of disjunction is evaluated as maximum.

3.5.5.3.4 Modes of consultation

NEST offers several modes of consultation. The dialogue mode is the classical question/answer mode when the system selects current question using backward chaining. The questionnaire mode allows to fill-in answers in advance; the system then directly infers the goals using forward chaining. In dialogue/questionnaire} mode the user can input some volunteer information (using questionnaire), during further consultation the system asks questions if needed.

In each of this mode, the user answers the questions concerning the input attributes. According to the type of attribute, the user gives the weight (for binary attributes), the value and its weight (for single nominal attributes), list of values and their weights (for multiple nominal attributes), or the value (for numeric attributes). Questions not answered during consultation get the default answer “unknown” [-1, 1] or “irrelevant” [0, 0], Answers can be postponed - the user can return to them after finishing the consultation. The result of a consultation is shown as a list of goals (resp. all propositions) together with their weights.

4 Reasoning Applications in Multimedia 

As manual annotation of multimedia content is an expensive task, a lot of research is devoted to the construction of automatic annotation systems. Such systems rely on pattern recognition algorithms to process automatically the multimedia content and provide the relevant semantic descriptors. In this chapter, we mostly focus on the state-of-the-art in automatic image and video annotation and examine approaches following implicit (section 6.1) and explicit (section 6.2) knowledge respectively, and approaches utilizing context knowledge that comes with image metadata (section 6.4). Additionally, relevant work on text annotation is addressed to identify alignments with visual content annotation and provide insight to potentially useful guidelines (section 6.3). Due to the abundance of research in this area, the references cited here should be considered as example and not as an exhaustive list.

4.1 Statistical Content Annotation 

The problem of image and video classification has been studied for a long time. More recently, a lot of research has focused on the problem of image and video annotation. The difference is that, while classification aims at assigning the object to one out of a predefined set of classes, annotation is the process of augmenting the object with semantic descriptors, generally keywords or key-phrases which related to some characteristics of the object contents. Annotation is strongly related to classification, and it reuses many of the existing classification techniques, yet it differs in several aspects. Classification generally considers a relatively small set of disjoint categories. Annotation considers a large set of semantic descriptors, many of which have strong relationships. These relationships allow to use constraints in the assignment of a set of descriptors to an image (this is often called a context model), for example, a descriptor “car” will favor the occurrence of a descriptor “street”, as cars are generally found on streets. Another difference is that in many cases, the semantic descriptors maybe associated to a part of the image or the video, as in the case where an object of a particular type has been detected. The information given by the annotation is therefore more precise than in the case of classification.

4.1.1 Image Annotation

The basic process for annotating the image is first, to decompose the image into a number of visual elements. Generally, there are two approaches for this:

· Either the image is split into rectangular regions by a regular grid,

· Or a segmentation algorithm is applied to the image, and each region is considered as an element.

For each visual element, a visual descriptor is constructed, generally as a feature vector. There is a great variety of visual features, including color histograms, correlograms, wavelet coefficients, edges, moments, etc…

Then, a statistical model relates those visual descriptors to the semantic words. A number of methods have been proposed for this process, including for example:

· Co-occurrences between words and visual descriptors [Mor99],

· A translation model inspired by probabilistic automatic translation systems [Duy02],

· The Latent Dirichlet Allocation model, which tries to generate a number of latent variables [Ble03],

· The Continuous Space Relevance model [Lav04],

· Multiple Bernoulli Relevance model, which proposes to better model the probability distribution of visual descriptors [Fen04],

· Support Vector Machines [Ton01],

· Hidden Markov Models [Gho05].

Besides the simple prediction of keywords from visual descriptors, specific problems that have to be handled by those annotation processes are the following:

· Generate a consistent set of keywords. As the prediction of keywords is prone to errors, it might happen that some keywords generated independently are inconsistent. Therefore, it is useful to correlate the prediction of keywords, so that keyword recognized with high confidence may influence the prediction of more ambiguous keywords.

· The length of the annotation is a serious issue. There are many possible descriptions of an image with keywords, and the ones available in the existing databases have been done manually. This means that the annotation may depend on the actual person who made the assignment. Therefore, there is not a unique ground truth to the annotation of an image, and several annotations, different from the human one, may be considered as valid. This makes the problem of evaluating the quality of an annotation less straightforward than in other situations.

4.1.2 Video Annotation

The processing of video information is more complex than processing images, as more information has to be considered. In particular, the use of the audio channel can be of particular importance. For the video part, the annotation process is generally decomposed in the following steps:

· Segmentation of the video streams into consecutive shots, by detecting cuts and transitions,

· Analysis of the shot content from a syntactic point of view, by detecting camera movements and zooms, 

· Analysis of the shot content from a semantic point of view, with a variety of classification methods,

· Sometimes, identification of scenes containing a sequence of shots with a common action or situation.

Cut detection techniques have been studied for a long time and provide nowadays very high performance for hard cuts, although a number of difficult cases remain for gradual transitions. (for example see: [Yua05]), 

Camera movement techniques generally use a computation of the motion vector field, followed by the adaptation of a parameterized model. The classification of the camera movement is done from the computed values of the parameters of the model [Dua04].

Semantic shot classification is often based on techniques similar to those used in image classification. One or several key frames of shots are analyzed. Sometimes, movement is also taken into account. Besides video analysis, the information from the audio track or the captions (when available) is very important to assign a semantic category to the video shot. The audio track can be processed with an Automatic Speech Recognition system, to provide a textual transcription, or sometimes, with specific detectors, for example to separate music, speech or noise, or to detect specific events such as applause or explosions. Mixing information extracted from the video and the audio raises a number of important decision problems about information fusion [Yan04].

A more global structure of the video can be extracted. Very often, this part is dependent on the genre of the video. Typical video genres that are considered are :

· movies [Ada05],

· TV News programs [Mer99],

· sport programs [Ber05].

The TrecVideo experiments are an international effort coordinated by the NIST to compare video analysis algorithms on a set of normalized data and tasks. Those experiments are described on the web site: 

http://www-nlpir.nist.gov/projects/trecvid/
4.2 Content Annotation using explicit prior knowledge

Apart from the class of statistical-based approaches to content annotation that has been addressed in the previous subsection, another important class of annotation approaches consists of those utilizing explicit knowledge for deriving the semantics underlying the examined content. The annotation process starts again with the segmentation and the extraction of corresponding descriptors (audiovisual features and spatiotemporal relations), only this time the detection and thus annotation is realized as a matching process against the explicitly provided knowledge. Additionally, the use of prior explicit knowledge means that the available knowledge can be used as well to drive the initial steps by determining for example which descriptors that should be extracted or by guiding the segmentation towards more meaningful results. 

Two main issues related to the approaches belonging to this category are the representation formalism and the type of knowledge modelled. As illustrated in the following brief state-of-the- art, with regard to the former, the relevant literature considers various approaches ranging from ad hoc representations to logic-based ones. Ad hoc representations seem to have been favoured during the last decades, as they are closer to human intuition and provide efficient means for structuring the required knowledge in a easy to handle, yet effective for the targeted application, way. However, the emergence of the Semantic Web and the vision of shared and interoperable metadata and semantics have affected the more recent works. With respect to the possible employed knowledge types, the use of visual and spatio-temporal information is probably the most common one. Fusing visual with auditory and/or textual information has also received quite strong interest, as the richness of multimedia data lies in their multimodal nature. 

A representative list of annotation approaches utilizing explicit knowledge includes the following:

· The ontology-based approaches presented in [Hud03, Mai04], for the recognition of complex objects, where three distributed knowledge-based systems drive the image processing, the mapping of numerical data into symbolical data and the semantic interpretation.

· The enhanced by user-defined rules ontology-based system for fuel and pancreatic cell images annotation [Holl05, Hun04, Lit04].The rules determine the mapping between the low-level features and the respective domain concepts.

· The ontology-based video annotation approach of [Das05], where rules are used to determine the algorithms and execution order for the detection of the supported domain concepts. 

· The work in [Sch04], where a DL-based reasoner with a pseudo-extension to provide support uncertainty handling is used to infer semantic descriptions based on learned domain concept definitions.

· The DL-based approaches presented in [Neu04, Mol99] for acquiring scene interpretations utilizing domain knowledge at different levels. 

· The approach proposed in [Meg01] for using DLs for the descriptpion of both the form and content of multimedia documents so that queries on both structural and conceptual similarity are enabled. 

· The approaches towards augmenting domain definitions with visual descriptions exploiting the WordNet corpus of [Hoo, Holli05]

· The rule-based approaches presented in [Dor04, Pet03]

Further examples include the temporal scenario recognition approach of [Vu02] where a declarative model to represent the scenarios for video interpretation is used, and the fuzzy algebra and fuzzy ontological information exploited in [Wal03] for extracting semantic information in the form of thematic categorization from multimedia content. Automatic extraction of goal events in soccer videos is realized within a data-mining framework in [Che03]. Based on visual and audio features, extracted at the first step, data pre-filtering is performed with the aid of domain specific knowledge and then the pre-filtered data with classification rules are used as input in the data-mining process. An object-oriented high-resolution image classification based on fuzzy rules is described in [Ant03]. In [Wan03], a unified framework is introduced, which is based on the notion of Basic Semantic Unit (BSU), for the detection of in-play/out-of-play scenes and view classifications (tight, medium, loose). A new scenario recognition algorithm for video interpretation that is based on a temporal constraint resolution algorithm is presented in [Vu03]. In [Ber03], a unified framework is developed for the definition of object-based and event-based semantics extraction in order to provide semantic video annotation. The semi-automatic image annotation system proposed in [Sri00] uses hints given in natural language to prune the search space of object detection algorithms. The system uses spatial constraints to reduce the area to search for an object and other constraints to reduce the number of possible shapes or object types, supporting even complex queries describing several objects and their configuration. A contextual reasoning engine is used in [Chr03] to analyze the output of a set of low-level audio and video detectors (“cues”), and attach semantic information to the examined sports video. In [Jai], the use of context and domain knowledge within a reasoning framework is investigated for video understanding. The proposed system uses a rule-based engine on top of domain knowledge, visual descriptors and metadata generated from related text, text generated from automatic speech recognition, etc. 

4.3 Alignment with Text Annotation 

Multimedia repositories of A/V material aligned with associated text and speech records are becoming increasingly available. Often this data is manually annotated with meta-data such as editor and producer names, places, dates, and keywords that summarize the image content. However, as discussed above also automatic indexing methods based on image processing have been developed based on features such as color, texture, and shape. Yet visual understanding is not well advanced and is very difficult even in closed domains. As a consequence, various ways to explore the use of collateral linguistic material have been studied such as automatic indexing [Jon00], classification [Sab99] or analysis of image captions [Sri95]. 
Integrated approaches use information extracted from different sources (structured and semi-structured data, free text, audio), in different modalities (text, speech), and in different natural languages [Kup03]. Such methods use heterogeneous information sources and integrate the information obtained from the separate sources on a semantic level, i.e. the results of all information extraction systems are merged by a process of alignment and rule-based reasoning on the basis of a semantic model that may be represented formally by a domain or task ontology (see e.g. [Bui06] for an application of ontology-based information extraction and integration in the football domain).
A number of projects have been working on the alignment of textual and/or speech data with image and A/V data and on the extraction and integration of information from such aligned resources:

· The project Twenty-One aimed at the improvement of the distribution and use of multimedia documents [Jon98]. The goal was to facilitate access to information for readers who are not native speakers of the language in which they are written. At the technical level, improved document access was achieved by the use of natural language processing technology, knowledge-based image analysis, and telecommunication-based information technology.
· The Pop-Eye project combined natural language indexing and partial translation in a demonstrator that builds multilingual indexes from subtitles over associated times codes in the videos [Bru98]. The use of subtitles in broadcasting programmes was investigated as a new method for disclosure of film and video material. 
· In the OLIVE project a system was developed for the automatic production of indexes from the sound track of a (television or radio broadcast [Jon99]. This allows multimedia archives to be searched by keywords and corresponding visual or soundtrack material to be retrieved. 
· The MUMIS project developed information extraction techniques for automatic indexing of multimedia material, using data in different media (text documents, radio and television programs) in connection with an ontology for the selected domain of football [Dec04]. 


[image: image78.emf]
Fig. 6.3-1: Information Extraction and Integration for Multimedia Indexing in the MUMIS Project
4.4 Image Classification based on contextual image metadata 

Image classification is a rather generic concept that leads to different interpretation depending on the field of application. In general, image classification is a pre-processing step that should enable meaningful image querying by either an operator or a machine. However, “meaningful” querying for one application may differ significantly from another. Classic examples are pictorial versus medical imagery, and personal image collection versus institutional collection. The goal of image classification is to provide a meaningful machine readable description of an image that does not depend on manual annotation of the image, or at least minimizes it as much as possible while still providing a satisfying search experience. A “good” search experience is when the returned images match or are similar to the search term.

The desired “similarity” of images, implied by their distribution into image classes, may be based on image content or image context. Note that both content and context can be objective (dominant color, the location of capture, time, etc.) or subjective (conveying an emotion or message). Currently, we can obtain only objective information with the best high-level analysis possible when using no human annotation.

4.4.1 Image Content

The content of an image is the data that can be extracted from the image pixel data. Content data extraction can have varying degrees of complexity, depending on the type of interpretation. Simple algorithms determine the content of an image by calculating image or image region features, such as color histograms, edge maps, texture, etc. These algorithms fall into the category of what is termed “low-level analysis.” High-level analysis refers to more complicated analysis that allows determining the presence or absence of humans or objects of interest, recognition and tracking of humans and objects, etc. A good overview on low- and high-level analysis for the purpose of image classification is presented in [Sme00].
4.4.2 Image Context

The context of an image refers to the set of tertiary data like location, date, time, subject, etc., which is most often not directly conveyed by the content of the image. The context of an image can partially be extracted from the content of the image and the meta-data associated with the image. The context information that can be estimated from the image content are, for example, approximate time of the day, location (indoor or outdoor scenes), presence or absence of a person or object, etc. However, meta-data usually indicate context more directly and with greater accuracy. Metadata can be:

1. data embedded in the image file by capture devices, e.g. EXIF, TIFF/EP data;

2. sensor data, recorded by sensors operating at approximately the same time and place as the image capture device, which is either embedded in the image file data itself or transmitted otherwise.

3. manual annotation

While research in image classification based on high and low level analysis of content has been active for many years, research on using context information embedded in metadata associated with images is relatively recent, mostly due to the recent standardization of technical metadata that need to be embedded into image file headers (EXIF, TIFF/EP, JPX). Here, we concentrate on metadata and its potential use in image classification in conjunction with the conventional approach of classification based on content analysis.

4.4.3 Image Metadata

Since image metadata can provide context information that is both reliable and obtainable with little further processing, it is potentially very useful in image classification. [Hol05] investigates what kind of context information (from EXIF and otherwise) is useful from the point of view of enhanced user experience when managing the photographs with applications that deal with archival, image processing, and image album presentations. Their results are based on an online survey done to find out what kind of context information users are interested in. Their findings suggest that the application areas of interest are: archival, retrieval, reproducibility of images, automated presentation and augmented presentation. This suggests the need for additional sensors to capture context information, and they build a prototype sensor box attached to a camera that captured the relevant context information. This prototype was used by a few amateurs and professionals and the results indicated that additional context information can enhance digital photography and the related applications mentioned above. While more metadata is necessary, existing metadata has not been put to full use yet. [Tes05] presents some of the possible ways image metadata can be of use in various applications that deal with archival, search, and retrieval of digital photographs.

EXIF data is one of the forms of metadata that can provide quite a few useful pieces of contextual information (like subject distance, focal length, GPS coordinates). However, only a few of the tags are populated at this time by even recent digital camera models. Additionally, not all cameras populate the same sets of tags. One solution to estimate missing data is published by [Bli06]. They use regression to predict missing metadata from observed data, using an independent component analysis (ICA) based approach. The method works best when just one or two tags are missing, and when there are a sizeable number of similar EXIF tags to estimate the missing ones from. Given the current degree of emphasis on metadata for images, we predict that future capture devices are likely to embed more sensor metadata into images.

4.4.4 Image Content and Context are related

Higher level analysis of content can help in establishing the context of an image. For instance, if there is sky, mountains etc., and the image is uniformly lit, we can deduce that the image depicts an outdoor scene. Similarly, knowing the context can help in higher level analysis of the image. For instance, knowing that the flash has been used, we can assume that brighter objects are closer to the camera than darker ones. [Liu05] uses EXIF data for attention region selection in images with low depth of field. The key to the method is the observation that the salient region of attention has sharper edges that the rest of the image, which is out of focus. They use the ratio of edge information before and after Gaussian blurring, along with information about the camera focal points (based on the brand and model of camera given in EXIF data) to determine attention regions.

4.4.5 Metadata use in image classification

Classification of images has been done in the past based on content analysis of images [Sme00]. More recently, image classification and management systems have been created using image features and metadata like EXIF. For instance, [Coo03] uses EXIF time stamps (or modification date if this is not available) and image features from the JPEG DCT coefficients to cluster photographs. [Gar02] uses EXIF data (time stamps, F numbers, and subject distances) to determine camera metadata similarity in order to augment visual similarity based on low level features for managing images in an image retrieval system for images stored locally and across a network. [Gan04] describes content management on mobile devices that have metadata management architecture. Metadata obtained from images is saved as annotations in MPEG-7 format along with other information about other media like music and video. Using metadata information like EXIF that indicates time and location of capture, users can potentially search for images of interest from the archived ones. Similarly, [Wie05] uses metadata stored in images in the form of EXIF for annotation purposes for their photo retrieval and management system. [Fuj05] uses EXIF GPS data to index/annotate pictures using a 'photo vector' in an attempt to create a common query-retrieval framework for photographs of the same location (taken from different viewpoints) and maps on the Web.

An interesting example of use of metadata is presented by [Dia05] who uses metadata to create photo collages, defining a layout method that utilizes a pre-designed template consisting of cells for photos and annotations applied to these cells. The layout is then filled by matching the metadata of photos to the annotations in the cells using an optimization algorithm. The metadata can be EXIF, the semantically more useful IPCT, derived from image analysis, or user provided. Another interesting example is [Har04] who introduces the idea of Path Enhanced Media (PEM) that associates the metadata of the path traversed while capturing media with the media. 

Obviously, more relevant metadata associated with images results in more context information that can be obtained directly or with simple analysis. This in turn can help image classification based (mainly) on context, and by extension, content. The interesting task investigate is if we are able to classify images based on both content and context information. One such example is already presented in [Bou04], where a Bayesian network is used to integrate low-level image content with image metadata for indoor/oudoor classification of images. There is an evident need for more metadata to be captured and embedded in images, or transmitted otherwise. The research community is already envisioning metadata management systems [Kra03, Gan04]. 

5 Conclusion 

In this deliverable, the current state-of-the-art in reasoning in multimedia analysis and understanding is overviewed. The different tasks that reasoning is expected to address and contribute are described along with their challenges, resulting thus in the identification of some general reasoning requirements within the multimedia context. In the report, the most common approaches to knowledge representation and reasoning have been overviewed and a representative overview of the related current state-of-the-art has been presented. 
Combining the identified challenges and requirements with the available technologies and the current literature, the following conclusions can be drawn:
· Statistical content annotation has been an active area; however many open research issues remain, including consistency checking and length of annotations.

· When using prior knowledge, approaches building on ad hoc techniques may provide a convenient way to model and structure the required knowledge so as to attain satisfactory performance for the given goals, however following such approaches minimizes interoperability and reusability. Consequently, and in accordance with the recent advances in the context of the Semantic Web, adhering to well-defined representation that ensure knowledge sharing and sound inference is the only promising solution towards real information sharing and reuse. 

· Providing support for uncertainty is crucial in multimedia applications due to their inherent complexity and the incompleteness of data that are practically available. However, as the efforts for providing formal frameworks for handling uncertainty within the Semantic Web context are still in a very immature stage, reasoning in multimedia is bound to follow some hybrid, less formal techniques to overcome the current limitations. However, in any case, reasoning techniques need to be capable of providing sound and complete results in order to be trustworthy.

· Similarly, currently there is no support for representing and handling the datatypes that are common in multimedia data, thus requiring again for some ad hoc conventions to handle them. 

· The exploitation of the contextual information provided automatically during image acquisition is necessary and particularly useful as it can provide useful support for the inferences that, as the outcome of visual cues and not evidences are bound to a certain degree of fuzziness. 
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IF


    The current context is assigning devices to Unibus models and


    There is an unassigned dual-port disk drive and


    The type of controller it requires is known and


    There are two such controllers, neither of which has any devices assigned to it, and


    The number of devices that these controllers can support is known


THEN


    Assign the disk drive to each of the controllers,


    and


    Note that the two controllers have been associated and that each supports one drive





IF


    The site of the culture is blood, and


    The identity of the organism is not known with    certainty, and


    The stain of the organism is gramneg, and


    The morphology of the organism is rod, and


    The patient has been seriously burned


THEN


    There is a weakly suggestive evidence (.4) that the identity of the organism is pseudomonas
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Transformation Rules





Derivation Rules





Facts





Queries





 Rules





match: find all applicable rules given the current state of working memory.





conflict resolution: choose one applicable rule





act: perform actions of the selected rule





grantParent





Parent





person





father





male
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� http://www.acemedia.org/aceMedia/reference/multimedia_ontology/index.html


� F- Logic Tutorial, � HYPERLINK "http://www.informatik.uni-freiburg.de/~dbis/florid/" ��http://www.informatik.uni-freiburg.de/~dbis/florid/� 





� At the same time, the management of complex object in databases was also investigated, so that we now sometimes find the term object-relational or even object-deductive databases for an even larger reasearch area. 


� Even prolog had forerunners: at least Colemrauer's Q-systems and Carl Hewitt's Planner system


� In fact, this definition is slightly wrong, but suffices for our purpose here.  It will be redefined in a moment.


� � EMBED Equation.3  ��� x. F is an abbreviation for � EMBED Equation.3  ��� x1, …., � EMBED Equation.3  ��� xn . F. Same convention for � EMBED Equation.3  ���x .F


� We sometimes use the term Tarski-style semantics, named after the famous American logician Alfred Tarski who was one of the first persons who has studied the relationship between descriptions in a first-order language and structures satisfying these descriptions [� REF  Tar54 \* Caps \h ��Tar54�]


� Sound query evaluation means that everything that is derivable from the logical calculus is true, whereas complete means that everything that is true is in fact derivable. Terminating or decidable query evaluation guarantees that everything that is true is provable in finite time.			


� We use typewriter font to depict the concrete syntax and italic{ for the abstract syntax.





� The Data Mining Group. http://www.dmg.org





� The Rule Markup Initiative. � HYPERLINK "http://www.dfki.uni-kl.de/ruleml/" ��http://www.dfki.uni-kl.de/ruleml/�
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