Recommender Systems

Introduction

Recommender systems aim to help users deal with the information overload problem, by selecting and suggesting items that may be of relevance to them, drawing from repositories that can be arbitrarily large.

Recommender systems can be considered another manifestation of user relevance feedback systems; they are related in the sense that they also try to cover an information need – an implicit or explicit query- and they also receive user feedback that gradually refines query results.

Queries in the case of recommender systems may be stated explicitly – e.g. when a user specifically requests to be recommended some items according to some criteria- or implicitly. In the latter case, the system supports users in navigating an item space, taking into account features of the items and/or of the users; in this way, recommender systems offer a sort of ‘guided browsing’. The users of the system provide feedback, which can again be implicit (e.g. following a recommendation, or path of recommendations) or explicit (rating recommendations).

Recommender systems emerged as an independent research area in the mid 1990s, and one of the classic definitions that comes from this era is the one given in [Resnick97], in which recommender systems are described as systems that acquire opinions about items from a community of users and that use those opinions to direct other users within that community to those items that are interesting for them. This description of a recommender system is directly related to the real-world concept of recommendations, where one person recommends something to another person.

In [Herlocker00] a recommender system is described as a system that predicts what items a user will find interesting or useful. This definition of a recommender system is broader than the previous one, since it does not imply that opinions of other people have to be used to recommend items; it also allows recommender systems to use other mechanisms to predict what users find interesting.

Then there is also the definition given in [Burke02], stating that a recommender system is a system that produces individualized recommendations as output or has the effect of guiding the user in a personalized way to interesting or useful objects in a large space of possible options.

Formally stated, the recommendation problem can be formulated as follows: let C be the set of all users and let S be the set of all possible items that can be recommended. Both user and item space can be very large, in the area of millions for certain real-world scenarios.

Let u be a utility function that measures the usefulness of item s to user c:

u : C x S → R, where R is a totally ordered set. Then, for each user c
[image: image1.wmf]Î

 C, the goal is to choose such item s’
[image: image2.wmf]Î

 S that maximizes the user's utility:

[image: image3.jpg]YeeC, s =argmaxule,
s

In recommender systems, the utility of an item is usually represented by a rating, which indicates how a particular user liked a particular item. Utility however can be an arbitrary function, including a profit function. Depending on the application, utility u can either be specified by the user, as is often done for the user-defined ratings, or is computed by the application, as can be the case for a profit-based utility function.

Each element of the user space C can be defined with a profile that includes various user characteristics, Similarly, each element of the item space S is defined with a set of characteristics.

The main issue in recommender systems is the fact that utility u is usually not defined on the whole C x S space, but only on some subset of it. This means u needs to be extrapolated to the whole space C x S. In recommender systems, utility is typically represented by ratings and is initially defined only on the items previously rated by the users. Therefore, the recommendation engine should be able to estimate (predict) the ratings of non-rated item/user combinations and issue appropriate recommendations based on these predictions

Extrapolations from known to unknown ratings are usually done by specifying heuristics that define the utility function and empirically validating its performance and estimating the utility function that optimizes certain performance criteria, such as the mean square error.

Once the unknown ratings are estimated, actual recommendations of an item to a user are made by selecting the highest rating among all the estimated ratings for that user. Alternatively, the N best items can be recommended to a user.

Recommendations, predictions and ratings

In order to better understand how recommender systems work, we need to define several concepts are used to denote different aspects of in this area: recommender, recommendation, prediction, certainty, user's interest, rating, predicted interest, predicted rating, actual interest, given rating, feedback, and prediction accuracy. The following definitions are used as given in [VanSetten05].

A recommender is an entity, person or software module, that produces recommendations as output or that has the effect of guiding users in a personalized way to interesting items. A recommender is the active party in a recommender system that generates and provides the recommendations to a user; a recommender can be a piece of software (or software embedded in hardware) as well as a person.

Recommendations can be implicit or explicit: users may explicitly make a request for recommendations, or recommendations may be delivered to them without their specific request. In [Schafer01] a third type of delivery is identified, namely passive or organic recommendations, in which the recommender provides recommendations within the natural context of the system, as part of the user experience, so that users are free to either base their decision on these predictions or simply ignore them.

A special type of recommender system assists users in navigating through a complex item space: conversational recommender systems [Burke97], [McCarthy 04]. In conversational recommender systems, users interact more closely with a recommender by providing feedback critiques on one aspect or a combination of aspects of a recommended item.

As there is a lot of interaction between a conversational recommender and a user, conversational recommenders are less suitable for day-to-day decisions that users want to spend little time on; e.g. choosing what to watch on TV or which newspaper articles or e-mail to read.

Conversational recommenders are best suited for recommending items that users rarely need to acquire and for which a single item needs to be chosen, e.g. home appliances, cars, or houses. Another use of conversational recommenders is to help people find a specific item in a lesser known domain where the user can learn to understand the domain [Burke00] and choose between different aspects of items; e.g. searching for a restaurant in a town the user has never visited before or buying a digital camera for the first time.

For such recommenders, it is difficult to learn the interests of people in such items; hence, the recommender and user need to work together to find the best matching item.

As stated in [Resnick97] and [Herlocker04], the core task of a recommender is to provide users with a ranked list of the recommended items, along with predictions for how much the user would like them.

A recommendation is an item or a list of items that is interesting to a user according to a recommender; the list only contains those items a recommender believes are interesting enough for the user.

Of all items that are fed into a recommender, a recommender returns only a subset: those items it believes are interesting enough for its user. A recommender makes this decision by predicting how interesting each item is to the user. A recommendation then consists of the top predicted items [Herlocker00].

Recommender systems can also return all items with indications of how interesting each item is for the user instead of a subset; other mechanisms can then be applied to guide the user to the interesting items; e.g. using structuring or presentation techniques on the list of items [Burke02].

As a prediction involves the accurate anticipation of future (or as yet unobserved) events [Neale86], a prediction in the domain of recommender systems is defined as the anticipated interest of a user in one item.

Recommenders may or may not return predictions with recommendations; some recommenders simply return a list of items they recommend without giving any indication of the anticipated interest; other recommenders provide detailed information about the predictions. Not every recommendation and prediction made by a recommender is made with the same amount of certainty or confidence [McNee03].

Certainty is the degree of belief a recommender has in the accuracy of a prediction. Certainty is based on the amount and quality of the available knowledge about the user and the item for which a prediction is made. When more and/or better quality knowledge is available to the recommender, the more confident a recommender can be in his predictions and recommendations, the more trust a user can place in the predictions and recommendations. Besides the difference between recommendations and predictions, there also is a difference between interests and ratings and predicted interests and actual interests and predicted ratings and given ratings.

When discussing the differences between these concepts, notice that the discussion refers to one item: e.g. the predicted user’s interest in one item, a rating for one item or the actual interest of the user in one item.

User’s interest is defined as an abstract indication of how much a user appreciates an item. A user’s interest is an abstract concept as it is difficult for people to clearly and completely describe how much one likes or dislikes an item - especially a single item unrelated to other items. Hence, an often-used way to express a user’s interest is by using ratings:

A rating is defined as the concrete value representing a user’s interest, i.e. a concrete value that gives an indication of how much a user appreciates an item.

This concrete value is measured on a certain scale, e.g. 1 to 5 or -10 to 10, which can be presented to a user by means of some appropriate interface. An item can be given one rating for the whole item or ratings for various aspects of the item. The actual scale to use is determined by the designers of a recommender system.

Predicted interest is an anticipated abstract indication of how much a user appreciates an item. A recommender tries to determine how much a user will appreciate each item and decides which item(s) it will recommend based on those predicted interests.

However, as a predicted interest is only an abstract concept, a recommender needs a concrete representation of this abstract concept: a predicted rating.

Predicted rating is a concrete value representing the predicted user’s interest. Such a concrete value gives an indication of the anticipated appreciation that a user will have for an item, e.g. the system predicts a rating of 3 stars on a 5 star scale. A recommender can use this concrete value to compare multiple items and to recommend only those items that have a high enough predicted rating.

Actual interest is the real appreciation that a user has for an item.

Given rating is a concrete value provided by a user that represents how much that user really appreciates an item.

Where a predicted interest is about the anticipated appreciation of a user for an item, the actual interest is the real appreciation of a user for an item. The given rating expresses this real but abstract appreciation. This is the rating that a user gives to the recommender system, e.g. 4 stars on a 5 star scale or like versus dislike. Some recommender systems allow users to only give one rating per item; others allow users to rate various aspects of an item.

Feedback is the user’s response to the recommendations and predictions made by the

recommender.

Recommenders can learn from feedback provided by users in order to optimise their future recommendations and predictions; improved recommendations and predictions are a motivation for users to provide feedback. Giving items a rating is the most common type of feedback in recommender systems.

Feedback is also used to measure the performance of a recommender; i.e. its prediction accuracy.

Prediction accuracy is the extent to which the predicted interest agrees with the actual interest of the user; i.e. the extent to which the predicted rating agrees with the given rating.

Prediction accuracy measures how close the recommender system’s predicted ratings are to the true user ratings. The more accurate the predictions of a recommender are, the better the recommender supports users in finding interesting items. There are several ways to express prediction accuracy using prediction accuracy measures [Herlocker04].

Prediction techniques

In order for a recommender to determine a predicted rating for an item, one or more algorithms that reason about the current user and the item are required; algorithms that calculate the predicted rating are called prediction techniques. The current user is that user for which a recommendation is being made; the other users are all users of a recommender system excluding the current user.

A prediction technique is an algorithm that predicts how interested a user will be in an item by calculating a predicted rating. Three major groups of prediction techniques can be identified:

1. Social-based (or collaborative) prediction techniques analyse the behaviour and characteristics of users without using knowledge about the items; users will be recommended items that people with similar tastes and preferences liked in the past.

2. Information-based (or content-based) prediction techniques analyse item profiles current user profile to deduce the predicted interest of the item for the current user. Users will be recommended items similar to the ones the user preferred in the past.
3. Hybrid techniques combine elements of both information-based and content-based techniques.
Social-based techniques try to predict the utility of items for a particular user based on the items previously rated by other users. More formally, the utility u(c, s) of item s for user c is estimated based on the utilities u(cj, s) assigned to item s by those users cj
[image: image4.wmf]Î

 C who are “similar” to user c.

Social-based prediction techniques only require a unique value to identify each of the items for which predictions have to be made; no further knowledge about the items is required. This makes social-based prediction techniques domain-independent. Social-based prediction techniques are capable of providing diversity: since they use other users’ recommendations (ratings), they can deal with any kind of content and recommend any items, even the ones that are dissimilar to those seen in the past [Smyth00].
However, social-based techniques suffer from the new user, new item and sparsity problems [Adomavicius05]:

In order to make accurate recommendations, the system must first learn the user’s preferences from the ratings that the user gives: this is called the new user problem.

As new items are added to recommender systems, until they have been rated by a substantial number of users, the recommender system would not be able to recommend it: this is called the new item problem.

Practically, it is not possible in any system to have ratings from every user for every item, making it difficult to find relationships between users, between items and between users and items, while these relationship are necessary for generating predictions: this is called the sparsity problem.

In information-based prediction techniques on the other hand, the utility u(c, s) of item s for user c is estimated based on the utilities u(c, si) assigned by user c to items si
[image: image5.wmf]Î

 S that are “similar” to item s.

Information-based techniques are domain-dependent, as they require content and/or metadata to analyze in order to generate predicted ratings, and they also have their own problems, namely the new user, limited content analysis and overspecialization problems [Adomavicius05]:

Similarly to social-based techniques, users have to rate a sufficient number of items before an information-based recommender system can really understand the user’s preferences and present the user with reliable recommendations: this is called the new user problem.

Information-based techniques are limited by the features that are explicitly associated with the objects that these systems recommend. Therefore, in order to have a sufficient set of features, the content must either be in a form that can be parsed automatically (e.g., text) or the features should be assigned to items manually: this is called the limited content analysis problem.

Finally, when the system can only recommend items that score highly against a user’s profile, the user is limited to being recommended items that are similar to those already rated: this is called the overspecialization problem.

Since both approaches have their limitations, hybrid techniques have been introduced in an effort to combine the best of two worlds.

In the next section, some of the more important social-based, information-based and hybrid prediction techniques are surveyed and analysed, according to [VanSetten05].

Social-based prediction techniques

Collaborative filtering

The basic idea behind collaborative filtering (also called social filtering) is that people who have rated the same items the same way in the past probably have the same taste. Based on this knowledge one can predict how much a person likes an unseen item when similar users have already rated that item ([Resnick94], [Shardanand95], [Sarwar98], [Sarwar00], [Breese98], [Aggarwal99], [Herlocker00]). Collaborative filtering is one of the most researched prediction techniques for recommender systems.

Collaborative filtering basically consists of three steps: in the first step, the similarity between the current user and other users who have rated the item for which a prediction is necessary is calculated based on how the current user and each of the other users have rated the same items in the past. To calculate the similarity between user a and user b, the Pearson correlation coefficient is used:

[image: image6.jpg]-7

s,

—ra

[,

The second step is to use the similarity and the ratings of those similar users, for the item for which a prediction is necessary, to calculate the prediction for the current user, where σi is the standard deviation of the ratings of user i:

[image: image7.jpg]

The final step is to use the similarities and the ratings for the item of the selected similar users to calculate the predicted rating. An overview of design choices and alternative algorithms in collaborative filtering can be found in [Herlocker02].
The domain-independence characteristic of collaborative filtering make it especially appropriate for content that cannot easily and adequately be described by metadata [Melville02], such as images and video, for which metadata is not able to capture emotional and esthetical aspects, which are indirectly reflected by the opinions of users with similar tastes.

Item-item filtering

Where in collaborative filtering the idea is that people who have rated the same items the same way in the past probably have the same taste, the idea with item-item filtering is that items that have been rated the same way in the past are probably similar ([Herlocker01], [Linden03]).

Item-item filtering can be used for making predictions about an item the same way as case-based reasoning does, but with item-item filtering the similarity between items is

calculated via the ratings given to those items and not based on features of the item. As item-item filtering uses the same rating data as collaborative filtering, item-item filtering is also domain-independent and based on behavioural data of users.

Stereotypes and demographics

The use of stereotypes in user modelling has first been introduced in by [Rich98]. When predicting the behaviour of someone else, people often use stereotypes. Stereotypes contain a set of characteristics that describe a stereotypical user and a collection of aspects (e.g. behaviour, interests, actions) that such a stereotypical user generally exhibits.

In recommender systems, the collection of aspects contains the interests of people in items. The characteristics are often based on demographic data, such as age, gender, occupation, and education. Stereotypes are very useful for application areas in which quick but not necessarily completely accurate assessments of the user’s background knowledge are required [Goren-Bar04].

Stereotypes can be used in various ways in recommender systems, such as to bootstrap user profiles for new users (e.g. filling a user profile with a predefined set of keywords for information filtering) or to have only a limited number of user profiles based on stereotypes instead of modelling each user individually. Stereotypes can also be used in combination with collaborative filtering; instead of determining the similarity between users based on their ratings, similarity of users can be determined by the similarity of demographic or other stereotypical characteristics.

Popularity

Popularity prediction techniques use ratings of all users to predict how interesting an item is for one user. The more users who liked the item, the higher the predicted rating for that item will be. The most basic popularity prediction technique is the average rating of an item over all users. A popularity-based prediction technique that takes into account that various people have different overall interests in a certain item by calculating a deviation-from-mean average can be found in [Herlocker00].

Average

A very basic prediction technique is to average all ratings the current user has given in the past. This average represents the overall interest of the user in items from the given recommender, e.g. the overall interest in TV programs in a TV recommender system, the overall interest of movies in a movie recommender system, or the overall interest in books in a book recommender system.

Information-based prediction techniques

Information filtering

Information filtering is the process in which a system filters a vast amount of information and only delivers or recommends information to the user that is relevant or interesting to the user. As recommender systems are part of information filtering and retrieval, information filtering techniques can also be used within recommender systems.

Information filtering originated in the domain of text retrieval. One of the earliest forms of electronic information filtering came from the work on Selective Dissemination of Information (SDI) published in [Houseman70]. SDI was used in a system to keep scientists informed of new documents published in their expertise area. The most widely used information filtering technique is based on the term-frequency-inverse document frequency (tf-idf) algorithm [Salton89].

An information filtering approach for a recommender system that uses a Bayesian classifier [Duda73] to determine the probability that a document, represented by a set of the k most informative words, is either interesting or not interesting for a user can be found in [Pazzani97]. The calculated probabilities can be used to rank and/or order the pages or can be used to create a predicted rating.

Case-based reasoning

Case-based reasoning (CBR) is based on the assumption that if a user likes a certain item, he will probably also like similar items [Riesbeck89]. CBR as a prediction technique looks at all items a user has rated in the past and determines how similar they are to the current item. For those items that are similar enough (similarity si,x equal or larger than threshold t), the old ratings are used to calculate a predicted rating for the new item by taking the weighted average of those ratings, using the similarity as a weight:

[image: image8.jpg]

The actual determination of how similar two items are is domain-dependent; in each domain a function for sx,y needs to be created that returns a value between [0..1] indicating how similar two items are; a similarity of 0 means that items are not similar at all; a similarity of 1 means that items are identical.

Case-based reasoning is especially good in predicting how interested a user is in the same types of information or slightly different version of the same information. The key aspect of case-based reasoning is determining the similarity between two items. What counts as similar depends on one’s goals; typically, there are only a handful of standard goals in any given domain [Burke99]; however, these goals are domain-dependent making the way to calculate similarity between items for those goals also domain-dependent.

Case-based reasoning resembles the item-item filtering, except for the fact that with item-item filtering similarity between items is calculated using the ratings given by all users to items and is thus based on the behaviour of users not on the item itself.

Attribute-based prediction techniques

Multi-Attribute Utility Theory (MAUT - [Jameson95]) is used to determine how interesting an item is to a user. For each attribute of an item, the prediction technique has a value function that assigns a function value to the attribute based on the value of that attribute. Each attribute also has an importance weight that can vary per user. Based on the importance weights and function values, predictions can be generated.

Items are often grouped into one or more categories; e.g. genres of movies, TV programs, books or the product categories in shops. Category based predictors, which are a subclass of attribute-based prediction techniques, use these categories to predict how interesting an item is for a user; e.g. genreLMS [VanSetten02] and the category approach described in [Goren-Bar04].

Hybrid prediction techniques

Hybrid prediction techniques try to combine different prediction techniques to increase the accuracy of recommender systems [Burke02]. The idea behind hybrid prediction techniques is that a combination of algorithms can provide more accurate recommendations than a single algorithm, as disadvantages of one algorithm can be alleviated by the combined use of other algorithms. The notion that a combination of approaches will most likely result in the most useful systems already mentioned in [Malone87].

Burke defines a taxonomy of methods to combine recommendation techniques, i.e. combining techniques that result in a list of items that are interesting to the user according to the recommender. These methods are called hybridization methods.

Hybridization methods

The hybridization methods are: weighted, switching, mixed, feature combination, cascade, feature augmentation and meta-level.

Weighted

In the weighted method, predictions of several prediction techniques are combined by weighting the predicted ratings of the techniques to produce a single prediction. Predicted ratings calculated for an item may be simply averaged, or more advanced techniques such as bayesian networks, neural networks or other linear or non-linear functions may be employed.

Examples of systems that use weighted hybridization are the news recommender system P-Tango [Claypool99], a restaurant recommender system [Pazzani99], and a TV recommender system [Buczak02].

Switching

Depending on some criterion, the hybrid technique switches between the available prediction techniques. If one prediction technique is not capable of providing good predictions another prediction technique is used.

Examples of switching recommender systems are the Daily Learner [Billsus00] and the product recommender system [Tran02].

Mixed

The results of several prediction techniques are presented at the same time; instead of having just one prediction per item, each item has multiple predictions associated with it from various prediction techniques.

Examples of recommender systems that employ the mixed hybridization method are PTV [Smyth00], ProfBuilder [Wasfi99] and PickAFlick [Burke97].

Feature combination

Features generated and normally used by a specific prediction technique are used in other prediction techniques. For example, the ratings of similar users (a feature of collaborative filtering) are used in a case-based reasoning based prediction technique as one of the features to determine the similarity between items. A recommender system called Ripper that uses feature combination is described in [Basu98].

Cascade

The predictions or recommendations of one technique are refined by another prediction or recommendation technique; the first prediction technique outputs a coarse list of predictions, which is refined by the next prediction technique. An example of a recommender system that use the cascade hybridization method is EntreeC [Burke02].

Feature augmentation

Output from one prediction technique is used as an input feature for another technique. An example are the filterbots described in [Sarwar98]. Filterbots are automated prediction techniques that generate ratings for each item based on some pre-defined criteria. These generated ratings are then used by a collaborative filter in the same way as ratings from real users, i.e. the filterbots are treated as normal users.

Meta-level

The internal model learned by one prediction technique is used as input for another. The difference with feature augmentation is that with feature augmentation the first technique outputs some features based on its internally learned model, these features are then used as input for the second technique. With meta-level hybridization, the entire model that is learned by the first technique is used as the input for the second technique, e.g. all weights learned by GenreLMS are used by an information filtering prediction technique where the genres are treated as keywords with the weights learned by GenreLMS.

Examples of meta-level recommender systems are Fab [Balabanovic97] and the system described in [Condliff99].

_1213809411.unknown

_1213809402.unknown

