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Preface

The Semantic Web is a major endeavour aiming at enriching the existing Web
with meta-data and processing methods so as to provide web-based systems
with advanced, so-called “intelligent”, capabilities. These advanced capabilities,
striven for in most Semantic Web application scenarios, primarily call for rea-
soning.

Specialized reasoning capabilities are already offered by Semantic Web lan-
guages currently being developed such as the OWL family together with Triple,
SPARQL, or ontology-based application-specific languages and tools like BPEL.
These languages, however, are developed mostly from functionality-centered (e.g.
ontology reasoning or access validation) or application-centered (e.g. Web service
retrieval and composition) perspectives. A perspective centered on the reasoning
techniques complementing the above-mentioned activities appears desirable for
Semantic Web systems and applications. Moreover, there is the general reasoning
underlying the Semantic Web technologies, such as Description Logics, Hybrid
Logics, and others like F-Logic and Logic Programming semantics.

The workshop on “Principles and Practice of Semantic Web Reasoning – PPSWR”
began in 2003 in response to the need for a forum for the discussion of emerging
work on various forms of reasoning that are or can be used on the Semantic
Web. The workshop addresses both reasoning methods for the Semantic Web,
and Semantic Web applications relying upon various forms of reasoning. Since
2003, where the conference was held in Mumbai, India, co-located with ASIAN,
ICLP and FSTTCS, the workshop has been organized yearly: the second work-
shop took place in 2004 in St. Malo, France, in conjunction with ICLP’04; the
third workshop took place in Dagstuhl, Germany, within a one week Dagstuhl
Seminar.

The 4th Workshop on Principles and Practice of Semantic Web Reasoning,
PPSWR’06, takes place in Budva, Montenegro, on the 10th and 11th June 2006,
co-located with the 3rd European Semantic Web Conference – ESWC’06.

Its technical program comprises an invited talk by Harold Boley on “The
RuleML Family of Web Rule Languages”, and the presentation of 14 refereed
technical articles selected by the Program Committee among the 25 that were
submitted. These 14 articles discuss various aspects of reasoning on the Seman-
tics Web ranging from more theoretical work on reasoning methods that can be
applied to the Semantic Web, concrete reasoning methods and query languages
for the Semantic Web, to practical applications.

Besides the presentation of the technical articles, there is also a session de-
voted to the presentation and demonstration of 6 systems, all of them related to
reasoning on the Semantic Web. A description of each of these systems is also
part of this volume.

The workshop is partly supported by the 6th Framework Programme project
REWERSE number 506779 (cf. http://rewerse.net), funded by the European
Commission and by the Swiss Federal Office for Education and Science.



We would also like to thank the developers of the EasyChair system. Easy-
Chair assisted us in the whole process of collecting and reviewing papers, in
interacting with authors and Program Committee members, and also in assem-
bling this volume.

Last, but not least, we would like to thank the authors of all papers and
system descriptions that were submitted to PPSWR’06, the members of the
Program Committee, and the additional experts who helped on the reviewing
process for contributing and ensuring the high scientific quality of PPSWR’06.

May 2006 José Júlio Alferes
James Bailey

Wolfgang May
Uta Schwertel
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José Júlio Alferes
Grigoris Antoniou
Matteo Baldoni
Robert Baumgartner
James Bailey
Sara Comai
W lodek Drabent
Guido Governatori
Nicola Henze
Michael Kifer

Georg Lausen
Francesca Alessandra Lisi
Jan Ma luszyński
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The RuleML Family
of Web Rule Languages?

Harold Boley

Institute for Information Technology – e-Business,
National Research Council of Canada,
Fredericton, NB, E3B 9W4, Canada

Harold.Boley AT nrc-cnrc DOT gc DOT ca

Abstract. The RuleML family of Web rule languages contains deriva-
tion (deduction) rule languages, which themselves have a webized Data-
log language as their inner core. Datalog RuleML’s atomic formulas can
be (un)keyed and (un)ordered. Inheriting the Datalog features, Hornlog
RuleML adds functional expressions as terms. In Hornlog with equality,
such uninterpreted (constructor-like) functions are complemented by in-
terpreted (equation-defined) functions. These are described by further or-
thogonal dimensions “single- vs. set-valued” and “first- vs. higher-order”.

1 Introduction

Efforts in Web rules have steadily increased since they were brought
into focus by the RuleML Initiative [http://ruleml.org] in 2000, includ-
ing DARPA’s DAML Rules [http://www.daml.org/rules], IST’s REWERSE
[http://rewerse.net], ISO’s Common Logic [http://cl.tamu.edu], OMG’s Produc-
tion Rule Representation (PRR) [http://www.omg.org/docs/bmi/06-02-08.pdf]

as well as Semantics of Business Vocabulary and Business Rules (SBVR)
[http://www.businessrulesgroup.org/sbvr.shtml], and W3C’s Rule Interchange For-
mat (RIF) [http://www.w3.org/2005/rules]. RuleML has co-evolved with some of
these other efforts as well as with the Semantic Web Rule Language (SWRL)
[http://www.w3.org/Submission/SWRL], the Semantic Web Services Language
(SWSL) [http://www.w3.org/Submission/SWSF-SWSL], and the Web Rule Lan-
guage (WRL) [http://www.w3.org/Submission/WRL]. This has been supported
by, and influenced, RuleML’s modular design.

The specification of RuleML constitutes a modular family of Web sublan-
guages, whose root allows to access the language as a whole and whose members
allow to identify customized subsets of the language. Each of the family’s sublan-
guages has an XML Schema definition, Web-addressed by a URI, which permits
inheritance between sublanguage schemas and customized reference to the re-
quired expressiveness. The family structure provides an expressive inclusion hier-
archy for the sublanguages, and their URIs are the subjects of (model-theoretic)
? Thanks to David Hirtle for creating the family’s XML Schemas, and the RuleML

Steering Committee for guidance. This research was partially supported by NSERC.



semantic characterization. The modular system of XML Schema definitions
[BBH+05] is currently in version 0.9 [http://www.ruleml.org/modularization].

The RuleML family’s top-level distinctions are derivation rules, queries, and
integrity constraints as well as production and reaction rules. The most de-
veloped branch groups derivation (deduction) rule languages, which themselves
have a webized Datalog language as their inner core. Hornlog RuleML adds
functional expressions as terms. In Hornlog with equality, such uninterpreted
(constructor-like) functions are complemented by interpreted (equation-defined)
functions. This derivation rule branch is extended upward towards First Order
Logic, has subbranches for negation-as-failure, strong-negation, or combined
languages, and languages with ‘pluggable’ built-ins.

This paper takes a fresh look at the family from the perspectives of two
orthogonally combinable branches: the generalized Object-Oriented RuleML
(section 2) and the new Functional RuleML (section 3).

2 Rules in the Key-Order Matrix

This section will propose extensions to OO RuleML [Bol03]. RuleML’s global
markup conventions provide common principles for the family. XML elements
are used for representing trees while XML attributes are used for distinguishing
variations of a given element and, as in RDF, for webizing. Variation can thus be
achieved by different attribute values rather than requiring different elements.
Since the same attribute can occur in different elements, a two-dimensional clas-
sification accrues, which has the potential of quadratic tag reduction.

The data model of RuleML accommodates XML’s arc-ordered, node-labeled
trees and RDF’s arc-labeled (‘keyed’), node-labeled graphs [http://www.dfki.uni-

kl.de/˜boley/xmlrdf.html]. For this, RuleML complements XML-like elements
– upper-cased type tags, as in Java classes – by RDF-like properties – lower-cased
role tags, as in Java methods. Both kinds of tag are again serialized as XML
elements, but case information makes the difference. This model with unkeyed,
ordered child elements (subsection 2.1) and keyed, unordered children (subsec-
tion 2.2) has recently been generalized to a ‘key-order’ matrix also permitting
keyed, ordered as well as unkeyed, unordered children (subsection 2.3).

As a running example, we will consider RuleML versions of the business
rule “A customer is premium if their spending has been min 5000 euro in the
previous year.” This can be serialized using various equivalent concrete syntaxes,
all corresponding to the same abstract syntax that reflects the data model.

2.1 Arguments in Order

In RuleML’s most RDF-like, fully ‘striped’ syntax (with alternating type and
role tags), the example can, e.g., be serialized interchangeably as follows:
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<Implies>

<head>

<Atom>

<op><Rel>premium</Rel></op>

<arg index="1">

<Var>customer</Var>

</arg>

</Atom>

</head>

<body>

<Atom>

<arg index="1">

<Var>customer</Var>

</arg>

<arg index="3">

<Ind>previous year</Ind>

</arg>

<arg index="2">

<Ind>min 5000 euro</Ind>

</arg>

<op><Rel>spending</Rel></op>

</Atom>

</body>

</Implies>

<Implies>

<body>

<Atom>

<op><Rel>spending</Rel></op>

<arg index="1">

<Var>customer</Var>

</arg>

<arg index="2">

<Ind>min 5000 euro</Ind>

</arg>

<arg index="3">

<Ind>previous year</Ind>

</arg>

</Atom>

</body>

<head>

<Atom>

<op><Rel>premium</Rel></op>

<arg index="1">

<Var>customer</Var>

</arg>

</Atom>

</head>

</Implies>

The right-hand serialization is in <Implies> normal form, with the <body>
role tag before the <head> role tag, the <op> role before all <arg> roles, and the
<arg> roles ordered according to increasing <index> attribute values.

Once in <Implies> normal form, all <op> and <arg> roles can be omitted
(left), and the <body> and <head> roles, too (right):
<Implies>

<body>

<Atom>

<Rel>spending</Rel>

<Var>customer</Var>

<Ind>min 5000 euro</Ind>

<Ind>previous year</Ind>

</Atom>

</body>

<head>

<Atom>

<Rel>premium</Rel>

<Var>customer</Var>

</Atom>

</head>

</Implies>

<Implies>

<Atom>

<Rel>spending</Rel>

<Var>customer</Var>

<Ind>min 5000 euro</Ind>

<Ind>previous year</Ind>

</Atom>

<Atom>

<Rel>premium</Rel>

<Var>customer</Var>

</Atom>

</Implies>

The right-hand serialization shows RuleML’s most XML-like, fully ‘stripe-
skipped’ syntax [http://esw.w3.org/topic/StripeSkipping]. Notice that in all of
these syntaxes the three argument positions of the ternary spending relation
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carry information that must be known, e.g. via a signature declaration, for cor-
rect interpretation.

2.2 Slots are Key

There is an alternative to signature declarations for determining the roles of
children in atomic formulas. In Object-Oriented RuleML [Bol03], the earlier
positional representation style is complemented by a slotted style: the ‘system-
level’ data model with type and role tags is also made available on the ‘user-level’,
permitting F-logic-like role→filler pairs.

For this, a single (system-level) metarole <slot> with two children is em-
ployed, the first naming different (user-level) roles, and the second containing
their fillers.

For example, the fully stripe-skipped positional <Implies> rule above can
be made slotted with user-level roles <spender> etc.:

<Implies>

<Atom>

<Rel>spending</Rel>

<slot><Ind>spender</Ind><Var>customer</Var></slot>

<slot><Ind>amount</Ind><Ind>min 5000 euro</Ind></slot>

<slot><Ind>period</Ind><Ind>previous year</Ind></slot>

</Atom>

<Atom>

<Rel>premium</Rel>

<slot><Ind>client</Ind><Var>customer</Var></slot>

</Atom>

</Implies>

The correct interpretation of the three spending arguments is no longer
position-dependent and additional arguments such as region can be added
without affecting any existing interpretation. A child element, rather than
an attribute, was decided upon for naming the role to provide an exten-
sion path towards (e.g., F-logic’s) schema-querying options. Although problem-
atic in general [http://www.daml.org/listarchive/joint-committee/1376.html], we did
not want to exclude the possibility in RuleML to query a role constant like
<Ind>period</Ind> above through a role variable like <Var>time</Var>.

2.3 Making Independent Distinctions

Recent work on the Positional-Slotted Language [http://www.ruleml.org/#POSL]

led to orthogonal dimensions extending the RuleML 0.9 roles <arg . . .> and
<slot>. So far, the unkeyed <arg index=". . ."> was always ordered, as indicated
by the mandatory index attribute, and the keyed <slot> was always unordered,
as indicated by the lack of an index attribute. This can be generalized by al-
lowing an optional index attribute for both roles, as shown by the independent
distinctions in the following key-order matrix:
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ordered unordered
keyed <slot index=". . ."> <slot>
unkeyed <arg index=". . ."> <arg>

Two extra orthogonal combinations are obtained from this system.
First, keyed, ordered children permit positionalized slots, as in this cost fact:

<Atom>

<Rel>cost</Rel>

<slot index="1"><Ind>item</Ind><Ind>jewel</Ind></slot>

<slot index="2"><Ind>price</Ind><Data>6000</Data></slot>

<slot index="3"><Ind>taxes</Ind><Data>2000</Data></slot>

</Atom>

Here, slot names item, price, and taxes are provided, e.g. for readability,
as well as index positions 1-3, e.g. for efficiency.

Second, unkeyed, unordered children permit elements acting like those in a
bag (finite multiset), as in this transport fact:

<Atom>

<Rel>transport</Rel>

<arg><Ind>chair</Ind></arg>

<arg><Ind>chair</Ind></arg>

<arg><Ind>table</Ind></arg>

</Atom>

Here, the arguments are specified to be commutative and ‘non-idempotent’
(duplicates are kept). Ground bags can be normalized using some canonical
(e.g., lexicographic) order, and then linearly compared for equality. Results in
(non-ground) bag unification are also available (e.g., [DV99]).

The RuleML 0.9 rest terms (normally variables) can be correspondingly
generalized by allowing a role <ordertail> to unify with index-attributed
rest elements, <arg index=". . ."> and <slot index=". . .">, as well as a role
<commutail> to unify with index-less rest elements, <arg> and <slot>.

The unkeyed RuleML case can be compared with Xcerpt [SB04] in that both
distinguish ordered/unordered and total/partial term specifications, where the
latter in RuleML is notated as the absence/presence of an <orderest> role with
a fresh (e.g., anonymous) variable. However, following our XML-RDF-unifying
data model [http://www.dfki.uni-kl.de/˜boley/xmlrdf.html], in RuleML these dis-
tinctions are made for term normalization and unification; in Xcerpt, for match-
ing query terms to data terms.

3 Equality for Functions

While section 2 dealt with RuleML for logic programming (LP) on the Semantic
Web, functional programming (FP) [BKPS03] is also playing an increasing Web
role, with XSLT and XQuery [FRSV05] being prominent examples. We present
here the design of Functional RuleML, developed via orthogonal notions and
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freely combinable with the previous Relational RuleML, including OO RuleML
[Bol03], discussed in section 2. This branch of the family will also allow for
FP/LP-integrated programming (FLP), including OO FLP, on the Semantic
Web. Some background on FLP markup languages was given in [Bol00].

Since its beginning in 2000, with RFML [http://www.relfun.org/rfml] as one
of its inputs, RuleML has permitted the markup of oriented (or directed) equa-
tions for defining the value(s) of a function applied to arguments, optionally
conditional on a body as in Horn rules. Later, this was extended to logics with
symmetric (or undirected) equality for the various sublanguages of RuleML, but
the Equal element has still often exploited the left-to-right orientation of its
(abridged) textual syntax.

It has been a RuleML issue that the constructor (Ctor) of a complex term
(Cterm) is disjoined, as an XML element, from the user-defined function (Fun) of
a call expression (Nano), although these can be unified by proceeding to a logic
with equality. For example, while currently call patterns can contain Cterms but
not Nanos, obeying the “constructor discipline” [O’D85], the latter should also
be permitted to legalize ‘optimization’ rules like reverse(reverse(?L)) = ?L.

This section thus conceives both Cterms and Nanos as expression (<Expr>)
elements and distinguishes ‘uninterpreted’ (constructor) vs. ‘interpreted’ (user-
defined) functions just via an XML attribute; another attribute likewise distin-
guishes the (single- vs. set-)valuedness of functions (subsection 3.1). We then
proceed to the nesting of all of these (subsection 3.2). Next, for defining (inter-
preted) functions, unconditional (oriented) equations are introduced (subsection
3.3). These are then extended to conditional equations, i.e. Horn logic implica-
tions with an equation as the head and possible equations in the body (subsection
3.4). Higher-order functions are finally added, both named ones such as Compose
and λ-defined ones (subsection 3.5).

3.1 Interpretedness And Valuedness

The different notions of ‘function’ in LP and FP have been a continuing design
issue:

LP: Uninterpreted functions denote unspecified values when applied to argu-
ments, not using function definitions.

FP: Interpreted functions compute specified returned values when applied to
arguments, using function definitions.

Uninterpreted function are also called ‘constructors’ since the values denoted by
their application to arguments will be regarded as the syntactic data structure
of these applications themselves.

For example, the function first-born: Man × Woman → Human can
be uninterpreted, so that first-born(John, Mary) just denotes the first-born
child; or, interpreted, e.g. using definition first-born(John, Mary) = Jory, so
the application returns Jory.

The distinction of uninterpreted vs. interpreted functions in RuleML 0.9
is marked up using different elements, <Ctor> vs. <Fun>. Proceeding to the
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increased generality of logic with equality (cf. introductory discussion), this
should be changed to a single element name, <Fun>, with different attribute val-
ues, <Fun in="no"> vs. <Fun in="yes">, respectively: The use of a Function’s
interpreted attribute with values "no" vs. "yes" directly reflects uninterpreted
vs. interpreted functions (those for which, in the rulebase, no definitions
are expected vs. those for which they are). Functions’ respective RuleML 0.9
[http://www.ruleml.org/0.9] applications with Cterm vs. Nano can then uniformly
become Expressions for either interpretedness.

The two versions of the example can thus be marked up as follows (where
"u" stands for "no" or "yes"):

<Expr>
<Fun in="u">first-born</Fun>
<Ind>John</Ind>
<Ind>Mary</Ind>

</Expr>

In RuleML 0.9 as well as in RFML and its human-oriented Relfun syntax
[Bol99] this distinction is made on the level of expressions, the latter using square
brackets vs. round parentheses for applications. Making the distinction through
an attribute in the <Fun> rather than <Expr> element will permit higher-order
functions (cf. subsection 3.5) to return, and use as arguments, functions that
include interpretedness markup.

A third value, "semi", is proposed for the interpreted attribute: Semi-
interpreted functions compute an application if a definition exists and de-
note unspecified values else (via the syntactic data structure of the applica-
tion, which we now write with Relfun-like square brackets). For example, when
"u" stands here for "semi", the above application returns Jory if definition
first-born(John, Mary) = Jory exists and denotes first-born[John, Mary]
itself if no definition exists for it. Because of its neutrality, in="semi" is proposed
as the default value.

In both XML and UML processing, functions (like relations in LP) are often
set-valued (non-deterministic). This is accommodated by introducing a valued
attribute with values including "1" (deterministic: exactly one) and "0.." (set-
valued: zero or more). Our val specifications can be viewed as transferring to
functions, and generalizing, the cardinality restrictions for (binary) properties
(i.e., unary functions) in description logic and the determinism declarations for
(moded) relations in Mercury [SHC96].

For example, the set-valued function children: Man ×Woman → 2Human

can be interpreted and set-valued, using definition children(John, Mary) =
{Jory, Mahn}, so that the application children(John, Mary) returns {Jory,
Mahn}.

The example is then marked up thus (other legal val values here would be
"0..3", "1..2", and "2"):

<Expr>
<Fun in="yes"
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val="0..">children</Fun>
<Ind>John</Ind>
<Ind>Mary</Ind>

</Expr>

Because of its highest generality, val="0.." is proposed as the default.
While uninterpreted functions usually correspond to <Fun in="no"

val="1">, attribute combinations of in="no" with a val unequal to "1" will
be useful when uninterpreted functions are later to be refined into interpreted
set-valued functions (which along the way can lead to semi-interpreted ones).

Interpretedness and valuedness constitute orthogonal dimensions in our de-
sign space, and are also orthogonal to the dimensions of the subsequent subsec-
tions, although space limitations prevent the discussion of all of their combina-
tions in this section.

3.2 Nestings

One of the advantages of interpreted functions as compared to relations is that
the returned values of their applications permit nestings, avoiding flat relational
conjunctions with shared logic variables.

For example, the function age can be defined for Jory as age(Jory) = 12, so
the nesting age(first-born(John, Mary)), using the first-born definition of
subsection 3.1, gives age(Jory), then returns 12.

Alternatively, the function age can be defined for the uninterpreted
first-born application as age(first-born[John, Mary]) = 12, so the nesting
age(first-born[John, Mary]) immediately returns 12.

Conversely, the function age can be left uninterpreted over the returned value
of the first-born application, so the nesting age[first-born(John, Mary)]
denotes age[Jory].

Finally, both the functions age and first-born can be left uninterpreted,
so the nesting age[first-born[John, Mary]] just denotes itself.

The four versions of the example can now be marked up thus (where "u" and
"v" can independently assume "no" or "yes"):

<Expr>
<Fun in="u">age</Fun>
<Expr>
<Fun in="v">first-born</Fun>
<Ind>John</Ind>
<Ind>Mary</Ind>

</Expr>
</Expr>

Nestings are permitted for set-valued functions, where an (interpreted or
uninterpreted) outer function is automatically mapped over all elements of a set
returned by an inner (interpreted) function.
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For example, the element-valued function age can be extended for Mahn with
age(Mahn) = 9, and nested, interpreted, over the set-valued interpreted func-
tion children of subsection 3.1: age(children(John, Mary)) via age({Jory,
Mahn}) returns {12, 9}.

Similarly, age can be nested uninterpreted over the interpreted children:
age[children(John, Mary)] via age[{Jory, Mahn}] returns {age[Jory],
age[Mahn]}.

The examples can be marked up thus (only "u" is left open for "no" or
"yes"):

<Expr>
<Fun in="u">age</Fun>
<Expr>
<Fun in="yes"

val="0..">children</Fun>
<Ind>John</Ind>
<Ind>Mary</Ind>

</Expr>
</Expr>

3.3 Unconditional Equations

In subsections 3.1 and 3.2 we have employed expression-defining equations with-
out giving their actual markup. Let us consider these in more detail here, starting
with unconditional equations.

For this, we introduce a modified RuleML 0.9 <Equal> element, permit-
ting both symmetric (or undirected) and oriented (or directed) equations via
an oriented attribute with respective "no" and "yes" values. Since it is more
general, oriented="no" is proposed as the default.

Because of the potential orientedness of equations, the RuleML 0.9 <side>
role tag within the <Equal> type tag will be refined into <lhs> and <rhs> for
an equation’s left-hand side and right-hand side, respectively.

For example, the subsection 3.1 equation first-born(John, Mary) = Jory
can now be marked up thus:

<Equal oriented="yes">
<lhs>
<Expr>
<Fun in="yes">first-born</Fun>
<Ind>John</Ind>
<Ind>Mary</Ind>

</Expr>
</lhs>
<rhs>
<Ind>Jory</Ind>

</rhs>
</Equal>
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While the explicit <lhs> and <rhs> role tags emphasize the orientation, and
are used as RDF properties when mapping this markup to RDF graphs, they
can be omitted via stripe-skipping [http://esw.w3.org/topic/StripeSkipping]: the
<lhs> and <rhs> roles of <Equal>’s respective first and second subelements can
still be uniquely recognized.

This, then, is the stripe-skipped example:

<Equal oriented="yes">
<Expr>
<Fun in="yes">first-born</Fun>
<Ind>John</Ind>
<Ind>Mary</Ind>

</Expr>
<Ind>Jory</Ind>

</Equal>

Equations can also have nested left-hand sides, where often the following
restrictions apply: The <Expr> directly in the left-hand side must use an inter-
preted function. Any <Expr> nested into it must use an uninterpreted function
to fulfill the so-called “constructor discipline” [O’D85]; same for deeper nesting
levels. If we want to obey it, we use in="no" within these nestings. An equa-
tion’s right-hand side <Expr> can use uninterpreted or interpreted functions on
any level of nesting, anyway.

For example, employing binary subtract and nullary this-year functions,
the equation age(first-born[John, Mary]) = subtract(this-year(),1993)
leads to this stripe-skipped ‘disciplined’ markup:

<Equal oriented="yes">
<Expr>
<Fun in="yes">age</Fun>
<Expr>
<Fun in="no">first-born</Fun>
<Ind>John</Ind>
<Ind>Mary</Ind>

</Expr>
</Expr>
<Expr>
<Fun in="yes">subtract</Fun>
<Expr>
<Fun in="yes">this-year</Fun>

</Expr>
<Data>1993</Data>

</Expr>
</Equal>
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3.4 Conditional Equations

Let us now proceed to oriented conditional equations, which use a (defining,
oriented) <Equal> element as the conclusion of an <Implies> element, whose
condition may employ other (testing, symmetric) equations. An equational con-
dition may also bind auxiliary variables. While condition and conclusion can be
marked up with explicit <body> and <head> roles, respectively, also allowing the
conclusion as the first subelement, we will use a stripe-skipped markup where
the condition must be the first subelement.

For example, using a unary birth-year function in the condition, and two
(“?”-prefixed) variables, the conditional equation (written with a top-level “⇒”)
?B = birth-year(?P) ⇒ age(?P) = subtract(this-year(),?B) employs an
equational condition to test whether the birth-year of a person ?P is known,
assigning it to ?B for use within the conclusion. This leads to the following
stripe-skipped markup:

<Implies>
<Equal oriented="no">
<Var>B</Var>
<Expr>
<Fun in="yes">birth-year</Fun>
<Var>P</Var>

</Expr>
</Equal>
<Equal oriented="yes">
<Expr>
<Fun in="yes">age</Fun>
<Var>P</Var>

</Expr>
<Expr>
<Fun in="yes">subtract</Fun>
<Expr>
<Fun in="yes">this-year</Fun>

</Expr>
<Var>B</Var>

</Expr>
</Equal>

</Implies>

Within conditional equations, relational conditions can be used besides equa-
tional ones.

Thus, using a binary lessThanOrEqual relation in the condition, the con-
ditional equation lessThanOrEqual(age(?P),15)⇒ discount(?P,?F) = 30
with a free variable ?F (flight) and a data constant 30 (percent), gives this
markup:
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<Implies>
<Atom>
<Rel>lessThanOrEqual</Rel>
<Expr>
<Fun in="yes">age</Fun>
<Var>P</Var>

</Expr>
<Data>15</Data>

</Atom>
<Equal oriented="yes">
<Expr>
<Fun in="yes">discount</Fun>
<Var>P</Var>
<Var>F</Var>

</Expr>
<Data>30</Data>

</Equal>
</Implies>

Notice the following interleaving of FP and LP (as characteristic for FLP):
The function discount is defined using the relation lessThanOrEqual in the
condition. The <Atom> element for the lessThanOrEqual relation itself contains
a nested <Expr> element for the age function.

For conditional equations of Horn logic with equality in general [Pad88], the
condition is a conjunction of <Atom> and <Equal> elements.

3.5 Higher-Order Functions

Higher-order functions are characteristic for FP and thus should be supported
by Functional RuleML. A higher-order function permits functions to be passed
to it as (actual) parameters and to be returned from it as values.

Perhaps the most well-known higher-order function is Compose, taking two
functions as parameters and returning as its value a function performing their
sequential composition.

For example, the composition of the age and first-born functions of sub-
section 3.1 is performed by Compose(age,first-born). Here is the markup for
the interpreted and uninterpreted use of both of the parameter functions (where
we use the default in="semi" for the higher-order function and let "u" and "v"
independently assume "no" or "yes" for the first-order functions):

<Expr>
<Fun>Compose</Fun>
<Fun in="u">age</Fun>
<Fun in="v">first-born</Fun>

</Expr>
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The application of a parameterized Compose expression to arguments is equiv-
alent to the nested application of its parameter functions.

For example, when interpreted with the definitions of subsection 3.1,
Compose(age,first-born)(John, Mary) via age(first-born(John, Mary)) re-
turns 12.

All four versions of this sample application can be marked up thus (with the
usual "u" and "v"):

<Expr>
<Expr>
<Fun>Compose</Fun>
<Fun in="u">age</Fun>
<Fun in="v">first-born</Fun>

</Expr>
<Ind>John</Ind>
<Ind>Mary</Ind>

</Expr>

Besides being applied in this way, a Compose expression can also be used as
a parameter or returned value of another higher-order function.

To allow the general construction of anonymous func-
tions, Lambda formulas from λ-calculus [Bar97] are introduced.
A λ-formula quantifies variables that occur free in a functional expres-
sion much like a ∀-formula does for a relational atom. So we can ex-
tend principles developed for explicit-quantifier markup in FOL RuleML
[http://www.w3.org/Submission/FOL-RuleML], where quantifiers are allowed on
all levels of rulebase elements.

For example, the function returned by Compose(age,first-born) can now
be explicitly given as λ(?X, ?Y)age(first-born(?X, ?Y)). Here is the markup
for its interpreted and uninterpreted use (with the usual "u" and "v"):

<Lambda>
<Var>X</Var>
<Var>Y</Var>
<Expr>
<Fun in="u">age</Fun>
<Expr>
<Fun in="v">first-born</Fun>
<Var>X</Var>
<Var>Y</Var>

</Expr>
</Expr>

</Lambda>

This Lambda formula can be applied as the Compose ex-
pression was above. The advantage of Lambda formulas is that
they allow the direct λ-abstraction of arbitrary expressions, not
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just for (sequential or parallel) composition etc. An example is
λ(?X, ?Y)plex(age(?X), xy, age(?Y), fxy, age(first-born(?X, ?Y))),
whose markup should be obvious if we note that plex is the interpreted analog
to RuleML’s uninterpreted built-in function for n-ary complex-term (e.g.,
tuple) construction.

By also abstracting the parameter functions, age and first-born, Compose
can be defined generally via a Lambda formula as Compose(?F, ?G) = λ(?X,
?Y) ?F(?G(?X, ?Y)). Its markup can distinguish object (first-order) Variables
like ?X vs. function (higher-order) ones like ?F via attribute values ord="1" vs.
ord="h".

4 Conclusions

The key-order matrix of the generalized Object-Oriented RuleML presented in
this paper – when used for expressions with uninterpreted functions rather than
for atoms – makes four data containers available in a systematic manner: (keyed)
positionalized records and ordinary records as well as (unkeyed) tuples and bags.

The unordered column of the matrix could be extended by a column for
‘idempotent’ slots and arguments (duplicates are merged), leading to data con-
tainers for unique-key records and sets. Unification algorithms could be based
on earlier work (e.g., [DV99]).

The design of Functional RuleML as presented here also benefits other sub-
languages of RuleML, e.g. because of the more ‘logical’ complex terms. Func-
tional RuleML, as a development of FOL RuleML, could furthermore benefit all
of SWRL FOL [http://www.w3.org/Submission/2005/01]. However, there are some
open issues, two of which will be discussed below.

Certain constraints on the values of our attributes cannot be enforced with
DTDs and are hard to enforce with XSDs, e.g. in="no" on functions in call
patterns in case we wanted to always enforce the constructor discipline (cf. sub-
section 3.3). However, a semantics-oriented validation tool will be required for
future attributes anyway, e.g. for testing whether a rulebase is stratified. Thus we
propose that such a static-analysis tool should be developed to make fine-grained
distinctions for all ‘semantic’ attributes.

The proposed defaults for some of our attributes may require further re-
visions. It might be argued that the default in="semi" for functions is a
problem since equations could be invoked inadvertently for functions that are
applied without an explicit in attribute. However, notice that the default
oriented="no" for equations permits to ‘revert’ any function call, using the
same equation in both directions. Together, those defaults thus constitute a
kind of ‘vanilla’ logic with equality, which can (only) be changed via our explicit
attribute values.

While our logical design does not specify any evaluation strategy for nested
expressions, we have preferred ‘call-by-value’ in implementations [Bol00]. A
reference interpreter for Functional RuleML is planned as an extension of
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OO jDREW [BBH+05]; the first step has been taken by implementing ori-
ented ground equality via an EqualTable data structure for equivalence classes
[http://www.w3.org/2004/12/rules-ws/paper/49].
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Abstract. Formal ontologies play an increasingly important role in demanding
knowledge representation applications like the Semantic Web. Regarding auto-
mated reasoning support, the mainstream of research focusses on ontology lan-
guages that are also Description Logics, such as OWL-DL. However, many ex-
isting ontologies go beyond Description Logics and use full first-order logic. We
propose a novel transformation technique that allows to apply existing model
computation systems in such situations. We describe the transformation and some
variants, its properties and intended applications to ontological reasoning.

1 Introduction

1.1 Motivation

Recent years have seen an increasing interest in formal knowledge bases (KBs). De-
manding application areas – notably the Semantic Web – will have to remain a vision
without powerful automated reasoning support.

The mainstream of research on automated reasoning focuses on ontology languages
that are also Description Logics (DLs), such as OWL-DL. Yet, there are good reasons
to also consider larger fragments of first-order logic as ontology languages. One rea-
son is the ability to add “rules” to the ontology, as in languages like SWRL [HB+04].
An example for a rule is the statement [GHVD03]: individuals who live and work at
the same location are home workers. This can be expressed as a Horn rule (clause)
homeWorker(x)←work(x,y)∧ live(x,z)∧ loc(y,w)∧ loc(z,w), but is not expressible in
current DL systems.

Another reason for considering even full first-order logic is the existence of numer-
ous KBs that go beyond Description Logics. One example is the largest formal pub-
lic ontology available today, the Suggested Upper Merged Ontology SUMO [NP01].
SUMO is written in KIF, the Knowledge Interchange Format [KIF], which is basi-
cally first-order logic with equality and some higher-order features. Together with its
domain-specific extensions, SUMO contains more than 20’000 terms and 60’000 ax-
ioms. Unfortunately, only limited automated reasoning is available today for first-order
KBs. For instance, to our knowledge, the only theorem prover applied to SUMO so far
is Vampire [RV01].

This situation seems somewhat surprising, given the demonstrated usefulness of
description logic systems for KBs written in ALC -like languages [BCM+02]. Why
has this success story not been repeated for KBs in first-order logic? The answer from a



technical point of view might be that DL systems are so successful because they usually
decide the satisfiability problem of their input language. This is an important feature, as
it allows, for instance, to prove that a speculated subsumption relation between concepts
does not hold. Furthermore, it allows the “debugging” of KBs.

Although such decision procedures cannot exist for first-order KBs, reasoning sup-
port by automated theorem provers may be attempted nevertheless. Indeed, within the
Semantic Web framework a number of off-the-shelf first-order theorem provers have
been tested on various KBs, unsatisfiable ones and satisfiable ones3. The provers gen-
erally performed well in solving the unsatisfiable test cases. However, they often could
not solve the satisfiable ones, i.e., they did not terminate.

1.2 Contribution

To address the problem of non-termination of the prover, we propose a novel trans-
formation technique on first-order logic KBs that allows to compute models more of-
ten. Our transformation is rather general regarding the underlying system to be used.
We target at model computation systems as developed within the logic programming
community or at bottom-up clausal theorem provers as long as they support a (weak)
default negation principle. The rationale is to capitalize on these well-investigated tech-
niques and lift them to a more general language, viz., first-order logic, and strengthen
the model-building capabilities of such systems. Among the systems that are suitable
are dlv [CEF+97], smodels [NS96] and KRHyper [Wer03]. In our experiments we have
chosen KRHyper, simply because we know it best.

Our transformation is applicable to any first-order logic KB, but it is geared towards
application to first-order logic ontologies. It differs from the textbook transformation to
clause logic in several ways:

1. It transforms away equality, so that model generation systems can be used, even
though they usually do not include built-in equality handling.

2. Optionally, it respects a certain form of the Unique Name Assumption (UNA). This
is useful in the context of ontologies, when different constants are best considered
to denote different objects.

3. It allows to avoid unnecessary Skolem terms, if an existentially quantified role is
already filled. This keeps the resulting models slim and meaningful.

4. It allows for a non-standard reading of existentially quantified formulas, namely as
integrity constraints. That is, the model building process can be instructed to fail if
an existentially quantified formula is not already fulfilled by the KB.

5. Finally, it allows for a “loop check”, by which infinite models can be avoided in
some cases by detecting finite ones.

1.3 Related Work

From a methodological point of view, we were helped to achieve our results by consid-
ering insights and combining results and techniques from automated theorem proving,

3 http://www.w3.org/2003/08/owl-systems/test-results-out
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description logic and logic programming. For instance, we employ default negation, as
available in logic programming systems, as a tool to realize the mentioned “loop check”,
which is modeled after the “blocking” technique commonly found in Description Logic
systems.

Because of the use of default negation, we cannot use a theorem prover for clas-
sical (first-order) logic. Since the ontology may contain “disjunctive” formulas like
∀x (man(x)∨woman(x)← person(x)), Horn-logic is not expressive enough and we
need a system that accepts disjunctive programs. Thus, we cannot use, e.g., the widely
available Prolog-like logic programming systems based on SLDNF-resolution (see e.g.
[Llo87]), which support default negation but do no not support disjunctive programs.

An approach closely related to ours in methodology is the translation approach in
[GHVD03]. It allows to translate certain DL fragments to a certain class of logic pro-
grams. However, this approach is restricted to definite programs, i.e. it cannot treat
disjunctions as in the example above. This limitation could easily be overcome by trans-
lating to positive disjunctive logic programs (DLPs) instead. Yet, the method has a more
severe limitation, which essentially forbids existential quantification to introduce new
individuals. For example, consider the expression “every person has a father”, expressed
as a DL axiom

personv ∃father .>

or as a first-order logic formula

∀x∃y (father(x,y)← person(x)) .

Such formulas cannot be treated by the method in [GHVD03] and thus are not part
of their input language. The technical difficulty with formulas of this kind is that they
introduce Skolem terms (e.g. f(x), intended to denote the “father” of an object x), which
in general lead to non-termination of model computation systems. From that point of
view, the purpose of our approach is to address this very problem: to achieve termination
even in presence of existential quantifiers.

Our approach is somewhat related to model construction by hyper resolution
e.g. [FL93,GHS02,GHS03]. One difference is our use of default negation, which is
not available in hyper resolution systems. The perhaps closest related work is the trans-
lation scheme in [BB04]. However, that work is concerned with one specific ontology,
FrameNet, and it is shown how to translate it to a logic program. The approach in this
paper is thus much more general.

The rest of this paper is structured as follows. Section 2 contains preliminaries.
Section 3 is the main part, it contains the transformations. In Section 4 we turn to the
treatment of equality. In Section 5 we report on first experiments carried out on the
SUMO ontology. Finally, in Section 6 we draw some conclusions.

2 Preliminaries

We use standard terminology from first-order logic and automated reasoning (see e.g.
[Llo87]). Our formulas, and specifically clauses, are built over a signature Σ, usually left

18     F. Suchanek and P. Baumgartner



implicit in the following. We assume that Σ contains a distinguished nullary predicate
symbol false and a 2-ary predicate symbol ≈, equality, used infix. We deviate from the
standard definitions by distinguishing between constants and nullary function symbols.
This allows us to take the Unique Name Assumption (UNA) into account: constants
are subject to the UNA, i.e. no model shall assign true to c1 ≈ c2 for any two different
constants c1 and c2. Nullary function symbols, by contrast, are not affected by the UNA,
so that our definitions are compatible with the standard semantics.

A (program) rule is an expression of the form H1 ∨ ·· · ∨Hm ← B1, . . . ,Bk,not
Bk+1, . . . ,not Bn, where m≥ 1, n≥ k≥ 0 and Hi, for i = 1, . . .m, and B j, for j = 1, . . . ,n
are (possibly non-ground) atoms (over Σ). Each Hi is called a head literal, and each
B j is called a body literal. The negative body literals are those that include the de-
fault negation operator not, the other body literals are the positive ones. We write
H ∨H ← B,B,not B′,Bnot to mean a program rule containing the head literal H, the
positive body literal B and the negative body literal not B′. In a positive rule it holds
k = n. We treat the terms “positive rule” and “clause” as synonyms.

A disjunctive logic program (DLP), also just program, is a finite set of rules. A
positive DLP consists of positive rules only; it is thus the same as a clause set. In
a normal program each rule has exactly one head literal. We consider only domain
restricted programs, where every variable occurring in a rule must also occur in some
positive body atom B1, . . . ,Bk. This is a common assumption and is present in systems
like KRHyper [Wer03] and smodels [NS96]. As an example, consider the following
(propositional) program:

whiskey∨water← thirsty,not hungry (1)
water← whiskey (2)

thirsty← (3)

Program rules can be read operationally in a top-down or in a bottom-up fashion.
The top-down paradigm (of normal programs) became popular with Prolog and its un-
derlying SLDNF Resolution (see [Llo87]). The bottom-up paradigm became popular
with the observation that it often better realizes the idea of purely declarative program-
ming. The purely declarative nature renders these approaches suitable in particular for
knowledge representation applications, which is our interest here.

A bottom-up evaluation of the above sample program assigns true to thirsty, be-
cause the (empty) body of rule (3) is (trivially) satisfied, and so its head thirsty must be
satisfied. But then, as hungry is false (by default), the body of rule (1) is satisfied, and
so must be its head. For that, there is a choice of satisfying whiskey or water (or both).
Notice, in the first case rule (2) becomes applicable and water must become true, too.
In sum, we have the two models, {thirsty,whiskey,water} and {thirsty,water}. Indeed,
the literature discusses various alternatives to assign semantics to DLPs. For instance,
the stable model semantics would reject the first model, because it is not a minimal one.
The possible model semantics admits both. None of them admits the classical model
that assigns true to hungry and thirsty but nothing else (the intuition is that there is
no rule to justify the truth of hungry). Either semantics is usable in our case. Further-
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more, the programs constructed below will be stratified,4 which guarantees that they
will have a stable/possible model if and only if the original ontology has a classical
first-order model (which is its intended semantics.) Without going into details, we only
note that the KRHyper system [Wer03], which we used for our experiments, computes
possible models of domain-restricted stratified DLPs, and thus is suitable in the sense
just mentioned. We further note that the above notions concerning semantics of logic
programs lift to first-order logic by letting a rule stand for the set of all its ground in-
stances, i.e. by the set of variable-free rules obtainable by replacing each variable in the
rule by some variable-free term, in all possible ways. A good overview on DLPs can be
found in [Nie99] (although on normal programs only). A more comprehensive textbook
is [Bar03].

For space reasons, we omit here various technical details. The interested
reader is referred to the long version of this paper, which can be obtained from
http://rsise.anu.edu.au/˜baumgart/publications/.

3 Translating First-Order Formulae to DLPs

We assume as given some ontology, e.g. an OWL ontology. The ontology may contain
facts as well as non-taxonomic axioms and it could contain “rules” (cf. the introduc-
tion). We assume it to be written as a sentence in first-order logic. This section describes
how to transform the first-order sentence to a DLP. The first steps of the transformation
are concerned with flattening the possibly deeply structured sentence towards the flat
form of DLP rules. An important, non-standard aspect hereby is to isolate and name
subformulas containing existentially quantified variables. Once we described how to
isolate these subformulas, Section 3.1 proposes four different ways of translating them
to a DLP.

We first fix some notation. If x is a sequence of variables x1, . . . ,xk, for some k ≥ 0,
then ∀x denotes the sequence ∀x1 · · ·∀xk. The expression ∃x is defined analogously, and
Qx stands for any sequence Q1x1 · · ·Qkxk, where Qi ∈ {∀,∃}, for all i = 1, . . . ,k, k ≥ 0.
When ψ is a formula, the notation ψ(x) means that ψ contains no more free variables
than those in the sequence of variables x. We assume, without loss of generality, that
the first-order logic sentence φ is given in prenex negation normal form. Thus, it is of
the form φ = Qz ψ(z), where Qz is the quantifier prefix and ψ(z) is a quantifier-free
formula, built with logical operators ∧, ∨ and ¬, where ¬ occurs only in front of atoms.

We define our transformation τ(φ) as follows. The quantifier prefix Qz may contain
an existential quantifier, or not. If it does not, set τ(φ) = {φ}. Otherwise φ can be written
as

φ = Qz ψ(z) = ∀x∃yQ′z′ (∆(x)∨ψ
′(xyz′)) , (1)

where Q′ is either empty or starts with a universal quantifier. The intention is to separate
Ψ into two parts, the part ∆ containing universally quantified variables only, and the
remainder Ψ′ containing at least one existentially quantified variable. We may assume

4 Stratification means that the call-graph of a program does not contain circles containing nega-
tive body atoms.
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that ψ′(xyz′) is not a disjunction such that one of its immediate subformulas contains
at most the variables x, because then this subformula could be part of ∆. Notice that by
replacing ψ(z) in φ by false∨ψ(z), the form (1) is indeed a general form (∆(x) could
be the atom false).

Suppose φ is of the form (1) and consider the following sentences derived from φ:

φ1 = ∀x∃y(∆(x)∨def ψ′(x,y))

φ2 = ∀x∀yQ′z′(¬def ψ′(x,y)∨ψ
′(xyz′))

φ3 = ∀x∀yQ′z′(NNF(satψ′(x,y)∨¬ψ
′(xyz′))) ,

where def ψ′ and satψ′ are fresh predicate symbols of appropriate arity. The intention
is to introduce in φ2 a name def ψ′ for the subformula Ψ′, which allows to replace Ψ′

in φ by def ψ′ . Regarding the formula φ3, Q′z′ denotes the quantifier prefix obtained
from Q′z′ by replacing every universal quantifier by an existential one and vice versa,
and NNF converts its argument to negation normal form. The formula φ3 will play a
role only later, in Section 3.1. Roughly, the purpose of the new name satψ′ is to iden-
tify situations when Ψ′ holds true. One can prove that these transformations preserve
satisfiability. More precisely, φ is satisfiable if and only if φ1∧φ2∧φ3 is satisfiable.

For illustration, consider the formula

∀x(p(x)→∃yq(x,y)∨ r(x)) . (1)

We rewrite it as

φ = ∀x∃y(¬p(x)∨ r(x)∨q(x,y))

so that it is of the form (1) with ∆(x) = ¬p(x)∨ r(x) and ψ′(x,y) = q(x,y). We derive
the following sentences:

φ1 = ∀x∃y(¬p(x)∨ r(x)∨defψ(x,y))
φ2 = ∀x∀y(¬defψ(x,y)∨q(x,y))
φ3 = ∀x∀y(satψ(x,y)∨¬q(x,y))

It is not too difficult to see that already φ1 and φ2 together are equisatisfiable with
φ. Regarding φ3, suppose that, say, q(a,b) holds true in some interpretation. By φ3,
satΨ(a,b) must be true as well, which can be exploited to conclude that the formula
∃y q(a,y) holds true. (As said, φ3 can be ignored for now, but it will be crucial for the
improvement in Section 3.1 below.)

Recall that ∆ is a part of φ that contains universally quantified variables only. Now,
∆ can be written as5

∆ = ¬B1(x)∨·· ·∨¬Bm(x)∨∆
′(x),

for some formula ∆′, negative literals ¬Bi, for all i = 1, . . . ,m, m≥ 0, where m is chosen
as large as possible. Notice we allow m = 0. Hence ∆ can indeed be written this way.

5 Similarly to above, we allow ∆′(x) to be false.
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We write ∆ this way with the intention to turn it into a flat formula, basically an
implication between atoms. While its literals ¬B1(x), . . . ,¬Bm(x) pose no problems, its
subformula ∆′(x) need not be a disjunction of atoms. To overcome this problem, we
introduce a fresh name for ∆′(x). More precisely, from ∆ derive the formulas

∆1 = ¬B1(x)∨·· ·∨¬Bm(x)∨def ∆′(x)
∆2 = ∀x(¬def ∆′(x)∨∆

′(x)) ,

where again def ∆′ is a fresh predicate symbol of appropriate arity. In the example, this
yields:

∆1 = ¬p(x)∨def∆(x)
∆2 = ∀x (¬def∆(x)∨ r(x))

The next step is to replace ∆ in φ1 by ∆1, which yields

φ
∆1
1 = ∀x∃y(¬B1(x)∨·· ·∨¬Bm(x)∨def ∆′(x)∨def ψ′(x,y)) .

In our example,

φ
∆1
1 = ∀x∃y (¬p(x)∨def∆(x)∨defψ(x,y)) .

Above we already defined τ(φ) = {φ} for the case that Qz does not contain an
existential quantifier. We are now ready to define τ(φ) if Qz does contain an existential
quantifier:

τ(φ) = {φ∆1
1 ,∆2}∪ τ(φ2)∪ τ(φ3) .

In our example, this boils down to

τ(φ) = {∀x∃y (¬p(x)∨def∆(x)∨defψ(x,y)),
∀x (¬def∆(x)∨ r(x)),
∀x∀y (¬defψ(x,y)∨q(x,y)),
∀x∀y (satψ(x,y)∨¬q(x,y))} .

It might be instructive to compare this result, in particular the first formula, to the for-
mula (1) we started with.

To see the termination of the transformation τ, observe that both φ2 and φ3 are
strictly smaller than φ in the (well-founded) ordering on formulas with quantifier pre-
fixes of same length induced by the lexicographic ordering on quantifier sequences,
where ∃ is greater than ∀.

Introducing names (like def ψ′(x,y) above) for subformulas and adding definitions
for them, like our transformation does, is a standard technique used in clause normal
form transformations. It is well-know that such transformations preserve satisfiability6.

6 Because existential quantifiers are not eliminated, τ even preserves models, in both ways (in
the sense of conservative extensions for the newly introduced symbols).
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Notice that all sentences in τ(φ) containing an existential quantifier are of the (sim-
ple) syntactic form as obtained in φ

∆1
1 . These are “almost” rules, except for the circum-

stance that the variables y are existentially quantified (in a rule all variables are im-
plicitly universally quantified). All other sentences in τ(φ) are of the form ∀x ∆(x) and
can be converted to clausal form (i.e. a positive DLP) easily by means of well-known
techniques.

3.1 Treating Existentially Quantified Subformulas

At this point, we assume that all universally quantified formulas in τ(φ) have been
transformed to clausal form. The remaining formulas contain existential quantifiers,
which are all of the form as denoted by φ

∆1
1 above. Let Φ be a formula of this kind.

We propose four different options to translate Φ to a DLP, each designed for a specific
purpose: The Skolemization Option translates Φ by the use of Skolem terms, resulting
in a traditional Skolemized DLP. The Recycling Option allows to introduce Skolem
terms only if they are necessary, resulting in slimmer and more meaningful models. The
Model Checking Option treats the existential quantification as an integrity constraint.
With this option, the model building process is instructed to fail if there is no role
filler in the model for the existential role. Last, the Loop Check Option allows to re-use
existing Skolem terms in such a way that preference is given to a finite model.

Skolemization Option. With this option, a Skolem term is chosen as a default value
to satisfy – in Description Logic terminology – an existentially quantified role. Techni-
cally, the formula Φ is translated to the following (domain-restricted) DLP:

def ∆′(x)∨def ψ′(x,skΦ(x))← B1(x), . . . ,Bm(x) (2)

Here, skΦ(x) is a list of Skolem terms made from the variables x. Intuitively speaking,
the premise of Φ implies that either the universally quantified part of Φ or the existen-
tially quantified part of Φ must be satisfied. The existentially quantified part is given a
Skolem filler for the existential variable. Thereby, our transformation includes the usual
Skolemization as its simplest option.

Recycling Option. This option allows to avoid the introduction of a Skolem term if
there is already a role filler present in the model. This can be achieved by translating Φ

as follows:

def ∆′(x)∨ check satψ′(x)∨def ψ′(x,skΦ(x))← B1(x), . . . ,Bm(x) (3)

false← def ∆′(x),check satψ′(x) (4)
false← check satψ′(x),def ψ′(x,y) (5)

false← check satψ′(x),not sat1ψ′(x) (6)
sat1ψ′(x)← satψ′(x,y) (7)
false← def ψ′(x,y),satψ′(x,z),not equal|y|(y,z) (8)

equal|y|(x1, . . . ,xn,y1, . . . ,yn)← x1 ≈ y1, . . . ,xn ≈ yn (9)
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Rule (3) contains one more head literal than (2), which is check satψ′(x). This literal
signals that there exists already a role-filler in the model for the existentially quantified
role. The other rules realize certain exclusivity tests among the alternatives.
For illustration, consider again the formula

φ = ∀x(p(x)→∃yq(x,y)∨ r(x)) .

The translation τ with the recycling option applied to φ yields for the rule scheme (3)
the DLP

defr(x)∨ check satq(x)∨defq(x,sk(x))← p(x) .

Suppose additionally the fact p(a) as given. Then, the model must satisfy the formula
∃yq(a,y)∨ r(a). This can be achieved in three different ways:

1. The atom r(a) is added to the model, i.e. the part of φ that is outside the scope of
the ∃-quantifier is assigned true. This is achieved by the first alternative in rule (3),
which, together with the rule r(x)← defr(x) in τ(φ), derives r(a).

2. The model already contains an atom q(a, t), for some term t. This is tested by the
alternative check satq(x). If the model does not already contain some such atom
q(a, t), false is derived and the third alternative is chosen.

3. The atom q(a,sk(a)) with the Skolem term sk(a) is added to the model. This is
achieved by the third alternative in rule (3), which, together with the rule q(x,y)←
defq(x,y) in τ(φ), derives q(a,sk(a)). In this case, rule (8) makes sure that no other
filler will or has been inserted that is equal to sk(a). The test for (non-)equality is
necessary, because later, sk(a) could be equated to some other term. For instance,
if q(a,b) is also present and sk(a) ≈ b is not present, this model candidate will be
rejected and the alternative check satq(a) will be chosen.

The formula ∃y q(a,y) will thus be satisfied in one way or the other, with a preference
to a filler different from the Skolem term7.

Model Checking Option. Sometimes, it is useful to regard existential formulae as
integrity constraints for a KB – for instance, to check if the objects mentioned in a
given database suffice to extend it to a model for a given KB. Instead of creating fillers
by means of Skolem terms, the model construction process must check that fillers are
already present. This can be achieved by translating Φ according to the “recycling op-
tion”, where (3) is replaced by the following scheme:

def ∆′(x)∨ check satψ′(x)← B1(x), . . . ,Bm(x) (10)

This transformation ensures that no Skolem terms can be inserted by the model compu-
tation. The only way to satisfy the existentially quantified part then is by proving that it
is already satisfied.

7 assuming that the model generation system processes the alternatives in the order given by (3)
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Loop Check Option. The introduction of Skolem terms leads easily to nontermination
of model-generation systems. Instead of creating new Skolem terms, we propose to “re-
use” existing Skolem terms, if they qualify as role fillers – similarly to the blocking
techniques found in description logic systems (although more general). This can be
achieved by translating Φ according to the “recycling option”, where the rule (3) is
replaced by the following rules:

def ∆′(x)∨ check satψ′(x)∨ choose default fillerΦ(x)∨
def ψ′(x,skΦ(x))← B1(x), . . . ,Bm(x)

(11)

other fillerΦ(x,skΦ(y))∨def ψ′(x,skΦ(y))←
choose default fillerΦ(x),satψ′(x1,skΦ(y))

(12)

false← def ψ′(x,y),other fillerΦ(x,z) (13)

false← def ψ′(x,y),def ψ′(x,z),not equal|y|(y,z) (14)

false← choose default fillerΦ(x),not some default fillerΦ(x) (15)
some default fillerΦ(x)← def ψ′(x,y) (16)

Compared to rule (3), rule (11) contains again an additional head literal, which is
choose default fillerΦ(x). Together with rule (12) this has the effect of nondeterminis-
tically selecting a default filler among all Skolem terms previously introduced to satisfy
the existential quantification of (another instance of) the formula. The nondeterministic
selection process is realized by the other fillerΦ-alternative in the head, which allows
to choose a default filler – or not. The remaining rules achieve that exactly one default
filler will be generated.
For illustration, consider the following example from the Tambis Ontology [SPB+04]:

∀x (chapter(x)→∃y (in book(x,y)∧book(y))) (17)
∀x (book(x)→∃y (has chapter(x,y)∧ chapter(y))) (18)
∀x ¬(book(x)∧ chapter(x)) (19)

Notice the terminological cycle. To get the model computation started, suppose an ad-
ditional fact chapter(a). Leaving away many uninteresting facts, the model generation
process will first satisfy (17) by deriving

book( f1(a)) (20)
in book(a, f1(a)) . (21)

Next, it will satisfy (18) by deriving

chapter( f2( f1(a))) (22)
has chapter( f1(a), f2( f1(a)))) . (23)

Now, (17) requires the existence of a book for the newly created chapter f2( f1(a)).
Instead of creating a new Skolem term, rule (12) will find that f1(a) can be used as a
default filler. Thus, the model generation process terminates by deriving

in book( f2( f1(a)), f1(a)) . (24)
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In summary, the natural infinite model will be avoided by the loop check option. Thus,
the loop check option can allow for a finite model in cases where a naive translation to
clauses may only have an infinite model.

3.2 The Loop Check Option in Practice

Up to now, the loop check option has been introduced in a purely declarative way. More
considerations are necessary to make it effective in practice. First of all, the loop check
is not designed to prove the unsatisfiability of a set of formulae. Unsatisfiability can be
proven more easily without the loop check option, because the search space is much
smaller without the additional rules. Instead, the loop check aims at the more difficult
problem of proving the satisfiability of a set of formulae.

If the loop check-transformation of a set of formulae has a finite model, then the
original set of formulae also has a finite model. Unfortunately, model generation sys-
tems may have difficulties in finding this finite model, even if it exists.

The issue is to realize a fair search for a model. This is not trivial, as, in general,
the Herband universe of the programs obtained by the translation is infinite. For in-
stance, the search strategy of KRHyper is fair in the sense that it guarantees refutational
completeness (in particular when the Herbrand universe is infinite). In contrast, even
for very simple satisfiable programs obtained with the loop check option of Section 3.1,
KRHyper will not terminate – the search strategy is just not fair for (finite) model build-
ing. The iterative deepening scheme KRHyper uses may lead into an infinite branch in
the search tree and may thereby miss an alternative branch leading to a model. Other
systems, like smodels, require full grounding-out of their input clause set, which is
obviously, in general, not possible in presence of function symbols.

A solution to these problems is to generate (finite) interpretations as candidates,
check them explicitly for being a model of the program and stop this search as soon as
a model has been found. A systematic way to do so is to run the systems with a bound
on the resources allowed, checking if a model has been found and increasing these
resources in a fair way on failure (iterative deepening). For KRHyper, for instance, this
can be achieved by running it with a limit on the term depth on the generated terms.
Regarding smodels, one could work with growing approximations of the infinite set of
all ground instances.

For the check for modelship the following rules are added to the loop check trans-
lation of a formula Φ:

unsatisfiedΦ(x)← B1(x), . . . ,Bm(x),not sat1Ψ′(x) (25)
unsatisfied some← unsatisfiedΦ(x) (26)

Last, one adds the rule

satisfiable←not unsatisfied some . (27)

Now, the idea is to conclude if a model contains the atom satisfiable then the set of
formula is indeed satisfiable (in a finite model) and no further deepening is necessary.
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However, this conclusion is not true if the given formula, and hence the obtained trans-
lated program, contains function symbols other than Skolem functions and constants.
The test not sat1Ψ′(x) in the body of the first clause is too weak then.

In practice, the situation is perhaps not as bad as it might seem. Many interesting
ontologies can be formulated without function symbols at all (as is witnessed already
by the existence of numerous interesting DL ontologies, which do not contain function
symbols). We conjecture that our transformation will find a finite model whenever one
exists, provided function symbols as mentioned are not present. For future work we
intend to improve the transformation to cope better with function symbols.

4 Equality

Ontologies typically make use of equality. For example, equality is used in function
definitions or in integrity constraints to state that certain objects are different. Another
common use of equality is to state that two objects must be equal under certain circum-
stances. For example, the “age” of twins must be “equal”.

At this point of the paper, we may assume that the ontology has been converted to a
DLP. As a running example, consider the following DLP, which contains one equation:8

p(c,h())← (28)
x≈ f(g(d))← p(x,h()) (29)

The model of this DLP will contain the fact p(c,h()). Rule (29) will derive c≈ f(g(d)).
However, equational consequences like f(g(d))≈ c (by symmetry of≈) are not derived.
Hence, the ≈-predicate requires special treatment. The most advanced techniques to
efficiently treat equality have been developed in the field of automated theorem proving
for refutational theorem provers (see [BG98]). Unfortunately, none of these techniques
has been implemented in the model computation systems we target at.

One generic option to treat equality is by means of adding the equality axioms.
However, the search space induced by the resulting clause set is prohibitively high and
achieving termination is practically impossible. The most problematic axioms in this re-
gard are substitution axioms, like f(x)≈ f(y)← x≈ y . As soon as the model contains
one equation, say a≈ b, and one unary function symbol f , the substitution axioms gen-
erate infinitely many facts of the form f ( f ( f (a)))≈ f ( f ( f (b))). An alternative option
is to “compile away” equality. The probably most well-known method in this direction
is the “modification method” in [Bra75], which was later improved in [BGV97]. We
follow this direction and propose an equality transformation for DLPs.

We say that a rule is flat if (1) the only proper subterms of terms in equations are
either variables or constants, and (2) all arguments to predicate symbols are either vari-
ables or constants. Every rule can be turned into a flat one by recursively replacing an
offending subterm t by a fresh variable x and adding the equation t ≈ x to the rule body

8 Remember that we distinguish constants (like c, subject to the UNA) and nullary functions
(like h(), not subject to the UNA).
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(see again [BGV97]). For example, a flat version of the above DLP is

p(c,v1)← v1 ≈ h()
x≈ f(v1)← p(x,v2),v2 ≈ h(),v1 ≈ g(d) .

The purpose of flattening is to achieve the effect of the substitution axioms. To axiom-
atize the Unique Name Assumption (wrt. constants), one adds the rules false← c≈ d,
for each pair c,d of different constants. Next, ≈ has to be confined to an equivalence
relation by means of the rules9

x≈ x←
x≈ y← y≈ x
x≈ z← x≈ y,y≈ z .

The addition of these axioms completes the equality transformation.
For the simple example above, any reasonable bottom-up model computation

system will terminate on its equality transformation and report as the result {c ≈
f(g(d)), f(g(d))≈ c,p(c,h()),x≈ x}, which describes the expected model of the orig-
inal program. Note that any such system would not have terminated on the original
program when equipped with the equality axioms. Our transformation is correct, i.e.,
the transformed clause set is satisfiable if and only if the given one is satisfiable wrt.
interpretations where ≈ is interpreted as the equality relation. See the long version of
this paper for a proof (http://rsise.anu.edu.au/˜baumgart/publications/).

5 Preliminary Experiments

We applied our transformation to the core of the Suggested Upper Merged Ontology
SUMO [NP01]. SUMO contains meta-predicates, i.e. predicates that define the proper-
ties of other predicates. We translated these predicates appropriately to first-order logic.
For example, we translated the (higher-order) sentence disjoint classes(Man,Woman)
to the rule

false← instance(x,Man), instance(x,Woman) . (30)

SUMO occasionally uses other higher order formulae, which we had to filter out. The
resulting first-order KB contains about 1800 formulae.

Running KRHyper on the DLP transformation revealed numerous inconsis-
tencies in SUMO. These included misspelled and hence unbound variables as
well as semantic inconsistencies in connection with the Mid-level-ontology exten-
sions. For example, one can derive that planetEarth is a geographicArea. Since
each geographicArea is a geographicSubregion of planetEarth, it follows that
planetEarth is a geographicSubregion of itself. This contradicts the irreflexivity of
geographicSubregion. We reported the errors to the developers of SUMO and removed

9 Strictly speaking, the reflexivity rule x≈ x← is not domain-restricted. But this case is harm-
less and usually poses no problems.
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them. Then, KRHyper can calculate a model for our DLP translation within a few sec-
onds. The model consists of roughly 2000 facts.

To test the equality transformation, we added the following facts to SUMO: France
lies west of Germany and Germany’s biggest trading partner lies east of Germany.

orientation(germany, france,west)
orientation(germany,biggestTradingPartner(germany),east) .

By help of the axioms in SUMO, KRHyper deduces (among others) the following facts:

orientation(france,germany,east)
orientation(biggestTradingPartner(germany),germany,west)
between(germany, france,biggestTradingPartner(germany))

Now, we add the fact biggestTradingPartner(germany)≈ france. As a result, KRHyper
derives a contradiction, as expected, because France cannot lie both east and west of
Germany. To test our default value transformation, we added the following facts to
SUMO:

instance(p, judicialProcess)
agent(p,a)

In SUMO, each judicial process is a political process. Furthermore, each political pro-
cess requires an agent. Hence the model generation produces the fact agent(p, f(p)).
However, if the recycling option is chosen, a qualifies as a default filler for the agent
role. Consequently, the above fact is not derived with the recycling option.

SUMO contains numerous axioms that lead to infinite models. Unfortunately, in
many cases they cannot be detected (finitely) by the current version of our loop check
option. In these cases, the prover does not terminate.

6 Conclusions

We presented a transformation from first-order logic formulae to disjunctive logic pro-
grams. The programs resulting from the transformation can be fed into many existing
logic programming model generation systems. As special features, our transformation
allows the efficient treatment of equality, and it includes a certain form of the unique
name assumption. Using Description Logic terminology, it allows a flexible handling of
existentially quantified roles, including the avoidance of unnecessary Skolem terms, or
the re-use of existing Skolem terms. By re-using existing Skolem terms, our transforma-
tion allows to generate finite models in certain cases, so that termination of the theorem
prover can be achieved more often. (Of course, the general problem is undecidable,
which puts natural limits on what can be achieved.)

Our main results are of a theoretical nature, namely soundness and completeness re-
sults. We carried out preliminary experiments with the SUMO ontology. Unfortunately
our transformation did not prove strong enough to compute a finite model for the whole
SUMO. The equality treatment and the flexible handling of existential roles, however,
proved already applicable and useful, e.g. to subsets of SUMO. For future work, we in-
tend to strengthen the transformation, so that finite models can be detected more often.
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Abstract. The paper presents a framework for hybrid combination of
rule languages with constraint languages including but not restricted to
Description-Logic-based ontology languages. It shows how reasoning in
a combined language can be done by interfacing reasoners of the com-
ponent languages. A prototype system based on the presented principle
integrates Datalog with OWL by interfacing XSB Prolog [2] with a DIG-
compliant [1] DL reasoner (e.g. RACER [17]).

1 Introduction

This paper addresses the issue of building the rule level on top of the ontology
level of the Semantic Web tower [7]. As argued, e.g. in [26], applications need
rules, which cannot be expressed in DL languages, such as OWL-DL. On the
other hand, the rule languages should make it possible to integrate the struc-
tural knowledge provided by ontologies. There have already been several propos-
als in that direction, defining different specific languages integrating rules and
ontologies (see e.g. [18, 14, 11, 15, 3, 21, 22, 24, 25]). The diversity of the languages
seems to be unavoidable since different kind of applications will call for different
languages integrating rules and ontologies. In contrast to the proposals men-
tioned above, our main objective is not to define a specific language integrating
rules and ontologies, but a generic scheme for hybrid integration. A reasoner of
an integrated language is then obtained by applying the scheme by interfacing
existing reasoners of the component languages.

The idea of hybrid reasoning appeared already in [12], and was adopted,
among others, in the well-known AL-log work [10] on integrating Datalog and
DL. It is also present in the CARIN work [23], even if this aspect is not explic-
itly stressed therein. In the context of the Semantic Web it is used in [11] for
combining answer set reasoning with DL reasoning, and in [25] where theoretical
issues of integration of disjunctive Datalog with OWL-DL are discussed.

This paper addresses the problem of hybrid integration of rules and ontologies
in a more general framework of integrating rules with constraints expressed in
a language of an external theory. The proposed framework applies to a class of
rule languages with fixpoint semantics. We define a generic scheme for extending



such rule languages by adding constraints in rule bodies. A fixpoint semantics of
an extended language obtained in this way is formally defined by referring to the
semantics of the components. The paper shows how to reason in the extended
language by interfacing of existing reasoners of the components instead of fully
integrating them into a new dedicated system. We illustrate the scheme by a
reasoner for the integration of Datalog with OWL obtained by interfacing XSB
Prolog [2] with any DIG [1] compliant DL reasoner (e.g. RACER [17]).

Another instance of the scheme, mentioned but not developed in this paper, is
an integration of the rule-based XML query and transformation language Xcerpt
[8] with OWL, which make possible semantic filtering of the XML documents
obtained by Xcerpt queries.

When the rule language considered is Datalog and the constraint theory is
expressed in a DL, our framework provides integrated languages that coincide
with previous approaches (see Section 5 for more discussion). The main contri-
butions of this paper is however a more general framework for integrating rule
languages, not restricted to logical languages, with constraint theories (not nec-
essarily a DL theory). The paper shows how the queries to an integrated KB can
be answered by re-using existing reasoners of the component languages, specif-
ically illustrated by a prototype system integrating Datalog with OWL using
XSB Prolog [2] and a DL reasoner.

2 Preliminaries

The question addressed in this paper is how to combine a rule language with
an ontology language so that reasoning in the integrated language can be done
by interfacing reasoners of the component languages. This section formulates
general requirements for the component languages and refers to the languages
satisfying them.

2.1 Rules

We consider rules of the form

H ← B1, . . . , Bn

where, n ≥ 0 and H, B1, . . . , Bn are some primitive/atomic syntactic constructs
(atoms) over a certain alphabet, including variables. As usual, we will call H

the head of the rule and B1, . . . , Bn its body. Instances of a rule are created
by substitutions, which map variables of the rule to terms. A rule with empty
body (i.e. with n = 0) is sometimes called a fact. A rule will be called safe if
all variables of the head appear in the body; thus safe facts are ground (i.e.
variable-free). In this paper we only consider safe rules. To define the syntax of
a specific rule language we thus have to define the syntax of the primitive rule
constructs and the syntax of the terms. By a rule program we mean a finite set
of rules.
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The rules we consider can be used to derive new atoms from given ground
atoms. For this a matching relation has to be defined between (possibly non-
ground) body atoms and ground atoms. As a result of successful matching of
body atoms and some given ground atoms the variables of the body atoms
become bound to ground terms. Due to the safeness assumption the resulting
binding(s) applied to the head determines its ground instance(s) derived from
the ground atoms matched by the body atoms. For every specific rule language a
formally defined concept of matching makes it possible to associate an operator
TP on sets of ground atoms with every rule program P :

TP (S) = {Hθ | (H ← B1, . . . , Bn) ∈ P and
(B1, . . . , Bn) matches some A1, . . . , An in S with result θ}

The operator is monotone, since the atoms which match a given pattern in a
set S will also match it in any superset S′ of S. Thus TP (S) ⊆ TP (S′) for any
S ⊆ S′. The semantics of P can now be defined as the least fixpoint of TP . We
will call it the standard model3 of P . Intuitively, the operator TP reflects the
mechanism for deriving ground atoms with rules of P .

Examples of rule languages in the discussed category are:

– Datalog (without negation) which is a decidable subset of FOL. The terms of
Datalog are variables and constants. The atoms are built in a usual way from
predicate symbols and terms. The semantics is based on syntactic matching
(syntactic unification with ground terms). It is well-known that for a Datalog
program P the least fixpoint of TP is the least Herbrand model of P , which is
the set of all ground atomic logical consequences of the rules of P considered
as the formulae of FOL.

– A negation-free subset of the XML query and transformation language Xcerpt4

[8]. Ground atoms of Xcerpt are called data terms and can be seen as ab-
straction of XML documents. A data term is either a constant or it is of
the form p[t1, . . . , tn] or of the form p{t1, . . . , tn}, n ≥ 0 where p is a label
and t1, . . . , tn are data terms. Intuitively, Xcerpt labels model XML tags.
Thus, in contrast to predicate letters they do not have fixed arity and the
number n of direct sub-terms ti of a data term with label p may vary. The
direct sub-terms of a data term may be ordered (which is indicated by square
brackets) or unordered (which is indicated by braces). Body atoms of Xcerpt
rules are called query terms. They are patterns matched against data terms
and usually include variables, for which bindings to data terms are produced
by successful matchings. The heads of Xcerpt rules are data terms with vari-
ables. The rule produces data terms by applying the bindings, obtained by
matching of its body, to the head. The concept of matching is quite elab-
orate. A data term matched against a query term may produce more than
one binding. There is no logical counterpart of the fixpoint semantics.

3 This terminology is justified by the fact that in the special case of Datalog, the least
fixpoint of TP is indeed a model in the sense of logic.

4 The following presentation is oversimplified, neglecting many details. The objective
is to give a minimal information needed to discuss integration of Xcerpt with OWL.
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A common task to be solved by a rule reasoner is querying of the standard
model of a given rule program. An atomic query is an atom A with variables.
The answer is any substitution θ such that Aθ is an element of the model.

As Datalog is a subset of Prolog, queries may be answered by Prolog systems
based on SLD-resolution. The work presented in this paper uses XSB Prolog.

Reasoning in the Xcerpt prototype5, which is implemented in Haskell, is
based on backward chaining and uses a special kind of unification.

2.2 Ontologies

In this paper, we consider ontologies formalized in Description Logics (DLs) [6],
which are decidable subsets of first-order logic (FOL). The syntax of a DL is built
over the distinct alphabets of class names C (also known as concepts), property
names R (also known as roles) and individual names O. Depending on the kind
of DL, different constructors are provided to build class expressions (or briefly
classes) and property expressions (or briefly properties). Intuitively, classes are
used to represent sets of individuals of a domain and property expressions are
used to represent binary relations over individuals. The names of the individuals
are used to represent them and can be seen as logical constants. In Description
Logics, it is often assumed that different names represent different individuals
of the domain (unique name assumption).

By an ontology we mean a finite set of DL axioms of the form: A ≡ C

(concept definition), C ⊑ D (concept inclusion), R ≡ S (role definition), R ⊑ S

(role inclusion), C(a) (concept assertion) and R(a, b) (role assertion), where A

is an atomic concept, C, D arbitrary concepts, R, S roles and a, b individuals.
The axioms are thus of two different kinds and can accordingly be divided into
two parts:

– a T-Box (terminology) consisting of concept (resp. role) definitions and in-
clusions;

– an A-Box (assertions) describing concept (resp. role) assertions relating to
individuals.

Class expressions, property expressions and assertions can be seen as an al-
ternative representation of FOL formulae. For example, class expression C where
C is a class name corresponds to the FOL formula C(x), and property expression
R where R is a property name corresponds to the FOL formula R(x, y), where
x and y are free variables. Similarly, expressions built with constructors can also
be seen as FOL formulae. The inclusion axioms are equivalent to the univer-
sally quantified implications, e.g. R ⊑ S, where R and S are property names
corresponds to the formula ∀x, yR(x, y)→ S(x, y). The assertions correspond to
atomic formulae. Thus, the semantics of DLs is defined by referring to the usual
notions of interpretation and model.

Due to the restricted syntax, Description Logics are decidable and are sup-
ported by dedicated reasoners.

5 www.xcerpt.org
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Given an ontology Σ the reasoner is used to answer queries. The query lan-
guages supported by different reasoners may vary. For the work presented in this
paper we are mostly interested in reasoning related to the A-Box of the underly-
ing DL KB. Traditionally DL reasoners provide limited forms of querying on the
A-Box, the most important service being the instance check, checking whether
an individual is a member of some class. In our work we will need DL queries ob-
tained by disjunction and/or by conjunction of basic conjunctive queries defined
as follows:

Definition 1. A basic conjunctive query is the existential closure of a formula
of the form C(t) and R(t1, t2) where C is a concept, R is a role and t, t1, t2
are constants or variables, or the existential closure of the conjunction of such
formulae.

These are boolean queries: a query q is to check if q is a logical consequence of Σ.
Only a few existing reasoners (see Section 4.1) answer conjunctive queries with
additional syntactic restrictions. Disjunctive queries are usually not allowed.

There have been several proposals for ontology specification languages. A
recent W3C standard OWL comes in three versions, where OWL-DL is based
on a highly expressive Description Logic and is supported by several reasoners.

3 Hybrid Integration of Safe Rules and External Theories

This section presents our framework for hybrid combination of rules and ontolo-
gies. Existing proposals are often restricted to rules with logical semantics. This
makes it possible to provide logical semantics of the combined language and to
prove that the proposed reasoning algorithm is sound and complete. The rule
languages considered in this paper are assumed to have a fixpoint semantics.
This does not exclude the cases of logical rule languages, like Datalog, but opens
for languages for which a logical semantics may not be defined. Even for such
rules there may be a practical motivation to integrate them with ontologies. For
example consider an XML database including culinary recipes. Each recipe lists
ingredients using terminology of a food ontology. The ontology defines classes of
products, e.g. a class of gluten-free products. We may use Xcerpt rules to query
the database for recipes, but to filter-out dishes containing gluten we have to
extend Xcerpt with ontology queries. This section outlines a systematic way for
defining such extensions.

Let R be a rule program in a rule language and let Σ be a set of axioms in
a first-order language L, to be called an external theory. In this paper we focus
on external theories given by DL axioms encoded in OWL, but the discussion in
this section is not restricted to this case. We assume that the languages share
constants and variables while the predicate letters of the external theory are not
in the alphabet of the rule language.

We define the language of extended rules by allowing formulae of L to be
(optionally) added in the bodies of the rules of R. If a formula of L added to
the body of a rule has free variables, they must also appear in the original rule.
Thus an extended rule p has the form
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H ← B1, . . . , Bm, C

where H ← B1, . . . , Bm is a rule in R (called the core rule of p and denoted
p ↓) and C, if present, is a formula of L called the constraint, whose free variables
appear in the core.

A finite set P of extended rules will be called an extended rule program. By
P ↓ we denote the set {p ↓| p ∈ P}. An extended rule p is said to be safe iff p ↓ is
safe. We only consider safe rules. We assume that C is (implicitly) existentially
quantified on all its free variables that does not appear in the body of the rule.
Such a variable will be called internal. Notice, that due to the safety condition
every free variable of a constraint that appears in the head must also appear in
the body of the core rule.

Intuitively the constraints restrict the standard model of P ↓ by referring
to the external theory Σ. Formally, we will consider constrained atoms of the
form A; C where A is a ground atom in R and C is a formula in L without free
variables. A ground atom A is considered to be a constrained atom of the form
A; true. By the core atom of a constrained atom A; C to be denoted (A; C) ↓
we mean the atom A. The notation is extended to sets of constrained atoms:
S ↓= {A | (A; C) ∈ S}.

We will first extend the definition of TP to sets of constrained atoms:

TP (S) = {Hθ; (Cθ ∧ C1 ∧ . . . ∧ Cn) | (H ← B1, . . . , Bn, C) ∈ P and
for some A1; C1, . . . , An; Cn in S

(B1, . . . , Bn) matches A1, . . . , An with result θ}

It follows by this definition that lfp(TP↓) = {A | (A; C) ∈ lfp(TP )} since the
extended operator does not use constraints for derivation of core atoms, but
simply takes the conjunction of constraints as the associated constraints of the
derived core atom. Thus the extended operator derives the same core atoms as
the TP↓ operator but associates them with constraints. The semantics of the
extended rule program P can now be defined as a subset of the standard model
of P ↓ by referring to the associated constraints of the core atoms. Denote by
CA the disjunction of all constraints C such that the constrained atom A; C is
in the least fixpoint of TP .

Definition 2. The standard model of an extended rule program P over an ex-
ternal theory Σ is defined as the set

M(P ) = {A | A ∈ lfp(TP↓) and Σ |= CA}

Thus we restrict the standard model of P ↓ to those elements A for which the
disjunction of all constraints associated with A by TP is true in all models of
the external theory Σ. In this way the semantics of the extended language is
defined as a combination of the fixpoint semantics of the rule language with
the logical semantics of the external theory. This applies to any particular rule
language in the considered class and to any particular external theory. Obviously
the membership problem for M(P ) may be undecidable.
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Consider the special case when the rule language component is Datalog (with-
out negation). In this case extended rules are formulae of FOL. It can be proved
that the standard model of an extended rule program P over Σ consists of atomic
formulae that are logical consequences of the knowledge base P ∪Σ.

The least fixpoint of TP can be computed by iterating TP starting from the
empty set. Due to the safety condition the core of any constrained atom produced
by an iteration of TP is ground and in the associated constraint all free variables
are instantiated to some constants that appear in the program. Thus there is only
a finite number of different constraint atoms that can be produced. An atom A

is inM(P ) iff it appears as a core of some constraint atoms in the least fixpoint
of TP and if the disjunctive constraint CA is a logical consequence of the axioms
of the external theory. Thus, if the theory is decidable so is the membership
problem for the standard model of any extended rule program over this theory.
This applies in particular to combinations of Datalog with Description Logics,
such as CARIN [23], restricted to safe extended rules. Note that our notion of a
safe extended rule is different from the notion of a role-safe rule introduced in
CARIN. Role-safe rules were introduced as a sufficient condition for decidability
of the problem of whether or not a ground atom is a logical consequence of a
given CARIN knowledge base.

In practice we want to query extended programs, e.g. by checking if a given
ground atom A is in the standard model of P over Σ. This can be done by (1)
constructing derivations of A and collecting the disjunction of the associated
constructs (constructing CA) (2) checking if CA is a logical consequence of Σ.
The reasoner of the rule language is able to query P ↓ with A. This is usually
done by backward or forward rule chaining. However, it is not clear how to re-use
the reasoner for P so that all associated constraints of A can be constructed.
Problem (2) limits the approach to theories supported by sufficiently powerful
reasoners.

In the rest of this paper we show how the above mentioned problems can be
solved for the special case of integrating Datalog with OWL, by interfacing XSB
Prolog with a DL reasoner.

As discussed above, the query answering problem for an extended rule lan-
guage may be undecidable. Even though the outlined approach may be used for
answering (some) queries. Well known examples of extended rule languages are

– AL-log [10] where the external axioms are in the language of the Description
Logic ALC and Datalog rules are extended with constraints of the form C(x)
where C is a concept and x is a variable or a constant. Query answering in
AL-log is decidable. For every query the number of associated constraints
is finite. The algorithm discussed in [10] uses SLD-resolution to construct
them and a DL reasoner for checking validity of their disjunction wrt to a
given theory.

– CARIN-ALCNR where the external axioms are in the language of the De-
scription Logic ALCNR and Datalog rules are extended with constraints of
the form C(x) or R(x, y) where C is a concept expression, R is a role expres-
sion and x, y are variables or constants. It should be noticed that CARIN
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rules may not be safe in our sense. It is only required that the variables of
the head appear in the body, but their occurrence in non-constraint atoms
is not assumed. Query answering in recursive CARIN is undecidable.

4 Interfacing existing systems

This section describes applications of the proposed approach to interface existing
systems. In Section 4.1 we survey existing DL reasoners and specifically the
query languages they support. In Section 4.2 we describe a prototype system
which interfaces XSB Prolog with a DL reasoner.

4.1 Ontology reasoners

In the rest of this paper, the only kind of constraints that we consider to appear
in rules, are ontological. When we want to re-use existing reasoning engines for
solving these constraints it is important to know what kind of constraints can be
handled by these systems. Here we provide a short overview of existing reasoners
and query interfaces to reasoners.
DQL Server This is an implementation of DQL6 OWL documents. By using
a rolling-up technique (see e.g. [19]) DQL Server is able to answer conjunctive
queries by transforming the query into one which can be answered by any existing
DIG [1] compliant reasoner. The query language supports both distinguished
and non-distinguished variables, i.e. variables that must be bound to known
individuals and variables that does not, respectively. Both concepts and roles
are allowed to appear in the query, but only acyclic queries are allowed.
KAON2 KAON27 implements a reasoner directly in Java based on transforming
a DL KB into a disjunctive Datalog program. KAON2 supports conjunctive
queries. However, it does not fully support non-distinguished variables, i.e. all
variables must be bound to known individuals in the KB.
Pellet OWL Reasoner Pellet8 implements a traditional tableaux based rea-
soning algorithm in Java. It supports conjunctive queries by using a rolling-up
technique [19]. The queries uses an SQL style syntax.
DL-Lite DL-Lite [9] was designed with data complexity in mind and the possi-
bility to deal with a large number of individuals while still being efficient. The
conceptual language supported in DL-Lite is limited but still serves as a basic on-
tology language. The main reasoning service provided is that of the conjunctive
query supporting both distinguished and non-distinguished variables.
Racer and nRQL The query language nRQL [16] for Racer [17] supports con-
junctive queries but require that all variables be bound to known individuals in
the KB.

Systems supporting conjunctive queries are thus available with some limita-
tions on what kind of variables are used (distinguished or non-distinguished) and

6 http://www.daml.org/dql/
7 http://kaon2.semanticweb.org/
8 http://www.mindswap.org/2003/pellet/index.shtml
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how they may appear in the query. However, the constraints that we are required
to solve, according to the description in Section 3, are disjunctive and may in-
clude non-distinguished variables. The existence of non-distinguished variables
is due to our safety restriction. Thus, none of the above query languages are suf-
ficient for our purposes. Instead, we implement support for disjunctive queries
(limited to concepts) which makes use of existing DL reasoners that are able to
check satisfiability of the underlying KB (see Section 4.2).

4.2 Combining Datalog with OWL using XSB Prolog and a DL

reasoner

As mentioned in Section 3 we need a way to collect the constraints associated
with a query A in order to interface a rule reasoner and a solver for the external
theory. This collecting of constraints must be specific for every existing rule
reasoner that is to be re-used in this hybrid context. In this section we show
how this can be achieved using a standard Prolog system (XSB Prolog) and also
how we verify if the disjunction of the collected constraints is indeed a logical
consequence of the associated theory. The external theory in this setting is a set
of DL axioms represented as an OWL ontology.

We make use of the list-construct available in XSB Prolog to collect the con-
straints, i.e. atoms that are not to be solved by the rule reasoner. An extended
rule program P is transformed into a corresponding program P ′ in the follow-
ing manner. Every predicate is extended with a new parameter to represent the
constraint associated with that atom. A rule fact has an empty body and is
therefore associated with an empty list of constraints. E.g. a fact p(a, b) is trans-
formed into p(a, b, []). The constraint atoms appearing in the body of a rule are
moved into an additional head parameter and constructed as a list. E.g. the rule
p(X, Y )← q(X, Y ), R(X, Y ), C(X), where R and C are ontological constraints,
is transformed into p(X, Y, [R(X, Y ), C(X)|A]) ← q(X, Y, A). If there are more
rule predicates in the body, the constraints of all of them are joined together into
a single list using the list-construct append provided by Prolog. We also show
this transformation on an example below.

The transformed program P ′ thus hides the external constraints in Prolog
lists making sure that they are not evaluated by the rule engine. At the same
time, the variables appearing in the constraints are properly grounded as ex-
pected when the rule is being evaluated. The program P ′ is executable in a Pro-
log system. Each derivation for a query A results in a conjunction of constraints.
As already argued, we need to collect the constraints from all derivations of a
query A and construct their disjunction. This is also how we treat the collected
constraint list constructed by querying a transformed program P ′ (see example
below).

The brief DL query language survey in Section 4.1 informed us that the sup-
port for disjunctive queries is not well supported by existing DL systems. How-
ever, the theoretical solution of how to handle disjunctive queries (restricted to
class expressions) is documented in literature (see e.g. [5],[19]). Most DL solvers
implement satisfiability verification of a KB as the main reasoning service. All
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Σ T-Box: European ⊓ American ⊑ ⊥
EuropeanAssociate := ∃Associate.European

AmericanAssociate := ∃Associate.American

NoFellowCompany := ∀Associate.¬American

InternationalCompany := EuropeanAssociate⊔ AmericanAssociate

A-Box: ⊤(a),⊤(high), InternationalCompany(b)

Fig. 1. Company ontology described as DL axioms

other services provided are reduced to the problem of checking satisfiability of
the KB [6]. For example, to verify if the individual a is a member of the class C

(instance check) the KB would be extended with the following axiom {a : ¬C}
whereupon satisfiability of the KB would be checked. The query C(a) is a logical
consequence of the KB if the extended KB is not satisfiable. A disjunctive query
C(a) ∨ D(b) is solved by extending the KB with {a : ¬C, b : ¬D} and again
resolving to verifying (un)satisfiability [5]. Our safety condition does not enforce
groundness of collected constraints but assures that no variable in a collected
constraint is free. In particular, the internal variables of rules that appear in
the collected constraints may be handled by the ontology reasoners discussed
in Section 4.1 as non-distinguished variables. We might have a constraint in-
volving a non-distinguished variable like C(X) where C is a concept and X a
variable. In this case the KB is augmented with the axiom ⊤ ⊑ ¬C whereupon
(un)satisfiability of the extended KB is verified. A disjunctive query Q1∨. . .∨Qn

where the disjuncts are conjuncts of class expressions (what would be the result
of evaluating a query wrt. a transformed Prolog program P ′ as described above)
can be solved in the following manner [19]. The query is transformed into its
conjunctive normal form (CNF). Each conjunct is a disjunction of class expres-
sions which can be solved as described above. If all the conjuncts are held to be
logical consequences of the underlying theory, then so is the original query.

We will look at an example (taken from [23] but slightly modified) where
we show the steps performed by our prototype system to solve a query wrt. a
hybrid knowledge base consisting of an extended Datalog rule-set and an OWL
document.

Π r1: price-in-usa(X,high) :- made-by(X,Y), NoFellowCompany(Y).
r2: price-in-usa(X,high) :- made-by(X,Y), AmericanAssociate(Y),

monopoly-in-usa(Y,X).
r3: made-by(a,b).
r4: monopoly-in-usa(b,a).

Fig. 2. Price rules
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Given the query price-in-usa(a,high) wrt. the KB Σ ∪Π (Figure 1 and 2),
the following steps are executed by our prototype system to solve the query.

1. The rule-base Π is transformed into Π ′ (Figure 3).
2. The query price-in-usa(a,high,A) is run by XSB Prolog wrt. the rule program

Π ′. The result as returned by XSB is:

A = [[c NoFellowCompany(c b)], [c AmericanAssociate(c b)]]

where the prefix c is simply used for convenience to refer to the specific
underlying ontology.

3. Each sublist of the answer A correspond to a conjunction of class expressions.
This disjunctive normal form (DNF) is turned into its CNF (one conjunct):

NoFellowCompany(b) ∨AmericanAssociate(b)

4. The underlying ontology is extended with the following two axioms:

b : ¬NoFellowCompany, b : ¬AmericanAssociate

and then a check is performed to see if the newly extended KB is satisfiable.
If the extended KB is not satisfiable we conclude that the original query
holds wrt. Σ ∪Π .

As explained in [23], the query price-in-usa(a,high) is true because b is either
a member of the class NoFellowCompany or the class AmericanAssociate in
all models of Σ (i.e. the constraint is a logical consequence of the KB).

This examples also gives a motivation as to why we need to collect the
constraints from all derivations and construct a disjunctive constraint which
then has to be verified wrt. the underlying KB. This can be seen since neither
NoFellowCompany(b) nor AmericanAssociate(b) are logical consequences of
Σ, but their disjunction is.

Π
′ r1: price-in-usa(X,high,[NoFellowCompany(Y)|A]) :- made-by(X,Y,A).

r2: price-in-usa(X,high,[AmericanAssociate(Y)|A]) :- made-by(X,Y,A1),
monopoly-in-usa(Y,X,A2), append(A1,A2,A).

r3: made-by(a,b,[]).
r4: monopoly-in-usa(b,a,[]).

Fig. 3. Transformed price rules

The prototypical system interfaces XSB Prolog with any DIG [1] compliant
DL reasoner. DIG is a language for dealing with statements of DL. The Java
library Jena9 is used to handle the underlying ontology referenced by the rules.
When solving the disjunctive DL queries, Jena is used to augment the KB with
the additional axioms. Checking for satisfiability of the extended KB is also done
via Jena to which a DIG compliant DL reasoner is connected. A well known DIG
compliant reasoners used today is RACER [17].

9 http://jena.sourceforge.net/
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5 Related Work

Our work extends the ideas of AL-log [10] to a more general framework for
hybrid integration of rules and constraint theories. An instance of the proposed
framework is the prototype system of Section 4.2, an AL-log style integration of
Datalog and OWL-DL, based on re-use of existing reasoners.

In the language of extended rules supported by our prototype the constraint
predicates are restricted to OWL concepts. Also in AL-log constraints are re-
stricted to concepts. This restriction is lifted in CARIN [23], where both concepts
and roles are allowed as constraints in rules. The logic obtained in that way is
undecidable in general. In contrast to CARIN our rules are safe, in which case
allowing roles in constraints does not introduce undecidability.10 Further exten-
sion of our prototype to such a subset of CARIN is possible, but would require
a reasoner supporting disjunctive DL queries, where roles are allowed to appear.

Our approach is restricted to rules without negation and does not support
non-monotonic reasoning. This facilitates definition of the semantics of an ex-
tended rule program as a restriction of the semantics of the underlying core rules.
The core rules are assumed to have fixpoint semantics, and are not restricted to
logical formulae. The approach can be easily extended to stratified rule programs
with negation (for the notion of stratified logic program see e.g. [4]). This kind of
negation is used, among others in Xcerpt. More advanced forms of negation and
non-monotonic reasoning can only be handled by specific restrictions imposed
on the considered rule languages. For example, some recent work on hybrid in-
egration of rules and ontologies is based on stable model semantics or answer set
semantics [13] for Datalog rules with negation. In the approach of [11, 22] the
bodies of the extended rules may include ontology queries possibly locally mod-
ifying the A-Box of the ontology. The reasoning in the extended language can
be done by re-using a rule reasoner supporting the stable model semantics and
a DL-reasoner answering the DL queries. An extension and refinement of [11] is
described in [22] which makes it possible to handle several DL KBs. Both [11]
and [22] however do not take into account the issues discussed in [10, 23] with
regards to completeness of the integration, whereas we do. Safe hybrid knowledge
bases discussed in [25] provide a general formal framework for integrating DL
ontologies and rules, where the rule languages considered include various sub-
sets of disjunctive Datalog with stable model semantics. This approach allows
DL predicates in the heads of rules, so that the interaction between DL and
rules is more advanced than in our approach. The paper focuses on the semantic
issues but sketches also a two-step algorithm for deciding satisfiability of a given
hybrid KB, where one of the steps relies on standard DL reasoning and the other
on standard search of stable model of Datalog rules.

Another approach to combining rules and ontologies does not stress hybrid
reasoning but instead aims at defining a logical language extending DLs with
rules. In such an approach there is no distinction between rule predicates and DL

10 Notice that our safety condition is different from that known as role-safeness, defining
a decidable subset of CARIN.
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predicates, so that both the heads and the bodies of rules are built from concepts
and roles. Examples of this approach include a decidable logic: the Description
Logic Programs of [14] and an undecidable logic whose XML encoding is known
as the Semantic Web Rule Language (SWRL) [18]. A closely related approach
to [18] is a recent extension of OWL-DL with rules [24]. The integrated language
is similar to the language in our prototype but we do not allow DL-predicates to
appear in the heads of rules. Our safety condition is different from DL-safety of
[24]. The latter requires that each variable of an integrated rule appears in a non-
DL-atom in the rule body, while we only require that each variable in the head
appears in a non-DL-atom of the body. The main distinction is that the query
answering in [24] is done by using a compilation of the integrated program to
disjunctive Datalog, while our prototype is a hybrid reasoner interfacing existing
reasoners of the component languages.

The objectives of our work, aiming at re-using existing reasoners are not
compatible with the language extension approach where a new reasoner has to
be constructed for every new defined extension.

6 Conclusions and Future Work

We presented a general scheme for combining various kinds of safe rules with
various kinds of constraints. For a particular rule language with a fixpoint se-
mantics and for a particular constraint language the scheme defines the syntax
and the semantics of their composition. The language obtained in that way al-
lows for specification of knowledge bases, consisting of extended rules and FOL
axioms. Our scheme shows how reasoners of the underlying languages should be
interfaced for querying the knowledge bases. The idea is to use the original rule
reasoner on the cores of the extended rules while the constraints are to be checked
by the original constraint reasoner. For this the rule reasoner has to be able to
collect and instantiate the constraints associated with the core rules involved in
reasoning. This feature is not supported by the existing rule reasoners but, as
illustrated by our prototype, can sometimes be implemented by transformation
of the source of the extended rules. To make existing rule reasoners applicable in
our framework one should develop techniques for collecting constraints during
their operation and for scheduling cooperation between the rule reasoner and
the constraint solver. Waiting for construction of a complete disjunctive query
before handing it out to the constraint solver might not be the best approach in
practice.

We have in this paper considered a layered approach where a rule layer is
put on top of an ontology layer. One can also consider several layers interleaving
components of rules and ontologies. In the special case, when constraints are
formulated in a DL, the A-Box can be specified by extended rules. To achieve
such a multi-layering of rules and ontology components, one needs to define a
component model describing how the components are interfaced with one an-
other. From a software engineering perspective, this component model opens up
the way of interoperability between various combinations of logical languages,
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for which type mappings between types in interfaces can be given. It would en-
able us to encapsulate the reasoners for the languages and to connect them via
proxies, mapping the different data formats to each other. This would define a
CORBA-like mechanism for logical languages, which is an inevitable interoper-
ability mechanism for the future Semantic Web.

The prototype described in Section 4.2 now only allows ontological con-
straints as concepts. It would be desirable to also support usage of roles in
constraints as done in e.g. CARIN [23]. This is doable by plugging in already
developed techniques for rolling-up of queries involving roles into queries which
only contain concepts. Once this process is done, the constraint is rid of any
roles and the techniques in Section 4.2 can be used as described.

Another relevant topic is how to organize interaction of different constraint
solvers when different kinds of constraints are used.

As the underlying rules of any extended rule program P are safe, the con-
straints in our approach are only used to restrict the finite model of P ↓. Ad-
mission of unsafe rules would enhance the expressive power of the extended rule
languages. The family of extended rule languages obtained in that way would
have a close relation to the CLP(X) family of constraint logic programming
languages [20]. Clarification of this relation would allow for re-use of existing
expertise of CLP in the Semantic Web.
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Abstract. Event-Condition-Action (ECA) rules offer a flexible, adap-
tive, and modular approach to realizing business processes. This article
discusses the use of ECA rules for describing business processes in an
executable manner. It investigates the benefits one hopes to derive from
using ECA rules and presents the challenges in realizing business pro-
cesses. These constitute a list of requirements for an (executable) business
process description language, and we take them as a basis to investigate
suitability of the concrete ECA rule language XChange in realizing a
business process from the EU-Rent Case Study.

1 Introduction

Success in an increasingly global and competitive market requires companies
to adjust internal activities and resources in an adequate and timely manner.
Without suitable enterprise computing systems, this is infeasible. Managing and
automating business processes is a key factor for successful enterprise computing
systems.

A business process can be described as “a structured, measured set of activ-
ities designed to produce a specified output for a particular customer or mar-
ket” [1]. Different methods and tools have been developed to describe business
processes both for modeling purposes and for automatic execution. Such a de-
scription is also often called workflow or business protocol, and its automatic
execution often called (workflow) enactment. The focus of this paper is on exe-
cutable business process descriptions.

Recently, interest in rules is growing in different communities: companies
manage and specify their business logic in the form of business rules [2], efforts
are made for standardizing formats for rule interchange [3] as required for ex-
ample in policy-based trust negotiations [4], and rule languages are becoming
popular for reasoning with Web and Semantic Web data [5]. Like rules in general,
Event-Condition-Action rules offer a flexible, adaptive, and modular approach
to realizing business processes.

In this article we analyze realizing business processes (i.e., describing business
processes in an executable manner) based on ECA rules. The focus is on control
flow, because this is the aspect one is most concerned about during specification;
other issues are shortly discussed.



We investigate the benefits one hopes to derive from using ECA rules (Sec-
tion 2) and present the challenges in realizing business processes (Section 3).
These constitute a list of requirements for an (executable) business process de-
scription language, and we take them as a basis to investigate suitability of the
concrete ECA rule language XChange in realizing a business process from the
EU-Rent Case Study (Section 4). We close with a discussion of the practical lim-
its of ECA rules for business processes (Section 5) and conclusions (Section 6).

2 ECA Rules for Business Processes: Benefits

Managing and automating a business process requires a machine-readable de-
scription of the business process. The most widely used language for describing
business process today is the Business Process Execution Language (BPEL) [6].

Simplified, BPEL describes a process as activities (typically provided as Web
Services) with control flow (e.g., sequential execution) in an imperative fashion.
Additionally, handlers to catch errors or other exceptional situations in the pro-
cess can be specified.

In this article we argue for a different approach to describing business pro-
cesses based on ECA rules. ECA rules have the form “on event if condition do
action” and specify to execute the action automatically when the event happens,
provided the condition holds. Whereas traditional business process description
languages center around activities, ECA rules put emphasis on events. An ECA-
rule-based approach for specifying business processes can have the following
advantages:

– Requirements are frequently specified in the form of rules expressed in either
a natural or formal language, in particular business rules, legislative rules, or
contractual rules. In requirements on business processes, we often find ECA
rules such as “a credit card application (event) will be granted (action)
if the applicant has a monthly income of more than EUR 1.500 and no
outstanding debts (condition).” Ideally, a one-to-one mapping between rules
used for requirements specifications and (executable) rules used for workflow
enactment can be achieved.

– Reactive rules, especially ECA rules, easily integrate with other kinds of
rules commonly used in business applications such as deductive rules (rules
expressing views over data or rules used for reasoning with data) and nor-
mative rules (rules expressing conditions that data must fulfill; also called
integrity constraints). Methods for automatic verification and validation of
rule sets have been well-studied in the past and can be applied.

– ECA rules have a flexible nature: they are easy to adapt, alter, and main-
tain as requirements change, which is quite frequently the case for business
processes. Even more, many rule engines allow rules to be added, modified,
or deleted “on-the-fly,” i.e., without interrupting running processes.

– An important part of business process descriptions is handling of errors and
exceptional situations; in fact, it is often the longest and most labor-intensive

Realizing Business Processes with ECA Rules: Benefits, Challenges, Limits     47



part. Since errors and exceptional situations can be conveniently expressed as
(special) events, ECA rules allow to treat them just like “normal” situations,
thus making their handling quite easy.

– Rules can be managed in a single rule base as well as distributed in several
rule bases. The latter is advantageous for cross-enterprise processes, where
there is no central instance (such as a workflow management system) exe-
cuting and monitoring processes.

– In an activity-centered control flow, activities are started as reaction to the
(successful or unsuccessful) completion of another activity; reaction to inter-
mediate states of activities are typically not supported [7]. ECA rules with
their emphasis on events offer more flexible means to specify control flow, if
appropriate events are generated by the activities.

Whether an activity-centered or an event-centered approach for describing
business processes is better suited depends, of course, always on the individ-
ual process and its environment. In situations where modeling and specifying a
process is better done with an activity-centered view, it is usually possible to
automatically or semi-automatically derive ECA rules realizing the execution of
the process.

3 Challenges for Realizing Business Processes

Every business process execution language should answer certain requirements
for effective and efficient support of business processes, primarily the ability to
realize separate activities (tasks or steps) and to control their cooperation (or
interworking). In this section we present the essential challenges for realizing
business processes.

3.1 Control Flow

Control structures are the core elements of every business process modeling (or
execution) language. They describe temporal and logical dependencies between
activities such as: sequential execution of activities, parallel execution, synchro-
nization, alternative execution. Van der Aalst et al. [8] have identified 21 patterns
of control flow ranging from the simple patterns just named to more complex,
process specific patterns. The technical ability of a business process description
language to express these patterns can be viewed as an essential indicator of the
language usability to design and implement business processes.

Consider the business process for handling a rental reservation (RR) depicted
in Figure 1 in Business Process Modeling Notation (BPMN) [9]. A customer
invokes the business process by sending a rental reservation request to a rental
company.

If the customer is already registered, the customer blacklist is checked (check
blacklist); in case the customer is on the blacklist, the rental request is rejected
(send rejection to customer) and the process ends. If the customer is not regis-
tered yet, her data are recorded (introduce new customer).

48     F. Bry, M. Eckert, P.-L. Pătrânjan, and I. Romanenko



Fig. 1. Reservation business process represented in BPMN

In the next step the reservation data is checked (verify RR data); e.g., that
there are no overlaps with other reservations of the customer and that a car in
the specified group is available. In case of a violation, the process ends again
with a rental rejection.

Next, a number of activities are performed, which depend on certain con-
ditions (possibly no activity, if none of the conditions holds). If an applicable
discount exists, it is offered to the customer (offer special advantages). If the
customer’s rental request indicates that a guaranteed rental (car can be picked
up within 24 hours after the scheduled pick-up time) is desired, corresponding
arrangements are made (guarantee rental).

Finally, the customer is notified that her rental request has been accepted
(send acknowl. to customer) and, in parallel, the rental reservation is recorded
(write to DB). With this the process ends.

We will now analyze the control flow patterns in this example:

– Sequence is the most basic control pattern; it runs two (or more) activities
one after the other. In the example, introduce new customer and verify RR
data are in a sequence. Sequencing of activities is drawn as a solid arrow in
BPMN.

– Exclusive Choice allows execution of exactly one alternative path chosen
at the runtime based on the evaluation of a condition. In the example, one
of check blacklist and introduce new customer is chosen exclusively, based on
whether the customer is registered. The alternative execution paths can be
brought together again with a Simple Merge; when the chosen activity of
the Exclusive Choice finishes, execution continues with the activity after the
corresponding Simple Merge. Both patterns are represented in the BPMN
with simple diamonds (so-called XOR gateways).

– Multi-Choice is similar to Exclusive Choice, but allows more than one
alternative paths to be chosen and executed in parallel, or even to execute no
path at all. The counterpart to join the parallel execution paths (or continue
execution if no path has been chosen) is the Synchronizing Merge, which
waits for all chosen paths to finish before continuing. BPMN uses diamonds
with circles inside (OR gateways) to depict these patterns. In our example,
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either both offer special advantages and guarantee rental, only one of them,
or none are to be executed, depending on the stated conditions.

– Parallel Split executes multiple paths (with independent activities) in par-
allel. Synchronization joins them again by waiting for all paths to finish. In
the graphical representation both patterns are indicated through diamonds
with plus symbol (AND gateways). In the example, send acknowl. to cus-
tomer and write to DB are independent activities performed in parallel.

There are more control flow patterns, but the above are the most common and
are supported by virtually all business process modeling or execution languages.
The realization of the above patterns with ECA rules will be investigated in the
next section.

3.2 Process Instances

Another challenge for a business process language is the ability to support per-
forming of different activities within a process instance. A process instance is
the execution representation of a process. Considering the example of handling
a rental request: a process instance is created each time when a rental request
from a customer is received. Several process instances corresponding to different
rental requests (possibly from the same customer) run in parallel.

When a cancellation request from a customer arrives, this is specific to one
of the customer’s previous rental requests. It should cancel only the one corre-
sponding process instance, not all processes. A business process language hence
must provide a mechanism that assigns events that happen as well as running
activities to their corresponding process instances.

3.3 Integration with Business Rules

Business rules are used for defining or constraining aspects of business, such as
inserting business structure or controlling or influencing the behavior of business.
They represent the business logic of a company and exist in every enterprise.
Often the logic of workflow-based systems is given or influenced by business rules.
Frequently the rules are embedded within the business process itself which makes
changing and maintaining business rules difficult and costly. Recently business
rules management, i.e., separating business processes and business rules, and
formally specifying, enforcing, integrating, and maintaining business rule sets,
has gained much attention.

Business rules can be classified according to their effect. A common classifi-
cation [10] distinguishes three types:1

– structural rules (also called normative rules or constraints) define restrictions
on business concepts and facts,

1 Other classifications for business rules [11] or rules in general [12] exist; the presented
classification is well-accepted, clear, and suitable in the framework of this article.
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– derivation rules (also called deductive or constructive rules) are statements
of knowledge derived from other knowledge using inference or mathematical
calculations,

– dynamic rules (also called active, reactive, or reaction rules) concern dynamic
aspects of the business; they constrain or control the actions of business.

In business processes, business rules play an important role at decision points,
where processes change their behavior based on certain criteria or rules. The
most common approaches for integrating business rules and business processes
are (1) checking the rules explicitly as activities, e.g., calling a rule engine Web
Service, and (2) checking the rules implicitly at decision making points. A busi-
ness process language should support the integration of business rules.

3.4 Exception Handling

The ability to specify exceptional conditions and their consequences, including
recovery measures, are as important for realizing business processes as the ability
to define “normal behavior.” An exceptional situation in the process of Figure 1
could, for example, occur during the verify RR data activity if the credit card of
a customer has expired. Possible means for recovery include asking the customer
for updated information or canceling the whole rental request.

Because of the multitude and diversity of exceptional situations, the effort
for specifying exception handling often surpasses the effort for specifying normal
behavior. Hence, every business process language should provide a systematic
and elegant mechanism to specify, handle, and recover from exceptions.

3.5 Abstractions for Reusability and Maintainability

Business process specifications should exhibit modular structure to ease reusing
and maintaining parts of the specifications such as sub-workflows. An important
step towards reusability and maintainability is the integration of business rules
into process specifications (see above). However, further means are required: for
example, use of a sub-workflow in several other workflows requires support from
the business process language and cannot be realized through the integration of
business rules.

Modularity is best explored in object-oriented and procedural languages; for
rule-based languages, however, modularity is still a research challenge.

4 Realization in XChange

In this section we demonstrate the capabilities of the rule-based language XChange
in realizing business processes. The concrete processes go along the lines of the
EU-Rent Case Study [13], a specification of business requirements for a fictive car
rental company, promoted by the European Business Rules Conference [14] and
the Business Rules Group [15]. Our focus is on control flow, but we also discuss
the integration of business rules and other issues touched on in Section 3.
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<xchange:event>
<reservation-request>

<customer>John Q Public</customer>
<email>john@public.com</email>
<car>

<group> A </group>
</car>

<period>
<from>2006-06-10</from>

<duration> 2 </duration>
</period>
<location>Budva</location>

</reservation-request>
</xchange:event>

xchange:event [

reservation-request {
customer { "John Q Public" },

email { "john@public.com" },
car {

group { "A" }

},
period {

from { "2006-06-10" },
duration { "2" }

}

location { Budva }
}

]

Fig. 2. Reservation Request (RR) event in XML and term representation

ON xchange : event {{

r e s e rva t i on−r e que s t [ [

var Customer −> customer {{ }} ] ] }}

FROM in { r e sou r c e {” http : // rent . eu/ customers . xml” } ,

customers {{

without var Customer }} }

DO in { r e sou r c e {” http : // rent . eu/ customers . xml” } ,

customers {{

i n s e r t var Customer }} }

END

Fig. 3. XChange ECA rule for introducing a new customer

4.1 XChange in a Nutshell

XChange is a reactive language based on ECA rules and is tailored to the Web
and XML data, which makes it an interesting candidate for realizing and com-
posing Web Services. An XChange program is located at one Web node and
consists of one or more (re)active rules of the form event query — condition
query — action. Events are represented and communicated between different
Web nodes as XML messages (e.g., with SOAP [16]). Every incoming event is
queried using the event query (introduced by keyword ON). If an answer is found
and the condition query (introduced by keyword FROM), which can query arbi-
trary Web resources, has also an answer, then the specified action (introduced
by keyword DO) is executed.

Event queries, condition queries and actions follow the same approach of spec-
ifying patterns for the data that is queried, updated, or constructed. XChange
embeds the XML query language Xcerpt [17] and extends it with update facilities
and reactivity.

The parts of an XChange ECA rule communicate through variable substitu-
tions. Substitutions obtained by evaluating the event query can be used in the
condition query and the action part, those obtained by evaluating the condition
query can be used in the action part.

Example. Figure 2 depicts an incoming rental request event. On the left it is
in XML syntax, on the right it is in XChange’s term syntax, which is used for
conciseness in data, queries, and updates. Figure 3 depicts an XChange ECA
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rule which reacts to this event (ON-part), checks that the customer is not yet
registered (FROM-part), and inserts him into the customer database (DO-part).

In the term syntax, square brackets [ ] denote that the order of the children
of an XML element is relevant, curly braces { } denote that the order is not
relevant.

In event queries and condition queries, both partial (i.e., incomplete) or total
(i.e., complete) query patterns can be specified. A query term t using a partial
specification (denoted by double brackets or braces) for its subterms matches
with all such terms that (1) contain matching subterms for all subterms of t

and that (2) might contain further subterms without corresponding subterms
in t. In contrast, a query term t using a total specification (denoted by single
brackets or braces) does not match with terms that contain additional subterms
without corresponding subterms in t. Query terms contain variables for selecting
subterms of data terms that are bound to the variables. Using “->” (read “as”),
a restriction can be made on the bindings of the variable left of “->”; every
binding has to match the (sub-)query to the right. The results of a query are
bindings for the free variables in that query. In the example, Customer is bound
to customer { "John Q Public" }.

Updates in the action part are queries to Web resources, augmented with
the desired update operations (insert, delete, replace-by). Another form of
action supported by XChange is the raising of a new event.

XChange is a rich language and we will discuss further constructs relevant in
the scope of this article as we go along. For a short introduction to XChange see
[18], for a complete introduction accompanied by the specification of declarative
and operational semantics see [19].

4.2 Control Flow

We start off by implementing the control flow for the process from Figure 1 by
refining the rule from Figure 3. The first control flow pattern in the process
is the Exclusive Choice: the next action depends on the condition of being a
registered customer. Such a choice is conveniently implemented by means of an
extended form of ECA rules, called ECAA rule [20]: the event is the reservation
request (message in Figure 2), the condition customer unregistered (a query to
a database), the action to be executed is either introduce new customer (in case
the condition holds) or check blacklist (otherwise).

ECAA rules are only syntactic sugar that significantly increases readability
of rule sets; every such ECAA rule can be translated into two ECA rules with
one condition being the negation of the other.

Figure 4 shows an XChange ECAA rule implementing the Exclusive Choice.
The action in case the customer is unregistered (DO-branch) is the update to
the customer database already discussed. To continue in the process after this
action, an event is raised. This event will trigger further rules implementing part
of the whole process. This style of implementing the sequence pattern by passing
along events is common for ECA rules [20].
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ON xchange : event {{

var Rental −> r e s e rva t i on−r e que s t {{

var Customer −> customer {{ }} }} }}

FROM in { r e sou r c e {” http : // rent . eu/ customers . xml”} ,

customers {{ without var Customer }} }

DO and [

in { r e sou r c e {” http : // rent . eu/ customers . xml” } ,

customers {{ i n s e r t var Customer }}

} ,

xchange : event {

new−customer { var Rental } } ]

ELSE xchange : event {

check−b l a c k l i s t { var Rental } }

END

Fig. 4. Exclusive choice on the customer’s registration status

ON xchange : event {{

b l a c k l i s t e d { var Rental } }}

DO rep ly−customer [ var Rental , ” Fa i l u r e ” , ”You are b l a c k l i s t e d . ” ]

END

Fig. 5. Send rejection to customer if blacklisted

For the ELSE-branch, the action for check blacklist is simply sending a mes-
sage to a Web Service implementing it. The answer from the service is another
message that will (just as the event raised in the DO-branch) trigger further
rules.

The rule in Figure 5 implements the reaction to a positive answer from the
check blacklist service. The action send rejection to customer is implemented as
a procedure and will be discussed later.

Next, the process merges a negative answer from check blacklist and an an-
swer from introduce new customer, and continues with the verify RR data action.
The corresponding rule in Figure 6 uses a disjunction of events to implement the
Simple Merge and raises an event that is sent to a service taking care of testing
compliance of the rental request with the company’s business rules.

In case the rental request satisfies the rental rules, verify RR data replies
with an event RR-ok; otherwise with RR-not-ok (which contains a reason for
rejection). The rule in Figure 7 reacts to this RR-not-ok event and sends a re-
jection message to the customer (in analogy to the rule for blacklisted customers
in Figure 5).

ON or {

xchange : event {{ not−b l a c k l i s t e d { var Rental } }} ,

xchange : event {{ new−customer { var Rental } }} }

DO xchange : event { ve r i f y−RR−r u l e s { var Rental } }

END

Fig. 6. Simple Merge of the check blacklist and introduce new customer branches
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ON xchange : event {{

RR−not−ok { var Rental −> r e s e rva t i on−r e que s t {{ }} ,

var Message −> message {{ }} } }}

DO rep ly−customer [ var Rental , ” Fa i l u r e ” , var Message ]

END

Fig. 7. Send rejection to customer if RR rules are violated

ON xchange : event {{

RR−ok { var Rental −> r e s e rva t i on−r e que s t {{ guarantee {” yes ”} }} ,

var Pr i ce −> pr i c e {{ }} } }}

DO xchange : event {

guarantee−r e n t a l [ var Rental , var Pr i ce ] }

END

ON xchange : event {{

RR−ok { var Rental −> r e s e rva t i on−r e que s t {{ guarantee {”no”} }} ,

var Pr i ce −> pr i c e {{ }} } }}

DO xchange : event {

guarantee−done [ var Rental , var Pr i ce ] }

END

ON xchange : event {{

RR−ok { var Rental −> r e s e rva t i on−r e que s t {{

per iod { from { var From } , durat ion { var Duration } } ,

car {{ group { var Group } }} }} ,

var Pr i ce −> pr i c e {{ }} } }}

FROM ex i s t−d i s c oun t s [ var From , var Duration , var Discount ]

DO xchange : event {

apply−d i s c oun t s [ var Rental , a l l var Discount , var Pr i ce ] }

ELSE xchange : event {

di scounts−done [ var Rental , var Pr i ce ] }

END

Fig. 8. Multi-Choice for offer special advantages and guarantee rental

The rules in Figure 8 implement the Multi-Choice in the process following
successful verification of the rental rules (event RR-ok). The corresponding Syn-
chronizing Merge is implemented in the event part of the rule in Figure 9; it uses
a conjunction of events to merge. Note that the events guarantee-done and
discounts-done are generated whether the corresponding actions are executed
or not. This is necessary for the merge.

The upcoming Parallel Split is also implemented in the rule in Figure 9,
namely in the action part. With the actions send acknowl. to customer and
write to DB the process ends. For simplicity, we skipped the Synchronization of
the action before the end of the process. It could be implemented in the same
manner as the Synchronizing Merge.

4.3 Abstractions and Business Rules Integration

Reusability and maintainability of business processes can be greatly increased
by convenient abstraction mechanisms and the integration of business rules.

An important abstraction mechanism is the capability to bundle actions that
are complex or used frequently into procedures [21]. An action used frequently
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ON and {

xchange : event {{

guarantee−done {{

var Rental −> r e s e rva t i on−r e que s t {{ var Var }} }} }} ,

xchange : event {{

di scounts−done [

var Rental , var Pr i ce ] }} }

DO and {

in { r e sou r c e {” http : // rent . eu/ r e n t a l s . xml” } ,

r e n t a l s {{ i n s e r t r en t a l { a l l var Var , var Pr i ce } }} } ,

r ep ly−customer { var Rental , ” F in i shed ” , ”Rese rvat ion s u c c e s s f u l . ” }

END

Fig. 9. Synchronizing Merge of the above Multi-Choice and Parallel Split for send
acknowl. to customer and write to DB

PROCEDURE rep ly−customer [

r e s e rva t i on−r e que s t {{ emai l { var Email } }} ,

var Status , var Message ]

DO xchange : event {

xchange : r e c i p i e n t { var Email } ,

eu−rent−r ep l y [ var Status , var Message ] }

END

Fig. 10. Procedure for sending a reply to the customer

in our process is the reply to a customer. Figure 10 demonstrates defining such
a procedure in XChange. It is called in the rules of Figures 5, 7, and 9.

Concerning the integration of business rules, the verify RR rules action illus-
trates checking business rules explicitly as activities by calling some service. This
service can actually be implemented in XChange, see Figure 11. The implementa-
tion consists of one ECA rule reacting to the incoming event verify-RR-rules, a
deductive rule for get-price (the result of which is queried in the condition part
of the ECA rule), and two procedures car-unavailable and rental-overlaps

for checking their corresponding business rules. (For space reasons, the figure
only shows the procedure car-unavailable; the other procedure is similar.)
The procedures generate appropriate replies in case of violations; if no violation
is detected, the RR-ok event is raised by the ECA rule.

4.4 Process Instances

To deal with process instances in ECA rules different approaches are conceivable:

– Rule tied to process instances: In this approach, rules are executed as
part of a process instance; their event queries only see events that are part
of this process. Special constructs are required to start and end processes,
and fork and join sub-processes.

– Rule outside process instances: In this approach, rules run separated
from process instances; events have to carry some identifier for the process
they belong to. This identifier has to be explicitly queried in the event part
of rules and passed on by the actions and used services.
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ON ve r i f y−RR−r u l e s {

var Rental −> r e s e rva t i on−r e que s t {{

car {{ group { var Group} }} ,

pe r iod { from { var From } , durat ion { var Duration } }

}} }

FROM get−pr i c e [ var Group , var From , var Duration , var Pr i ce ]

DO or [

car−unava i l ab l e { var Rental } ,

r e n ta l−ove r l ap s { var Rental } ,

xchange : event { RR−ok [ var Rental , var Pr i ce ] } ]

END

CONSTRUCT get−pr i c e [ var Group , var From , var Duration , var Pr i ce ]

FROM in { r e sou r c e {” http : // rent . eu/ p r i c e s . xml” } ,

desc car−group {{

name { var Group } ,

p r i c e s {{

r en t a l {

durat ion { var Duration } ,

p r i c e { var Pr ice } } }} }} }

END

PROCEDURE car−unava i l ab l e {

var Rental −> r e s e rva t i on−r e que s t {{

car {{ group { var Group } }} }} }

FROM in { r e sou r c e {” http : // rent . eu/ r e n t a l s . xml” } ,

without desc car {{

model { var Group } ,

car−s t a tu s { ” av a i l a b l e ” } }} }

DO xchange : event {

RR−not−ok {

var Rental ,

message {” Se l e c t ed car group unava i l ab l e ”} } }

END

Fig. 11. Implementation of the verify RR data activity in XChange

In the presented rules the second approach has been used, using as identifier
of the process instance the rental-request-information, which is passed along
through all events.

The disadvantage of the approach with rules outside process instances is that
it puts more burden on the programmer’s shoulders: the rules have to query the
identifier in the event part (e.g., to ensure that for a conjunction of events only
events of the same process instance are used) and passed along in every event
that is raised. Approaches where rules are tied to process instances are hence
more convenient.

However, tying rules to process instances is sometimes not possible for dis-
tributed workflows, in particular cross-enterprise workflows or workflows depend-
ing on events from other, parallel workflows.

4.5 Exception Handling

Since exceptions can be conveniently expressed as (special) events, ECA rules are
a convenient mechanism for handling exceptions. They allow to treat exceptions
like any other event.
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The process we presented did not contain any exceptions as such, though one
could argue that a customer being blacklisted or a violation of the rental rules
could be perceived as an exception.

Exception handling is not a focus in this paper; however, ECA rules have
quite successfully been employed for exception handling in the past [22].

5 ECA Rules for Business Processes: Limits

While using ECA rules in realizing business processes has the benefits outlined
in Section 2, the approach has also some practical limits, just like any other
approach. In the following we present the limits we have identified from the
concrete study of using the ECA rule language XChange for specifying executable
business processes presented in Section 4.

A general limit of ECA rules is that they do not always reflect the proce-
dural, imperative way of thinking familiar to many people from imperative or
object-oriented programming. This is particularly obvious when looking at the
realization of the sequence pattern with ECA rules: for sequencing of activities
A and B, B is triggered by a separate rule which reacts on a finish event of A.
(XChange alleviates this to some degree through the and[...] when the activ-
ities are updates, though this is only a special case.) However, for distributed
workflows without a central coordinator (e.g., cross-enterprise workflows) this
style of programming is not unnatural and hard to avoid.

Closely related to this is that ECA rules usually do not have a local state
that is specific and internal to the current process instance. ECA rules have to
explicitly maintain this state in events and databases. For example, an incoming
rental request could contain information such as the customer’s e-mail address.
This information is not needed immediately in the process of Figure 1, but only
late in the process for sending rejection or acknowledgment back. In the first rule,
this information has to be either saved in a database or passed along through
all rules as part of event data.

Monitoring of business processes specified with ECA rules is not as straight-
forward as for other approaches, which are based on some activity-centered,
automata-like model (e.g., BPMN or BPEL). In activity-centered process spec-
ifications, a process’s state is obvious from the finished and running activities.
In contrast, in event-centered process specifications, the process’s state is given
through the history of events, which is less easy to comprehend.

Because of this “hidden” process state in ECA rule-based specifications,
there is no clear notion of which events are expected next. (Enabled) ECA rules
are triggered by every incoming event matching the event query, regardless of
whether this event is expected or not. This might entail unexpected behavior,
especially if events are generated “out-of-order” by faulty or malicious behavior
of systems. Possible solutions to this depend on the ECA rule language’s ca-
pabilities. Dynamic enabling and disabling of rules provides an approach on a
meta-level; however an activity-centered solution is much simpler.
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Current rule languages have only limited support for structuring rule sets.
In practice, however, structuring is very much needed to reduce the complexity
and expenses in the production of business process specifications. It can be
expected that this issue will be overcome through further research and practical
experiences, in particular by adding support for modules.

Last not least, development and maintenance of business processes is greatly
supported by visual tools. For event-centered approaches, visualizing single ECA
rules alone does not suffice: it is important to visualize whole rule sets with the
associated control flow. Again, this issue might be overcome through further
development.

Of these limits, the first four stem from the rule-based, as opposed to an
imperative, programming style. How strongly this limits the applicability of ECA
rules to business processes hence also depends largely on the experience with
rule-based programming. The latter two limits are more a limitation of current
rule languages and expected to be solved in the near future.

6 Conclusion and Outlook

In this article we have analyzed the realization of business processes by means
of ECA rules. With a focus on control flow, we have presented an implementa-
tion of a concrete business process scenario in XChange. This work has greatly
influenced and advanced the development of XChange as a reactive language. In
particular, it has led to the introduction of a procedure notion, which is absent
in most other rule languages. Constructs for structuring rule sets in XChange
are an issue of ongoing development deserving refinement and further research.

Issues also deserving attention for future work regard exception handling in
connection with transactions and compensating actions, as well as issues relating
to process instances.

As this paper has shown, there is still a lot to be done for using ECA rules
in business processes. The first results of this paper are promising and give
requirements and guidelines for future work, in particular on language design.
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Abstract. A typical problem of the research area on Service-oriented
Architectures is the composition of a set of existing services with the
aim of executing a complex task. The selection and composition of the
services are based on a description of the services themselves and it often
exploits an abstract description of the system that we wish to build. A
distinction is made between the global and the individual points of view
of the interaction between the services. Interaction protocols (or chore-
ographies) capture the interaction as a whole, defining the rules that
entities should respect in order to guarantee the interoperability; they
do not refer to specific services but they specify the roles and the commu-
nication among the roles. Policies (behavioral interfaces in web service
terminology), instead, focus on communication from the point of view of
the individual services. We can find many works that aim at verifying if
a service can take part in a specific interaction, that is if its behavioral
interface is conformant to the global protocol. The idea of focussing on
a representation that captures solely the message exchange is, however,
not sufficient. It is not sufficient when one means to exploit the protocol
description for synthesizing an executable policy, that is to be supplied
to a service which, by itself, cannot take part to the interaction. In this
case it is necessary to take care of the interface between the new pol-
icy and the service. For being executable, the policy must, in fact, have
access to the internal state of the service, for instance, for building the
contents of the messages that will be exchanged with others. This can
be done by associating to the protocol description a description of a set
of “actions” (in a broad sense) that are not necessarily communicative
actions but that are necessary to tie the policy to the player. We will call
such actions capabilities. In this paper we present a preliminary study of
the concept of capability and an extension of WS-CDL, the choreography
language by W3C. We also introduce the notion of capability test.
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1 Introduction

In various application contexts there is a growing need of being able to compose
a set of heterogeneous and independent entities with the general aim of executing
a task, which cannot be executed by a single component alone. In an application
framework in which components are developed individually and can be based on
various technologies, it is mandatory to find a flexible way for gluing components.
The solution explored in some application scenarios is to compose entities based
on dialogue. This happens, for instance, in both the cases of web services and
of multi-agent systems (MAS). In the case of web services, for instance, the lan-
guage BPEL4WS [19] has become the de facto standard for building executable
composite services on top of already existing services by describing the flow of
information in terms of exchanged messages. On the other hand, the problem of
aggregating communicating agents into (open) societies is well-known in the re-
search area about MASs, where a lot of attention has been devoted to the issues
of defining interaction policies, verifying the interoperability of agents based on
dialogue, and checking the conformance of policies w.r.t. global communication
protocols [26, 16, 10].

The problem is highly complex and encompasses various skills such as: the
ability of describing the goal to be accomplished, the ability of describing the
solution (in terms of involved entities and their interactions), that of identifying
in the pool of available entities those which can solve subproblems, etc. From the
point of view of the scientific disciplines which are involved, a non- exhaustive
list includes: AOSE, MAS, WS, and software engineering.

As observed in recent work [25, 5], the MAS and WS research areas show
convergences in the methodology according to which systems of agents, on a
side, and composite services, on the other, are designed, implemented and ver-
ified. In both cases it is possible to distinguish the design of a system, which is
independent from the specific agents/services which will take part to the inter-
action, and the implementation or the identification of the specific entities that
will interact. The former level gives a global view of the system as a whole, in
which roles are identified and their interactions specified, so that it is possible to
verify global properties of the system. This high-level design can, for instance,
be done in UML, automata or Petri Nets in the case of agents, while in the case
of services it can be done in WS-CDL. The other level concerns the specification
of the interaction policy of the single entity. Differently than in the previous
case, now the perspective is that of the single agent/service, which might inter-
act with only a subset of the involved entities. This specification can coincide
with a real implementation (in BPEL, for services, or in some declarative lan-
guage, for agents). A lot of effort is being devoted to the problem of exploiting
these two levels of description for deciding in some automatic way whether a
service/agent respects some given interaction schema (conformance verification)
[12, 9] or whether a set of services/agents will be able to interact with each other
(interoperability) [3], without getting stuck in some deadlock condition.

The idea of focussing on a representation that captures solely the message
exchange is, however, not sufficient (in our opinion) in all those cases in which
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we mean to exploit this description for synthesizing an executable policy to be
supplied to an agent/service that wishes to take part to the interaction. In other
words, when a policy is to be supplied to an already existing party that does
not, itself, have one (policy) allowing it to take part to the interaction. In this
case it is necessary to take care of the interface between the new policy and the
agent/service. For being executable, the policy must, in fact, have access to the
internal state of the agent/service, for instance, for building the contents of the
messages that will be exchanged with others. This can be done by associating to
the protocol specification a description of a set of “actions” (in a broad sense)
that are not necessarily communicative actions but that are necessary to tie the
policy to the player. We will call such actions capabilities.

The term capability has recently been used by Padgham et al. [21] (further
extended in [22]), in the BDI framework, for identifying the “ability to react
rationally towards achieving a particular goal”. More specifically, an agent has
the capability to achieve a goal if its plan library contains at least one plan for
reaching the goal. The authors incorporate this notion in the BDI framework so
as to constrain an agent’s goals and intentions to be compatible with its capabil-
ities. This notion of capability is orthogonal w.r.t. what proposed in our work.
In fact, we propose to associate to a choreography (or protocol) specification,
aimed at representing an interaction schema among a set of yet unspecified peers,
a set of requirements of abilities. Such requirements (that we call capabilities)
specify “actions” (in a broad sense) that peers, willing to play specific roles in
the interaction schema, should exhibit. In order for a peer to play a role, some
reasoning must be performed for deciding if it matches the requirements.

In this perspective, our notion of capability resembles more closely (some-
times unnamed) concepts, that emerge in a more or less explicit way in various
frameworks/languages, in which there is a need for defining interfaces. One ex-
ample is Jade [14], the well-known platform for developing multi-agent systems.
In this framework policies are supplied as partial implementations with “holes”
that the programmer must fill with code when creating agents. Such holes are
represented by methods whose body is not defined. The task of the programmer
is to implement the specified methods, whose name and signature is, however,
fixed in the partial policy.

Another example is powerJava [6, 7], an extension of the Java language that
accounts for roles and institutions. Without getting into the depths of the lan-
guage, a role in powerJava represents an interlocutor in the interaction schema.
A role definition contains only the implementation of the interaction schema and
leaves to the role-player the task of implementing the internal actions. Such calls
to the player’s internal actions are named “requirements” and are represented
as method prototypes.

This paper presents a preliminary report about a work aimed at introducing
the concept of capability in the global/local system/entity specifications, in such
a way that capabilities can be accounted for during the reasoning processes that
are applied for dynamically building and customizing policies.
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The paper is organized as follows. Section 2 defines the setting of this work
and introduces the problem that we face. Moreover, a first example of protocol
(the well-known FIPA Contract Net protocol), that is enriched with capabilities,
is reported. Section 3 introduces the notion of capability test, it discusses an
approach to this verification making a comparison with systems in which this
notion is implicit. It also contains a description of various reasoning techniques
that can be associated with the capability test for performing a customization of
the policy being constructed. In order to make this proposal more concrete we
sketch in Section 4 a possible extension of WS-CDL [27] aimed at introducing
capability descriptions in web service choreographies. Conclusions follow.

2 Interaction protocols and capabilities

Multi-agent systems often comprise heterogeneous agents, that differ in the way
they represent knowledge about the world and about other agents, as well as
in the mechanisms used for reasoning about it. In general, every agent in a
MAS is characterized by a set of actions and/or a set of behaviors that it uses to
achieve a specific goal. In order to interact with the others, an agent specification
must describe also the communicative behavior. Concerning the specification of
interaction, according to Agent-Oriented Software Engineering [13], a distinction
is made between the global and the individual points of view of the interaction
between the various agents. The global viewpoint is captured by an abstract
protocol that contains the rules that must be followed by the society and it is
expressed by formalisms like AUML sequence diagrams [20]. In general, each
specification language allows the definition of a list of roles, which will be played
by some agents, and a set of communicative acts that they will exchange. The
local viewpoint expresses communication from the perspective of an agent, that
plays one of the roles and it is captured by the agent’s communication policy,
which is usually written in some executable language. In this context the problem
of verifying whether an agent’s interaction policy respects a given protocol is
extremely relevant. This problem is known as conformance test [1, 12, 3]. The
conformance test can be a means for guaranteeing a priori the interoperability
of a set of agents, each playing one of the roles described by a given protocol [3].

The framework that we have briefly outlined above shows convergences with
the research carried on in Service-oriented Computing. In this latter context the
role played by interaction protocols is in a way played by choreographies, while
the role of agents is played by web services (or peers). In order for a peer to take
part to a choreography it is necessary to check whether it is conformant to the
latter, in a very similar way to what is done in the case of agents. Also in this
application context choreography should entail interoperability [5, 9].

In this work we will, however, focus on the case in which a peer does not
have a valid policy but, despite this fact, we would like the interaction to take
place anyway. Of course, in order for this to happen, it is necessary that the peer
adopts a new interaction policy. If this scenario were set in an agent-framework,
one might think of enriching the set of behaviors of the agent, which failed the
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conformance test, by asking other agents to supply a correct interaction policy.
This solution has been proposed from time to time in the literature; recently
it was adopted in Coo-BDI architectures [2]. CooBDI extends the BDI (Belief,
Desire, Intention) model in such a way that agents are enabled to cooperate
through a mechanism, which allows them to exchange plans and which is used
whenever it is not possible to find a plan, for pursuing a goal of interest, by just
exploiting the local agent’s knowledge. The ideas behind the CooBDI theory
have been implemented by means of WS technologies, leading to CooWS agents
[8]. Another recent work in this line of research is [24]. Here, in the setting of the
DALI language, agents can cooperate by exchanging sets of rule that can either
define a procedure, or constitute a module for coping with some situation, or be
just a segment of a knowledge base. Moreover, agents have reasoning techniques
that enable them to evaluate how useful the new information is.

These techniques, however, cannot be directly imported in the context of
Service-oriented Computing. The reason is that, while in agent systems it is not
a problem to find out during the interaction that an agent does not own all
the necessary actions, when we compose web services it is fundamental that the
analogous knowledge is available before the interaction among the peers takes
place.

Going back to the situation in which a peer failed the conformance test, one
might think of using the protocol definition for supplying the service with a new
policy that is obtained directly from the definition of the role that the peer would
like to play. A policy skeleton could be directly synthesized in a semi-automatic
way from the protocol description. A similar approach has been adopted, in the
past, for synthesizing agent behaviors from UML specifications in [17]. In this
perspective, a problem arises: protocols only concern communication patterns,
i.e. the interactions of a peer with others, abstracting from all references to the
internal state of the player and from all actions/instructions that do not concern
communication. Nevertheless, in our framework we are interested in a policy
that the peer will execute and, for permitting the execution, it is necessary to
express to some extent also this kind of information. The conclusion is that if we
wish to use protocols for synthesizing policy skeletons, we need to specify some
more information, i.e. actions that allow us the access to the peer’s internal
state. Throughout this work we will refer to such actions as capabilities. In [17],
that we cited just above, it was up to the programmer to write the code of such
actions; the methodology that is described in that work is, in fact, aimed at
helping the design of a whole agent system. Differently than Mascardi et al., for
what concerns the design of the system, we consider only the specification of
interaction protocol but we would like the synthesis to produce an executable
policy without human intervention. To this aim it is necessary to perform a
different verification, i.e. that the peer has the capabilities which are required
by the role specification.

Checking whether a peer has the desired capabilities is, in a way, a comple-
mentary test w.r.t. checking conformance. With a rough approximation, when I
check conformance I abstract away from the behavior that does not concern the
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communication described by the protocol of interest, focussing on the interaction
with a set of other peers that are involved, whereas checking capabilities means
to check whether it is possible to tie the description of a policy to the execution
environment defined by the peer.

2.1 An example: the contract net protocol

For better explaining our ideas, in this section we consider as a choreography
the well-known FIPA ContractNet Protocol [11], pinpointing the capabilities
that are required to a peer which would like to play the role of Participant.
Figure 1 reports a UML version of the protocol, enriched with dotted rectangles
that represent capabilities.

Fig. 1. The FIPA ContractNet Protocol, represented by means of UML sequence dia-
grams, and enriched with capability specifications.

ContractNet is used in electronic commerce and in robotics for allowing enti-
ties, which are unable to do some task, to have it done. The protocol captures a
pattern of interaction, in which the initiator sends a call-for-proposal to a set of
participants. Each participant can either accept (and send a proposal) or refuse.
The initiator collects all the proposals and selects one of them. Figure 1 describes
the interactions between the Initiator and one of the Participants.

In this example we can detect three different capabilities, one for the role of
Initiator and two for the Participant. Starting from an instance of the concept
Task, the Participant must be able to evaluate it by performing the evaluate-
Task capability, returning an instance of the concept Proposal. Moreover, if its
proposal is accepted by the Initiator, it must be able to execute the task by us-
ing the capability executeTask, returning an instance of concept Result. On the
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other side, the Initiator must have the capability evaluateProposal that chooses
a proposal among those received from the participants.

In order to play the role of Participant a peer will, then, need to have the ca-
pabilities evaluateTask and executeTask, whereas it needs to have the capability
evaluateProposal if it means to play the role of Initiator. As it emerges from the
example, a capability identifies an action (in a broad sense) that might require
some inputs and might return a result. This is analogous to defining a method
or a function or a web service. So, for us, a capability will be specified by its
name, a description of its inputs and a description of its outputs. This is not
the only possible representation, for instance if we interpret them as actions, it
would make sense to represent also their preconditions and effects.

3 Checking capabilities

In a conformance test we exploit a schema of interaction, the choreography
or the protocol, given a priori. The idea that we mean to explore for checking
capabilities is to do something analogous for what concerns the internal behavior.
In particular, we propose to exploit a description of the required capabilities
(see the previous section), which act as connecting points between the external,
communicative behavior of the peer and its internal behavior.

The capability test obviously depends on the way in which the policy is devel-
oped and therefore it depends on the adopted language. In Jade [14] there is no
real capability test because policies already supply empty methods correspond-
ing to the capabilities, the programmer can just redefine them. In powerJava the
check is performed by the compiler, which verifies the implementation of a given
interface representing the requirements. For further details see [6], in which the
same example concerning the ContractNet protocol is described.

In the scenario that we have outlined in the previous section, the capability
test is done a priori w.r.t. all the capabilities required by the role specification,
however, the way in which the test is implemented is not predefined and can be
executed by means of different matching techniques. We could use a simple sig-
nature matching technique, like the one used in classical programming languages
and also by powerJava, as well as techniques that perform more flexible forms of
matching. We consider particularly promising to adopt semantic matchmaking
techniques proposed for matching web service descriptions with queries, based on
ontologies of concepts. The use of semantic matchmaking techniques allows the
matching of capabilities with different names, though connected by an ontology,
and with different numbers (and descriptions) of input/output parameters.

For instance, let us consider the evaluateProposal capability associated to the
role Initiator of the ContractNet protocol (see Figure 1). This capability has an
input parameter (a proposal) and is supposed to return a boolean value, stating
whether the proposal has been accepted or refused. A first example of flexible,
semantics-based matchmaking consists in allowing a service to play the part of
Initiator even though it does not have a capability of name evaluateProposal.
Let us suppose that evaluateProposal is a concept in a shared ontology. Then,
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if the service has a capability evaluate, with same signature of evaluateProposal,
and evaluate is a concept in the shared ontology, that is more general than
evaluateProposal, we might be eager to consider the capability as matching with
the description associated to the role specification.

Other forms of semantic matchmaking concern the input or output parame-
ters. For instance, in [23] the ontological reasoning is applied to the parameters
of a semantic web service, which are compared to a query. In the WSMO ini-
tiative [15], instead, different degrees of matching are formalized, which concern
only the output parameters of a service, that are compared to those in the query.

In the following we will exemplify our proposal by introducing, in an explicit
way, capabilities in WS-CDL. One way for performing the capability test in
this enriched WS-CDL could be to exploit already developed techniques for the
semantic matchmaking, such as those introduced above. Please, notice that at
this stage of the work our focus is not to define some new language and that the
enriched WS-CDL is just aimed at grounding our proposal to the reality of web
services. A first step in this research.

3.1 Reasoning on capabilities

In the previous section, we have described the capability test, showing how it is
possible to implement flexible forms of matching. This is, however, just a starting
point and further customization can be achieved.

A policy can be seen as a procedure with different execution traces. Each
execution trace corresponds to a branch in the policy. So an observation that we
can make is that it is quite likely that only a part of the capabilities associated
to a role will be used in a given execution trace. As an example, Figure 2 shows
three alternative execution traces for a given policy, which contain references
to different capabilities. In particular, one of the two highlighted traces exploits
capability C1 and capability C3, the other instead exploits C1 and C4. The third
possible execution trace contains only capability C2.

As a first consequence, we can think of a simplification of the capability test
in which only the execution traces concerning the specific call, that the service
would like to enact, are considered. This set, which will probably consist of a
single trace, will tell us which capabilities are actually necessary in our execution
context (i.e. given the specified input parameter values). In this perspective, it
is not compulsory that the service has all the capabilities associated to the role
but it will be sufficient that it has those used in this set of execution traces.
For instance and with reference to Figure 2, suppose that for some given input
values, only the first execution trace (starting from left) might become actually
executable. This trace relies on capabilities C1 and C3 only: it will be sufficient
that our service owns such capabilities for making the policy call executable by
it. If a declarative representation of the policy were given, e.g. see [4], it would
be possible to perform a rational inspection of the policy, in which the execution
is simulated. During the simulation we could focus on the execution traces that
allow the service to complete the interaction for the inputs of the given call. As
a last step we could, then, collect the capabilities used in these traces only (C1,
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Goal1 Goal1

C4C3

C1

No Goal1

C1
C2

Fig. 2. Execution traces for a policy skeleton: two traces allow to reach a final state in
which goal1 is true but exploiting different capabilities.

C3, and C4 but not C2). In this way, we could restrict the capability test to the
subset of capabilities associated to the role, which have been identified during
the simulation.

On the other hand, it is also possible to generalize this approach and deter-
mine the set of all the execution traces that can possibly be engaged by a given
service, independently from its specific inputs. In fact, having the possibility of
inspecting the possible evolutions of a policy, it would be possible to single out
those execution traces that require only the subset of capabilities that the service
can execute. In this way, the policy can be customized w.r.t. the peculiarities of
the service, guaranteeing the success under determined circumstances.

A third possible reasoning task consists on focussing on those execution traces
that, after the execution, make a certain condition become true in the service
internal state. For instance, with reference to Figure 2, two out of the three
possible executions lead to a final situation in which goal1 holds. Out of this set
the reasoning engine could, then, single out those interactions that can actually
be executed given the set of capabilities that the service has available.

Last but not least, it is possible that the set of capabilities of a service is not
completely predefined but it depends on the context and on privacy or security
policies defined by the user. Therefore, I might have a capability which I do not
want to use in that circumstance. Also this kind of reasoning can be integrated
in the capability test. In this perspective, it would be interesting to explore
the use of the notion of opportunity proposed by Padmanabhan et al. [22] in
connection with the concept of capability (but with the meaning proposed in
[21], see Section 1).

4 A case study: introducing capabilities in WS-CDL

As a case study, we introduce an example in the web services scenario. In this
field, the most important formalism used to represent interaction protocols is
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WS-CDL (Web Services Choreography Description Language) [27]: an XML-
based language that describes peer-to-peer collaborations of heterogeneous en-
tities from a global point of view. In this section, we propose a little extention
to the WS-CDL definition by adding capability specifications in order to en-
able the automatic synthesis of policies described in the previous sections. The
schema that defines this extension can be found at http://www.di.unito.it/~
alice/WSCDL Cap v1/.

1 <silentAction roleType="Participant">

2 <capability name="evaluateTask">

3 <input>

4 <parameter variable="cdl:getVariable(’tns:t’,’’,’’)"/>

5 </input>

6 <output>

7 <parameter variable="cdl:getVariable(’tns:p’,’’,’’)"/>

8 </output>

9 </capability>

10 </silentAction>

Fig. 3. Representing a capability in the extended WS-CDL. The tag input is used to
define one of the input parameters, while output is used to define one of the output
parameters.

In this scenario an operation executed by a peer often corresponds to an
invocation of a web service, in a way that is analogous to a procedure call.
Coherently, we can think of representing the concept of capability in the WS-
CDL extension as a new tag element, the tag capability (see for instance Figure 3),
which is characterized by its name, and its input and output parameters. Each
parameter refers to a variable defined inside the choreography document. The
notation variable="cdl:getVariable(’tns:t’,’’,’’)" used in Figure 3 is a
reference to a variable, according to the definition of WS-CDL. In this manner
inputs and outputs can be used in the whole WS-CDL document in standard
ways (like Interaction, Workunit and Assign activities). In particular parameters
can be used in guard conditions of Workunits inside a Choice activities in order
to choose alternative paths (see below for an example).

A capability represents an operation (a call not a declaration) that must be
performed by a role and which is non-observable by the other roles; this kind of
activity is described in WS-CDL by SilentAction elements. The presence of silent
actions is due to the fact that WS-CDL derives from the well-known pi-calculus
by Milner et al. [18], in which silent actions represent the non-observable (or
private) behavior of a process. We can, therefore, think of modifying the WS-
CDL definition by adding capabilities as child elements of this kind of activity.
Returning to Figure 3, as an instance, it defines the capability evaluateTask for
the role Participant of the Contract Net protocol. More precisely, evaluateTask
is defined within a silent action and its definition comprises its name plus a list
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of inputs and outputs. The tags capability, input, and output are defined in our
extension of WS-CDL. It is relevant to observe that each parameter refers to a
variable that has been defined in the choreography.

1 <choice>

2 <workunit name="informResultWorkUnit"

3 guard="cdl:getVariable(’tns:rst’, ’’, ’’, ’tns:Participant’) !=

’failure’ ">

4 <interaction name="informResultInteraction">

5 ...

6 </interaction>

7 </workunit>

8 <interaction name="failureExecuteInteraction">

9 ...

10 </interaction>

11 </choice>

Fig. 4. Example of how output parameters can be used in a choice operator of a
choreography.

Choreographies not only list the set of capabilities that a service should have
but they also identify the points of the interaction at which such capabilities
are to be used. In particular, the values returned by a call to a capability (as a
value of an output parameter) can be used for controlling the execution of the
interaction. Figure 4 shows, for example, a piece of a choreography code for the
role Participant, containing a choice operator. The choice operator allows two
alternative executions: one leading to an inform speech act, the other leading
to a failure speech act. The selection of which message will actually be sent is
done on the basis of the outcome, previously associated to the variable rst, of the
capability executeTask. Only when such variable has a non-null value the inform
will be sent. The guard condition at line 3 in Figure 4 amounts to determine
whether the task that the Participant has executed has failed.

To complete the example we sketch in Figure 5 a part of the ContractNet
protocol as it is represented in our proposal of extension for WS-CDL. In this
example we can detect three different capabilities, one for the role of Initiator
and two for the role Participant. Starting from an instance of the type Task, the
Participant must be able to evaluate it by performing the evaluateTask capability
(lines 4-9), returning an instance of type Proposal. Moreover, it must be able to
execute the received task (if its proposal is accepted by the Initiator) by using
the capability executeTask (lines 26-31), returning an instance of type Result.
On the other side, the Initiator must have the capability evaluateProposal, for
choosing a proposal out of those sent by the participants (lines 15-20).

As we have seen in the previous sections, it is possible to start from a rep-
resentation of this kind for performing the capability test and check if a service
can play a given role (e.g. Initiator). Moreover, given a similar description it is
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1 <sequence>

2 <interaction name="callForProposalInteraction"> ...

3 </interaction>

4 <silentAction roleType="Participant">

5 <capability name="evaluateTask">

6 <input> ... </input>

7 <output> ... </output>

8 </capability>

9 </silentAction>

10 <choice>

11 <workunit name="proposeWorkUnit" guard=... >

12 <sequence>

13 <interaction name="proposeInteraction">

14 </interaction>

15 <silentAction roleType="Initiator">

16 <capability name="evaluateProposal">

17 <input> ... </input>

18 <output> ... </output>

19 </capability>

20 </silentAction>

21 <choice>

22 <workunit name="acceptProposalWorkUnit" guard=... >

23 <sequence>

24 <interaction name="proposeInteraction">

25 </interaction>

26 <silentAction roleType="Initiator">

27 <capability name="executeTask">

28 <input> ... </input>

29 <output> ... </output>

30 </capability>

31 </silentAction>

32 <choice>

33 <workunit name="informResultWorkUnit"

34 guard=... >

35 <interaction name="informResultInteraction">

36 </interaction>

37 </workunit>

38 <interaction name="failureExecuteInteraction">

39 </interaction>

40 </choice>

41 </sequence>

42 </workunit>

43 <interaction name="rejectProposalInteraction">

44 </interaction>

45 </choice>

46 </sequence>

47 </workunit>

48 <interaction name="evaluateTaskRefuseInteraction">

49 </interaction>

50 </choice>

51 </sequence>

Fig. 5. A representation of the FIPA ContractNet Protocol in the extended WS-CDL.
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also possible to synthesize the skeleton of a policy, possibly customized w.r.t.
the capabilities and the goals of the service that is going to play the role. To this
aim, it is necessary to have a translation algorithm for turning the XML-based
specification into an equivalent schema expressed in the execution language of
interest.

5 Conclusions

This work presents a preliminary study aimed at allowing the use of public
choreography specifications for automatically synthesizing executable interac-
tion policies for peers that would like to take part to an interaction but that do
not own an appropriate policy themselves. To this purpose, as we have explained
also by examples, it is necessary to link the abstract, communicative behavior,
expressed at the protocol level, with the internal state of the role player by means
of actions that might be non-communicative in nature (capabilities). It is impor-
tant, in an open framework like the web, to be able to take a decision about the
possibility of taking part to a choreography before the interaction begins. This
is the reason why we have proposed the introduction of the notion of capability
at the level of choreography specification. A capability is the specification of an
action in terms of its name, and of its input and output parameters. Given such
a description it is possible to apply matching techniques of various kind in order
to decide whether a service has the capabilities required for playing a role of
interest. In particular, we have proposed the use of semantic matchmaking tech-
niques, such as those developed by WSMO or those proposed by Sycara et al.
[23], for matching web service descriptions to queries. This can be done because
in the application scenarios for which such techniques were developed, services
are represented as procedures with a name and with a list of input and output
parameters.

We have, furthermore, shown how, given a (possibly) declarative representa-
tion of the policy skeletons, obtained from the automatic synthesis process, it is
possible to apply further reasoning techniques for customizing the implemented
policy to the specific characteristic of the service that will act as a player or
for personalizing the interaction according to the user’s desires. This goal can,
for instance, be achieved by applying techniques like procedural planning, that
we have already used in previous work concerning the personalization of the
interaction with a web service [4].

Presently, we are working at more thorough formalization of the proposal that
will be followed by the implementation of a system that turns a role represented
in the proposed extension of WS-CDL into a executable composite service, for
instance represented in BPEL. BPEL is just a possibility, actually any program-
ming language by means of which it is possible to develop web services could
be used. We plan to face the problem of matchmaking in an incremental way,
starting from a simple syntactic matchmaking and passing to forms of semantic
matchmaking in subsequent steps.
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Abstract. We argue that Semantic Web reasoning is an ideal tool for analyzing 
gene expression profiles and the resulting sets of differentially expressed genes 
produced by high-throughput microarray experiments, especially since this 
involves combining not only very large, but also semantically and structurally 
complex data and knowledge sources that are inherently distributed on the Web. 
In this paper, we describe an initial implementation of a full-fledged system for 
integrated reasoning about biological data and knowledge using Sematic Web 
reasoning technology and apply it to the analysis of a public pancreatic cancer 
dataset produced in the Pollack lab at Stanford.  

1 Introduction and motivation 

The recent breakthroughs in genomics have allowed new rational approaches to the 
diagnosis and treatment of complex diseases such as cancer or type 2 diabetes. The 
role of bioinformatics in this domain has become essential, not just for managing the 
huge amounts of diverse data available, but also for extracting biological meaning out 
of heterogeneous data produced by different labs using widely different experimental 
techniques. Although the completion of the sequencing of the genomes of a large 
number of organisms (including  the Human Genome) has identified the (more or 
less) complete lists of genes of these organisms, we only have a partial view of the 
complexity of the interactions among these genes. 

Thus, determining the molecular-level details of complex diseases is a challenging 
issue. Traditional genetic methods are inapplicable since, typically, there is no single 
gene responsible for the disease. Rather, a complex interplay of genetic and metabolic 
pathways are usually involved, so that many different genetic (possibly somatic) 
defects1 may affect the same pathway. Despite the large body of existing biological 
knowledge, even the pathways are only partially known and, even worse, may interact 
in very complex ways. 

The study of complex diseases has been revolutionized by the advent of whole-
genome measurements of gene expression using microarrays. These allow the 
determination of gene expression levels of virtually all genes of a given organism in a 
variety of different samples, for example coming from normal and diseased tissues. 

                                                           
1 Such as Single Nucleotide Polymorphisms (SNP), chromosomal translocations, chromosomal 

segment amplifications or deletions, etc. 



However, the initial enthusiasm related to such microarray data has been tempered 
by the difficulty in their interpretation. It has become obvious that additional available 
knowledge has to be somehow used in the data analysis process. However, the 
complexity of the types of knowledge involved renders any known data analysis 
algorithm inapplicable. Thus, we need to integrate at a deep semantic level the 
existing domain knowledge with the partial results from data analysis. Semantic Web 
technology, and especially the reasoning facilities that it will offer turn out to be 
indispensable in the biological domain at all levels: 

- At the lower data access level, we are dealing with huge data- and knowledge 
bases that are virtually impossible to duplicate on a local server. A mediator-
type architecture [16] would therefore be useful for integrating the various 
resources and for bridging their heterogeneity. 

- At the level of data schemas, we frequently encounter in this domain very 
complex semi-structured data sources – accessing their contents at a semantic 
level requires precise machine-interpretable descriptions of the schemas. 

- Finally, the data and knowledge refer to complex conceptual constructions, 
which require the use of common domain ontologies for bridging the semantic 
heterogeneities of the sources. 

In this paper, we describe an initial attempt at developing a full-fledged system for 
integrated reasoning about biological data and knowledge using Semantic Web 
reasoning technology. The system is designed as an open system, able to quickly 
accommodate various data sources of virtually all types (semi-structured, textual, 
databases, etc.). At this time, we have a working system prototype that uses the state-
of-the-art XML query language XQuery [9] for implementing the wrappers to the 
Web-based sources (either in XML or possibly non-well-formed HTML), the Flora2 
[10] F-logic implementation for reasoning and a Tomcat-based implementation of the 
Web application server.  

2 The pancreatic cancer dataset  

In the following we describe an application of the technology to the analysis of a  
public pancreatic cancer dataset produced in the Pollack lab at Stanford [1]. 

Despite the enormous recent progress in understanding cancer at a molecular level, 
the precise details are still elusive for many types of carcinomas. Pancreatic cancer is 
a particularly aggressive disease, with a very poor prognosis, requiring a more precise 
understanding of its molecular pathogenesis. The technological progress initiated by 
the introduction of gene expression microarrays about a decade ago has enabled large 
scale whole genome studies with the aim of identifying disease-specific genes. 
Although limited by the relatively low number of samples (due to the large costs of 
the technology), these gene expression studies have revealed a much more complex 
molecular-level picture than previously expected. Tens to a few hundreds genes were 
found to be differentially expressed in the samples analyzed, and their precise roles in 
the (signaling) pathways leading to cancer are only partially known. Even worse, it 
seems extremely difficult to discern between genetic abnormalities that play a causal 
role in oncogenesis and those that are merely side-effects. Obviously, the task of 
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identifying new therapeutic targets depends essentially on being able to identify the 
causal details. 

The results of published studies [1,2,3] have emphasized the complexity of the 
genetic abnormalities involved in pancreatic cancer. There seem to be few, if any, 
amplifications or deletions common to all patients thus leading to a more complex 
picture of the disease in which perturbations of distinct components of certain key 
pathways are triggered in various different ways, while leading to similar phenotypes.  

The fact that our knowledge of the various signaling pathways involved is only 
partial makes the task of identifying the precise details of oncogenesis even more 
difficult, requiring a combination of all the available data and knowledge.  

More precisely, Bashyam et al. [1] have performed simultaneous array 
Comparative Genomic Hybridization and microarray expression measurements on a 
set of 23 human pancreatic cell lines (with two additional normal-normal reference 
array-CGH measurements) using cDNA microarrays containing 39632 human cDNAs 
(representing about 26000 named human genes). Array-CGH measurements involved 
co-hybridizing Cy5-labeled genomic DNA from each cell line along with Cy3-labeled 
sex-matched normal leukocyte DNA. Expression profiling was performed with 
reference RNA derived from 11 different human cell lines. 

We retrieved the normalized intensity ratios from the Stanford Microarray 
Database [5] and used the CGH-Miner software [4] as described in [1] to identify 
DNA copy number gains and losses. Expression ratios were called significant if 
they either exceed the threshold θEXPR+ = 2, or were below θEXPR– = 0.5. 

Since for certain microarray spots expression ratios may be poorly defined (mainly 
due to low intensities in one of the two channels), we only retained genes whose 
expression ratios were well measured in at least 14 of the 23 samples. Unlike 
Bashyam et al. who performed mean centering of the (log-)expression ratios of the 
genes (to emphasize their relative levels among samples),  we avoid mean-centering 
or variance normalization of the ratios since we are interested in identifying 
systematically over/under-expressed genes, the expression level being important for 
this purpose. Finally, we constructed two lists of “common” up- and respectively 
down-regulated genes Common+ and Common−, which we use in the following. 

3 The data sources 

The architecture of the application is presented in Figure 2 in the Appendix. The 
application uses various data and knowledge sources, ranging from semi-structured 
data to databases of literature-based paper abstracts. 

We initially integrated the following sources: 

NCBI/Gene. The e-utilities [11] interface to the NCBI Gene database [12] returns 
gene-centred information in XML format. We extracted using an XQuery wrapper 
gene symbols, names, descriptions, domains (originating from Pfam or CCD), and 
literature references. We also extracted the Gene Ontology (GO) [13] annotations of 
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the genes, as well as the pathways2 and interactions3 in which these are known to be 
involved. 

TRED. The Transcriptional Regulatory Element Database TRED [8] contains 
knowledge about transcription factor binding sites in gene promoters. Such 
information is essential for determining potentially co-expressed genes and for 
linking them to signaling pathways. 

Biocarta [7] is a pathway repository containing mostly graphical representations 
of pathways contributed by an open community of researchers. We have developed an 
XQuery wrapper that currently extracts the lists of genes involved in the various 
pathways. 

Pubmed. Literature references to genes and their interactions extracted from 
Pubmed abstracts [14] will also be integrated into the system. 

The above sources contain complementary information about the genes, their 
interactions and pathways, neither of which can be exploited to their full potential in 
isolation. For example, the GO annotations of genes can be used to extract the main 
functional roles of the genes involved in the disease under study. Many such genes 
are receptors or their ligands, intra-cellular signal transducers, transcription factors, 
etc. And although many of these genes are known to be involved in cancer (as 
oncogenes or tumor suppressors), the GO annotations will not allow us to determine 
their interactions and pathway membership. These can only be extracted from explicit 
interaction or pathway data-sources, such as TRED, BIND, Biocarta, etc. 

4 A unified model of the data sources 

In order to be able to jointly query the data sources, a unified model is required. We 
used the prototype system described in [17] to implement a mediator over the above-
mentioned data sources. The system uses F-logic [23] for describing the content of 
information sources as well as the domain ontology for several important reasons. 

First, although the distinctive feature of the Semantic Web is reasoning, the various 
related W3C standards are not easy to use by a reasoner, especially due to their 
heterogeneity (XML, RDF, RuleML, etc.). A uniform internal level, optimized for 
efficiency is required for supporting inference and reasoning. The architecture of our 
system therefore separates a so-called “public” level from the internal level. The 
public level refers to the data, knowledge and models exchanged on the Web and 
between applications and conforms to the current and emerging Web standards such 
as XML, RDF(S), RuleML, etc. F-logic is used at the “internal” level. 

Second, the tabling mechanism of Flora2 4 is essentially equivalent to the Magic 
Sets method [24] for bottom-up evaluation in database query engines, which, 
combined with top-down evaluation, can take advantage of the highly optimized 

                                                           
2 Originating from KEGG or Reactome. 
3 Taken e.g. from BIND or HPRD. 
4 Flora2 is the F-logic implementation we use. 
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compilation techniques developed for Prolog, resulting in a very efficient deductive 
engine. 

Moreover, F-logic combines the logical features of Prolog with the frame-oriented 
features of object-oriented languages, while offering a more powerful query language 
(allowing e.g. aggregation and meta-level reasoning about the schema). Last but not 
least, F-logic is widely used in the Semantic Web community [18,19,20]. However, 
we also consider the possibility of using Xcerpt [21] at this level. 

4.1 Mapping rules 

Since the sources are heterogeneous, we use so-called “mapping rules” to describe 
their content in terms of a common representation or ontology. For example, we can 
retrieve direct interactions either from the gene-centred NCBI Gene database, or from 
TRED: 
di(I):direct_interaction[gene->G1, other_gene->G2, int_type->IntType, source->'ncbi_gene',  

description->Desc, pubmed->PM] :– 
query_source('ncbi_gene_interactions', 'bashyam')@query, 
I:interaction[gene->G1, other_gene->G2, description->Desc,  

pubs->PM]@'ncbi_gene_interactions', 
if (str_sub('promoter',Desc,_)@prolog(string)) 

        then IntType = 'p-d' 
        else IntType = 'p-p'. 
di(I):direct_interaction[gene->G1, other_gene->G2, int_type->IntType, source->'tred'] :– 

query_source('tred', 'bashyam')@query, 
I:interaction[tf->G1, gene->G2]@'tred', 
IntType = 'p-d'. 

The common representation refers to direct interactions by the direct_interaction 
Flora2 object. We distinguish between two types of interactions: 

- protein-to-DNA (‘p-d’), which refers to transcription regulatory influences 
between a protein and a target gene, and 

- protein-to-protein (‘p-p’), which comprises all other types of interactions. 
The distinction is important since the gene expression data analyzed reveals only 

changes in expression levels. Thus, while the protein-to-DNA interactions could in 
principle be checked against the expression data, the protein-to-protein interactions 
are complementary to the expression data5 and could reveal the cellular functions of 
the associated proteins. 

While certain types of knowledge are more or less explicit in the sources (for 
example, the interaction type is ‘p-d’ if the description of the interaction contains the 
substring ‘promoter’), in other cases we may have to describe implicit knowledge 
about sources (i.e. knowledge that applies to the source but cannot be retrieved from it 
– for example, the TRED database contains only interactions of type ‘p-d’, but this is 
nowhere explicitly recorded in the data). 

                                                           
5 i.e. cannot be derived from it. 
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4.2 Model rules 

Although in principle the wrappers and the mapping rules are sufficient for being able 
to formulate and answer any query to the sources, it is normally convenient to 
construct a more complex model, that is as close as possible to the conceptual model 
of the users (molecular biologists/geneticists in our case). This is achieved using so 
called “model rules” which refer to the common representation extracted by the 
mapping rules to define the conceptual view (model) of the problem. 

For example, we may want to query the system about “functional” interactions 
(which are not necessarily direct interactions). More precisely, a functional 
interaction between two genes can be either due to a direct interaction, or to the 
membership in the same pathway, or to their co-reference in some literature abstract 
from Pubmed: 
pi(I1,I2):pathway_interaction[gene->G1, other_gene->G2, int_type->IntType,  

   source->[Src1,Src2], pathway->P, role(G1)->R1, role(G2)->R2] :− 
I1:pathway[name->P, gene->G1, gene_description->GN1, role(G1)->R1, source->Src1], 
I2:pathway[name->P, gene->G2, gene_description->GN2, role(G2)->R2, source->Src2], 
interaction_type(R1,R2,IntType). 

interaction_type(target_gene, target_gene, coexpression) :− !. 
interaction_type(target_gene, Role2, transcriptional) :− Role2 \= target_gene, !. 
interaction_type(Role1, target_gene, transcriptional) :− Role1 \= target_gene, !. 
interaction_type(Role1, Role2, same_pathway) :− Role1 \= target_gene, Role2 \= target_gene, !. 

fi(I):functional_interaction[gene->G1, other_gene->G2, int_type->IntType, source->Src] :− 
I:direct_interaction[gene->G1, other_gene->G2, int_type->IntType, source->Src] 
; I:pathway_interaction[gene->G1, other_gene->G2, int_type->IntType, source->Src] 
; I:literature_interaction[gene->G1, other_gene->G2, int_type->IntType, source->Src].   

We may also define classes of genes based on their GO annotations. For example, 
the following rules extract receptors, ligands and respectively transcription regulators: 
r(I):gene_role[gene->G, category->C, role->receptor, source->Src] :− 

I:gene_category[gene->G, category->C, source->Src], 
str_sub('receptor',C,_)@prolog(string), 
str_sub('activity',C,_)@prolog(string). 

r(I):gene_role[gene->G, category->C, role->ligand, source->Src] :− 
I:gene_category[gene->G, category->C, source->Src], 
str_sub('receptor',C,_)@prolog(string), 
( str_sub('binding',C,_)@prolog(string) ; 
  str_sub('ligand',C,_)@prolog(string) ). 

r(I):gene_role[gene->G, category->C, role->transcription_regulator, source->Src] :− 
I:gene_category[gene->G, category->C, source->Src], 
( str_sub('DNA binding',C,_)@prolog(string) ; 
  str_sub('transcription',C,_)@prolog(string) ). 

Such classes of genes can be used to “fill in” templates of signaling chains, such as 
ligand � receptor � signal transducer �…� transcription factor, which could in principle be 
reconstructed using knowledge about interactions: 
generic_signaling_chain_interaction(ligand, receptor, 'p-p'). 
generic_signaling_chain_interaction(receptor, signal_transducer, 'p-p'). 
generic_signaling_chain_interaction(signal_transducer,  signal_transducer, 'p-p'). 
generic_signaling_chain_interaction(signal_transducer, transcription_factor, 'p-p'). 
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generic_signaling_chain_interaction(transcription_factor, target_gene, 'p-d'). 
generic_signaling_chain_interaction(modulator, receptor, 'p-p'). 
generic_signaling_chain_interaction(modulator, signal_transducer, 'p-p'). 
generic_signaling_chain_interaction(modulator, transcription_factor, 'p-p'). 

signaling_chain(sig_chain(G), G, Role) :−  
Role = receptor, 
_:gene_role[gene->G, role->Role]. 

signaling_chain(S, G2, Role2) :−  
signaling_chain(S, G1, Role1), 
generic_signaling_chain_interaction(Role1, Role2, IntType), 
_:direct_interaction[gene->G1, other_gene->G2, int_type->IntType, source->Src], 
_:gene_role[gene->G2, role->Role2]. 

Note that the signaling chains are initialized with receptors, since these are the 
starting points of signaling cascades and are typically affected in most cancer samples 
(including our pancreatic cancer dataset). 

In our cancer dataset analysis application, the transcription factors play an 
important role, since their gene targets’ co-expression can reveal the groups of genes 
that are differentially co-regulated in the disease: 
tf_binding(G1, G2, IntType) :− 

_:gene_role[gene->G1, category->C1, role->transcription_regulator], 
 _:direct_interaction[gene->G1, other_gene->G2, int_type->IntType, source->Src],  
_:gene_list[gene->G2, list->common]. 

Figure 1 below shows the graph generated by the system in response to the 
following query (Cytoscape [22] is used for visualization): 

?- show_graph(${tf_binding(TF,G,IntType)}, [TF,G,IntType]). 

5 Conclusions and future work  

Our initial experiments confirmed the feasibility of our approach and lead to a 
number of interesting observations. Although all processing was performed in-
memory, the system was able to deal with the complete data-sources mentioned above 
for the selection of “common” genes (359 genes): 

- NCBI Gene interactions: 2239 
- TRED interactions: 10717 
- Biocarta gene to pathway membership relations: 5493 
- NCBI gene to pathway membership relations: 622 
- Other pathway membership relations: 5095 
- GO annotations: 2394 
- Domains: 614. 
From a certain perspective, the approach is a combination of remote-source 

mediation and data-warehousing. As in a mediation approach, only the relevant 
entries of remote data sources are retrieved, but these are stored in a local warehouse 
by the wrappers (in XML format) to avoid repetitive remote accesses over the Web. 
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Figure 1. Transcription regulatory relationships among “common” genes in the 
Bashyam et al. pancreatic cancer dataset (arrows: ‘p-d’, undirected edges: ‘p-p’ 
interactions) 

Such exploratory queries involving large datasets and combinatorial reasoning 
typically have slow response times (typically seconds to minutes if the relevant 
sources have been accessed previously and are therefore in the local warehouse; if 
not, response times depend on the size of the data to be transferred from remote 
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sources and on the connection speed). However, as far as we know, other existing 
approaches are either slower6 or cannot deal with such datasets at all. 

Since reasoning in general is based on combining knowledge, Semantic Web 
reasoning will have to deal with combining knowledge distributed on the Web. The 
distributed nature of relevant knowledge in turn places significant limitations on the 
reasoners, due to the limited data transfer speeds of the current Web. Thus, it appears 
that future Semantic Web reasoning systems will be placed between two extremes, 
depending on the scope of the knowledge relevant to a query. At one extreme, there 
will be general, Google-like systems that will use local warehouses of the entire Web 
for answering semantic queries. At the other extreme, Web browsers will be enhanced 
with (semantic) reasoning capabilities, but the reasoning will be performed on a 
single Web page only. Our approach comes somehow in between the two extremes: 
the relevant and frequently used sources and Web pages are stored in a local 
warehouse allowing more sophisticated queries than in the “browser only” setting.  

We have also tried to implement fragments of the above scenario using XQuery 
not just for the wrappers, but also for the integrated model. (In our experiments, we 
have used the qizxopen [9] implementation of XQuery. The general idea consisted in 
implementing the reasoning rules as XQuery functions.) Although the efficiency and 
memory consumption are comparable to those of our F-logic-based system, using a 
procedural query language like XQuery posed significant problems. For example, the 
following XQuery function retrieves the transcription regulatory interactions 
involving common genes: 
declare function local:select-NCBI_Gene-tranreg_interactions_common($NCBI_Gene_common 
as node(), $common_genes as xs:string  *) as node() * 
{ 
<RESULTS> 
{ 

for $int in $NCBI_Gene_common//interaction, 
     $g1 in $common_genes[. = string($int/gene)], 
     $g2 in $common_genes[. = string($int/other_gene)] 
let $g := $int/../.. 
where contains(lower-case(string($g/Gene_Ontology/GO_category/GO_annot/GO)), 
"transcription") 
return 
<transcription_regulator_interaction_common>{$int/*}</transcription_regulator_interaction_com
mon> 

} 
</RESULTS> 
} 

Note the rather complex way of performing simple operations such as joins. But 
even if we ignore such syntactic complications, we would have to write a separate 
XQuery function for each possible instantiation pattern of a given rule head, leading 
to a cumbersome and hard to modify program (a modification of a rule would require 
synchronized modifications in all associated XQuery functions). 

Finally, there are certain technical issues whose improvement would lead to a 
significantly better Semantic Web reasoning system: 

- Query planning 

                                                           
6 In the case of systems based on plain Prolog (with no tabling or other similar optimizations). 
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- Streaming 
- Source capabilities 
- Support for (semi-)automated development of wrappers. 
In the case of large data sources, as in the biological domain (giga- to terrabytes), it 

is obviously impossible to retrieve the entire content of such sources before starting 
reasoning. Also, if additional knowledge is available about the sources, some source 
accesses may be avoided altogether. Therefore, dealing with information sources 
requires a certain form of query planning, i.e. the ability of constructing and 
reasoning about alternative sequences of source accesses (plans) before actually 
querying these sources. Also, streaming the query responses may allow starting 
processing before the entire response is retrieved. 

Since queries can involve several different information sources, they will have to 
be to be split into sub-queries that can be treated by the separate information sources. 
Since each information source may have its own (Web accessible) interface, we need 
to explicitly represent the capabilities of these interfaces. As opposed to traditional 
database query languages, such Web sources provide only limited query capabilities. 
For example, a specific Web interface may allow only certain types of selections and 
may also require certain parameters to be inputs (i.e. known at query time). These 
source capabilities would have to be taken into account during query planning. 

From the biological point of view, the system has proved to be very useful for 
creating a global “picture” of the interactions among the genes differentially 
expressed in pancreatic cancer. The large number (359) of these genes 7 would have 
made the task extremely difficult, if not impossible for a human exploration of the 
data sources. For example, note the involvement of: 8 

- the Epidermal Growth Factor Receptor EGFR, known to be involved in any 
cancers  

- BCL2, a gene involved in the apoptotic response of cells (note that the down-
regulation of BCL2 in pancreatic cancer is quite unusual for an anti-apoptotic 
gene, since it is normally over-expressed in other tumor types [15]) 

- the transcription factors FOS, MYB, LEF1 
- the metalloproteinases MMP3, and MMP7 (involved in tissue remodeling, 

invasion, tumor progression, metastasis and tumor initiation – in the case of 
MMP3) 

- the nuclear receptor PPARG, a regulator of differentiation known to be 
involved in cancer and PPARGC1A, its coactivator. 

The biological interpretation of the results is outside the scope of this paper and 
will be discussed elsewhere in a specialized paper. 

 
Acknowledgements. I am grateful to Doina Tilivea for her contribution in 
implementing the F-logic system [17] and to Anca Hotaran for contributing to the 
development of the XQuery wrappers.  

                                                           
7 Amounting to 64261

2
359

=






  potential interactions. 

8 See Figure 1. 

Semantic Web Reasoning for Analyzing Gene Expression Profiles     85



6 References 

1. Bashyam MD et al.Array-based comparative genomic hybridization identifies 
localized DNA amplifications and homozygous deletions in pancreatic 
cancer.Neoplasia. 2005 Jun;7(6):556-62 

2. Heidenblad M et al. Genome-wide array-based comparative genomic hybridization 
reveals multiple amplification targets and novel homozygous deletions in pancreatic 
carcinoma cell lines. Cancer Res. 2004 64(9):3052-9. 

3. Heidenblad M et al. Microarray analyses reveal strong influence of DNA copy number 
alterations on the transcriptional patterns in pancreatic cancer: implications for the 
interpretation of genomic amplifications. Oncogene. 2005 Mar 3;24(10):1794-801. 

4. Wang P, Kim Y, Pollack J, Narasimhan B, Tibshirani R. A method for calling gains 
and losses in array CGH data. Biostatistics. 2005 Jan;6(1):45-58. 

5. Sherlock G. et al. The Stanford Microarray Database. Nucleic Acids Research, 29:152-
-155, 2001. http://genome-www5.stanford.edu 

6. Bhattacharjee et al. Classification of human lung carcinomas by mRNA expression 
profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA. 
2001 Nov. 20;98(24):13790-5. 

7. Biocarta. www.biocarta.com 
8. Fang Zhao, Zhenyu Xuan, Lihua Liu, Michael Q. Zhang. TRED: a Transcriptional 

Regulatory Element Database and a platform for in silico gene regulation studies. 
Nucleic Acids Res. 2005 January 1; 33(Database Issue): D103–D107. 

9. Qizxopen. http://www.xfra.net/qizxopen/ 
10. Yang G., Kifer M., Zhao C. FLORA-2: A Rule-Based Knowledge Representation and 

Inference Infrastructure for the Semantic Web. In Second International Conference on 
Ontologies, Databases and Applications of Semantics (ODBASE), Catania, Sicily, 
Italy, November 2003.  http://flora.sourceforge.net/ 

11. NCBI e-utilities. http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html 
12. NCBI Gene. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene 
13. Ashburner M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 

2000 May;25(1):25-9. http://www.geneontology.org 
14. Pubmed. http://www.ncbi.nih.gov/entrez/query.fcgi?db=PubMed 
15. Westphal S, Kalthoff H.Apoptosis: targets in pancreatic cancer.Mol Cancer. 2003 Jan 

7;2:6. Review. 
16. Wiederhold G. Mediators in the architecture of future information systems, IEEE Comp. 

25(3) 1992, 38-49. 
17. Liviu Badea, Doina Tilivea, Anca Hotaran. Semantic Web Reasoning for Ontology-Based 

Integration of Resources. Proc. PPSWR 2004, pp. 61-75, Springer Verlag. 
18. Decker S., Sintek M. ’Triple - an RDF query, inference, and transformation language’, in 

Proc. of the 2002 International Semantic Web Conference (ISWC-2002). 
19. Fensel D., Angele J., Decker S., Erdmann M., Schnurr H.P., Staab S., Studer R., Witt A., 

On2broker: Semantic-based Access to Information Sources at the WWW, Proceedings of 
WebNet, 1999, pp. 366-371. 

20. Ludascher B., Himmeroder R., Lausen G., May W., Schlepphorst C. Managing 
Semistructured Data with FLORID: A Deductive Object-oriented Perspective. Information 
Systems, 23(8):589-613, 1998. 

21. Berger S., Bry F., Schaffert S., Wieser C. Xcerpt and visXcerpt: From Pattern-Based to 
Visual Querying of XML and Semistructured Data. Proceedings VLDB03, Berlin, 
September 2003, http://www.xcerpt.org/. 

22. Cytoscape. http://www.cytoscape.org 

86     L. Badea



23. Kifer M., Lausen G., Wu J. Logical Foundations of Object-Oriented and Frame-Based 
Languages. Journal of the ACM, 42:741-843, 1995. 

24. Bancilhon F., Maier D., Sagiv Y. and Ullman J. Magic sets and other strange ways to 
implement logic programs. In Proceedings PODS (1986) 1-15. 

 
 
Appendix. 
 

 

 
 
Figure 2. The architecture of the pancreatic cancer dataset analysis application  

Semantic Web Reasoning for Analyzing Gene Expression Profiles     87



Data Model and Query Constructs for Versatile

Web Query Languages: State-of-the-Art and

Challenges for Xcerpt

François Bry, Tim Furche, and Benedikt Linse

Institute for Informatics, University of Munich,
Oettingenstraße 67, 80538 München, Germany

http://pms.ifi.lmu.de/

Abstract. As the Semantic Web is gaining momentum, the need for
truly versatile query languages becomes increasingly apparent. A Web
query language is called versatile if it can access in the same query pro-
gram data in different formats (e.g. XML and RDF). Most query lan-
guages are not versatile: they have not been specifically designed to cope
with both worlds, providing a uniform language and common constructs
to query and transform data in various formats. Moreover, most main-
stream query languages do not provide a flexible data model that is
powerful enough to naturally convey both Semantic Web data formats
(especially RDF and Topic Maps) and XML. This article highlights chal-
lenges related to the data model and language constructs for querying
both standard Web and Semantic Web data with an emphasis on facili-
tating sophisticated reasoning. It is shown that Xcerpt’s data model and
querying constructs are particularly well-suited for the Semantic Web,
but that some adjustments of the Xcerpt syntax allow for even more
effective and natural querying of RDF.

1 Introduction

Data on the web is increasingly enriched with semantic meta-data, linking it to
the real world or to other information. While XML has already gained wide-
spread acceptance, RDF is on the best way to do so. Query languages have
established themselves as a valuable means for accessing both formats, and a
considerable number of query languages for XML (such as XQuery[1], XPath[2],
XSLT[3], Xcerpt[4–6]) and for Semantic Web data (e.g. SPARQL[7], RQL[8],
Versa[9]) have been proposed and implemented, cf. [10] for a survey. XML query
languages can be used to query XML serializations of RDF data. This, however,
hardly yields a programmer-comfortable approach to RDF data. In fact, most
of the above languages have not been specifically designed to cope with both
worlds, and do not provide a uniform language and common constructs to query
and transform data in the various formats. Moreover, most mainstream query
languages lack a flexible data model that is powerful enough to naturally com-



prehend both Semantic Web data formats (especially RDF and Topic Maps) and
XML.1

This article highlights challenges related to the data model and convenient
constructs for querying both standard Web and Semantic Web data with an
emphasis on facilitating sophisticated reasoning. It is shown that Xcerpt’s data
model and querying constructs are well-suited also for the Semantic Web, but
that some adjustments of Xcerpt’s syntax would allow for even more effective
and natural query authoring with respect to RDF.

The rest of this article is structured according to its contributions: Section 2
examines requirements related to the data model of versatile web query languages
with focus on RDF and XML. Section 3 proposes an extended edge-labeled syn-
tax for Xcerpt terms that can be straightforwardly mapped to usual Xcerpt data
terms. Section 4 illustrates that Xcerpt’s constructs for handling heterogeneity
are beneficial to both XML and RDF querying. Section 5 underlines the impor-
tance of grouping constructs in the scope of the Semantic Web. Finally, Section
6 concludes this article and sheds light upon further research both with respect
to the language itself and its efficient evaluation.

2 Challenges Related to the Data Model

Figure 1 presents two possible representations of information about countries,
their names and their border-countries in XML (on the left hand side) and RDF
(on the right hand side). Nodes of the XML document tree are represented as
grey rectangles containing the element name. Text nodes are are distinguished by
quotes and attribute-value pairs are displayed at the top right of the node they
belong to. The namespace prefixes rdf, rdfs and geo are assumed to be bound
to http://www.w3.org/1999/02/22-rdf-syntax-ns#, http://www-
.w3.org/2000/01/rdf-schema# and http://geo.org/terms#, respec-
tively throughout this article. Nodes of the RDF graph on the right are either
depicted as grey rectangles containing the URI or blank node name in the case
of non-literals or as oval nodes in the case of literal values.

Figure 1 naturally exemplifies that XML semi-structured data and Semantic
Web data differ in various ways, complicating the conversion of the formats in
either direction and impeding the use of a query language specialized on only
one of the formats for accessing both. On the one hand, XML data can only be
unnaturally represented as RDF, because (1) the order of outgoing edges in RDF
is irrelevant, (2) nodes are uniquely identified by URIs except for literals and
blank nodes, (3) RDF does not support the concept of attributes. On the other
hand, XML cannot naturally comprehend RDF data, in that (1) besides nodes
also the edges of RDF graphs are labeled, (2) RDF is truly graph structured,
and (3) RDF graphs need not be connected and are unrooted. In this section
all of these differences are discussed and it is illustrated that although Xcerpt’s

1 Exceptions are early query languages for semi-structured data such as XML-QL and
Lorel.
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Fig. 1. XML data versus RDF data

term and graph oriented data model allows the representation also of RDF data
in a very straight-forward way.

2.1 Graph Data Model and References

One of the most striking differences between Semantic Web data and XML is that
XML does not allow multiple parent nodes for the same XML element and must
be considered tree structured under this consideration. This is why most XML
query languages such as XPath and XQuery provide a tree data model. Taking
the special attributes id and idref into account, XML may also be viewed
as a graph structure. When querying XML it may sometimes even be useful
to consider these XML references as true parent-child relationships. In contrast,
Semantic Web data is truly graph structured, in that predicates are the only way
of specifying relationships amongst resources, and nodes of an RDF graph may
very well have multiple incoming edges. RDF graphs are usually represented by
triples without any explicit references. Nevertheless, a graph structure is implied
by these triples, because RDF references are implicit in that they exploit the fact
that RDF resources are uniquely identified by URIs.

Whereas for XML query languages, such as XPath, XQuery and XSLT a tree
data model is a natural choice, versatile query languages that incorporate also
Semantic Web data must adopt a graph data model.

From the beginning Xcerpt was designed to not only handle XML data, but
also semi-structured graph data, which means that it can be adapted to natively
handle Semantic Web data easier than other XML query languages.

2.2 Labeled Edges

Put simply, the XML data model is a node-labeled tree. In contrast, RDF graphs
are not only node-labeled, but also edge-labeled. In XML serializations of RDF
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graphs such as RDF/XML, this difference is overcome by “striped” XML, which
means that element nodes representing RDF nodes and edges alternate in the
nested XML serialization. The Syntactic Web Approach suggests querying RDF
serializations with XML query languages. This solution is unsatisfactory in var-
ious ways: (1) It is not coherent with the visual and intuitive representation of
RDF data as graphs, and is thus more difficult to grasp. (2) It does not pay
tribute to the different roles assumed by subjects, objects and predicates of the
RDF graph, which complicates e.g. the determination of the set of all predi-
cates of an RDF graph. (3) Many XML serializations (such as RDF/XML and
RDF/A) offer a great amount of variability and syntactic sugar for representing
RDF graphs, which makes the formulation of queries against such serializations
in XML query languages cumbersome.

As a result, a truly versatile query language for the Web must offer a data
model that comprehends both: node- and edge-labeled graphs as well as purely
node-labeled graphs. As has been mentioned before, node- and edge-labeled
graphs can be transformed into graphs without edge labels in a straightforward
manner. Nevertheless, the user must be provided with a syntax (see Section 3)
that clearly distinguishes between edge- and node-labels both in query constructs
and in the data.

2.3 Incomplete and Unbounded Data

In the Semantic Web, resources are uniquely identifiable, and thus anybody is
free to make statements about resources by simply referencing the unique URI
as subject, predicate or object within one’s own statements. A consequence of
this ability for everyone to make statements about arbitrary resources is that
one may never be sure to be aware of all statements made about a given re-
source (this is why RDF data can be considered inherently incomplete). From a
graph perspective on Semantic Web data, this means that collecting all existing
outgoing edges of a resource is not possible, which is a fundamental difference
to XML data, where the sequence of children of an element node is fixed and
can be determined simply by looking at the document containing the node in
question.

A possible solution (which also yields other benefits) to this problem is to
restrict one’s attention to the contents of specific documents or groups of state-
ments, which are often referred to as Named Graphs. “Named graphs is the idea
that having multiple RDF graphs in a single document/repository and naming
them with URIs provides useful additional functionality built on top of the RDF
Recommendations.”2 In fact, RDF query languages such as SPARQL and TriQL
provide constructs for handling and constructing named graphs.

The above observations show that the data model for a Semantic Web query
language must be able to express both complete (in form of named graphs or doc-
uments) and incomplete data (information that does not belong to any graph).
While conventional Xcerpt query terms may already be complete and incomplete

2 http://www.w3.org/2004/03/trix/
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in breadth, data terms have always been considered to be complete. As shown in
section 4 data terms can be naturally extended to include incomplete data, and
an extended operational semantics that takes this extension of the data model
into is being considered.

2.4 RDF Graphs as Xcerpt Data Terms

While in semi-structured data, there is always a distinguished top level term,
the root, Semantic Web data does not have the concept of top level terms.
Furthermore, it may not even be possible to single out a resource from which
all other resources are reachable over edges in the graph, because RDF graphs
may consist of disconnected subgraphs. It is, however, possible to determine a
set of resources, such that each resource in the graph is reachable from at least
one of them. Choosing these resources as top level nodes, RDF graphs are very
conveniently represented by sets of Xcerpt data terms.

2.5 Order of Sub-Terms

Another difference between RDF and XML data illustrated in Figure 1 is that
RDF data usually does not impose an order on outgoing edges of a node. To
be more precise, RDF data is always unordered unless otherwise specified by
the use of an rdf:Seq sequence container. Hence, the data model must be able
to represent both ordered and unordered information. The distinction between
ordered und unordered data is especially useful in the scope of positional queries
against semi-structured data as exemplified in Section 4.

Xcerpt data terms have been conceived to not only represent XML data,
but also semi-structured data in general. Therefore Xcerpt already supports the
concept of unordered sets of children unlike most other XML query languages
and does not need to be adapted to the Semantic Web in this respect.

Summing up the particularities of XML and RDF data, the data model must sup-
port possibly cyclic and disconnected graphs with labeled and unlabeled edges,
complete and incomplete data specifications, ordered and unordered child ele-
ments, implicit and explicit references, and finally multiple roots.

3 An Intuitive Syntax for Versatile Web Query

Languages

In previous work [5], we have shown that due to its versatility gained from
construct-query-rules and constructs for treating heterogeneous data, Xcerpt
is particularly well-suited to handle XML serializations for the Semantic Web
data formats RDF and Topic Maps such as RDF/A, RDF/XML and XTM. An
obvious alternative to processing XML serializations of Semantic Web formats is
their direct treatment. In fact, for Xcerpt’s users it may be more convenient to
use a syntax that better distinguishes between edges and nodes within an RDF

92     F. Bry, T. Furche, and B. Linse



graph. In this section, we propose a possible syntax derived from the syntax of
Xcerpt data terms that represents RDF data in a very similar way to XML data.

Listing 1. The RDF Graph of Figure 1 represented as an Xcerpt data term

1’geo:Montenegro{
<geo:bordersOn> _:country1{

3<geo:bordersOn> ’geo:Montenegro’,
<rdfs:label> literal(’Albania’),

5}
<rdfs:label> literal(’Montenegro’),

7<rdf:type> ’geo:country’,
}

9

_:country2 {
11<rdfs:label> literal(’USA’),

<rdf:type> ’geo:country’
13}

In listing 1 edges (predicates) of the RDF graph in figure 1 are enclosed by
angle braces and appear in between the elements (subjects and objects) that
stand for the nodes of the graph. This syntax eases the authoring and under-
standing of queries considerably, because subjects, predicates and objects are
much more easily distinguished.

As has been mentioned above, data with labeled edges may be transformed to
graph structured data with unlabeled edges by the introduction of an additional
node for each edge. This approach has already been used to query Semantic Web
data with Xcerpt in [11]. A graph data model with labeled edges can be offered
to the user by the internal and automatic transformation of both RDF query and
data graphs to graph data with unlabeled edges, which can already be handled
by Xcerpt. In this article it is argued that the user of a versatile query language
should be unconscious of and not be confronted with this transformation.

4 Common Query Constructs for the Web and the

Semantic Web

Schema information often being unavailable, data on the Web is very hetero-
geneous. But even if schema information is present, it usually leaves room for
variability. In contrast to relational database query languages, Web query lan-
guages must therefore provide constructs for handling this heterogeneity.

Besides querying Semantic Web data, programmers are also interested in
transforming it. An example scenario for one such transformation is the collection
of data from different sources, and its rearrangement according to a joint schema.

Xcerpt has been designed as a declarative language rooted in logic program-
ming. This section shows that Xcerpt’s approach to querying, transforming and
reasoning is well-suited not only for ordinary semi-structured data, but also for
the Semantic Web.
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4.1 Query Patterns and Answer Closedness

One of the design principles of SPARQL and Xcerpt is answer closedness. This
principle dictates that all answers to queries may themselves be used as queries.
By ensuring similar syntaxes for both the formulation of queries and the repre-
sentation of data, answer closedness eases program understanding.

Using data terms as queries, it is just possible to check whether an RDF
graph is entailed3 by the queried data, or whether a particular XML fragment is
contained within a document. In order to extract parts of the data, queries must
contain logical variables. Xcerpt query terms are data terms enriched by variables
and a series of constructs for handling heterogeneous data. These constructs are
just as useful in the Semantic Web as for ordinary XML data. Constructs for
handling heterogeneity in Xcerpt include optional term selection, double braces
for incompleteness in breadth and arbitrary length traversal path expressions.

One might be interested in all resources that represent countries directly
or transitively bordering on Montenegro and their names. Assuming data of a
similar form as in Figure 1, the following Xcerpt query in edge-labeled notation
helps out:

Listing 2. An Xcerpt query term with constructs for handling heterogeneity

1var Country →/.*/{{
<rdf:type> ’geo:country’{{ }},

3desc(<geo:bordersOn> /.*/)*
<geo:bordersOn>

5’geo:Montenegro’{{ }},
optional <rdfs:label> var Name →literal(/.*/)

7}}

There are several noteworthy constructs in the above query term:

– Variable Constraints. In Line 1, the bindings for the variable Country is
constrained to graphs matching the pattern following →.

– Incompleteness in breadth. The schema of data on the web is in many cases
unknown. Therefore one might not know or even not care about the set of
outgoing edges of an RDF node. Double curly braces are used in Xcerpt to
indicate that the matched data may also contain additional siblings other
than those specified by the query term.

– Regular expressions for labels. The logical variable Country in Listing 2 is
supposed to be bound to all kinds of nodes within the queried RDF graph,
no matter whether it is a blank node or a resource. The regular expression
/.*/ matches arbitrary URIs and b-nodes. In order to match just blank
nodes or resources, the keywords b-node and resource can be used.

– Incompleteness in depth. The resource r1 matching with variable Country
shall be directly or transitively connected over geo:bordersOn-predicates
with the resource geo:Montenegro, which stands for Montenegro. The

3 for a definition of RDF entailment see http://www.w3.org/TR/rdf-mt/ , Sec-
tion 3.2
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RDF nodes in between r1 and geo:Montenegro are of no interest, and
therefore an arbitrary length traversal path expression containing a wild-
card regular expression for the resources of the intermediate nodes is used
in line three.

– Optional sub-terms. Labels for the resources r1 are to be retrieved if present.
In the absence of such a label the query is not intended to fail, but to
simply restitute no binding for the variable Name. Making use of the keyword
literal ensures that Name is only bound to literals, never to URIs.

Solutions to Xcerpt queries are given in the form of substitution sets, which
are sets of mappings from the logical variables in the query to subgraphs of the
data. The query in Listing 2 applied to the RDF graph in Figure 1 yields the
following substitution set:

{ {Country 7→ :country1{ . . . }, Name 7→ ’Albania’ } }

The fact that the variable Country is bound to the entire subgraph rooted
at the resource it matches differentiates Xcerpt from other query languages such
as SPARQL and RQL. Since in densely connected RDF graphs, the bindings
of variables may contain large sub-graphs of the data or even the whole data
graph, Xcerpt provides a second kind of variables called label variables which
are not bound to entire subgraphs but only to the nodes they match with. The
usage of a label variable in Listing 2 would be syntactically indicated by directly
prefixing the double curly braces in Line 1 by the variable var Country.

Note that also SPARQL provides a way to return more information (entire
subgraphs) about resources than just their URIs through the keyword describe.
The exact nature of such descriptions is left unspecified by the SPARQL working
draft, but the Concise Bounded Description4 proposed by Nokia is mentioned
as an example.

The semantics of the query in Listing 2 is implicitly defined by mapping the
node-and-edge-labeled syntax of the query to purely node-labeled query terms.

4.2 Injectivity and Querying RDF Sequences

When specifying a query term to be matched with semi-structured data, the
semantics intended by the query author is usually that sibling nodes shall not
match with the same node of the queried graph. Matching a query term q and
its children q1, . . . qn with a data term d and its children d1, . . . , dm can be
formalized by a function m : {q1, . . . qn} → {d1, . . . , dm}. We demand m to be
injective to reflect the authors intention. Listing 3 shows a query selecting all
pairs of countries bordering on Montenegro, and Xcerpt’s semantics5 ensures that
the variables Country1 and Country2 are not bound to the same node. Note
that formulating a query that allows the bindings for Country1 and Country2
to be the same can be easily expressed using Xcerpt’s and connective for queries.

4 http://swdev.nokia.com/uriqa/CBD.html
5 formally defined in [4, Chapter 8] at the aid of functions similar to m above
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Listing 3. A query selecting all pairs of countries bordering to Montenegro

geo:Montenegro{{
<geo:bordersOn> var Country1 →/.*/{{ }},
<geo:bordersOn> var Country2 →/.*/{{ }}

}}

As has been mentioned in Section 2.5 Semantic Web data can both be ordered
and unordered. Xcerpt’s positional approach to querying allows to match data
dependent on the order of sub-terms. Figure 2 contains a possible representa-
tion of information about spoken languages in countries using an RDF sequence
container.

Fig. 2. An RDF sequence containing the languages in the order of their diffusion in
Montenegro

The query in Listing 4 selects all countries in which Serbian is more common
than Albanian assuming a schema as in Figure 2. The use of square brackets
instead of curly braces indicates that the order of occurrence within the RDF
sequence is relevant.

Listing 4. An Xcerpt query taking into account the order of subterms within
an RDF-Container

var Country →/.*/{{
<geo:spokenLanguage> /.*/[[
</.*/> literal(’Serbian’),
</.*/> literal(’Albanian’)

]]
}}

4.3 Blank Node Treatment

Blank nodes (also called b-nodes) in RDF graphs are used to assert that a
resource r1 exists that is related with other resources in a certain way without
associating a URI to r1. One unresolved issue related to querying RDF data
containing b-nodes concerns the redundancy of answer sets. To see this reconsider
the RDF graph from Figure 1.
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Listing 5. A query selecting all resources of type geo:country

var Country →/.*/{{<rdf:type> ’geo:country’}}

Selecting all resources of the graph that are of type geo:country, the query
in Listing 5 cannot determine whether :country2 and geo:Montenegro
are meant to be the same concepts. Hence, the question arises, whether both
the blank node _:country2 and the resource identified by geo:Montenegro
should be returned or only the URI. The solution considered to be the most
convincing by the authors is to exclude such query solutions that are entailed by
other solutions, but to keep all others. The query in Listing 5 would therefore re-
turn both resources. In the case that the triple ( :country2, rdfs:label,
’USA’) were not present, returning the blank node of the graph would be re-
dundant.

4.4 Negation and Breadth-Complete Queries

As has been discussed in Section 2.3, Semantic Web data must be considered
as inherently incomplete and unbounded in comparison to XML. Additionally
taking into account that RDF statements are always positive assertions, the only
sensible form of negation is scoped negation as failure, which has already been
proven useful in the context of the Semantic Web[12, 13].

An approach that goes even beyond scoped negation as failure by providing
explicit negative information to additionally enable strong negation is suggested
in [14]. Although strong negation would certainly be helpful for Semantic Web
Reasoning, it is not yet supported by Xcerpt.

While some Semantic Web query languages including the SPARQL family do
not provide negation, XML query languages including Xcerpt usually do. To un-
derline the importance of scoped negation in the Semantic Web consider the fol-
lowing query issued against the resource http://countries.org/country-
information.

Listing 6. Scoped negation as failure in Xcerpt query terms

1in{ resource{ ’http://countries.org/country_information’ },
/.*/{{

3<rdf:type> ’geo:Country’{{ }},
<geo:bordersOn> ’geo:Montenegro’{{ }},

5<rdfs:label> var Name →literal(/.*/),
not(<geo:bordersOn> /.*/{{ <rdfs:label>

literal(’Albania’) }})
7}},

}

Listing 6 queries the names of all countries bordering to Montenegro but
not to Albania. Matching a term with both positive and negated sub-terms
with a data term is carried out as follows: At first, it is tested, whether each
of the positive query sub-terms can be associated with a matching sub-term of
the data respecting the injectivity requirement mentioned in Section 4.2. If this
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matching succeeds, it is searched for a matching sub-term of the data for the
negated sub-terms. If any of the negated sub-terms can be matched, the entire
matching fails. If all positive sub-terms can be matched with the data, but none
of the negated ones, the entire matching succeeds. The query semantics for node-
and edge-labeled query and data terms as needed for RDF data is ascribed to
the semantics of purely node-labeled terms as described in [4, Section 8.2] by
straight-forward normalization rules transforming edge-labeled terms to purely
node-labeled terms.

Breadth-complete queries are an issue which is closely related to negated
sub-terms, because they can be rewritten as breadth-incomplete queries using
the without-construct. They are indicated by single curly braces or brackets
instead of double ones and can only be matched with data that does not con-
tain any additional sub-terms besides those specified in the query term. To find
countries that only border to Italy (and do not appear as subject in any other
statement of the RDF graph), the query in Listing 7 could be used.

Listing 7. Breadth-complete queries against RDF data

in{ resource{ ’http://countries.org/country_information’ },
2var Country →/.*/{

<geo:bordersOn> ’geo:Italy’{{ }},
4},

}

In the same way as queries with negated sub-terms, breadth-complete queries
must be scoped to a single or a set of named graphs.

4.5 Optional Sub-Terms

As exemplified in Listing 2, optional constructs are of great help for Semantic
Web queries in that they allow to extract certain parts of the queried data only
if they are present. Closer examination of the optional construct reveals that
it is only syntactic sugar for a disjunction of queries. The query in Listing 2
could also be written using the Xcerpt or construct:

Listing 8. The same query as in Listing 2 without the optional construct

1or (
var Country →/.*/{{

3<rdf:type> ’geo:country’{{ }},
desc(<geo:bordersOn> /.*/)* <geo:bordersOn>

’geo:Montenegro’{{ }},
5<rdfs:label> var Name →literal(/.*/)

}},
7var Country →/.*/{{

<rdf:type> ’geo:country’{{ }},
9desc(<geo:bordersOn> /.*/)* <geo:bordersOn>

’geo:Montenegro’{{ }},
without <rdfs:label> var Name →literal(/.*/)

11}}
)

98     F. Bry, T. Furche, and B. Linse



As in SPARQL, multiple optional sub-terms may occur as siblings, or may
even be nested. The semantics of such graph patterns seems to be straightforward
at first glance: For each optional sub-term that succeeds to match, the bindings
of its variables are included in the substitution set returned by the overall graph
pattern. The failed matching of an optional sub-term does not prevent the overall
graph pattern from returning a substitution set, which simply does not contain
bindings for the variables in the unmatched optional sub-terms. Since variables
may – and often do – occur multiple times in a query pattern, they may also
be shared among multiple optional sub-terms, causing interdependencies among
them. In particular, it may happen that only one of two optional sub-terms may
be matched, but not both. While the SPARQL working draft does not define
which of the sub-terms is to be picked, Xcerpt adopts the following convention:
If multiple optional sub-terms impede each other from matching, all selections
of these sub-terms are chosen that maximize the number of variable bindings.

5 From Queries to Transformations

While most Semantic Web query languages are limited to querying and returning
sets of mappings of their variables to resources, Xcerpt – and to some extent also
SPARQL – are designed to do more: by providing construct terms (in SPARQL
they are called graph templates) to be filled with the variable bindings gained
from the evaluation of queries, they allow the construction of results having
an entirely different schema. This combination of querying and construction
in so-called construct-query-rules (see Section 5.1 for details) gives rise to the
possibility of complex transformations.

5.1 Construct-Query-Rules and User Defined Reasoning

The evaluation of Xcerpt query terms and SPARQL graph patterns against RDF
data yields substitution sets. Xcerpt construct terms are Xcerpt data terms
enriched by variables as place holders and grouping constructs like all and
some. Substitutions are applied to construct terms by replacing the variables
in the construct term by their bindings in the substitution set (for the detailed
semantics see [4, Section 7.3.3]). Query and construct terms are combined by
so-called construct-query-rules, which allow sophisticated user-defined reasoning
which goes beyond the predefined rules of RDFS and OWL.

5.2 Grouping Constructs

A major difference between SPARQL graph templates and Xcerpt construct
terms is that only the latter allow merging of substitution sets (called result sets
in SPARQL) by using grouping constructs. Merging substitution sets is necessary
because often the need arises to collect variable bindings from different matches
of the query pattern with the data. In contrast, a query result form within a
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SPARQL query is always filled exactly as often as the graph pattern in the
WHERE clause matches with the queried RDF graph.

Reconsidering the information about countries and languages as exemplified
in Figure 2, one might wish to construct an RDF graph that groups countries
according to the languages which are spoken in them. To be more precise, for
each language a blank node shall be constructed carrying an rdfs:label such
as “Albanian”, “Serbian”, etc. Moreover the blank node must feature outgoing
geo:spokenIn edges for each country that the language is spoken in.

Listing 9. Grouping countries according to languages

CONSTRUCT
2_:language{

<rdfs:label> var Language,
4all <geo:spokenIn> var Country }

FROM
6var Country →/.*/{{

<geo:spokenLanguage> /.*/{{ </.*/> var Language }} }}
8END

Using the grouping construct all (line 4), the query in Listing 9 collects
all bindings for the variable Country that are contained within a substitution
set for a fixed binding of variable Language. An important issue to note is
that – just as in SPARQL – although the name :language of the blank node
in Line 2 is constant, a new blank node is constructed for each binding of the
variable Language.

5.3 Versatile access to XML and RDF

Integrated access to different data formats includes the requirement that data
should be easily transformed from one format to the other, and that different
formats are queried simultaneously. As an exemplary use-case imagine that in-
formation about bordering countries is available in XML format structured sim-
ilarly to that in the left part of Figure 1, and that information about languages
spoken in these countries is only available in RDF format as in Figure 2.

The query in Listing 10 extracts all those pairs of border-countries whose
citizens understand each other, because they speak the same language. The
query part of the rule is a conjunction of two query terms, the first one querying
the XML resource, and the second one drawing information from an RDF file.
The names of countries sharing a common border are found by comparing the
values of the id and idref attributes with a value join over the variable ID (in
Xcerpt, XML attributes are enclosed in parentheses; double parentheses indicate
that there may be additional unspecified attributes). Similarly, pairs of countries
which have the same most common language are selected by a join over the
variable Language.

The query uses both constructs that are peculiar to either RDF or XML –
such as variables for XML attribute values and edge-labeled query terms – and
constructs that are applicable to both – such as complete and incomplete query
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term specifications. Notice that the variables Name1 and Name2 are shared
among both conjuncts, which would be cumbersome to implement with two
specialized languages for RDF and XML.

Listing 10. Versatile access to Web data Formats in Xcerpt

CONSTRUCT
2result[ all understanding-neighbors[ var Name1, var Name2 ] ]

FROM
4and (

in{ resource{ ’http://geo.org/countries.xml’ },
6Countries {{

Country((var ID →id)){{ Name{ var Name1 } }},
8Country{{

borderCountry((var ID →idref)),
10Name{ var Name2 } }} }} },

in{ resource{ ’http://geo.org/languages.rdf’ },
12/.*/{{

<rdfs:label> var Name1,
14<geo:spokenLanguage> /.*/{{ <rdf:_1> var Language }} }},

/.*/{{
16<rdfs:label> var Name2,

<geo:spokenLanguage> /.*/{{ <rdf:_1> var Language }} }} }
18)

END

6 Conclusion and Outlook

Due to its graph data model, its rule-based nature and its convenient constructs
for handling heterogeneity, Xcerpt turns out to be very well-suited not only for
XML, but also for Semantic Web querying, transformations and reasoning. RDF
data being increasingly made available as descriptive meta-data for HTML and
XML documents, versatile access to both meta-data and XML in the same query
program becomes ever more important for the next generation of web applica-
tions such as specialized search engines, and online booking and library systems.
Developing such applications can be strongly eased by providing a query lan-
guage that does not restrict itself to one of the formats, but provides integrated
access to all of them, freeing the programmer from the burden of learning and
combining multiple languages.

Besides laying the foundation for effective query authoring, a versatile query
and reasoning language must process query programs efficiently in order to gain
strong acceptance throughout the Web community. Several challenges are related
to efficient query processing, demanding future work in the domain of Xcerpt.

– Efficient parsing of semi-structured data from various serializations and ef-
ficient construction of in-memory graph representations of the data. Besides
parsing documents, in-memory graph representations must also be efficiently
constructed from relational RDF stores.
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– Efficient simulation unification of query patterns with graph data and con-
struct terms. A large amount of research has been carried out in this direction
concerning primarily tree queries, but also graph queries [6].

– Efficient backward chaining evaluation of programs. A forward chaining eval-
uation of Xcerpt programs is less reasonable because (a) the set of facts of
an Xcerpt program can be very large, (b) the major part of derived facts
may be irrelevant to the query, and (c) Xcerpt programs may have infinite
fixpoints if they contain recursive rules.
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Abstract. Web query languages promise convenient and efficient access
to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web
query language with strong emphasis on novel high-level constructs for
effective and convenient query authoring, particularly tailored to ver-
satile access to data in different Web formats such as XML or RDF.
However, so far it lacks an efficient implementation to supplement the
convenient language features. AMaχoS is an abstract machine imple-
mentation for Xcerpt that aims at efficiency and ease of deployment. It
strictly separates compilation and execution of queries: Queries are com-
piled once to abstract machine code that consists in (1) a code segment
with instructions for evaluating each rule and (2) a hint segment that
provides the abstract machine with optimization hints derived by the
query compilation. This article summarizes the motivation and princi-
ples behind AMaχoS and discusses how its current architecture realizes
these principles.

1 Introduction

Efficient evaluation of Web query languages such as XQuery, XSLT, or SPARQL
has received considerable attention from both academia and industry over recent
years. Xcerpt is a novel breed of Web query language that aims to overcome the
split between traditional Web formats such as XML and Semantic Web data
formats such as RDF and Topic Maps. Thus it avoids the impedance mismatch
of using different languages to develop applications that enrich conventional Web
applications with semantics and reasoning based on RDF, Topic Maps, or similar
emerging formats.

However, so far Xcerpt lacks a scalable, efficient and easily deployable im-
plementation. In this article, we propose principles and architecture of such an
implementation. The proposed implementation deviates quite notably from con-
ventional wisdom on the implementation of query languages: it is based on an
abstract (or virtual1) machine that executes (interprets) low-level code generated
from high-level query programs specified in Xcerpt.

1 Little substantial difference is made in the literature between “abstract” and “vir-
tual” machines. Some authors define virtual machines as abstract machines with in-

terpreters in contrast to abstract machines such as Turing machines that are purely



The choice of an abstract machine for implementing a query language might
at the first glance seem puzzling. And indeed proper abstract machines that
separate execution and compilation have only very seldom been considered in
the past for the implementation of query languages (the most notable exception
being [19]). This is partially due to the perceived performance overhead intro-
duced by the abstraction/virtualization layer. However, traditional query pro-
cessors already separate between query compilation, where a high-level query is
translated into a low-level physical query plan, and query execution, where the
query is evaluated according to that query plan. From this point on the leap to
an abstract machine that fully separates compilation and execution seems small
and could even be considered merely a change in name. In traditional DBMS
settings it has, however, never occurred due to the way query compilation is
linked with query execution: cost-based optimizers consider extensively (statis-
tical) information about the data instances, e.g., for selectivity estimates, and
about actual access paths to these data instances. This information is available
as the DBMS has full, central control over the data including its storage.

When implementing a Web query language such as Xcerpt, one is however
faced with a quite different setting: In memory processing of queries against
XML, RDF, or other Web data that may be local and persistent (e.g., an XML
database or local XML documents), but just as well may have to be accessed
remotely (e.g., a remote XML document) or may be volatile (e.g., in case of
SOAP messages or Web Service access). In other words, it is assumed that
most of the queried data is not under (central) control of a query execution
environment like in a traditional DBMS setting, but rather that the queried
data is often distributed or volatile. This, naturally, hinders the application of
conventional indexing and predictive optimization techniques, that rely on local
management of data and statistic knowledge about that managed data. But, it
also makes separate compilation and execution possible as the query compilation
is already mostly independent of data storage and instances. This is due to the
fact that information about these is not available at compilation and execution
time but only becomes available at query execution.

To some extent, this setting is comparable to data stream processing where
also little is known about the actual data instances that are to be encountered
during query evaluation. The efficient data stream systems (such as [3, 1, 6])
compile therefore queries into some form of (finite state or push-down) automata
that is used to continuously evaluate the query against the incoming data.

AMaχoS, the abstract machine for Xcerpt on semi-structured data, can
be seen as an amalgamation of techniques from these three areas: query op-
timization and execution from traditional databases and data stream systems,
and compilation and execution of general programs based on abstract or virtual
machines.

AMaχoS is designed around a small number of core principles:

theoretical thought models. However this distinction is not widely adopted. In recent
years, the term “virtual” machine seems to dominate outside of logic programming
literature.

104     F. Bry, T. Furche, and B. Linse



1. “Compile once”—compilation and execution is separated in AMaχoS thus
allowing (a) different levels of optimization for different purposes and set-
tings and (b) the distribution of compiled query programs among query
nodes making light-weight query nodes possible. For details see Section 4.2.

2. “Execute anywhere”—once compiled, AMaχoS code can be evaluated by
any AMaχoS query node. It is not fixed to the compiling node. In particular,
parts of a compiled program can be distributed to different query nodes. For
details see Section 4.1.

3. “Optimize all the time”—not only are queries optimized predictively dur-
ing query compilation, but also adaptively during execution. For details see
Section 4.4.

As a corollary of these three principles AMaχoS employs a novel query evalua-
tion framework for the unified execution of path, tree, and graph queries against
both tree- and graph-shaped semi-structured data (details of this framework are
discussed in Section 4.3 and [8]).

Following a brief look at the history of abstract and virtual machines for
program and query execution (Section 2) and an introduction into Xcerpt (Sec-
tion 3), the versatile Web query language that is implemented by the AMaχoS

abstract machine, we focus in the course of this article first (Section 4) on a
discussion of the principles of this abstract machine that also serves as a further
motivation of the setting. The second part (Section 5) of the paper discusses
the proposed architecture of AMaχoS and how this architecture realizes the
principles discussed in the first part.

2 A Brief History of Abstract Machines

Abstract and virtual machines have been employed over the last few decades,
aside from theoretical abstract machines as thought models for computing, in
mostly three areas:

Hardware virtualization. Abstract machines in this class provide a layer of vir-
tual hardware on top of the actual hardware of a computer. This provides the
programs directly operating on the virtual hardware (mostly operating systems,
device drivers, and performance intensive applications) with a seemingly uni-
form view of the provided computing resources. Though this has been a focus
of considerable research as early as 1970, cf. [12] only recent years have seen
commercially viable implementations of virtual machines as hardware virtual-
ization layers, most recently Apple’s Rosetta2 technology that provides an adap-
tive, just-in-time compiled virtualization layer for PowerPC applications on Intel
processors. Currently, research in this area focuses on providing scalability, fault
tolerance [9] and trusted computing [11] by employing virtual machines, as well
as on on-chip support for virtualization.

2 http://www.apple.com/rosetta/
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Operating system-level virtualization A slightly higher level of abstraction or
virtualization is provided by operating system-level virtual machines that virtu-
alize operating system functions. Again, this technology has just recently become
viable in the form of, e.g., Wine3, a Windows virtualization layer for Unix op-
erating systems.

High-level language virtual machines From the perspective of AMaχoS the
most relevant research has been on virtual machines for the implementation
of high-level languages. First research dates back to the 1960s [24] and 1970s
[22], but wider interest in abstract machines for high-level languages has been
focused on two waves: First, in the 1980s a number of abstract machines for
Pascal (p-Machine, [23]), Ada [14], Prolog [30], and functional programming
languages (G-machine, [16]) have been proposed that focused on providing plat-

form neutrality and portability as well as precise specifications of the operational

semantics of the languages. Early abstract machines for imperative and object-
oriented programming languages have not been highly successful, mostly due
to the perceived performance penalty. However, research on abstract machines
for logic and functional programming languages has continued mostly uninter-
rupted up to recent developments such as the tabling abstract machine [26] for
XSB Prolog.

Recently, the field has seen a reinvigoration, cf. [25], triggered both by ad-
vances in hardware virtualization and a second wave of abstract machines for
high-level programming languages focused this time on imperative, object-orien-
ted programming languages like Java and C]. Here, isolation and security are
added to the core arguments for the use of an abstract machine: Each instance
of an abstract machine is isolated from others and from other programs on the
host system. Furthermore analysis of the abstract machine byte code to ensure,
e.g., safety or security properties proves easier than analysis of native machine
code.

The most prominent examples of this latest wave are, of course, Sun’s Java
virtual machine [17] and Microsoft’s common language infrastructure [15] (CLI).
The latter is adding the claim of “language independence” to the arguments for
the deployment of an abstract machine. And indeed quite a number of object-
oriented and functional languages have been compiled to CLI code. With this
second wave, design and principles of abstract machines are starting to be inves-
tigated more rigorously, e.g., in [10] and [29] that compare stack- with register-
based virtual machines.

Closest in spirit and aim to the work presented in this paper and to the best
knowledge of the authors’ the only other work on abstract machines for Web
query languages is [19] that presents a virtual machine for XSLT part of recent
versions of the Oracle database. However, this virtual machine is focused on a
centralized query processing scenario where a single query engine has control
over all data and thus can employ knowledge about data instances and access
paths for optimization and execution.

3 http://www.winehq.com/
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3 Xcerpt: A Versatile Web Query Language

Xcerpt is a query language designed after principles given in [7] for querying both
data on the standard Web and data on the Semantic Web. More information,
including a prototype implementation, is available at http://xcerpt.org.

3.1 Data as Terms

Xcerpt uses terms to represent semi-structured data. Data terms represent XML
documents, RDF graphs, and other semi-structured data items. Notice that sub-
terms (corresponding to, e.g., child elements) may either be “ordered” (as in an
XHTML document or in RDF sequence containers), i.e., the order of occurrence
is relevant, or “unordered”, i.e., the order of occurrence is irrelevant and may be
ignored (as in the case of RDF statements).

3.2 Queries as Enriched Terms

Following the “Query-by-Example” paradigm, queries are merely examples or
patterns of the queried data and thus also terms, annotated with additional
language constructs. Xcerpt separates querying and construction strictly.

Query terms are (possibly incomplete) patterns matched against Web re-
sources represented by data terms. In many ways, they are like forms or examples
for the queried data, but also may be incomplete in breadth, i.e., contain ‘partial’
as well as ‘total’ term specifications. Query terms may further be augmented by
variables for selecting data items.

Construct terms serve to reassemble variables (the bindings of which are
gained from the evaluation of query terms) so as to construct new data terms.
Again, they are similar to the latter, but augmented by variables (acting as place
holders for data selected in a query) and grouping constructs (which serve to
collect all or some instances that result from different variable bindings).

3.3 Programs as Sets of Rules

Query and construct terms are related in rules which themselves are part of
Xcerpt programs. Rules have the form:

CONSTRUCT construct-term

FROM and { query-term or { query-term ... } ... } END

Rules can be seen as “views” specifying how to obtain documents shaped in
the form of the construct term by evaluating the query against Web resources
(e.g. an XML document or a database).

Xcerpt rules may be chained like active or deductive database rules to form
complex query programs, i.e., rules may query the results of other rules. More
details on the Xcerpt language and its syntax can be found in [27, 28].
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4 Architecture: Principles

The abstract machine for Xcerpt, in the following always referred to as AMaχoS,
and its architecture are organized around five guiding principles:

4.1 “Execute Anywhere”—Unified Query Execution Environment

As discussed above, possibly the strongest reason to develop virtual machines
for high-level languages is the provision of a unified execution environment for
programs in that high-level language. In the case of Xcerpt, AMaχoS aims to
provide such a unified execution environment. In our case, a unified execution
environment brings a number of unique advantages: (1) The distributed execu-

tion of queries and query programs requires that the language implementations
are highly interoperable down to the level of answer representation and execu-
tion strategies. A high degree of interoperability allows, e.g., the distribution
of partial queries among query nodes (see below). An abstract machine is an
exceptionally well suited mechanism to ensure implementation interoperability
as its operations are fairly fine granular and well-specified allowing the control-
ling query node fine granular control over the query execution at other (“slave”)
nodes. (2) A rigid definition of the operational semantics as provided by an
abstract machine allows not only a better understanding and communication of
the evaluation algorithms, it also makes query execution more predictable, i.e.,
once compiled a query should behave in a predictable behavior on all implemen-
tations. This is an increasingly important property as it eases query authoring
and allows better error handling for distributed query evaluation. (3) Finally, a
unified query execution environment makes the transmission and distribution of

compiled queries and even parts of compiled queries among query nodes feasible,
enabling easy adaptation to changes in the network of available query nodes, cf.
Section 4.5.

4.2 “Compile Once”—Separation of Compilation and Execution

In the introduction, the setting for the AMaχoS abstract machine has been
illustrated and motivated: In memory processing of queries against XML, RDF,
or other Web data that may be local and persistent (e.g., an XML database or
local XML documents), but just as well may have to be accessed remotely (e.g.,
a remote XML document) or may be volatile (e.g., in case of SOAP messages
or Web Service access). In other words, it is assumed that most of the queried
data is not under (central) control of a query execution environment like in a
traditional database setting, but rather that the queried data is often distributed
or volatile. This, naturally, limits the application of traditional indexing and
predictive optimization techniques, that rely on local management of data and
statistic knowledge about that managed data.

Nevertheless algebraic optimization techniques (that rely solely on knowledge
about the query and possible the schema of the data, but not on knowledge about
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the actual instance of data to be queried) and ad-hoc indices that are created
during execution time still have their place under this circumstances.

In particular, such a setting allows for a clean separation of compilation and

execution: The high-level Xcerpt program is translated into AMaχoS code sep-
arately from its execution. The translation may be separated by time (at another
time) and space (at another query node) from the actual execution of the query.
This is essential to enable the distribution of pre-compiled, globally optimized
AMaχoS programs evaluating (parts of) queries over distributed query nodes.

Extensive static optimization. This separation also makes more extensive
static optimization feasible than traditionally applied in an in-memory setting
(e.g., in XSLT processors such as Saxon4 or Xalan5). Section 5.2 and Figure 5
present a more detailed view of the query compiler and optimizer employed in
the AMaχoS virtual machine. To be applicable to different scenarios, a control
API for the query compilation stage allows the configuration of strategy and
extent used for optimizing a query during the compilation from high-level Xcerpt
programs to low-level AMaχoS code.

Aside of traditional tasks such as dead (or tautological) branch elimina-
tion, detection of unsatisfiable queries, operator order optimization and selec-
tion between different realizations for the same high-level query constructs, the
AMaχoS query compiler has another essential task: the classification of each

query in the query program by its features, e.g., whether a query is a path,
tree, or graph query (cf. [20, 8]) or which parts of the data are relevant for the
query evaluation. This information is encoded either directly in the AMaχoS

code of the corresponding construct-query rule or in a special hint section in
the AMaχoS program. That hint section is later used by the query engine (the
AMaχoS core) to tune the evaluation algorithm.

4 http://www.saxonica.com/
5 http://xml.apache.org/xalan-j/
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4.3 “Compile, Classify, Execute”—Unified Evaluation Algorithm

A single evaluation algorithm is used in AMaχoS for evaluating a large set of
diverse queries and data. At the core of this algorithm stands the “memoiza-
tion matrix,” a data structure first proposed in [27] and refined to guarantee
polynomial size in [8]), that allows an efficient representation of intermediary
results during the evaluation of an Xcerpt query (or more generally an n-ary
conjunctive query over graph data). A sample query and corresponding memo-
ization matrix are shown in Figure 1: The query selects the names of conferences
with PC members together with their authors (i.e., it is a binary query). The
right hand of Figure 1 shows a possible configuration of the memoization ma-
trix for evaluating that query: d2 is some conference for which we have found
multiple bindings for v4, i.e., the query node matching papers of the selected con-
ference. The matrix also shows that sub-matrices are shared if the same query
node matches the same data node under different constellations of the remaining
query nodes. This sharing is possible both in tree and graph queries, but in the
case of graph queries the memoization matrix represents only a potential match
in which only a spanning tree over the relations in the query is enforced. The
remaining relations must be checked on an unfolding of the matrix. This last
step induces exponential worst-case complexity (unsurprisingly as graph queries
are NP-complete already if evaluated against tree data as shown in [13]), but is
in many practical cases of little influence.

How to use the memoization matrix to obtain an evaluation algorithm for
arbitrary n-ary conjunctive queries over graphs (that form the core of Xcerpt
query evaluation), is shown in [8]. It is shown that the resulting algorithms are
competitive with the best known approaches that can handle only tree data and
that the introduction of graph data has little effect on complexity and practical
performance.

The memoization matrix forms the core of the query evaluation in AMaχoS.
As briefly outlined in [8], the method can be parameterized with different al-

gorithms for populating and consuming the matrix. Thereby it is possible to
adopt the algorithm both to different conditions for the query evaluation (e.g.,
is an efficient label or keyword index for the data available or not) and to dif-
ferent requirements (e.g., are just variable bindings needed or full transforma-
tion queries). The first aspect is automatically adapted by the query engine (cf.
Section 5.1), the second must be controlled by the execution control API, cf.
Section 5.

4.4 “Optimize All the Time”—Adaptive Code Optimization

As argued above in Section 4.2 a separation of compilation/optimization from
execution is an essential property of the AMaχoS virtual machine that allows
it to be used for distributed query evaluation and Web querying where control
over the queried data is not centralized.

This separation can be achieved partially by providing a unified evaluation
algorithm (Section 4.3) that tunes itself, with the help of hints from the static
optimization, to the available access methods and answer requirements.
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However, separate compilation precludes optimizations based on intricate
knowledge about the actual instances of the data to be queried (e.g., statistical
information about selectivity, precise access paths, data clustering, etc.). This
can, to some extent, be offset by adaptive code optimization. Adaptive query
optimization is a technique sometimes employed in continuous query systems,
where also the characteristic of the data instances to be queried is not known a
priori, cf. [2].

In the AMaχoS virtual machine we go a step further: Not only can the
physical query plan expressed in the AMaχoS code continuously be adapted, but
the result of the adaptation can be stored (and transmitted to other query nodes)
as an AMaχoS program for further executions of the same query. Obviously,
such adaptive code optimization is not for free and will most likely be useful
in cases where the query is expected to be evaluated many times (e.g., when
querying SOAP messages) or the amount of data is large enough that some
slow-down for observation and adaption in the first part of the evaluation is
offset by performance gains in later parts.

4.5 “Distribute Any Part”—Partial Query Evaluation

Once compilation and execution are separate, the possibility exists that one
query node compiles the high-level Xcerpt program to AMaχoS code using
knowledge about the query and possibly the schema of the data to optimize
(globally) the query plan expressed in the AMaχoS code. The result of this
translation can than be distributed among several query nodes, e.g., if these
nodes have more efficient means to access the resources involved in the query.
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Indeed, once at the level of AMaχoS code it is not only possible to distribute
say entire rules or sets of rules, but even parts of rules (e.g., query conjuncts)
or even smaller units. Figure 2 illustrates such a distributed query processing
scenario with AMaχoS: Applications use one of the control APIs (obtaining,
e.g., entire XML documents or separate variable bindings) to execute a query at
a given Xcerpt node. This implementation of Xcerpt transforms the query into
AMaχoS code and hands this code over to its own AMaχoS engine. Depending
on additional information about the data accessed in the query, this AMaχoS

node might decide to evaluate only some parts of the query locally (e.g., those
operating exclusively on local data and those joining data from different sources)
and send all the remaining query parts to other AMaχoS nodes that are likely
to have more efficient access to the relevant data.

In contrast to distribution on the level of a high-level query language such
as Xcerpt, distribution on the level of AMaχoS has two main advantages: the
distributed query parts can be of finer granularity and the “controlling” node
can have, by means of code transformation and hint sections, better control of
the “slave” nodes.

Notice, that AMaχoS enables such query distribution, but does not by itself
provide the necessary infrastructure (e.g., for registration and management of
query nodes). It is assumed that this infrastructure is provided by outside means.

5 Architecture: Overview

The previous section illustrates the guiding principles in the development of
AMaχoS. The remainder of this article focuses on how these principles are
realized in its architecture and discusses several design choices regarding the
architecture.

Notice, that only a small part of the full AMaχoS architecture as described
here has been implemented so far. We have concentrated in the implementation
on the execution and optimization layer, that are also described in more detail
in Sections 5.1 and 5.2. Of the execution layer the core evaluation algorithm
(pattern matching engine) is implemented as described in [8].
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Figure 3 shows a high-level overview of AMaχoS and its components. The
architecture separates the components in three planes:

Control Plane. The control plane enables outside control of the compilation, ex-
ecution, and answer construction. Furthermore, it is responsible for observation
and adaptive feedback during execution.

Program Plane. The program plane contains the core components of the ar-
chitecture: the compilation and execution layer. It combines all processing that
an Xcerpt program partakes when evaluated by an AMaχoS virtual machine.
The first step is, naturally, parsing, validation, normalization, module expansion
etc. These are realized as transformations on the layer of the Xcerpt language
and the resulting normalized, validated, and expanded Xcerpt program can be
accessed via the compilation API. However, usually the result becomes input for
the compilation layer where the actual transformation into AMaχoS code takes
place. The details of this layer are discussed below in Section 5.2. In the architec-
ture overview, we chose to draw the compilation and execution layer as directly
connected. However, it is also possible to access the resulting program (again via
the compilation API) and execute it at a later time and even at a later place.
Indeed, compilation and execution are properly separated with only one inter-
face between them: the AMaχoS program containing aside of the expressions
realizing individual rules in the Xcerpt program also supporting code segments
that provide hints for the program execution and dependency information used
in the rule dispatcher, cf. Section 5.1.

Data Plane. The architecture is completed by the data plane, wherein all access
to data and schema of the data is encapsulated. During compilation, if at all,
only the schema of the data is assumed to be available.

5.1 AMaχoS Core

The core of the AMaχoS virtual machine is formed by the query execution
layer, or AMaχoS proper. Here, an AMaχoS program (generated separately
in the compilation layer, cf. Section 5.2) is evaluated against data provided by
the runtime data access layer resulting in answers that are serialized by the
serialization API.

As shown in Figure 4, the query execution layer is divided in four main
components: the rule engine, the construction engine, the static function library,
and the storage manager. Once a program containing AMaχoS code is parsed
information from the hint segment is used to parameterize storage manager and
rule engine. These parameters address, e.g., the classification of the contained
queries (tree vs. graph queries), the selection of access paths, filter expressions for
document projection, the choice of in-memory representation (e.g., fast traversal
vs. small memory footprint), etc. The rule dependency information is provided
to the rule dispatcher who is responsible for combining the results of different
rules and matching query conjuncts with rule heads. Each rule has a separate
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segment in the AMaχoS program containing code for pattern matching and
for result construction. Intermediary result construction is avoided as much as
possible, partially by rule unfolding, partially by propagating constraints on
variables from rule heads into rule bodies. Only when aggregation or complex
grouping expressions are involved, full intermediary construction is performed
by the construction engine. The rule dispatcher uses the pattern matching engine

for the actual evaluation of Xcerpt queries compiled into AMaχoS code. The
pattern matching engine uses variants of the algorithms described in [8] that
are based on the memoization matrix for storage and access to intermediary
results. The rule engine also detects calls to external functions or Web services
and routes such calls to the static function library, that provides a similar set of
functions as [18] which are implemented directly in the host machine and not as
AMaχoS code.

For each goal rule in the AMaχoS programs the resulting substitution sets
are handed over to the construction engine (possibly incremental) which applies
any construction expressions that apply for that goal and itself hands the result
over to the serialization layer or to the answer API.

The most notable feature of the AMaχoS query engine is the separation in
three core engines: the construction, the pattern matching, and the rule engine.
Where the rule engine essentially glues the pattern matching and the construc-
tion engine together, these two are both very much separate. Indeed, at least on
the level of AMaχoS code even programs containing only queries (i.e., expres-
sions handled by the pattern matching engine) are allowed and can be executed
by this architecture (the rule dispatcher and construction engine, in this case,
merely forwarding their input).
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5.2 Query Compiler

Aside of the execution engine, the query compilation layer deserves a closer look.
Here, an Xcerpt program—represented by an abstract-syntax tree annotated
with type information—is transformed into AMaχoS code. It is assumed that
the Xcerpt program is already validated, normalized, modules are expanded, and
type information is added in the prior parsing layer. The query compilation is
essentially divided in three steps: logical optimization, physical plan generation,
and code generation.

Logical optimization is similar as in traditional database systems but ad-
ditionally has to consider rules and rule dependencies: Xcerpt programs get
translated into a logical algebra based on n-ary conjunctive queries over semi-
structured graphs [8]. Expressions in this algebra are then optimized using vari-
ous rewriting rules, including dead and tautological query part elimination, join
placement optimization, and query compaction. Furthermore, where reasonable,
rules are unfolded to avoid the construction of intermediary results during exe-
cution.

In contrast, physical plan generation differs notably, as the role of indices and
storage model is inverted: In traditional databases these are given, whereas in the
case of AMaχoS the query compiler generates code in the hint section indicating
to execution engine and storage manager which storage model and indices (if any)
to use. Essential for execution is also the classification of queries based on shape
of the query and (static) selectivity estimates. E.g., a query with highly selective
leaves but low selectivity in inner nodes is better evaluated in a bottom-up
fashion, whereas a query with high selectivity in inner nodes profits most likely
from a top-down evaluation strategy. Operator selection is rather basic, except
that it is intended to implement also holistic operators for structural relations
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where entire paths or even sub-trees in the query are considered as parameter
for a single holistic operator, cf., e.g., [5, 21].

To conclude, the query compilation layer employs a mixture of traditional
database and program compilation techniques to obtain an AMaχoS program
from the Xcerpt input that implements the Xcerpt program and is, given the
limited knowledge about the actual data instances, likely to perform well during
execution. The compilation process is rather involved and expected to be time
expensive if all stages are considered. A control API is provided to control the
extent of the optimization and guide it, where possible. We believe that in many
cases an extensive optimization is called for, as the query program can be reused
and, in particular if remote data is accessed, query execution dominates by far
query compilation.

6 Conclusion and Outlook

We present a brief overview over the principles and architecture of a novel kind
of abstract or virtual machine, the AMaχoS virtual machine, designed for the
efficient, distributed evaluation of Xcerpt query programs against Web data.

In particular, we show how the Web setting affects traditional assumptions
about query compilation and execution and forces a rethinking of the conclusions
drawn from these assumptions. The proposed principles and architecture reflect
these changing assumptions

1. by emphasizing the importance of a coherent and clearly specified execution

environment in form of an abstract machine for distributed query evaluation,
2. by separating query compilation from query execution (as in general pro-

gramming language execution),
3. by employing a unified query evaluation algorithm for path, tree, and graph

queries against tree and graph data, and
4. by emphasizing adaptive optimization as a means to ameliorate the loss of

quality in predictive optimization due to lack of knowledge about remote or
volatile data instances.

Implementation of the proposed architecture is still underway, first results
on the implementation of the query engine have been reported in [8] and in [4],
demonstrating the promise of the discussed method and architecture.
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Abstract. In previous papers we presented a type system for a substan-
tial fragment of the Web query language Xcerpt. It is a descriptive type
system: the typing of a program is an approximation of its semantics.
The type system was expressed by means of rules, which could be seen as
a comprehensible abstraction of a typing algorithm. That system treats
some query terms in a rather simplistic way. As a result the approxima-
tions produced for them are rather imprecise. In this paper we provide
an improved type system, producing more precise results.

In previous papers [BCDW05a,BCDW05b,Wil06] we presented a type sys-
tem for a substantial fragment of the Web query language Xcerpt [SB04,Sch04].
It is a descriptive type system: the typing of a program is an approximation of
its semantics. In particular, types are sets (of data objects). The type system
makes possible type derivation (computing an approximation of the set of the
results of a program applied to data from a given set) and type checking (find-
ing whether the results are included in a specified set of allowed results). The
intended application is to help the programmer in finding errors in programs. A
prototype implementation is presented in [Wil06].

The type system was expressed by means of rules, which could be seen as
a comprehensible abstraction of a typing algorithm. That system treats some
query terms in a rather simplistic way. As a result the approximations produced
for them are rather imprecise. In the current paper we provide an improved
type system, producing more precise results. The considered fragment of Xcerpt

is the same as that dealt with in [BCDW05a,BCDW05b]. It can be extended
similarly as done in [Wil06]. A preliminary version of a more precise type system
appeared in [CCD+05], in a form of a rather complicated algorithm. Such a form
of presentation was very difficult to understand and reason about.

1 Preliminaries

To make the paper self-contained, we introduce here the underlying notions.
We introduce data terms, which are our abstraction of XML documents, and
a formalism of defining types (sets of data terms). We present the fragment of
Xcerpt dealt with in our paper and define its formal semantics. This section is
based on our former papers [WD03,BCDW05a,BCDW05b].



1.1 Modelling XML data

We model XML data using a formalism of data terms similar to that defined in
[SB04]. Data terms can be seen as mixed trees which are labelled trees where
children of a node are either linearly ordered or unordered. The content of an
element is a sequence of other elements or basic constants. Basic constants are
basic values such as attribute values and all “free” data appearing in an XML
document (PCDATA). The set of basic constants will be denoted by B. Tag
names and attribute names of XML correspond to labels of data terms. The set
of labels is denoted by L.

Definition 1. A data term is an expression defined inductively as follows:

– Any basic constant is a data term,

– If l is a label and t1, . . . , tn are n ≥ 0 data terms, then l[t1, . . . , tn] and
l{t1, . . . , tn} are data terms.

The linear ordering of children of the node with label l is denoted by enclosing
them by brackets [ ], while unordered children are enclosed by braces {}.

A subterm of a data term t is defined inductively: t is a subterm of t, and
any subterm of ti (1 ≤ i ≤ n) is a subterm of l′[t1, . . . , tn] and of l′{t1, . . . , tn}.
Data terms t1, . . . , tn will be sometimes called the arguments of l′, or the direct

subterms of l′[t1, . . . , tn] (and of l′{t1, . . . , tn}). The root of a data term t, de-
noted root(t), is defined as follows . If t is of the form l[t1, . . . , tn] or l{t1, . . . , tn}
then root(t) = l; for t being a basic constant we assume that root(t) = $.

1.2 Type definitions

Here we introduce a formalism for specifying a class of decidable sets of data
terms representing XML documents. First we specify a set of type names T =
C ∪S ∪V which consist of type constants from the alphabet C, enumeration

type names from the alphabet S, and type variables from the alphabet V .
(In our former papers, enumeration type names were called special type names).

A type definition associates type names with sets of data terms. The set [[T ]]
associated with a type name T is called the type denoted by T . For T being
a type constant or an enumeration type name, the elements of [[T ]] are basic
constants.

Type constants correspond to base types of XML schema languages. The set
of type constants is fixed and finite; for each type constant T ∈ C the set [[T ]] ⊆ B
is fixed.

We denote the empty string by ǫ. A regular expression over an alphabet Σ is
ε, φ, any a ∈ Σ and any r1r2, r1|r2 and r∗

1
, where r1, r2 are regular expressions.

A language L(r) of strings over Σ is assigned to each regular expression r in
a standard way: L(φ) = ∅, L(ε) = {ǫ}, L(a) = {a}, L(r1r2) = L(r1)L(r2),
L(r1|r2) = L(r1) ∪ L(r2), and L(r∗

1
) = L(r1)∗.
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Definition 2. A regular type expression is a regular expression over the
alphabet of type names T . We abbreviate a regular expression rn|rn+1| · · · |rm,
where n ≤ m, as r(n:m), rnr∗ as r(n:∞), rr∗ as r+, and r(0:1) as r?. A regular
type expression of the form

T
(n1,1:n1,2)

1
· · ·T

(nk,1:nk,2)

k

where k ≥ 0, 0 ≤ ni,1 ≤ ni,2 ≤ ∞ for i = 1, . . . , k, and T1, . . . , Tk are distinct
type names, will be called a multiplicity list.

Multiplicity lists will be used to specify multisets of type names. We use typesD(r)
to denote the set of all type names occurring in the regular expression r.

Definition 3. A type definition is a set D of rules of the form

T → l[r], T → l{s}, or T ′ → c1 | . . . | cn,

where T is a type variable, T ′ an enumeration type name, l a label, r a regular
type expression, s a multiplicity list, and c1, . . . , cn are basic constants. A rule
U→G ∈ D will be called a rule for U in D. We require that for any type name
U ∈ V ∪ S occurring in D there is exactly one rule for U in D.

If the rule for a type variable T in D is as above then l will be called the
label of T (in D) and denoted labelD(T ) = l. For T being a type constant or
an enumeration type name we define labelD(T ) = $. The regular expression in
a rule for type variable T is called the content model of T .

Type definitions are a kind of grammars, they define sets by means of deriva-
tions, where a type variable T is replaced by the right hand side of the rule for
T and a regular expression r is replaced by a string from L(r); if T is a type
constant or an enumeration type name then it is replaced by a basic constant
from respectively [[T ]], or from the rule for T . This can be concisely formalized
as follows (treating type definitions similarly to tree automata).

Definition 4. Let D be a type definition. We will say that a data term t is
derived in D from a type name T iff there exists a mapping ν from the subterms
of t to type names such that ν(t) = T and for each subterm u of t

– if u is a basic constant then ν(u) ∈ C and u ∈ [[ν(u)]] or ν(u) ∈ S and there
exists a rule ν(u)→ · · · | u | · · · in D.

– otherwise ν(u) = U ∈ V and

• there is a rule U ← l[r] ∈ D, u = l[t1, . . . , tn], and ν(t1) · · · ν(tn) ∈ L(r),

• or there is a rule U ← l{r} ∈ D, u = l{t1, . . . , tn}, and ν(t1) · · · ν(tn) is
a permutation of a string in L(r).

The set of the data terms derived in D from a type name T will be denoted
by [[T ]]D.
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For examples see [BCDW05a,BCDW05b]. Notice that if T is a type con-
stant then [[T ]]D = [[T ]]. If it is clear from the context which type definition
is considered, we will often omit the subscript in the notation [[ ]]D and sim-
ilar ones. For U being a set of type names {T1, . . . , Tn}, we define a set of
data terms [[U ]] = [[T1]] ∪ . . . ∪ [[Tn]]. For a regular type expression r we define
[[r]] = { d1, . . . , dn | d1 ∈[[T1]], . . . , dn ∈[[Tn]] for some T1, . . . , Tn ∈ L(r) }. Notice
that if D ⊆ D′ are type definitions then [[T ]]D = [[T ]]D′ for any type name T

occurring in D.

1.3 Xcerpt – introduction

Xcerpt is a rule-based query and transformation language for XML [SB04,Sch04].
It employs patterns instead of paths to query XML and semistructured data.
This approach stems from logic programming. A query term is matched against a
data term from a database. A successful matching results in binding the variables
in the query term to certain subterms of the data term. This operation is called
simulation unification. In full Xcerpt simulation unification deals with data terms
representing graphs. In the restricted version of Xcerpt considered in this paper,
data terms are trees. Following [WD03] we provide a formal semantics for Xcerpt

query terms. In this paper we are not interested in other constructs of Xcerpt.

Definition 5. Query terms are inductively defined as follows:

– Any basic constant is a query term.
– A variable X is a query term.
– If q is a query term, then desc q is a query term.
– If X is a variable and q is a query term, then X ; q is a query term.
– If l is a label and q1, . . . , qn (n ≥ 0) are query terms, then l[q1, . . . , qn],

l{q1, . . . , qn}, l[[q1, . . . , qn]] and l{{q1, . . . , qn}} are query terms (called rooted
query terms).

For a rooted query term q = lαq1, . . . , qnβ, where αβ are parentheses [ ], [[ ]], {}
or {{}}, root(q) = l and q1, . . . , qn are the child subterms of q. If q is a basic
constant then root(q) = $.

We assume that a database is a data term or a multiset of data terms. To in-
formally explain the role of query terms, consider a query term q = lαq1, . . . , qmβ

and a data term d = l′α′d1, . . . , dnβ′, where α, β, α′, β′ are parentheses. In order
to q match d it is necessary that l = l′. Moreover the child subterms q1, . . . , qm

of q should match certain child subterms of d. Single parentheses in d ([ ] or {})
mean that m = n and each qi should match some (distinct) dj . Double paren-
theses mean that m ≤ n and q1, . . . , qm are matched against some m terms out
of d1, . . . , dn. Curly braces ({} or {{}}) in q mean that the order of the child
subterms in d does not matter; square brackets in q mean that q1, . . . , qm should
match (a subsequence of) d1, . . . , dn in the same order.

A variable matches any data term, desc q matches a data term d whenever
q matches some subterm of d. A query term X ; q matches any data term
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matched by q. A side effect of a query term X or X ; q matching a data term
d is that variable X obtains a value d.

Now we formally define which query terms match which data terms and what
are the resulting assignments of data terms to variables. We do not follow the
original definition of simulation unification. Instead we define a notion of answer
substitution for a query term q and a data term d. As usually, by a substitution
(of data terms for variables) we mean a set of pairs θ = {X1/d1, . . . , Xn/dn },
where X1, . . . , Xn are distinct variables and d1, . . . , dn are data terms; its domain
dom(θ) is {X1, . . . , Xn}, its application to a (query) term is defined in a standard
way.

Definition 6 ([WD03]). A substitution θ is an answer substitution (shortly, an
answer) for a query term q and a data term d if q and d are of one of the forms
below and the corresponding condition holds. (In what follows m, n ≥ 0, X is
a variable, l is a label, q, q1, . . . are query terms, and d, d1, . . . data terms; set
notation is used for multisets, for instance {d, d} and {d} are different multisets).

q d condition on q and d

b b b is a basic constant

l[q1, . . . , qn] l[d1, . . . , dn] θ is an answer for qi and di,
for each i = 1, . . . , n

l[[q1, . . . , qm]] l[d1, . . . , dn] for some subsequence di1 , . . . , dim
of d1, . . . , dn

(i.e. 0 < i1 < . . . < im ≤ n)
θ is an answer for qj and dij

,
for each j = 1, . . . , m,

l{q1, . . . , qn} l{d1, . . . , dn} for some permutation di1 , . . . , din
of d1, . . . , dn

or (i.e. {di1 , . . . , din
} = {d1, . . . , dn})

l[d1 · · · dn] θ is an answer for qj and dij

for each j = 1, . . . , m,

l{{q1, . . . , qm}} l{d1, . . . , dn} for some {di1 , . . . , dim
} ⊆ {d1, . . . , dn}

or θ is an answer for qj and dij

l[d1, . . . , dn] for each j = 1, . . . , m,

X d Xθ = d

X ; q d Xθ = d and θ is an answer for q and d

desc q d θ is an answer for q

and some subterm d′ of d

We say that q matches d if there exists an answer for q, d.

Thus if q is a rooted query term (or a basic constant) and root(q) 6= root(d)
then no answer for q, d exists. If q = d then any θ is an answer for q, d. A query
l{{}} matches any data term with the label l. If θ, θ′ are substitutions and θ ⊆ θ′

then if θ is an answer for q, d then θ′ is an answer for q, d. If a variable X occurs
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in a query term q then queries X ; q and X ; desc q match no data term,
provided that q 6= X and q is not of the form desc · · ·descX .

Example 1. Query term q1 = a[ c{{d[ ], ”e”}}, f [[g[ ], h{”i”}]] ] matches data
terms a[ c{”e”, d[ ], g[ ]}, f [g[ ], l[ ], h[”i”] ] ] and a[ c[d[ ], g[ ], ”e”], f [g[ ], h[”i”] ] ].
In contrast, data terms f [h[”i”], g[ ] ] and f{g[ ], h[”i”]} are not matched
by f [[g[ ], h{”i”}]]. Query term q2 = desc w{{}} matches data terms
a[b{w[ ]}] and w{”s”}. Query term q2 = a[[ X1;c[[d{}]], X2, ”p” ]] matches
a[”s”, c[d{}, ”r”], h{j[ ]}, ”p”], with an answer which binds X1 to c[d{}, ”r”]
and X2 to h{j[ ]}.

Each answer for a query term q binds all the variables of the query to some
data terms. For any such answer θ′ (for q and d) there exists an answer θ ⊆ θ′

(for q and d) binding exactly these variables. We will call such answers non
redundant. From Definition 6 one can derive an algorithm which produces non
redundant answers for a given q and d. Construction of the algorithm is rather
simple, we skip the details. Non redundant answers are actually those of interest;
we consider a more general class of answers to simplify Definition 6.

1.4 Variable-type mappings

To represent (supersets of) the sets of answers to queries, we employ mappings
from variables to certain expressions built of type names. In this section we
assume a fixed type definition D and a fixed set V of variables (e.g. those occur-
ring in the considered query). According to our convention, we will often skip
the index D.

We consider a set E of expressions; E contains 0, 1, the type names from D,
and expressions of the form T1 ∩ T2, where T1, T2 ∈ E . Each expression E from
E denotes a set [[E]] of data terms. For a type name T the set [[T ]] is that defined
by D, [[1]] denotes the set of all data terms, [[0]] = ∅, and [[T1 ∩ T2]] = [[T1]]∩ [[T2]].
We will not distinguish expressions T ∩ 1, 1 ∩ T and T , and T ∩ 0, 0 ∩ T and 0
(where T ∈ E).

A mapping Γ : V → E will be called a variable-type mapping. The set of
substitutions corresponding to Γ is

substitutionsD(Γ ) = { θ | ∀X∈V θX ∈ [[Γ (X)]] }.

Notice that if θ ∈ substitutions(Γ ) then V ⊆ dom(θ) and if θ ⊆ θ′

then θ′ ∈ substitutions(Γ ). For a set Ψ of variable-type mappings we define
substitutions(Ψ) =

⋃

Γ∈Ψ
substitutions(Γ ).

For Y1, . . . , Yk ∈ V, T1, . . . , Tk ∈ E , mapping [Y1 7→ T1, . . . , Yk 7→ Tk] : V → E
is defined as

[Y1 7→ T1, . . . , Yk 7→ Tk](X) =

{

Ti if X = Yi

1 otherwise.

Inclusion of types induces a pre-order ⊑ on the mappings from V → E , as
follows. If Γ and Γ ′ are such mappings then Γ ⊑ Γ ′ iff [[Γ (X)]] ⊆ [[Γ ′(X)]] for
each variable X ∈ V . Notice that Γ ⊑ Γ ′ is equivalent to substitutions(Γ ) ⊆
substitutions(Γ ′), provided that [[Γ (X)]] 6= ∅ for each X ∈ V .
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2 Typing query terms

Here we present a type system for Xcerpt query terms. For a given query term
q and a type [[T ]] of a database, the type system makes it possible to derive
variable-type mappings Γ1, . . . , Γn describing the answers of q. Formally, each
answer for q and a data term from [[T ]] is in some substitutions(Γi) (1 ≤ i ≤ n).
Together with each Γi a type name T ′

i is derived, such that [[T ′
i ]] contains those

data terms for which q resulted in answers from substitutions(Γi). The type
system is formulated as a set of derivation rules. Such a set of rules can be seen
as a convenient abstraction of a (rather complicated) type inference algorithm.

The set of rules proposed in our previous papers treats query terms of the
form X ; q in a simplistic way. The set of results of X ; q and that of X are
both approximated by the same variable-type mapping (if X does not occur in
q). Namely it is concluded that applying X , or X ; q, to data from a type [[T ]]
may bind X to any term from [[T ]]. However X ; q can bind X only to such
terms from [[T ]] which are matched by q. So for each query term we need to find
not only the type of results, as previously, but also (a superset of) the set data
terms from the given type matched by the query term.

Our typing rules for query terms derive facts of the form D ⊢ q : T ⊲ (Γ, T ′),
where D is a type definition, q is a query term, T, T ′ are type names, [[T ′]] ⊆ [[T ]],
and Γ is a variable-type mapping. Intuitively such a fact means that query term q

applied to a data term d ∈ [[T ]] results in a substitution θ from substitutions(Γ ),
moreover d ∈ [[T ′]]. Formally, whenever q matches a d ∈ [[T ]] with a result θ then a
fact as above is derived, where θ ∈ substitutions(Γ ) and d ∈ [[T ′]].1 The previous
type system derived facts of the form D ⊢ q : T ⊲ Γ , not providing information
which terms from [[T ]] are matched by q.

Now we present the typing rules with informal explanation. A soundness
proof is provided in the next section.

A query term which is a basic constant b matches a single data term b; we
construct a type T ′ containing one element.

b ∈ [[T ]]

D ⊢ b : T ⊲ (Γ, T ′)
(Constant)

where T ′ → b ∈ D.
A variable matches any data term (types T, T ′ are equal, X can be bound

to any element of type T ).

Γ ⊑ [X 7→ T ]

D ⊢ var X : T ⊲ (Γ, T )
(Var)

1 In practice we begin with a type definition D0 ⊆ D describing the type [[T ]]D0
=

[[T ]]D of the considered database. The rules of D \ D0 are constructed according to
the requirements of the typing rules.

124     W. Drabent



A query X ; q matches data terms that are matched by q. The resulting
variable bindings are those given by q, but additionally X must be bound to the
data term (from [[T ′]]) that has been matched by q.

D ⊢ q : T ⊲ (Γ, T ′) Γ ⊑ [X 7→ T ′]

D ⊢ var X ; q : T ⊲ (Γ, T ′)
(As)

As an example consider a query varX ; bb applied to data terms from the
type given by T → aa | bb | cc ∈ D (where aa, bb, cc are basic constants and
T ∈ S). For arbitrary Γ , from rule (Constant) we obtain D ⊢ bb : T ⊲ (Γ, T ′),
provided D contains T ′ → bb. (Indeed, the query term bb matches only the data
term bb.) Then D ⊢ varX ; bb : T ⊲ (Γ, T ′) is obtained from rule (As), but
only if Γ ⊑ [X 7→ T ′]. This shows that X can be bound only to the elements
of [[T ′]] = {bb}; for the same query the previous type system produces Γ ⊑
[X 7→ T ], giving {aa, bb, cc} as the set of possible values of X .

Any term matched by a query q is matched by desc q:

D ⊢ q : T ⊲ (Γ, T ′)

D ⊢ desc q : T ⊲ (Γ, T ′)
(Descendant)

Query desc q matches a data term d = lαd1, . . . , dnβ if desc q matches some
subterm di.

D ⊢ desc q : T1 ⊲ (Γ, T ′
1
)

D ⊢ desc q : T ⊲ (Γ, T ′)
(Descendant Rec)

where
T → lαrβ ∈ D,
T1 is a type name from r,
L is the set of the strings from L(r) containing the symbol T1,
r′ is a regular expression such that L(r′) = { [T1/T ′

1
](w) | w ∈ L }, where

[T1/T ′
1](w) is the string obtained from w by replacing one occurrence of T1 by T ′

1,
if r is a multiplicity list then r′ is a multiplicity list too,

T ′→lαr′β ∈ D.
The two rules for the desc q queries are not sufficient. When T in D is

defined recursively, they may produce an infinite set of approximations such
that no finite subset of it is sufficient. (For each finite set S of derived facts there
exists a data term d ∈ [[T ]] matched by desc q such that d 6∈ [[T ′]] for each fact
D ⊢ desc q : T ⊲ (Γ, T ′) from S.)

As an example consider a query q = desc l[ ] and the type defined by a
rule T → l[T |ǫ] ∈ D. The query matches each data term from [[T ]]. From rule
(Pattern) below D ⊢ l[ ] : T ⊲ (∅, U1) can be derived, where U1 → l[ ] ∈ D. Now
for i = 1, 2, . . . we can derive D ⊢ desc l[ ] : T ⊲ (∅, Ui), where Ui+1→ l[Ui] ∈ D;
these are all the facts concerning desc l[ ] that can be derived. The union of
S = {Ui | i = 1, . . .} contains all the terms matched by q, but no finite subset of
S has this property.
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Informally, the rules (Descendant), (Descendant Rec) lead to infinite
recursion, and the recursion should be terminated. For this purpose we introduce
an additional rule, in which T ′ = T .

D ⊢ q : T1 ⊲ (Γ, U)

D ⊢ desc q : T ⊲ (Γ, T )
(Descendant0)

where T depends on T1 in D. (T immediately depends on T ′ in D if the rule for
T in D contains T ′; if Ti immediately depends of Ti+1 for i = 1, . . . , n− 1 then
T1 depends on Tn.) 2

We will need to construct a multiplicity list which describes the union of the
sets described by given n multiplicity lists. More formally, let s1 · · · sn be a con-
catenation of multiplicity lists (n ≥ 0). In what follows mult list(s1 · · · sn) is a
multiplicity list such that perm(L(mult list(s1 · · · sn))) = perm(L(s1 · · · sn)).
(This means that the set of permutations of the strings from language
L(mult list(s1 · · · sn)) is the same as the set of permutations of the strings from
language L(s1, . . . , sn).)

It remains to describe the set of variable bindings produced by a query of the
form l αq1 · · · qnβ (where αβ are [ ], [[ ]], {{}} or {}) and the set of terms from [[T ]]
matched by the query. If l αq1 · · · qnβ matches a data term d then d is of the form
lα′d1 · · · dmβ′ and queries q1, . . . , qn match certain data terms from d1 · · ·dm (for
details cf. [BCDW05a]). From the definition of T given by D we determine the
types T1, . . . , Tn of data terms to which the queries q1, . . . , qn are respectively
applied. From an assumption that qi matches data terms from [[Ui]] ⊆ [[Ti]] (for
i = 1, . . . , n) we construct a definition of a set containing the corresponding data
terms matched by query l αq1 · · · qnβ.

D ⊢ q1 : T1 ⊲ (Γ, U1) · · · D ⊢ qn : Tn ⊲ (Γ, Un)

D ⊢ l αq1, · · · , qnβ : T ⊲ (Γ, U)
(Pattern)

where
the rule for T in D is T → lα′rβ′,

2 Rule (Descendant0) looses all information about which terms from [[T ]] are
matched by desc q; it simply returns a fact with the last element T . We conjec-
ture that rule

D ⊢ desc q : T ⊲ (Γ, T ′) |—— D ⊢ desc q : T1 ⊲ (Γ, T ′

1)

D ⊢ desc q : T ⊲ (Γ, T ′)
(Descendant Rec’)

with conditions as in (Descendant Rec), could be used instead of (Descendant0).
Here α |— β means that fact β can be derived having assumed the fact α. This rule
is similar to Hoare rule for correctness of recursive procedures (cf. e.g. [NN92]).

Using (Descendant Rec’) should result in better approximations of the set
of terms from [[T ]] matched by desc q. However it is unclear how to find such
D ⊢ desc q : T ⊲ (Γ, T ′) for which (Descendant Rec’) can be applied.
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if αβ = [ ] then α′β′ = [ ] and T1 · · ·Tn ∈ L(r) and U → l[U1 · · ·Un] ∈ D,
if αβ = [[ ]] then α′β′ = [ ] and U → l[r2] ∈ D, where

L(r2) = L2 = {w0U1w1 · · ·Unwn | w0T1w1 · · ·Tnwn ∈ L(r) },

if αβ = {} then T1 · · ·Tn is a permutation of a string Ti1 · · ·Tin
∈ L(r) and

U → l[Ui1 · · ·Uin
] ∈ D if α′β′ = [ ], and

U → l{mult list(Ui1 · · ·Uin
)} ∈ D if α′β′ = {},

if αβ = {{}} and α′β′ = [ ] then
T1 · · ·Tn is a permutation of a string Ti1 · · ·Tin

and
D contains a rule U → l[r5] such that

L(r5) = L5 = {w0Ui1w1 · · ·Uin
wn | w0Ti1w1 · · ·Tin

wn ∈ L(r) }

(so if L5 6= ∅ then Ti1 · · ·Tin
is a subsequence of a string of L(r)),

if αβ = {{}} and α′β′ = {} then
let r be a multiplicity list T ′

1
(l1 : u1) · · ·T ′

m(lm : um) and
yj (for j = 1, . . . , m) be the number of occurrences of T ′

i in T1, . . . , Tn,
y1 + . . . + ym = n and yj ≤ uj for each j = 1, . . . , m (in other words a

permutation of T1 · · ·Tn is a subsequence of a string from L(r)),
U → l{mult list( U1 · · ·Un T1(max(l1 − y1, 0) : u1 − y1)

· · ·Tm(max(lm − ym, 0) : um − ym) ) } ∈ D.

We have to show that the languages L2, L5 above are regular. Consider L2,
the reasoning for L5 is similar. Let the type names occurring in r be T ′

1
, . . . , T ′

m.
Notice that if L2 is nonempty then {T1, . . . , Tn} ⊆ {T ′

1
, . . . , T ′

m}. Consider two
regular expressions rAll = T ′

1| · · · |T
′
m and r′ which is r with every type name

Ti replaced by Ti|Ui, when T1, . . . , Tn are distinct. In a general case, Ti is re-
placed by Ti|Uji1

| · · · |Ujiki
, where Tji1

, . . . , Tjiki
are those elements of the se-

quence T1, . . . , Tn which are equal to Ti (i = 1, . . . , n, ki > 0 and ji1, . . . , jiki
∈

{1, . . . , n}). Now L2 is the intersection of regular languages:

L2 = L(rAllU1rAll · · ·UnrAll) ∩ L(r′).

3 Soundness

Here we prove correctness of the presented rule system. We begin with a technical
property.

Proposition 1. If D ⊢ q : T ⊲ (Γ, U) and Γ ′ ⊑ Γ then D ⊢ q : T ⊲ (Γ ′, U).
If D ⊢ q : T ⊲ (Γ, U) and D ⊆ D′ then D′ ⊢ q : T ⊲ (Γ, U)

Soundness of the type system may be stated informally as follows. Whenever
θ is an answer to a query term q and a data term d from the type specified
by T then the type system produces a variable-type mapping Γ such that θ ∈
substitutionsD′(Γ ). Moreover, it produces a type [[T ′]] containing d. Formally,
we have:
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Proposition 2. Let D be a type definition. If a query term q matches a data
term d ∈ [[T ]]D with an answer substitution θ then there exists a type definition
D′ ⊇ D, a variable-type mapping Γ and a type variable T ′ such that D′ ⊢ q :
T ⊲ (Γ, T ′), θ ∈ substitutionsD′(Γ ) and d ∈ [[T ′]]D′ ⊆ [[T ]]D.

The proposition also holds if rule (Descendant0) is removed. This property
is too weak for our purposes. We require that a finite set of variable-type map-
pings (and a finite set of produced types) is sufficient for all the answers for q

(when q is applied to data terms from the given type).

Proposition 3 (Soundness of the type system). Let q0 be a query term, D

a type definition, and T0 a type name such that [[T0]]D 6= ∅. Then there exists a
type definition D′ ⊇ D and a finite set S of facts of the form D′ ⊢ q0 : T0⊲(Γ, T ′),
derived by the rule system such that if q0 matches a data term d0 ∈ [[T0]]D
with an answer substitution θ then S contains a D′ ⊢ q0 : T0 ⊲ (Γ, T ′) where
d0 ∈ [[T ′]]D′ ⊆ [[T0]]D and θ ∈ substitutionsD′(Γ ).

Proof (outline). Formally, a fact can be derived by the rule system if it is the
root of a derivation tree [NN92]. We describe how to construct the required set
of facts. We construct derivation trees for these facts, starting from their roots.
As D′, Γ, T ′ are not known, we first construct skeletons of the trees; the nodes
of the skeletons are of the form ⊢ q : T ⊲ ( , ). Formally, skeletons are derivation
trees for the rules modified by removing from each fact the type definition, the
variable-type mapping and the second type name.

A given ⊢ q : T ⊲ ( , ), where q is not of the form desc q′, can be ob-
tained from at most one rule. To generate a fact ⊢ desc q′ : T ⊲ ( , ), we ei-
ther apply rules (Descendant), (Descendant Rec), or rules (Descendant),
(Descendant0). Under this restriction a given ⊢ q : T ⊲ ( , ) can be ob-
tained from at most two rules. For each of the rules a finite set of premises
(tuples of facts) can be used. (Only for rules (Pattern), (Descendant Rec),
(Descendant0) the set contains more than one element.) If the applied rule is
not (Descendant Rec) then each query term in the premises is a subterm of
q. If the rule is (Descendant Rec) then q = desc q′ and the query term in the
premise is q.

Assume that rule (Descendant Rec) is not used. Then the set of skeletons
with a given root ⊢ q : T ⊲ ( , ) is finite. More generally, for a given k ≥ 0 the set
SSk of skeletons with the root ⊢ q : T ⊲( , ) and with no more than k occurrences
of rule (Descendant Rec) is finite.

Now we show how to construct a derivation tree out of a skeleton.

1. Consider the occurrences of the rules (Constant), (Descendant Rec),
and (Pattern) in the skeleton. Each of them requires existence of a certain
type definition rule in D′. D′ can be constructed by adding the required rules to
D. Notice that we can construct a single type definition D′ for all the skeletons
from SSk (by adding to D the type definition rules required in all the skeletons).

2. Now the second type name in each node of the derivation tree is uniquely
determined.
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3. Consider all the conditions of the form Γ ⊑ [X 7→ T ′] in the skeleton.
Let X1, . . . , Xn be the variables occurring in these conditions, and let Γ ⊑
[Xi 7→Ti1], . . . , Γ ⊑ [Xi 7→Timi

] be the conditions involving the variable Xi. Let
us take Γ = [X1 7→ U1, . . . , Xn 7→ Un], where each Ui is Ti1 ∩ . . .∩ Timi

. Such Γ

satisfies all the conditions.
Thus from a skeleton with root ⊢ q0 : T0 ⊲ ( , ) we constructed a derivation

tree for D′ ⊢ q0 : T0 ⊲ (Γ, T ′). In this way from the set SSk of skeletons a finite
set TT of derivation trees is constructed.

It remains to show that if q0 matches a data term d0 ∈ [[T0]]D with an answer
substitution θ then TT contains (a tree with the root) D′ ⊢ q0 : T0 ⊲ (Γ, T ′)
where d0 ∈ [[T ′]]D′ ⊆ [[T0]]D and θ ∈ substitutionsD′(Γ ).

We iteratively label some facts in the trees of TT with data terms. If d labels
a fact D′ ⊢ q : T ⊲ (Γ, T ′) then q matches d and d ∈ [[T ]]D′ . Initially all the roots
of TT are labelled with d0.

1. If d labels the conclusion of an instance of rule (As) or (Descendant)
the premise of the instance is labelled with d, provided that the query term q in
the premise matches d.

2. If d labels the conclusion D′ ⊢ desc q : T ⊲ (Γ, U) of an instance of
(Descendant0) and q matches some subterm d′ of d then label with d′ the
premise D′ ⊢ q : T1 ⊲ (Γ, U) of the instance, provided that d′ ∈ [[T1]]D′ .

3. (Descendant Rec) is treated similarly.
4. Assume that d labels the conclusion D′ ⊢ lαq1, . . . , qnβ : T ⊲ (Γ, U) of

an instance of (Pattern). Then d = lα′d1, . . . , dmβ′ and lαq1, . . . , qnβ matches
d. There are six similar cases to be considered. We discuss here the first one,
where αβ = α′β′ = [ ] and m = n. Each qi matches di. If, for each premise
D′ ⊢ qi : Ti ⊲ (Γ, Ui) of the instance, di ∈ [[Ti]] then label each premise with di,
respectively.

Notice that the labelling process results in labelling of all the facts in at
least one derivation tree Tr of TT . Also, θ ∈ substitutions(Γ ), where Γ is the
variable-type mapping from (each fact of) Tr.

Now by induction on the subtrees of Tr we obtain that if a data term d labels
a fact D′ ⊢ q : T ⊲ (Γ, U) then d ∈ [[U ]]D′ . This concludes the proof. 2

4 Typing other constructs of Xcerpt

The previous sections present typing rules for query terms. The rest of the typing
system – the typing rules for queries, construct terms and query rules – remains
the same as in [BCDW05a,BCDW05b]. To connect the new and the old part of
the type system we need an additional rule

D ⊢ q : T ⊲ (Γ, T ′)

D ⊢ q : T ⊲ Γ

The rule transforms facts produced by the new rules into the form needed by the
old rules for queries. It abandons the information on terms from [[T ]] matched
by q.
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Abstract. We describe an extension of an OWL knowledge base using
PostgreSQL, Jena, and Pellet with active rules in form of triggers. The
triggers react on atomic events on the OWL level. In contrast to “simple”
RDF triggers whose trigering events can directly be mapped on updates
on RDF triples, the extension to RDFS and OWL requires to combine
reactivity with OWL reasoning. For this, “direct”, pre-reasoning trig-
gers that react on update operations (often also providing support for
the intended operation), and “indirect”, post-reasoning triggers that re-
act on actual changes have to be distinguished. The approach has been
implemented in a prototype based on the Jena framework.

1 Introduction

The Semantic Web consists of application nodes (e.g., representing universities
or airlines) that provide information and application-level functionality, and of
infrastructure nodes that provide application-independent services that “talk
about” the application-level issues. Application nodes often use any kind of
knowledge base for storing persistent data. In such a scenario, triggers provide
simple reactive behavior patterns in the style of ECA (Event-Condition-Action)
rules: “ON event WHEN condition DO action”, i.e., when a specified event
occurs and a condition is satisfied, then execute a given action. Triggers that
react on database updates are a common means for maintaining integrity, both
wrt. general, data-model-immanent issues (such as e.g. referential integrity in
databases), and for application-specific integrity. Additionally, they provide a
base for application-specific behavior. Such triggers have been introduced for
SQL, and also several proposals for triggers on XML or RDF data are around.
Thus, there is a clear motivation to apply this concept also to OWL knowledge
bases – which are significantly different from SQL, XML and RDF databases:
they include reasoning that interferes with the basic trigger mechanisms.

The paper is structured as follows: next, we discuss the general situation
about adding behavior to the Semantic Web. In Section 2, we discuss the notions
of updates and events underlying triggers for a knowledge base in presence of
OWL reasoning. The syntax and semantics of triggers on the OWL level of a
knowledge base is investigated in Section 3. Section 4 describes the architecture



of an OWL system based on the Jena [Jen] Semantic Web Framework that has
been implemented in [Lie06]. It combines Jena with a PostgreSQL database,
and uses Pellet [Pel] as external reasoner via the DIG interface [DIG]. Section 5
describes the actual event detection and handling of triggers in this setting,
including the implemented solution and a discussion of alternative variants. A
short conclusion completes the paper.

Evolution and Reactivity in the Semantic Web. In [MAB04], we pro-
posed to follow the ECA (Event-Condition-Action) paradigm for describing and
implementing behavior in the Semantic Web. ECA rules, in different expressive-
ness and complexity are appropriate for all levels, from the local behavior of
individual nodes up to global cooperation and interaction of multiple nodes. In
[MAA05b,MAA05a], we described a general, ontology-based approach for active
behavior in the Semantic Web for the global level. The current paper now focuses
on the local level of one such application node. Whereas the static concepts of
the Semantic Web, i.e., RDF [RDF00], RDFS [RDF00], and OWL [OWL04] are
assumed to be familiar to the reader, the dynamic concepts of events and actions
are shortly reviewed: Events here are instantaneous happenings (e.g., the publi-
cation of a new book, a cancellation of a flight etc.) anywhere in the Web, also
composite events (expressed by event algebras) that combine events at different
nodes in the Web can be specified.

Atomic events can be regarded on different abstraction levels. Events on the
data level of the node’s knowledge base are expressed in terms of the database
or knowledge base model. For SQL databases, these atomic events INSERT,
UPDATE, DELETE immediately correspond to update operations.

This is not the case when RDFS or OWL models are considered: the basic
events are still expressed on the data model level (in terms of statements), but
they can be raised by syntactically different updates. E.g. an event CREATION
OF INSTANCE OF person can be raised by an INSERT (scott tiger, rdf:type, stu-
dent) operation. Similarly, an event DELETION OF p OF INSTANCE OF CLASS
c (deletion of property p of an object of class c) can be raised by a modification
of the statement (y, q, x) (x and instance of c) to (y, q, z) where p is declared
to be the inverse property to q.

As we will describe in more detail later, with a knowledge model where
update operations and resulting changes are not the same (note that we already
used “INSERT”, “DELETE”, and “ON CREATION” and “ON DELETION”), there
will even be two slightly different kinds of triggers, direct ones that react upon
the operations, and indirect ones that react on the changes of the model. This
difference is a bit similar to SQLs BEFORE/AFTER vs. INSTEAD OF triggers
that distinguish between base and derived relations (whereas in OWL any notion
can be both base and derived).

On the application level, events can be fully derived events, e.g., the action
“book a seat for Alice on flight LH0815 (from Frankfurt to Lisbon) on February
30th” can raise the events “Alice has been booked to seat 18A of ...”, “flight
LH0815 on Feb. 30th is fully booked”, or “there are no more tickets on Feb.
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30th from Germany to Lisbon”. Application-level ECA rules can then react
upon application-level events.

For this, (i) application-level events must be derived from low-level events in
Semantic Web nodes, and (ii) there must be a communication of atomic events
from the nodes where they occur to the engines that execute the ECA rules. The
pure communication is done e.g. by event brokers based on the publish-subscribe
communication pattern. The node where the event actually happens must only
“provide” the event, i.e., information that the event happened. For this, the local
triggers are used that “map” database updates (or, more correctly, changes) to
events that are then signaled to the outside.

The Role of RDFS/OWL Triggers for Behavior in the Semantic Web.
The information flow between events and actions is depicted in Figure 1 and
contains the following types of rules:

1. ECA rules for local integrity maintenance in an RDF/OWL knowledge base,

2. ECE rules: derive and raise application-level events based on internal changes
on the RDF/OWL level,

3. global ECA rules that use application-level events,

4. ACA rules: map high-level actions to lower-level (e.g. INSTEAD OF triggers).

Amongst these, (1), (2), and partially also (4) are based on database level and
knowledge base level triggers.

Semantic
Level Events

Semantic
Level ActionsGlobal:

Semantic Web
Domain Ontologies

Local: Node
RDF Data Model
with OWL Reasoning

Local (RDF,OWL)
Level Events

Local (RDF,OWL)
Level Actions

ECA Business

ECE Derivation ACA Reduction

ECA triggers

knowledge base level:
actions+OWL reasoning ; events

Fig. 1. Interference of Events, Actions, and Rules

2 Triggers on the OWL Level

A simple form of active rules that is often provided by database systems, are
triggers. Reacting directly to changes in the database, they provide the basic level
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of behavior. Triggers are simple rules on the logical, (database) programming
language and data structure level. They follow a simple ECA pattern where
the event is directly correlated with events in the database or knowledge base
model, the conditions are given in the database query language and the action
component is given in a simple, operational programming language. In SQL,
triggers are of the form

ON database-update WHEN condition BEGIN pl/sql-fragment END .

In the Semantic Web, the data level is assumed to be in RDF format, equipped
with RDFS and OWL semantics. RDF triples describe properties of a resource.
RDFS [RDF00] and OWL [OWL04] data is also described by RDF, but RDFS
and OWL add special predicates based on Description Logics [BCM+03] that
allow and require reasoning to derive intensional knowledge from the RDF
database. A proposal for RDF events and RDF triggers can be found in RDFTL
[PPW03,PPW04].

2.1 Events and Updates in the Presence of OWL Reasoning

In contrast to SQL, XML, or RDF databases where the stored database is the
“model”, in an RDFS or OWL environment the “model” extends the material-
ized base facts with statements that can be derived by RDFS/OWL reasoning.
RDFS/OWL triggers are expected to implement reactive behavior also on de-
rived notions. Thus, for further investigations, we have first to analyze events
and updates when working on the OWL level.

Events. While events on the data level in SQL, XML and RDF databases di-
rectly correspond to update operations, events on the OWL level can be de-
rived events that result from some (syntactically different) update operation
and RDFS/OWL reasoning. Thus, event detection can in general not be local
to the database part, but must include the reasoning.

Before actually talking more detailed about events and triggers (in Section 3),
the update operations have to be analyzed.

Updates. A closely related problem occurs with updates: due to the nature of the
Description Logic reasoning underlying OWL, updates are not only view updates,
but theory updates, i.e., intensional statements what should hold (or not hold
any longer) afterwards. View updates are subject of investigations in databases,
and intensional updates and theory updates are investigated in the contexts of
knowledge representation. The OWL semantics and reasoning adds another issue
in contrast to view definitions in classical databases: in classical databases, there
is a clear dependency between a derived relation, and its underlying (mostly:
base) relations. In OWL, every notion can be both materialized and derived
(e.g., using inverseOf).

– adding data is simpler than for relational views: any data can be added as
statements to the materialized knowledge base without the necessity to map
views onto base relations, but
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– deleting or modifying information that exists only as derived information
requires to map it to base facts. Even more, since there may be redundant
facts, “deleting” a fact from the materialized knowledge base may still not
remove it when it is derivable from the remaining data. Thus, “deleting”
from the materialized facts is different from retracting facts, i.e., asserting
that something must not hold any longer.

2.2 OWL: Fact Base and Updates

An OWL-based node usually maintains a materialized (RDF) fact base (see
also Section 4) and combines it with reasoning. We propose the following set of
update actions on an OWL knowledge base node:

– DELETE(statement) from the fact base. This does not necessarily imply that
the fact does not hold afterwards (e.g., deleting a redundant entry where a
statement and its inverse are both materialized as shown below in Example 2).
Here, one of the statements can be deleted without changing the knowledge
base.

Note that when deleting a reified statement from a fact base, statements
about it should also be deleted.

– The stronger form is RETRACT(statement) which is an intensional update
that (i) will delete statement from the facts (if present) and (ii) is considered
to be executed successfully, if statement does not hold in the model afterwards
(which will potentially require “help” by suitable (direct) triggers).

– INSERT(statement). This means to insert the statement explicitly into the
fact base.

– ASSERT(statement). This means, if statement already holds, nothing has to
be done. Otherwise, it has to be inserted into the fact base.

– UPDATE statement SET {SUBJECT|PREDICATE|OBJECT} = resource. Note
that in case an inverse is materialized, it should be modified accordingly
(which requires the help of appropriate triggers). In case of reified statements,
the URI remains the same.

– DELETE(resource) deletes all statements concerning a given resource (cas-
cading for reified statements),

– RENAME(old, new) replaces a URI by another in the whole factbase/model,
(note that this is different from declaring sameAs(resourceold,resourcenew) since
the old name becomes undefined and is free for other use afterwards).

– RENAME PROPERTY OF CLASS(class, old, new) replaces a URI by another
wherever it occurs as a property name of an instance of class class.

2.3 Example Scenarios

We next motivate that a reactive OWL environment should provide to two kinds
of triggers: direct ones in the style of SQL’s INSTEAD OF-triggers that react upon
the update operation before the reasoning is applied (i.e., their effect is already
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enforced before the reasoning), and indirect ones that react on visible events,
i.e., changes after applying the reasoning on the model level.

For the following examples, it is sufficient to consider intuitive events as inser-
tion, deletion, or modification of an RDF statement (subject, predicate, object),
or the creation of a new class. As for SQL, events bind OLD and NEW variables
that have components Subject, Property, Object, Class, Resource, referring to the
modified items (as URIs), respectively.

Example 1 (Trigger Variables). A trigger reacting on MODIFICATION OF hasPres-
ident OF INSTANCE OF company binds OLD.subject and NEW.subject to the
company, and OLD.object and NEW.object to the old and new president, respec-
tively.

Example 2. Consider a property hasHusband and a statement (hasHusband, in-
verseOf, hasWife). Given triples (Alice, hasHusband, Bob) and (Dan, hasWife,
Carol), both (Bob, hasWife, Alice) and (Carol, hasHusband, Dan) are derived –
both hasHusband and hasWife are as well derived as base “relations”.

Consider now an RDF database that contains both (Emmy, hasHusband,
Frank) and (Frank, hasWife, Emmy). Deleting one of them has no effect, since
the reasoner will derive it from the other one. Thus, a trigger ON DELETE OF
hasHusband DO BEGIN DELETE (OLD:object,hasWife,OLD:subject) END (and
vice versa) would be suitable (and safe) to perform the intended update.

But: what does this trigger react upon? If it queries the model, it will neither
react on DELETE (Emmy, hasHusband, Frank) nor on DELETE (Frank, hasWife,
Emmy), because the model will not change at all after one of these operations.
In contrast, these triggers must be triggered by the action.

Similar considerations hold for the cases where an update would violate con-
sistency: then, a trigger that reacts on changes in the model would require to
compute an inconsistent “model”. Instead, integrity-preserving actions must be
triggered before reasoning:

Example 3 (Unique President). Consider the following situation that describes
that every company has a unique president. Assume (c, hasPresident, x) and
another person y. An operation INSERT (c, hasPresident, y) would immediately
cause an inconsistency since hasPresident is required to be functional. Here, a
trigger that, when a new president becomes known, deletes the entry for the
previous one would be required, e.g.:

ON INSERT OF hasPresident
WHERE {?c hasPresident ?x.} AND ?c = NEW.subject AND ?x <> NEW.object
DO BEGIN DELETE (?c, hasPresident, ?x) END

Thus, both cases show that an update of an OWL knowledge base is an inten-
sional update whose materialization in the knowledge base must be done by
suitable operations. In both cases, a trigger that reacts directly on the opera-
tion is required, to make the operation “complete” such that it will (i) actually
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induce a visible event (e.g., deletion) in the knowledge base, or (ii) maintain
model-theoretic consistency.

We call such triggers direct, pre-reasoning triggers; the provide invisible,
supporting reactive behavior. In contrast, indirect, post-reasoning triggers react
only later on a change in the knowledge base as a theory (which in turn requires
this theory to be consistent). They implement visible reactive behavior of an
OWL node.

3 Triggers: Syntax and Semantics

The following proposal is based on our previous one for RDF triggers contained
in [AAM05]. In some sense, the RDF triggers become the factbase-level pre-
reasoning triggers whereas the post-reasoning triggers are concerned with RDFS
and OWL semantics: event detection then also includes RDFS/OWL reasoning.
As described above, triggers are of the form

ON event WHEN condition BEGIN action END .

– event is an event on the data model or knowledge base level. According to
the distinction made above, direct, pre-reasoning and post-reasoning triggers
react on different kinds of events (that will be described below).

– The condition part contains a query that can be used for obtaining additional
information and also acts as a condition (expressed via join variables and
predicates). In this work, the query is expressed as a conjunctive query in
SPARQL [SPARQL] (that provides join variables) of the form

SELECT variables WHERE condition

against the local model. The test is considered to be true if at least one tuple
of variable bindings is returned.

– The action part describes the action to be taken. The actions here can be
update operations on the local database (e.g., for maintaining integrity con-
ditions), sending a message, and raising events on a higher semantic level to
the outside. The action part is executed for each tuple of variable bindings.

3.1 Direct, Pre-Reasoning OWL Triggers

Direct, pre-reasoning triggers react immediately on update operations. Their task
is to “support” the intended operation by performing appropriate updates on
the underlying materialized data and obtain a consistent (wrt. the OWL model
theory) state of the knowledge base. Direct triggers react on the following:

– ON {INSERT|UPDATE|RETRACT} OF property OF INSTANCE [OF class] is raised
if a property is inserted for, updated or retracted from a resource (optionally:
of the specified class).

– INSTEAD OF {ASSERT|UPDATE} OF property OF INSTANCE [OF class] can
be used for specifying how to execute an ASSERT or UPDATE instead of
straightforwardly materializing the operation.
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Since their task is only to support a required update operation, their actions are
restricted to update operations on the database (i.e. external actions like sending
messages or raising events are not allowed – such reactions are restricted to the
post-reasoning triggers that react on actually visible changes).

Example 4. An OWL pre-reasoning trigger can be used in the situation of Ex-
ample 2 for guaranteeing that a relationship is really removed:

Consider the user update RETRACT (Emmy, hasHusband, Frank) which im-
mediately removes this tuple from the materialized RDF database. Still, (Frank,
hasWife, Emmy) is contained in the RDF database and thus (Emmy, hasHusband,
Frank) still exists as derived tuple – i.e. nothing visible changed. A pre-reasoning
trigger ON RETRACT OF hasHusband DO BEGIN DELETE (OLD:object, hasWife,
OLD:subject) END would remove the inverse tuple from the materialized database
and thus “complete” the intended update. Then, the event DELETION OF hasHus-
band OF INSTANCE OF person is actually visible which is an event on which a
post-reasoning trigger can react.

3.2 Post-Reasoning OWL Triggers

Post-reasoning triggers react on actual changes of the model. Whereas the pre-
reasoning triggers usually care for the OWL model-theoretic semantics, the post-
reasoning triggers implement the actual application-specific reactive behavior.
Post-reasoning triggers react on the following:

– ON {INSERTION|MODIFICATION|DELETION} OF property OF INSTANCE

[OF class] is raised if a property is added to/updated/deleted from a resource
(optionally: of the specified class).

– ON {CREATION|MODIFICATION|DELETION} OF INSTANCE OF class is raised if
a resource of a given class is created, modified or deleted.

– ON NEW PROPERTY OF INSTANCE [OF class] is raised if a new property is
added to an instance (optionally: to a specified class). This extends ON
INSERTION OF property OF INSTANCE to properties that cannot be named
(are unknown) during the rule design.

– ON NEW STATEMENT ABOUT INSTANCE [OF class] is raised, if a new state-
ment is added to an instance (optionally: of a specified class). This extends ON
NEW PROPERTY to the case that a new value for an already existing property
is added that cannot be named (are unknown) during the rule design.

On the OWL level, also metadata changes are events:

– ON NEW CLASS is raised if a new class is introduced,

– ON NEW PROPERTY [OF class] is raised, if a new property (optionally: of a
specified class) is introduced (in the metadata).

OWL post-reasoning triggers can then be used for (i) local updates (ECA rules)
(ii) sending explicit messages or (iii) “raising” global events (ECE rules).
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3.3 Example: Post-Reasoning Triggers

Consider an OWL knowledge base about universities, researchers and publica-
tions, whose RDF Schema is described by triples of the form

(journal publication, rdfs:subClassOf, publication)
(conference publication, rdfs:subClassOf, publication)
(has author, rdfs:domain, publication)
(has author, rdfs:range, scientist)
(scientist, rdfs:subClassOf, foaf:person)
(works at, rdfs:domain, foaf:person)
(works at, rdfs:range, employer)
(university, subClassOf, employer)
(published, owl:inverseOf, has author)
(is employed, owl:inverseOf, works at)

The instance level is given by appropriate triples, including e.g.

(john doe, works at, univ stanford), (univ stanford, rdf:type, university), and
(john doe, name, “John Doe”)

The knowledge base is e.g. maintained by inserting publications via a form where
the data is then transformed into RDF and added to the database, e.g.,

INSERT (jd-jacm-06, rdfs:type, journal publication)
INSERT (jd-jacm-06, has author, john doe)

which now has –apart from the pure updates– several consequences, e.g.,

• -?(john doe, published, jd-jacm-06) should now evaluate to true, and

• -?(john doe, published, $X) should result in an answer set containing $X/jd-
jacm-06.

Consider now that the database should also be able to list all publications that
have been published by university members when they are/were employed at a
given university. Note that this is different from

-? ($A, published, $P), ($A, works at, $U), ($U, rdfs:type, university)

which would result in all publications ever published by a current member of the
university. In contrast, the intended knowledge is independent from the current
employer of the author, but assigns publications always to the employer at the
time of publication. Thus, it cannot be derived (except that the curriculum vitae
of persons is stored), but must be materialized. This can be done by a trigger:

ON INSERTION OF published OF INSTANCE OF person
% (comes with parameters NEW.subject=author, NEW.property:=published,
% and NEW.object=publication)

WHERE {NEW.subject works at $U.} AND {$U rdfs:type university.}
DO INSERT ($U, produced, NEW.object)

Note that the detection of the triggered event requires to derive (on the RDFS
level) that john doe as an author is a scientist and thus a person.
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Another application is raising a global event, where global ECA rules can
react upon. Such events are not to be materialized, but signaled to the outside,
using the outside’s ontology instead of database level INSERT actions. E.g., the
event of hiring a new professor at a university can be signaled as

ON INSERTION OF is employed OF INSTANCE OF university
WHERE {NEW.subject rdfs:type professor.}
RAISE EVENT professor hired(NEW.object, NEW.subject)

where then other rules, e.g., a local newspaper that will write an article if the
professor is very prominent, will react upon. Note that the latter rule is a global
one that (i) “belongs to” the newspaper, (ii) reacts upon an event in the univer-
sity (which must be communicated throughout the Semantic Web) and also has
(iii) to use an ontology that defines “prominent”.

4 Architecture of the Jena-Based Application Node

The application nodes (e.g., representing universities or airlines) that provide
information and application-level functionality have to implement the domain
ontologies, i.e., should be able to answer queries, make events visible to the Web,
and to execute actions. This section describes an application node architecture
supporting triggers based on the Jena framework that has been implemented in
[Lie06].

The Jena [Jen] Framework provides an API for dealing with RDF and OWL
data. In our architecture, Jena uses an external database (e.g. PostgreSQL) for
storing base data. If Jena is used for RDFS or OWL data, an appropriate reasoner
can be used. For this, Jena provides both a (restricted) internal reasoner and it
can use a separate DL reasoner like or Pellet [Pel] via the DIG interface [DIG]
conventions or via a Java API. Our RDF Web node is based on a service using
the Jena framework with PostgreSQL and Pellet as shown in Figure 2.
The Jena node provides the OWL knowledge base functionality, i.e., storing mod-
els (that are distinguished internally by URIs) and querying them via SPARQL
[SPARQL]. It is extended with update operations, further communication func-
tionality and handling of triggers.

Update Operations. SPARQL as a query language does not include any update
statements. The implemented node provides methods (and a graphical interface)
where atomic updates as given in Section 2.2 are supported.

Other Actions. Furthermore, the node is able to send HTTP messages to given
URLs and to raise events (which are expected to be atomic events of the ap-
plication domain according to the description in Section 1). Raised events are
communicated to an external event broker “into the Semantic Web”.

5 Algorithm for Firing Triggers in RDFS and OWL

As discussed above, there are pre-reasoning triggers for supporting update op-
erations wrt. the underlying reasoning, and post-reasoning triggers that react
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Fig. 2. Architecture of the Jena Node

upon visible changes in the model. For the first ones, “event detection” is rather
simple: they are directly bound to the update operations. For the latter ones,
changes in the model wrt. reasoning have to be detected.

5.1 Evaluating and Firing Pre-Reasoning, Direct Triggers

Direct triggers serve for “completing” updates (e.g., by deleting also the inverse
of a statement to be deleted), or enforcing OWL model-theoretic consistency.
Concerning the latter situation, executing the original update operation alone
may already lead to an inconsistent model (that should be cured by the trig-
ger). Queries against inconsistent models are both theoretically and practically
problematic (using Jena with an external reasoner allows for updating a model
such that it becomes inconsistent, and allows to do further updates as long as
the reasoner is not concerned, but causes problems when querying or exporting
an inconsistent model). On the other hand, for the pre-reasoning triggers, the
model is actually not needed at all:

Given an update operation act to be executed, the set Upddirect is the set of
updates that includes act and the actions of all (direct) triggers whose event part
directly matches the action (i.e., action = event). All condition parts (which are
in general very simple for direct triggers) of the respective triggers are evaluated
against the model before executing any update. Computing Upddirect thus does
not require OWL reasoning. After its computation, Upddirect it is executed as a
whole.

Only after that, we require the model to be consistent wrt. the OWL se-
mantics. Otherwise, the update is rejected and rolled back. If the fact base is
consistent – as expected – the application-specific behavior is then implemented
by post-reasoning triggers that react upon changes wrt. the original model.
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5.2 Evaluating and Firing Post-Reasoning Triggers

The actual reaction defined by the post-reasoning triggers is based on the actually
visible changes of the derived model. Since we assume here the model to be
consistent, the conditions can be evaluated against the current model.

During firing the post-reasoning triggers, all update operations are executed
immediately, and all external actions, i.e., sending mails and raising events are
put into a queue.

In case that the knowledge base becomes inconsistent after firing the post-
reasoning triggers, or an operation is rejected (which can happen for RETRACT
if the “supporting” direct triggers are not strong enough to actually remove the
fact) the whole operation (including the initial update) is rejected and rolled
back. Otherwise the queue of external actions is then also executed.

Below we first describe the difference-based algorithm that has been imple-
mented and then discuss alternatives in Section 5.4.

5.3 Difference-Based Solution

A straightforward solution which is obviously correct, complete, and simple to
implement can be characterized as a difference-based approach. It regards the
database and the reasoner as external black boxes where the implementation
should not interfere with, as provided by the Jena framework:

– before executing an update operation, export the whole model (including all
derived statements) from the reasoner as beforemodel,

– execute the update and all direct triggers,

– export the whole model (including all derived statements) from the reasoner
as aftermodel,

– compute the difference of both models (added and/or removed tuples),

– match each differing tuple (inserted, deleted, modified) against the event
specifications in the post-reasoning triggers (note that modifications can be
distinguished from deletions+insertions by forcing reification when a state-
ment is modified and inspecting the statement’s URI during the comparison).

The strategy is implemented by solely using classes of the Jena Framework:

// declarations

private static ModelRDB dbmodel;
private static OntModel ontmodel;
// create dbmodel and get a DIGReasoner

// create ontmodel by combining dbmodel and reasoner

OntModel ontmodel = ModelFactory.createOntologyModel(spec,dbmodel);
// prepare additional ontmodels for future before-after comparison

OntModel beforemodel = ModelFactory.createOntologyModel();
OntModel aftermodel = ModelFactory.createOntologyModel();
aftermodel.add(ontmodel);
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The class ModelRDB implements the RDF model materialized in a (relational)
database, whereas the class OntModel implements models with ontological rea-
soning (combining an ModelRDBwith an external reasoner via the DIG interface).
OntModel provides all required methods for adding and deleting statements (and
also maintains the underlying ModelRDB), SPARQL queries can be evaluated by
generating a QueryExecution object for a given query and an OntModel, and
then execSelecting its result set.

For implementing the triggers, Jena’s functionality to compute the difference
between two OntModels is used, which results in a list of statements that can be
stored by an instance of the plain Model class (without any reasoning closure).
The Model then provides an iterator over the difference statements (which usu-
ally are not too many after executing some simple updates). The basic strategy
is as follows:

beforemodel = aftermodel; // remember the before state

execute original update and direct triggers on ontmodel as described above

check if ontmodel is consistent; if no, rollback and return

aftermodel = ModelFactory.createOntologyModel();
aftermodel.add(ontmodel);
Model inserted = aftermodel.difference(beforemodel);
Model deleted = beforemodel.difference(aftermodel);
// simple Model does not include reasoning, it is just a list of statements

StmtIterator iter1 = deleted.listStatements();
StmtIterator iter2 = inserted.listStatements();

The iterators are then used for matching each tuple against the event specifica-
tions in the triggers. The latter are stored in a relational database (where the
same PostgreSQL database is used that also stores the RDF database for Jena)
with suitable indexes. Thus, the actual matching can be done efficiently.

The method can be criticized for the fact that it requires to export the
whole model and to compute the whole difference twice (even if nothing actually
happens). On the other hand, if the difference is small (which is in general
the case), the remaining effort is small: every added/removed triple is matched
with each of the trigger events, and the respective triggers are executed. We
next discuss alternative approaches and show that the chosen solution is the
preferable one:

– alternatives are algorithmically expensive, in general even incomplete,

– taking into account that the above method uses built-in operations of Jena
which can be expected to be efficiently implemented and supported by inter-
nal structures of the Model and OntModel classes.

5.4 Discussion of Alternative Methods

Forward Reasoning. Another possibility is not to compare the models, but
to reason about the effects of an update wrt. the current state of the database.
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This would mean to “simulate” the reasoner and anticipate what it will do. This
can be done in two ways: based on the update statements on the RDF level,
or based on the actual updates in the underlying SQL database: SQL triggers
“raise” the appropriate RDF events.

In both cases, it is necessary to derive the actual events from some (syn-
tactically different) update operation under consideration of other facts using
RDFS/OWL reasoning. The approach amounts to the view maintenance prob-
lem since each view defined by one of the triple patterns used in triggering events
must be monitored. In OWL (i.e., separately for each DL/OWL dialect), this
problem has not been tackled so far. The process looks manageable – but, forward
reasoning requires to know which facts to join for it, which requires SPARQL
queries, computing transitive hulls etc. Considering the current architecture, it
would mean to duplicate large parts of the reasoning.

Comparing Views. Instead of (i) comparing the whole models or (ii) main-
taining the relevant views, each of the views that is relevant for the triggers can
be computed before and after executing the model. For this, when registering
a trigger, its event pattern has to be translated into an SPARQL query. The
results of the query before and after executing the update can then be compared
and the difference is used for firing the triggers.

Although, already for the most specific form of triggers, i.e.,
ON {INSERTION | MODIFICATION | DELETION} OF property [OF class], the whole
extension of one property of a class is concerned. For ON {CREATION | MODIFICATION

| DELETION} OF INSTANCE [OF class], the view contains the set of all instances
of a class, and for ON NEW PROPERTY OF INSTANCE [OF class], the view consists
of all pairs (instance, property). Having a large set of triggers, it is likely that
parts of the views are computed several times. Here, query containment and
query rewriting investigations could be used for optimization. Again, both are
not yet investigated for OWL (and already for relational queries these problems
are expensive).

Considering the fact that exporting the whole model and comparing models
are built-in operations of Jena and the DIG interface, most probably the plain
difference-based approach is more efficient than evaluating SPARQL queries two
times and storing and comparing the answers.

6 Conclusion

Considering “event detection (derivation) in OWL knowledge bases”, the com-
plexity of the above algorithm is not necessarily the most efficient. But, consid-
ering the given architecture that uses the database and the reasoner as black
boxes, the discussed alternatives that are theoretically more involved did not
look promising. Having access to the reasoner, a more direct solution could be
reasonable by reasoning about the updates. Theoretical research in this direction
seems to be interesting. From a pragmatical point of view, partitioning of the
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database into reasoning-independent fragments can often reduce the amount of
data to be compared for evaluating the triggers.

Further Work. The implementation was lead by a pragmatical motivation: to
have a running active Jena-based OWL node for integration as a domain node
into the General ECA Framework [MAA05b], and as a testbed for further experi-
ments with OWL. It showed that there are many (related) interesting theoretical
issues that find an application in this scenario: DL and OWL theory updates,
view maintenance, query containment.

Acknowledgements. This research has been funded by the European Com-
mission within the 6th Framework Programme project REWERSE, no. 506779.
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Abstract. In this paper general mechanisms and syntactic restrictions
are explored in order to specify and merge rule bases in the Semantic
Web. Rule bases are expressed by extended logic programs having two
forms of negation, namely strong (or explicit) and weak (also known as
default negation or negation-as-failure). The proposed mechanisms are
defined by very simple modular program transformations, and integrate
both open and closed world reasoning. These program transformations
are shown to be appropriate for the two major semantics for extended
logic programs: answer set semantics and well-founded semantics with
explicit negation. Moreover, the results obtained by both semantics are
compared.

1 Introduction

The Semantic Web [3] aims at defining formal languages, and corresponding
tools, enabling automated processing and reasoning over (meta-)data available
from the Web. Logic and knowledge representation play a central role, but the
distributed and world-wide nature of the Web bring new interesting research
problems. In particular, the widely recognized need of having rules in the Seman-
tic Web [13, 17] has restarted the discussion of the fundamentals of closed-world
reasoning and the appropriate mechanisms to implement it in rule systems, such
as the computational concept of negation-as-failure.

The classification if a predicate is completely represented or not is up to the
owner of the knowledge base: the owner must know for which predicates there is
complete information and for which there is not. Unfortunately, neither classical
logic nor standard Prolog supports the distinction between “closed” and “open”
predicates. Classical logic supports only open-world reasoning. On the contrary,
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most Prolog systems support only closed-world reasoning, as negation-as-failure
is the only negation mechanism supported (a notable exception is XSB [18]). We
resort to two major semantics of extended logic programs, namely answer set
semantics [10], and well-founded semantics with explicit negation [15, 1], which
have two forms of negation: weak and strong. Weak negation is an appropriate
rendering of the mechanism of nonmonotonic negation-as-failure, and strong
negation allows the user to express negative knowledge and is monotonic. The
combination of these two forms of negation allow the distinction between open
and closed predicates, as will be illustrated by their application to the declaration
and construction of rule bases in the Semantic Web.

The paper is organized as follows. In Section 2, the use of extended logic pro-
gramming is explored to represent open and closed world reasoning, providing
general mechanisms for achieving this. Section 3 defines new language mecha-
nisms for sharing and integrating knowledge in the Semantics Web. In Section
4, the transformational semantics is provided for the constructs presented. The
paper finishes with comparisons and conclusions.

2 Open and Closed World Assumption

Rule bases are sets of extended logic programming rules of the form

L0 ← L1, . . . , Lm,∼ Lm+1, . . . ∼ Ln (1)

where each Li (with 0 ≤ i ≤ n) is an objective literal, i.e. either an atom
A(t) or the strong negation of an atom ¬A(t), where t is a sequence of terms.
Variables are prefixed with a question mark symbol (?), therefore names for
predicates, constants and function symbols can start with small and capital
letters. It is assumed that a fixed first order logic alphabet is given, and only
extended Herbrand interpretations are considered (sets of objective literals). In
particular, a non-ground rule in an extended logic program stands for the set
of ground rules obtained by instantiating logical variables with elements from
the Herbrand universe. Notice that implicitly we are using a domain closure
assumption which might not be acceptable in some situations. Without loss of
generality, only ground programs are considered in the subsequent theoretical
results. Furthermore, we restrict the discussion to DATALOG programs over a
finite number of constants in order to guarantee decidability of reasoning. We
define by CSEM (P ) the set of objective literals which are obtained from the
extended logic program P under semantics SEM , where SEM = WFSX or
SEM = AS. Here we consider only sceptical answer set semantics [10], denoted
by subscript SEM = AS, and well-founded semantics with explicit negation [15,
1], denoted by subscript SEM = WFSX. For inconsistent programs, both these
semantics adopt an explosive approach by letting CSEM (P ) be the set of all
objective literals. The reader is referred to the literature for details.

Example 1. Consider the following program expressing immigration laws of an
imaginary country. Notice that all the rules are objective, i.e. do not use weak
negation.
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Enter(?p) ← CountryEU(?c), citizenOf(?p,?c).

Enter(?p) ← ¬ CountryEU(?c), citizenOf(?p,?c), ¬ RequiresVisa(?c).

Enter(?p) ← ¬ CountryEU(?c), citizenOf(?p,?c),

RequiresVisa(?c), HasVisa(?p).

Predicate Enter/1 captures the following laws:

– A citizen of European Union can enter the country.
– A non European Union citizen can enter the country if a visa is not required.
– A non European Union citizen can enter the country if a visa is required and

he/she has it.

These rules are complemented with the following knowledge, where it is assumed
that the list of European Union countries is exhaustive:

CountryEU(Austria).
...

¬ CountryEU(China).

¬ CountryEU(Djibuti).

¬ RequiresVisa(Bulgaria).

¬ RequiresVisa(?c) ← CountryEU(?c).

RequiresVisa(China).

Some facts about Anne, Boris, Chen and Dil finish the program:

citizenOf(Anne,Austria).

citizenOf(Boris,Bulgaria).

citizenOf(Chen,China). HasVisa(Chen).

citizenOf(Dil,Djibuti). HasVisa(Dil).

The arbitrary uncontrolled use of weak negation in the Semantic Web is re-
garded problematic and unsafe. However, local closed world assumptions and
scoped negation-as-failure have been identified as desirable and necessary for the
Semantic Web [11, 14, 16, 23, 2]. The difficulty lies on the definition of simple
mechanisms that can be easily explained to ordinary users, and have nice math-
ematical properties. For this reason, we propose a classification of predicates
which cover the whole gamut of alternatives. The classes of objective, open and
closed predicates impose some restrictions on the use of weak negation in the
rules defining a predicate A in the Semantic Web, which are summarized in Fig-
ure 1. The top-half boxes contain the user’s predicate definitions and are always
sets of objective rules, i.e. rules which do not contain weak negation but might
contain strongly negated literals, in particular the head of rules might be A(t) or
¬A(t). The bottom-half boxes contain special rules, added by the system, which
characterize each type of predicate. Additionally, it is required that objective,
open and closed predicates do not use (directly or indirectly) unrestricted pred-
icates on their definitions. This prevents unintended use of weak negation in the
Semantic Web. The unrestricted predicates are designated normal (or ordinary)
predicates, adopting the usual logic programming accepted terminology.

Thus, objective predicates are defined by rules which do not contain weak
negation at all. Since strong negation is monotonic, then these predicates can
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L0 ← L1, . . . , Lm

...

| {z }

L0 ← L1, . . . , Lm

...

A(x̄) ← ∼ ¬A(x̄)
¬A(x̄) ← ∼ A(x̄)

| {z }

L0 ← L1, . . . , Lm

...

A(x̄) ← ∼ ¬A(x̄) or ¬A(x̄) ←∼ A(x̄)

| {z }
Objective predicate Open Predicate Closed Predicate

Fig. 1. Declarations for a predicate A (the predicate of L0 is A)

be freely used in the Semantic Web without any restriction. These predicates
are partial since it may be the case that neither A(c) nor ¬A(c) hold in a
model (see [12, 2] for more details), where c is a sequence of constants. On the
other hand, open predicates have the following two additional rules, denoted by
openRules(A):

A(x) ←∼ ¬A(x) ¬A(x) ←∼ A(x)

In answer set semantics, these specify that either A(c) is true or ¬A(c) is true
in each model (answer set), thus forcing totalness.

Finally, closed predicates are complemented by one and only one of the pre-
vious two rules, called default closure rules, and denoted by negClosure(A) and
posClosure(A), respectively. This provides a mechanism for making closed world
assumptions: either by making true what is not concluded false or by making
false what is not concluded true.

Example 2. Returning to Example 1, start by assuming that all predicates are
objective. The following conclusions are obtained from the original program,
both with AS and WFSX semantics:

Enter(Anne) Enter(Chen)

Interestingly, Enter(Boris) is not concluded because it is not known that
Bulgaria is a European Union country and also it is not known that it is not
a European Union country! One way to circumvent this situation is to state
that predicate CountryEU/1 is open. Notice that it does not make sense to state
that CountryEU/1 is closed since EU is evolving and new countries in the near
future might integrate EU, namely Bulgaria5. By declaring CountryEU/1 open,
the following two rules are added:

CountryEU(?c) ← ∼ ¬ CountryEU(?c)

¬ CountryEU(?c) ← ∼ CountryEU(?c)

5 This is a simple-minded solution to the problem of knowledge update.
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From the new program and using AS semantics, it is concluded that Boris
can enter the country. The argument is the following: if Bulgaria is a member
of EU, then by the first rule Boris can enter the country; if Bulgaria is not a
European Union country, since a Visa is not required for Bulgaria, then Boris
can also enter the country. WFSX semantics is not capable of doing this case
analysis and therefore this conclusion is not obtained.

Finally, consider the situation where Enter/1 and ¬RequiresVisa/1 are
exhaustive. These predicates can be closed, by introducing the following rules:

¬ Enter(?p) ← ∼ Enter(?p)

RequiresVisa(?c) ← ∼ ¬ RequiresVisa(?c)

The first rule expresses that if by the immigration laws cannot be concluded
that a person can enter the country, then that person cannot enter the country.
The second rule states that the list of countries, for which it is not requested a
Visa, is closed. This means that it is requested a Visa for the non-listed countries.
Both under WFSX and AS semantics, it is now concluded that Dil can enter the
country.

Notice that in the move from all predicates being objective to some being
open and then closed, new conclusions might be obtained, as the following major
Theorem shows:

Theorem 1. Let A be an objective predicate in extended logic program P where
all predicates are either objective or open. Then,

– CSEM (P ) ⊆ CSEM (P ∪ openRules(A))
– CSEM (P ∪ openRules(A)) ⊆ CSEM (P ∪ posClosure(A))
– CSEM (P ∪ openRules(A)) ⊆ CSEM (P ∪ negClosure(A))

with SEM = AS or SEM = WFSX.

For the case of WFSX semantics the first containment is in fact an equality,
i.e. CWFSX (P ) = CWFSX (P ∪ openRules(A)). The previous theorem cannot
be generalized when some predicate is closed in P . This is expected due to the
non-monotonic nature of weak negation under both AS semantics and WFSX
semantics.

Example 3. Consider the original program of Example 1 but now Enter/1 is
declared closed with the rule:

¬ Enter(?p) ← ∼ Enter(?p)

It can be concluded with WFSX and AS semantics that ¬ Enter(Boris) and
¬ Enter(Dil). Now by declaring CountryEU/1 open, ¬ Enter(Dil) is not con-
cluded anymore with WFSX and AS. As previously, Enter(Boris) is concluded
with AS but not with WFSX.

Notice that under WFSX no new objective conclusions are obtained by
declaring predicates open. This is expected since entailment in WFSX can be
computed in polynomial time, while entailment in AS is coNP-complete. This is
the tradeoff between expressivity and complexity of reasoning. However, WFSX
and AS semantics are not unrelated:
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Theorem 2. [15] Let P be an extended logic program, then CWFSX (P ) ⊆
CAS (P ).

WFSX is a tractable semantics which approximates AS semantics, and therefore
is a good candidate for defining the semantics of rule bases in the Semantic Web.
However, the existence of an undefined truth-value in WFSX might affect the
intuition in some particular cases, namely for closed predicates; this is the price
to pay for guaranteeing tractability of reasoning. Aside that, both semantics
assure the monotonicity of reasoning in the presence of only objective and open
predicates:

Theorem 3. Let P and Q be two extended logic programs where all predicates
are either objective or open. Then,

– CAS (P ) ⊆ CAS (P ∪Q)
– CWFSX (P ) ⊆ CWFSX (P ∪Q)

Obviously, the previous result does not hold whenever closed predicates are
included in P or Q. The above theorems are explored in the next section for
defining modular programming techniques to be used in the Semantic Web.

3 Modularity in the Semantic Web

In this section we study the mechanisms in order to be able to express the nec-
essary context to use strong and weak negations safely in the Semantic Web
environment. The discussion is abstract and independent of any rule engine.
Currently, there is no notion of scope or context in the Semantic Web: all knowl-
edge is global and all kinds of unexpected interactions can occur. The success of
the Semantic Web is impossible without any form of modularity, encapsulation,
information hiding and access control. The issue of modularity in logic program-
ming has been actively investigated during the 90s, for a survey see [4]. Here we
follow a typical approach similar to the import/export mechanisms of Prolog,
but we will be concerned with the combination of open and closed world reason-
ing and other particularities of the Semantic Web. In particular, the following
four levels of context and their interaction must be taken into account:

– The Semantic Web context;
– The application context, corresponding to the context where a user or Se-

mantic Web agent loads, asserts or consumes the knowledge provided by rule
bases in the Semantic Web;

– The rule base context, where the Semantic Web developer encapsulates a set
of related rules and facts (predicates);

– The predicate context, which can be either global or local;

Rule bases are made available in the Semantic Web, and users or applications
load or assert them explicitly into their application contexts. The connection
to an external knowledge base should always be equivalent to loading it locally,
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DefinesDecl ::=
[RuleBaseIRI ] "defines" [ScopeDecl ] PredList ["visible to" RuleBaseList ] "."

UsesDecl ::= [RuleBaseIRI ] "uses" PredList ["from" RuleBaseList ] "."

ScopeDecl ::= "global" | "local" | "internal"
PredList ::= PredicateDecl ("," PredicateDecl)*
RuleBaseList ::= RuleBaseIRI ("," RuleBaseIRI )*
PredicateDecl ::= ["objective" | "open" | "closed" ["¬"] | "normal"] PredicateInd
PredicateInd ::= AbsoluteIRI ["/" Arity]
Arity ::= Natural
RuleBaseIRI ::= AbsoluteIRI

Fig. 2. The defines and uses declarations

but without the need to explicitly do that. When a user or application loads
or asserts knowledge, it may express that nonmonotonic reasoning forms may
be rejected or allowed, or can force the deduction mechanisms to use only rules
which extract safe knowledge in the Semantic Web context. The knowledge base
programmer may use nonmonotonic constructs, knowing that these constructs
might be inhibited or forbidden. The producer of knowledge might also express
that the predicates he/she is declaring cannot be defined elsewhere, and may de-
clare hidden predicates which are not visible in the Semantic Web. Furthermore,
a knowledge base might use all the available knowledge in the application con-
text, or get it explicitly from particularly loaded rule bases. By default, reasoning
in the Semantic Web must be monotonic.

The challenge is to provide simple mechanisms in order to guarantee the
fulfilment of the previous requirements. Obviously, the syntax of extended logic
programs should be augmented with declarations to state the visibility of a pred-
icate, its context, and whether it is normal (i.e. unrestricted), objective, open
or closed. It is also necessary to express how external information to the knowl-
edge base is incorporated into it. These can be attained with the declarations
defines and uses with the syntax in BNF notation presented in Figure 2. The
defines declaration specifies which predicates are defined (and exported) in the
knowledge base, their scope and visibility, as well as type. The uses declaration
describes which predicates are used (imported) from other rule bases or from the
Semantic Web, and might change the original type of the predicate. Notice that
predicates and rule bases are all identified by absolute IRIs (Internationalized
Resource Identifiers [7]). When a predicate A is declared closed (resp. closed
¬) then the posClosure(A) (resp. negClosure(A)) rule is implicitly added to
the program. If the predicate is declared open, then both rules are added, as
described in the previous section.

The scope plays a fundamental part, and describes what is the context of
the predicate(s) and may take one of the following values, with the following
corresponding limitations and meaning:

"global": a predicate declared global is visible outside the knowledge base, and
intends to capture predicates being defined in the Semantic Web. Moreover,
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the predicate can be defined elsewhere in other rule bases but it must be
either objective or open6. Additionally, it can be optionally declared which
rule bases can use the predicate; if omitted, it can be used everywhere.

"local": a local predicate can be used outside the rule base where it has been
defined, but cannot be defined by any other knowledge base in the Seman-
tic Web. A local predicate can be of any type (objective, open, closed and
normal) and, as before, the user can state the rule bases where it can be
used.
The rule base defines the scope for a closed predicate, and the closure rule
may be inhibited by the consumer of the knowledge in the uses statement.
If the predicate is normal, any form of negation can be used in its definition,
and its use can be forbidden by the consumer of the knowledge, again with
the uses statement.

"internal": predicate is internal to the rule base and cannot be used outside
the rule base. Again, the rule base defines the scope for the evaluation of
weak negation.

By default a predicate is global and open, and visible to any rule base in the
Semantic Web. Also, all predicates in the RDF and RDFS vocabularies are
global and open. Thus, the user doesn’t have to state explicitly the scope and
type of predicates in all rule bases. Furthermore, this guarantees monotonicity
of reasoning. It is not practically possible to guarantee that a local predicate is
not redefined multiple times in the Semantic Web. However, any implementation
will not allow loading knowledge bases which define a local or global predicate
defined local in another loaded rule base.

The visibility provides a basic security mechanism, but trust and authoriza-
tion could be much improved, for instance using the PeerTrust language [9].
These issues are orthogonal to present proposal but can be easily integrated due
to the logical nature of our work. The uses declaration specifies the rule bases
providing the definitions of global and local predicates that can be used by the
importing rule base. The scope of the imported predicated is given by a corre-
sponding defines statement in the rule base, whenever it exists. If the from list
in the uses declaration (Fig. 2) is omitted then these predicates can be imported
from any available knowledge base. Notice that the importer can specify what
types of predicates (reasoning) he/she is willing to accept, and the default type
is open. The exporter must provide the answers according to the cases specified
in Table 1.

For instance, suppose that a rule base < RBA > defines a closed predicate
P with: < RBA > defines local closed P .

However, the uses statement in rule base < RBB > declares that it is only
willing to accept the conclusions obtained by opening the predicate P in
< RBA >: < RBB > uses open P from < RBA >.

Rule base < RBA > should only provide answers to queries of P from
< RBB > as if all closed predicates in < RBA > were open. If < RBB >

6 For simplicity, this constraint is not enforced in the grammar.
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Table 1. Combination of reasoning modes

normal objective open closed normal 

closed objective open closed error 

open objective open open error u
s
e
s

 
(i

m
po

rt
er

) 

objective objective objective objective error 
  objective open closed normal 
  defines (exporter) 
 

uses predicate P of < RBA > in objective mode, then all predicates in rule
base < RBA > are considered objective when computing the queries to P from
< RBB >. In other words, the reasoning mode should also be propagated to the
predicates used in < RBA >, whenever these predicates are necessary to answer
the original query. Finally, we would like to note that there are subtle issues
involved in the above mechanisms, namely the possibility of mutual dependencies
between rule bases, which should be addressed in implementations. A runtime
error is thrown when the exporter declares a local predicate normal but the
importer uses one of the limited predicate reasoning forms: objective, open or
closed. This behaviour corresponds to rejecting by the importer the uncontrolled
use of weak negation in the Semantic Web. Note again that according to the
results of the previous section, the default declarations guarantee that reasoning
is monotonic.

A knowledge base might define and use the same predicate, but not all combi-
nations are possible. The various allowed combinations are presented in Table 2.

Table 2. Defining and using the same predicate

global allowed error error 

local error error error 

d
e
f
i
n
e
s

  

internal allowed allowed error 

  global local internal 

  uses 
 

Obviously, it is an error to globally or locally define a used local predicate;
this goes against the notion that there is a sole provider for a local predicate.
However, it is allowed to internally redefine a local predicate of a different rule
base, since it is not made public. In particular, one might close an objective local
predicate of a different provider since this is only for internal use.

The several combinations are illustrated with the next example.
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Example 4. Consider the knowledge bases in the Semantic Web identified by IRIs
<http://www.eu.int>, <http://gov.country> and <http://security.int>.
We use the namespace prefixes eu, gov and sec to simplify writing of IRIs in
the code of Figure 3.

<http://www.eu.int>

defines local closed eu:CountryEU/1.

eu:CountryEU(Austria).
...

eu:CountryEU(UnitedKingdom).

<http://security.int>

sec:citizenOf(Anne,Austria).

sec:citizenOf(Boris,Bulgaria).

sec:citizenOf(Chen,China).

sec:citizenOf(Dil,Djibuti).

<http://gov.country>

defines local closed gov:Enter/1.

defines internal objective gov:HasVisa/1.

defines internal closed ¬ gov:RequiresVisa/1.

defines internal open eu:CountryEU/1.

uses objective eu:CountryEU/1 from <http://www.eu.int>.

defines internal objective sec:citizenOf/2.

uses objective sec:citizenOf/2.

gov:Enter(?p) ← eu:CountryEU(?c), sec:citizenOf(?p,?c).

gov:Enter(?p) ← ¬ eu:CountryEU(?c), sec:citizenOf(?p,?c),

¬ gov:RequiresVisa(?c).

gov:Enter(?p) ← ¬ eu:CountryEU(?c), sec:citizenOf(?p,?c),

gov:RequiresVisa(?c), gov:HasVisa(?p).

¬ gov:RequiresVisa(Bulgaria).

¬ gov:RequiresVisa(?c) ← eu:CountryEU(?c).

gov:RequiresVisa(China).

gov:HasVisa(Chen).

gov:HasVisa(Dil).

¬ eu:CountryEU(China).

¬ eu:CountryEU(Djibuti).

Fig. 3. Sharing of Knowledge in the Semantic Web

The simpler rule base, identified by <http://www.eu.int>, defines the list of
European Union countries, and this list is closed. Notice that this is a proper log-
ical definition of the CWM [5] construct log:definitiveDocument. The second
rule base, <http://security.int>, provides citizenship of people, and could be

Supporting Open and Closed World Reasoning on the Web     155



implemented in a ordinary relational database. Since no defines declaration is
present, predicate sec:citizenOf/2 is a global and open predicate.

The third rule base defines the immigration policies of country
<http://gov.country>, supported by the knowledge of the other two rule bases.
The first three defines statements are according to the discussion in Exam-
ple 1; it should be noticed the mechanism for closing negative instances in
gov:RequiresVisa/1 with ¬. The country is not willing to accept the local
closure of eu:CountryEU/1 performed in <http://www.eu.int>. Therefore, it
uses the predicate forcing objective mode and, in this example, only facts are
requested to <http://www.eu.int>. Furthermore, eu:CountryEU is made open,
for use in this rule base; this can be done since the predicate is defined to be in-
ternal. Complementary additional facts to predicate eu:CountryEU/1 are stated
in the rule base. Predicate sec:citizenOf is used from any providers in the
Semantics Web, but it is made objective for internal use only.

The code of the figure is unsatisfactory from a security point of view. In
an additional rule base, it could be added a fact stating that, for instance,
sec:citizenOf(Chen,France). Since rule base <http://gov.country> is care-
lessly using sec:citizenOf/2 from the Semantic Web it imports any existing
available knowledge independently of the providing rule base. This can be cor-
rected with the statement:

uses objective sec:citizenOf/2 from <http://security.int>.

If more sources are trusted, these can be added to the from list. Also,
<http://security.int> is providing confidential information to any requester.
This can also be improved by specifying the authorized consumers of this knowl-
edge base in the visible to list, e.g.:

defines global open sec:citizenOf/2 visible to <http://gov.country>.

4 Transformational Semantics

In this section, we define a modular program transformation capturing the se-
mantics of each of the proposed constructs described in the previous section. For
capturing the intended semantics, a single extended logic program is constructed.
In order to control visibility and scope of the predicates, predicate names are
transformed into a pair containing the rule base IRI and the predicate IRI7. In
our transformation, a rule will be translated into four rules, one for each possible
reasoning mode: definite (objective), open, closed and normal. This permits a
modular way of independently composing the several rule bases, i.e. adding the
transformational rules corresponding to a rule base does not require changing
the form of the transformational rules of already handled rule bases. Suppose
that a rule base r contains the rule:

L0 ← L1, . . . , Lm,∼ Lm+1, . . . ,∼ Ln. (2)

7 In order to avoid name clashes it is assumed that IRIs always appear between de-
limiters ’<’ and ’>’.
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Accordingly, the rule is translated into the following four rules:

r:d L0 ← r:d L1, . . . , r:d Lm,∼ r:d Lm+1, . . . ,∼ r:d Ln.
r:o L0 ← r:o L1, . . . , r:o Lm,∼ r:o Lm+1, . . . ,∼ r:o Ln.
r:c L0 ← r:c L1, . . . , r:c Lm,∼ r:c Lm+1, . . . ,∼ r:c Ln.
r:n L0 ← r:n L1, . . . , r:n Lm,∼ r:n Lm+1, . . . ,∼ r:n Ln.

where if A(t) is an atom of the original rule base r, the literal r:x ¬A(t) in the
translated rules is replaced by ¬r:x A(t) (for x ∈ {d, o, c, n}). The prefixes d, o,
c and n are used to distinguish the reasoning mode for the rule, that is, definite,
open, closed, and normal, respectively. The meaning of a predicate A in a rule
base r is always given by the instances of r:n A(c) and ¬r:n A(c) which are true
in all intended model(s), under one of the adopted semantics WFSX or AS.
Recall that WFSX is always an approximation of AS semantics, obtaining less
conclusions.

Due to space limitations, our transformational semantics ignores errors, which
should be syntactically treated a priori. For example, in the case that a predi-
cate A in rule base r is defined as objective, open, or closed then for every rule
(2) with L0 = A(t) or L0 = ¬A(t), it should hold n = m. All the syntactical
restrictions are discussed in Section 3.

The defines declaration is translated according to the following. First, for
global and local predicates the following rules are introduced. Notice that by
declaring a predicate global or local, the rule base component of the name is
removed and this makes the predicate accessible to the outside world.

d A(x) ← r:d A(x). ¬d A(x) ← ¬r:d A(x).
o A(x) ← r:o A(x). ¬o A(x) ← ¬r:o A(x).
c A(x) ← r:c A(x). ¬c A(x) ← ¬r:c A(x).
n A(x) ← r:n A(x). ¬n A(x) ← ¬r:n A(x).

If predicate A is declared open in rule base r, the following rules are added
(see column “open” of Table 1):

r:o A(x) ←∼ ¬r:o A(x). ¬r:o A(x) ←∼ r:o A(x).
r:c A(x) ←∼ ¬r:c A(x). ¬r:c A(x) ←∼ r:c A(x).
r:n A(x) ←∼ ¬r:n A(x). ¬r:n A(x) ←∼ r:n A(x).

Compare with the case when A is declared to be closed ¬ (negatively closed)
or closed (positively closed) in rule base r (see column “closed” of Table 1):

r:o A(x) ←∼ ¬r:o A(x). and ¬r:o A(x) ←∼ r:o A(x).
r:c A(x) ←∼ ¬r:c A(x). or ¬r:c A(x) ←∼ r:c A(x).
r:n A(x) ←∼ ¬r:n A(x). or ¬r:n A(x) ←∼ r:n A(x).

The rules in the first line make the predicate open, which corresponds to the
case where the importing rule base forces open reasoning mode (see row “open”
of Table 1). When the predicate is declared objective or normal, no additional
rules are required.

The uses declaration is easier to treat, generating rules that also respect
Table 1.
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r uses objective A from s declaration:

r:d A(x) ← s:d A(x). ¬r:d A(x) ← ¬s:d A(x).
r:o A(x) ← s:d A(x). ¬r:o A(x) ← ¬s:d A(x).
r:c A(x) ← s:d A(x). ¬r:c A(x) ← ¬s:d A(x).
r:n A(x) ← s:d A(x). ¬r:n A(x) ← ¬s:d A(x).

r uses open A from s declaration:

r:d A(x) ← s:d A(x). ¬r:d A(x) ← ¬s:d A(x).
r:o A(x) ← s:o A(x). ¬r:o A(x) ← ¬s:o A(x).
r:c A(x) ← s:o A(x). ¬r:c A(x) ← ¬s:o A(x).
r:n A(x) ← s:o A(x). ¬r:n A(x) ← ¬s:o A(x).

r uses closed A from s declaration:

r:d A(x) ← s:d A(x). ¬r:d A(x) ← ¬s:d A(x).
r:o A(x) ← s:o A(x). ¬r:o A(x) ← ¬s:o A(x).
r:c A(x) ← s:c A(x). ¬r:c A(x) ← ¬s:c A(x).
r:n A(x) ← s:c A(x). ¬r:n A(x) ← ¬s:c A(x).

r uses normal A from s declaration:

r:d A(x) ← s:d A(x). ¬r:d A(x) ← ¬s:d A(x).
r:o A(x) ← s:o A(x). ¬r:o A(x) ← ¬s:o A(x).
r:c A(x) ← s:c A(x). ¬r:c A(x) ← ¬s:c A(x).
r:n A(x) ← s:n A(x). ¬r:n A(x) ← ¬s:n A(x).

If the importing rule base list is absent from the uses declaration, then instead
of s:d A(x), s:o A(x), s:c A(x) and s:n A(x) in the body of the previous rules,
it should be used instead, respectively, d A(x), o A(x), c A(x) and n A(x). The
effect is to import all the existing knowledge regarding the predicate and which
is publicly available from the several rule bases (due to space limitations, here
we ignore visibility issues).

The major issue remaining to be discussed is the scope of the weak nega-
tion operator. For simplicity of discussion, it is assumed that the variables of
the transformational rules corresponding to a rule base r are instantiated ac-
cording to the constants appearing in r. This is the mechanism that implements
scoped negation-as-failure (for a possible implementation see for instance [8]).
The syntax necessary to explicitly declare predicate domains will be described in
a subsequent paper, but basically it gets translated to domain predicates in the
bodies of rules in order to guarantee correct instantiation of variables in rules
(e.g. by using rdf:type, rdf:domain and rdf:range properties).

5 Comparison and Conclusions

The notion of localized closed world assumptions has been proposed for instance
in [11]. The idea is to have syntactic mechanisms in the Semantic Web languages
(like DAML+OIL or OWL) to express that a predicate is closed, i.e. something
which cannot be inferred can be assumed false: this is a usual assumption in logic
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programming (negation-as-failure, by default, or weak) and relational databases
(the set difference operation of relational algebra). The major problem with
the proposal of Heflin and Munoz-Avila is the use of a Clark’s completion like
approach, which is well-known to suffer from serious problems when applied to
knowledge based systems [21, 20], even without negation.

The notion of scoped negation-as-failure has also been suggested by several
authors, see for instance [14, 16], and systems like FLORA-2 [24] do support it.
Both FLORA-2 and TRIPLE [22] support modularity constructions, which are
essential for deployment of inference engines in the Semantic Web. Alternative
proposals are already present in the dlvhex system [8], where the reader can find
detailed discussion about applications to Semantic Web. This answer-set pro-
gramming system has features like high-order atoms and external atoms which
are very flexible. For instance, closure rules similar to our ones are expressed
with high-order statements of the form

C ′(X) ← o(X), concept(C), concept(C ′), cwa(C, C ′),∼ C(X)

where concept(C) is a predicate which holds for all concepts C, cwa(C, C ′) states
that C ′ is the complement of C under the closed world assumption, and o(X) is
a predicate that holds for all individuals occurring in the knowledge base.

However, in contradistinction to the existing systems, we define the notion
of objective, open and closed predicates, their semantically compatible defini-
tion, as well as languages constructs for controlling knowledge in the Semantic
Web. The combination of open-world and closed-world reasoning in the same
framework is also proposed in [2], where the ERDF stable model semantics of
Extended RDF knowledge bases is developed, based on partial logic [12]. How-
ever, modularity issues are not considered there. The existence and combination
of all our proposed mechanisms in a single language is a novelty, to the best of
our knowledge.

The language is intuitive to use and gives absolute freedom to producers and
consumers of knowledge in the Semantic Web. It can be implemented with the
existing technology, and can support and integrate different inference engines
ranging from relational databases to state-of-the-art inference engines, including
description logic reasoners. Both tractable and more complex forms of inference
are also easily syntactically identified and delimited. The semantics of the con-
structs can be defined via immediate program transformations, for which the
rationale and corner-stone elements have been introduced in this paper.

There are still some important practical problems to be addressed at the im-
plementation level for which solutions exist, but for lack of space cannot be pre-
sented in this work. Furthermore, the issue of contradiction is not addressed here,
but the results of Section 2 can be adapted for existing paraconsistent semantics
for extended logic programs, namely [1, 6, 19]. A prototypical implementation is
underway, using immediate extensions to RuleML markup language [17].
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Abstract. Time management is a key feature needed in any query lan-
guage for web and semistructured data. However, only recently this has
been addressed by the Semantic Web community, through the study of
temporal extensions to RDF (Resource Description Framework). In this
paper we show that the ability of the RDF data model of handling un-
known resources by means of blank nodes, naturally yields a rich frame-
work for temporal reasoning in RDF. That is, even without knowing the
interval of validity of some statements we can still entail useful knowledge
from temporal RDF databases. To take advantage of this, we incorpo-
rate a class of temporal constraints over anonymous timestamps based
on Allen’s interval algebra. We show that testing entailment in temporal
graphs with the constraints proposed reduces to closure computation and
mapping discovery, that is, an extended form of the standard approach
for testing entailment in non-temporal RDF graphs.

1 Introduction

The Resource Description Framework (RDF) [22] is a metadata model and lan-
guage recommended by the W3C in order to create an infrastructure that will
allow to build the so-called Semantic Web. In the RDF model, the universe to
be modeled is a set of resources, essentially anything that can have a univer-
sal resource identifier, URI. The language to describe them is a set of binary
predicates denoted properties. Descriptions are statements of the form subject-
predicate-object. Both subject and object can be anonymous objects, known as
blank nodes. In addition, the RDF specification includes a built-in vocabulary
with a normative semantics (RDFS) [6]. This vocabulary deals with inheritance
of classes and properties, as well as typing, among other features that allow de-
scribing the concepts and relationships that may exist in a community of people
and software agents. The RDF specification can be seen as a graph where each
subject-predicate-object triple is represented as a node-edge-node structure.

Time is present in almost any Web application. Thus, there is a clear need
of applying temporal database concepts to RDF in order to be able to repre-
sent temporal knowledge. We illustrate this claim with the following motivat-
ing example, where RDF data is used to describe a collection of web services.

⋆ This research was supported by Millennium Nucleus, Center for Web Research (P01-
029-F), Mideplan, Chile. C. Hurtado was supported by FONDECYT 1030810, Chile.



Web services are software applications that interact using web standards. The
Semantic Web has been proposed as a tool for making applications able to au-
tomatically discover or invoke web services. In this way, ontologies of services
could be used by service-seeking agents for representing a service profile (a mech-
anism for describing services offered by a web site). Our example is based on
the web service ontology introduced by Antoniou et al [5] for a non-temporal
RDF model. In order to keep track of the changes that can occur throughout
the life cycle of the web service we introduce temporal features to a standard
RDF graph representing the ontology, according to [17].

Figure 1 shows an example of an RDF representation of an evolving ontology
for a web service denoted Sport News, first offered by the sports network ESPN,
and later by another network, Fox Sports. The web site delivers up-to-date ar-
ticles about sports. As input, the service receives a sports category and the
customer’s credit card number; it returns the requested articles. The arcs in the
graph are labeled with their interval of validity. 3 The interval [0,3] over the edge
between ‘Sport News’ and ‘ESPN’ means that the triple (Sports News, provided
by, ESPN) is valid from time instant “0” to time instant “3”. Analogously, the
interval [3,Now] over the edge between ‘Sport News’ and ‘ESPN’ means that the
triple (Sports News, provided by, Fox Sports) is valid from time instant “3” to
the current time. For the sake of clarity, no temporal labels over an edge means
that triple is valid in the interval [0,Now]. There is also an anonymous node
(of type “service provider”), created at time “6”. Anonymous (or blank) nodes
are needed in an RDF graph when we do not know the global name for a node
(or there is no name for it, no matter the reason why), and we need to write
statements about this node. The impact of blank nodes in a temporal setting
was given an in-depth study in [17, 16].

1.1 Problem Statement

In former work we studied the problem of adding the time dimension to RDF
documents, and we discussed the main problems and possibilities that arise when
we address the problem of keeping track of the changes occurring over an RDF
graph. We denoted this problem Temporal RDF [17, 16]. The work was based on
the theoretical framework provided by Gutierrez et al [15]

In a nutshell, a Temporal RDF graph is a set of temporal triples labeled with
their interval of validity. These triples are of the form (a, b, c) : [t1, t2]. The graph
in Figure 1 is an example of a Temporal RDF graph. We showed that temporal
RDF can be implemented within the RDF specification, making use of a simple
additional vocabulary. We also defined constructs that allow moving between
point-based and interval-based representations in a discrete time dimension. An
RDF graph can be regarded as a knowledge base from which new knowledge,

3 Note that the standard graph(ical) representation of an RDF graph is not the most
faithful to convey the idea of statements(triples) being labeled by a temporal element.

Technically, temporal labels should be attached to a whole subgraph u
p

→ v, and not
only to an arc.
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Fig. 1. An RDF graph for web services profiling of Sports networks.

i.e., other graphs, may be entailed. In temporal RDF, entailment is slightly more
involved. We studied this problem, and called it temporal entailment.

An important issue here is the treatment of blank nodes. Defining the se-
mantics of temporal RDF in the presence of blank nodes turns out to be non-
trivial, because we cannot consider the temporal database as the union of all its
snapshots (a snapshot at time t of a temporal RDF graph G is the correspond-
ing subgraph formed by triples labeled by an instant t). This means that even
though two temporal graphs G1 and G2 are such that all snapshots of G1 entail
a snapshot of G2, we cannot say that G1 entails G2.

The work in [16] also includes a first study of the problem of anonymous
time in temporal RDF graphs, i.e., graphs containing temporal triples labeled
with blanks. In this setting, we admit triples of the form (a, b, c) : [X ], where
X is an anonymous timestamp stating that the triple (a, b, c) is valid in some
time we do not exactly know yet (in [16] we called these graphs general temporal
graphs to differentiate them from temporal graphs without blank timestamps).
In our model, the sets of anonymous timestamps and blank nodes are disjoint, as
we will explain later in the paper (actually they belong to different frameworks,
namely time labels and triples, respectively).

Temporal blanks considerably extend the capabilities of the temporal RDF
model by allowing representing incomplete temporal information [20]. In this
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paper we show that they also allow defining temporal constraints over the model.
In this way, a richer treatment of time, along the lines of constraint databases
[10] is possible (in relational constraint databases, the time of validity of a tuple
can be defined by a formula Φ). There has been a substantial amount of work
from the Artificial Intelligence community on temporal reasoning systems that
use constraint propagation. Thus, adding constraints to temporal RDF allows
reasoning about RDF graphs in order to infer useful knowledge. However, as
Allen points out [2, 3], the point-based representation of time cannot naturally
capture some interval relationships used in reasoning about constraints. Thus, we
also include intervals with anonymous starting and/or ending points (anonymous
intervals) in in temporal RDF graphs.

Example 1. Consider the following extended temporal graph:

{(a, sc, b) : i1, (b, sc, c) : i2, i1 during i2}.

here i1 and i2 are intervals whose endpoints are unknown. The temporal triple
(a, sc, b) : i1 states that (a, sc, b) holds in all the timestamps inside the interval
(which are infinite), and the constraint i1 during i2 states that the i1 is inside
i2. Then, our approach allows inferring the graph {(a, sc, c) : i3}. Intuitively,
this means that, given the original temporal graph, we can infer that in some
unknown interval i3, a was a subclass of c.

Relation Meaning

[l1, l2] before [l3, l4] l2 < l3
[l1, l2] meets [l3, l4] l2 = l3
[l1, l2] overlaps [l3, l4] l3 < l2 < l4 and l1 < l3 < l2
[l1, l2] starts [l3, l4] l1 = l3 and l2 < l4
[l1, l2] during [l3, l4] l3 < l1 and l2 < l4
[l1, l2] ends [l3, l4] l1 > l3 and l2 = l4
[l1, l2] equals [l3, l4] l1 = l3 and l2 = l4

Fig. 2. Basic Interval Relations.

The temporal RDF graphs with constraints and anonymous intervals we in-
troduce in this paper (denoted c-temporal graphs), expand the expressive power
of the temporal RDF data model, allowing to represent information about events
occurring within some unknown intervals. Without this capability, this informa-
tion could not be represented in a natural way, as the following example shows.

Example 2. Let us suppose that, in the example depicted in Figure 1, we are
not certain about the time when ‘Sport News’ was transferred from ESPN to
Fox Sports. A c-temporal graph for representing this situation is shown in Figure
3. The triple (Sports News, provided by, ESPN) is now labeled with an anony-
mous interval i1. (instead of [0,2]). Analogously, (Sports News, provided by, Fox
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Fig. 3. The RDF graph of Figure 1 with Anonymous Time.

Sports) is labeled with an anonymous interval i3 (instead of [3,Now]). We have
also labeled with anonymous intervals the triples (Sports News, type, offered
service), and (X,type, service provider) has been labeled with temporal blanks.

Now, we can use the basic Allen’s interval relations [2] depicted in Figure 2
to place constraints over the anonymous intervals. As an example, we can use
the constraint i1 meets i3 to state that Fox Sports started offering ‘Sport News’
immediately after ESPN stops offering it. We can also state that ESPN started
offering the service at time 0 with the constraint i1 starts [0,Now ]. We can
model that during interval i1 the service was of type ’offered service’ using the
constraint i1 during i2.

Although the addition of anonymous time enriches the model, it introduces
some problems that we study in the paper. Many of the results obtained in [16]
do not work any more in the presence of temporal blank nodes and constraints.
For example, the notion of slice closure must be modified. Consequently, testing
temporal entailment must be modified accordingly, as well as the proofs that were
obtained under the assumption that the temporal labels were only concrete time
instants.

Even though our approach is close to temporal logics and constraint data-
bases, temporal reasoning about RDF and RDFS ontologies introduces addi-
tional difficulties not present in the other settings. In this paper we study in
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detail temporal graphs with constraints, extending our previous results to these
kinds of graphs.

1.2 Contributions and Outline

In this paper we incorporate temporal constraints and intervals (with unknown
starting and/or ending time instants) to temporal RDF graphs, and denote the
resulting graphs c-temporal graphs.

We extend temporal graphs in a stepwise manner. First, we include intervals
and study the inference problem for temporal graphs with intervals. We consider
intervals over a dense time domain, which allows a full treatment of intervals in
temporal RDF.

Then, we generalize the former framework incorporating a fragment of Allen’s
interval algebra [2] for temporal constraints. We formalize c-temporal graphs, al-
lowing modeling anonymous timestamps, anonymous intervals, and constraints
over them. We define and study a notion of entailment for c-temporal graphs.
Further, a new notion of closure is proposed for c-temporal graphs, and tempo-
ral entailment is characterized in terms of this notion of closure. In particular,
we show that testing entailment for temporal graphs with the fragment of con-
straints studied, reduces to closure computation and mapping discovery, that
is, an extended form of the standard approach for testing entailment in non-
temporal RDF graphs. We also provide an algorithm for computing the slice
closure of c-temporal graphs.

The remainder of the article is organized as follows. Section 2 reviews related
work. Section 3 presents preliminary notation related to RDF and RDFS and
temporal RDF graphs from previous work [15, 17, 16]. Section 4 studies tempo-
ral graphs with intervals. Section 5 introduces constraints to temporal graphs
and their semantics, presents the notion closure, and characterizes entailment in
terms of them. Finally, in Section 6 we conclude and outline some prospects for
future work.

2 Related Work

The RDF model was introduced in 1998 by the World Wide Web Consortium
(W3C) [22]. Formal work includes the study of formal aspects of RDF data and
query languages [14, 15, 28], considering RDF features like entailment, the im-
pact of blank nodes, reification, premises in queries, and the RDFS vocabulary
with predefined semantics. Several query languages for RDF have been proposed
and implemented. Some of them along the lines of traditional database query
languages (e.g. SQL, OQL), others based on logic and rule languages. Good sur-
veys are [18, 21]. Temporal database management has been extensively studied,
including data models, mostly based on the relational model and query lan-
guages [26], leading to the TSQL2 language [25]. Chomicki [10] provides a com-
prehensive survey of temporal query languages. Beyond the relational model,
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several works proposed temporal extensions for non-temporal models, like the
semistructured data model and XML [9, 4, 12, 13, 24].

Regarding temporal extensions to RDF, Visser et al [27] proposed a temporal
reasoning framework for the Semantic Web, which has been applied in BUSTER,
an ontology-based prototype developed at the University of Bremen, supporting
the so-called concept@location in time type of query. Bry et al [8, 7], in the
context of the REWERSE project [23], have stated the need of providing query
languages and models for the web with temporal reasoning capabilities.

To the best of our knowledge, our previous work [17, 16] constitutes the first
formal study of temporality issues in RDF graphs and RDF query languages. In
the present paper we continue this line of research with the study of Temporal
RDF graphs with constraints and anonymous time.

3 Preliminaries

3.1 RDF Notation

The following is an excerpt of notation introduced in [6, 15, 19] that will be used
subsequently in this paper.

In this paper we work with RDF graphs whith RDFS vocabulary. An RDF
graph is a set of triples (v1, v2, v3) ∈ (U ∪B)×U × (U ∪B ∪L), where U is a set
of URIs, B is a set of blank nodes, and L is a set of literals (the sets are pairwise
disjoint). An RDF term is a URI, a blank, or a literal. We consider RDF graphs
that can mention the RDFS vocabulary. The RDFS vocabulary defines Classes
as sets of resources. Elements of a class are known as instances of that class.
To state that a resource is an instance of a class, the property rdf:type may be
used. The following are the most important classes (in brackets the name we will
use in this paper) rdfs:Resource [res], rdfs:Class [class], rdfs:Literal [literal],
rdfs:Datatype [datatype], rdf:XMLLiteral [xmlLit], rdf:Property [property].
Properties are binary relations between subject resources and object resources.
The built-in properties are: rdfs:range [range], rdfs:domain [dom], rdf:type [type],
rdfs: subClassOf [sc], rdfs:subPropertyOf [sp].

In this paper, we work with a characterization of entailment of RDF graphs
in term of the notions of map and closure.

A map is a function µ : (U ∪ B ∪ L) → (U ∪ B ∪ L) preserving URIs and
literals, i.e., µ(u) = u and µ(l) = l for all u ∈ U and l ∈ L. Given a graph G,
we define µ(G) as the set of all (µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. We will
overload the meaning of map and speak of a map µ : G1 → G2 if there is a map
µ such that µ(G1) is a subgraph of G2. A map µ is consistent with G if µ(G) is
an RDF graph, i.e., if s is the subject of a triple, then µ(s) ∈ U ∪ B, and if p

is the predicate of a triple, then µ(p) ∈ U . In this case, we say that the graph
µ(G) is an instance of the graph G. An instance of G is ground if µ(G) does not
mention blanks.

In this paper, we use a working characterization of the standard notion of
entailment between RDF graphs (cf. [19]), which will be denoted by |=. We use
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the known notion of closure of a RDFS graph G, denoted cl(G), which represent
the maximal graph that can be derived from the set of inference rules for graphs
with RDFS vocabulary (for details see e.g., [19, 15]).

Theorem 1 (cf. [19, 15]). G1 |= G2 if and only if there is a map from G2 to
a closure of G1.

3.2 Temporal Graphs

In this section, we present in a compressed form relevant notation and results
for temporal graph from previous work [17, 16].

A temporal triple is an RDF triple (a, b, c) with a temporal timestamp t, which
is a positive rational number. We will use the notation (a, b, c) : [t]. The snapshot
of a temporal graph G at t, is defined as the graph G(t) = {(a, b, c) | (a, b, c) :
[t] ∈ G}. Usually for a temporal graph G we will apply the same notions used
for standard RDF graphs, for example, we will say “G is ground” meaning that
u(G) is ground, write µ(G) for {(µ(a), µ(b), µ(c)) : [t] | (a, b, c) : [t] ∈ G}, and so
on.

Definition 1 (Entailment (c.f. [16])). Let G1, G2 be RDF temporal graphs.
(1) For ground temporal RDF graphs G1, G2 define G1|=τG2 if and only if
G1(t) |= G2(t) for each t; (2) For temporal RDF graphs, define G1|=τG2 if and
only if for every ground instance µ1(G1) there exists a ground instance µ2(G2)
such that µ1(G1)|=τµ2(G2).

Temporal entailment can be characterized in terms of a notion of clousure of
temporal graphs, denoted slice closure.

For an RDF graph H and a time stamp t, define Ht as the temporalization
of all its triples by a temporal mark t, that is, Ht = {(a, b, c) : [t] | (a, b, c) ∈ H}.
The slice closure of G, denoted scl(G), is a temporal graph defined by the
expression

⋃

t
(cl(G(t)))t, where cl(G(t)) is any closure of the RDF graph G(t).

Theorem 2 (c.f. [17]). Let G1, G2 be temporal RDF graphs. Then G1 |=τ G2

if and only if there is a map from G2 to scl(G1).

This result yields an algorithm for testing temporal entailment. Indeed, the
slice closure can be obtained by computing the closures of the snapshots of the
temporal graph.

4 Temporal Graphs with Time Intervals

In this section we extend temporal graphs introduced in Section 3.2 to model
time intervals defined by timestamps, that is, intervals whose extremes are pos-
itive rational numbers.
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4.1 Basic Definitions

We extend temporal triples to triples of the form (a, b, c) : i, where i = [t1, t2] is
an interval defined by the timestamps (positive rational numbers) t1, t2, t1 ≤ t2,
yielding temporal graphs with intervals. For the case where t1 = t2 a triple
(a, b, c) : [t1, t2] is equivalent to temporal triple (a, b, c) : [t1], as defined in Sec-
tion 3.2, therefore temporal graphs with intervals subsume temporal graphs.
Given a temporal graph with intervals G, we denote by I(G) the intervals men-
tioned in G, and denote by T (G) the set of timestamps that appear as bounds
in the intervals in I(G). Two timestamps t1, t2 ∈ T (G) are consecutive if there is
no timestamp t′ ∈ T (G), such that t1 < t′ < t2. Given an interval i ∈ I(G), we
denote by G(i), the set containing RDF triples (a, b, c) such that (a, b, c) : i ∈ G.

A temporal graph with intervals represents a (possibly infinite) temporal
graph, that is, each triple p : [t1, t2] represents the set of temporal triples {p :
[t] | t1 ≤ t ≤ t2}. Given a temporal graph with intervals G, we denote by G+

the temporal graph that represents G. In this form, the notion of entailment
from Definition 1 can be naturally extended to temporal graph with intervals.
Formally, we write G|=τH iff G+|=τH+.

4.2 Reasoning

Theorem 2 also characterizes entailment for temporal graphs with intervals (just
consider the underlying temporal graphs involved). However, the theorem has
no practical application, since underlying graphs (and therefore mappings) may
be infinite. In this section, we give a characterization of entailment that yields
a procedure for the testing entailment of temporal graphs with intervals.

Given two intervals [t1, t2], [t3, t4], we write that [t1, t2] contains [t3, t4] iff
t1 ≤ t3 and t4 ≤ t2. Given an interval i and a set of intervals S, we denote by
CoverSet(i, S) the set containing intervals i′ ∈ S such that i′ contains i.

The following definition extends the notion of slice closure (Section 3.2) to
temporal graphs with intervals.

Definition 2. Let G be a temporal graph with intervals. The slice closure of G,
denoted H = iscl(G), is defined as follows:

1. Let H ′ be the following temporal graph with intervals: for each pair of timestamps
t1, t2 ∈ T (G), H ′([t1, t2]) = cl(

⋃

i∈CoverSet([t1,t2],I(G))
G(i)).

2. Then, for each set of consecutive timestamps t1, t2, t3, . . . , tn−1, tn in T (G),
we have H([t1, tn]) =

⋂

[ti,tj+1]∈S
H ′([tj , tj+1]).

Example 3. Consider the temporal graph with constraints G = {(a, sc, b) :
[1, 3], (b, sc, c) : [2, 4], (a, sc, c) : [3, 5]}. First, we illustrate condition 1 of De-
finition 2. As an example, consider the two timestamps 2, 3 ∈ T (G). Then
CoverSet([2, 3], I(G)) = {[1, 3], [2, 4]}. Therefore, H ′([2, 3]) = cl((a, sc, b), (b, sc, c)}),
which is {(a, sc, b), (b, sc, c), (a, sc, c)}. Now, in order to explain condition 2 of
Definition 2, consider the set of consecutive timestamps 2, 3, 4, 5 in T (G). Then,
H([2, 5]) = H ′([2, 3]) ∩ H ′([3, 4]) ∩ H ′([4, 5]), which is {(a, sc, c)}.
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For simplicity, the previous example use only the subclass property (sc). The
example could be easily turned much more complex if we include in the graphs
other RDFS built-in-properties.

Observe that G ⊆ iscl(G). The following lemma states other important
properties of the slice closure.

Lemma 1. Let G be a temporal graph with intervals.
(1) scl(G+) = (iscl(G))+.
(2) G ≡τ iscl(G).
(3) If there is a triple (a, b, c) ∈ scl(G+)(t) for all timestamps t in some arbi-
trary interval i, then there is an interval i′ ∈ I(iscl(G)) such that i′ contains i

and (a, b, c) : i′ ∈ iscl(G).

We define interval mappings as follows. Given two sets of intervals S, S′ an
interval mapping is a function γ : S → S′, such that for each interval i ∈ S,
i′ = γ(i) should satisfy i′ contains i. When we apply an interval mapping to
a temporal graph with intervals G, we obtain the temporal graph with interval
G′ containing the triples (a, b, c) : γ(i) such that (a, b, c) : i ∈ G. In addition,
we extend maps between temporal graphs (see Section 3.2) to maps between
temporal graphs with intervals.

Theorem 3. Let G, H be temporal RDF graphs with intervals. Then G |=τ H

if and only if there is an interval mapping γ : I(H) → I(G), and a mapping µ

from γ(H) to iscl(G).

Theorem 3 yields a two-steps procedure for testing implication for temporal
graphs with intervals, which requires to first compute a slice closure and then an
interval mapping. In Section 5.4, we study the complexity of testing entailment.

5 Temporal Graphs with Temporal Constraints

In this section, we define temporal graphs with temporal constraints (c-temporal
graphs in short), which generalize temporal graphs with intervals introduced in
Section 4.

5.1 Temporal Constraints

In this paper, we focus on a basic fragment of the known Allen’s interval alge-
bra [2]. The temporal primitive here is an interval [li, lf ] which is an ordered
pair of time labels li, lf . Time labels may be timestamps (positive rational num-
bers) or anonymous timestamps, which are temporal variables. In our model
RDF terms and temporal labels belong to different frameworks: time labels and
triples, and are therefore disjoint. Temporal labels are interpreted as points in
the temporal domain, which is the set of positive rational numbers. So we assume
a dense temporal domain.
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The algebra considers one of the seven relationships depicted in Figure 2 to
state relationships between intervals. By a temporal constraint we refer to an
expression of the form li ω lj, where ω is one of the seven relationships of
Allen’s algebra.

Given a set of temporal constraints Σ we denote I(Σ) the intervals in Σ

and by L(Σ) the temporal labels that appears in intervals in I(Σ). A map for
a set of temporal constraints Σ is a function γ from I(Σ) to ground intervals
(intervals whose limits are timestamps) preserving timestamps. We denote by
γ(Σ) the set of constraints resulting from Σ by replacing each interval i by γ(i).
An instance for a set of temporal constraints Σ = {α1, . . . , αn} is a map µ such
that µ(Σ) is ground (i.e., mentions only timestamps) and each γ(αi) holds in the
temporal domain. If Σ is empty the empty set is its unique ground instance. Σ is
consistent iff it has at least one instance. Notice that an empty set of constraints
is consistent. Given two sets of temporal constraints Σ1, Σ2, define Σ1|=constrΣ2

if and only if for each instance γ of Σ1, there is also an instance of γ(Σ2).

Testing entailment and consistency for the class of temporal constraints con-
sidered can be done in polynomial time. Following standard results in inequal-
ity constraints (e.g. [3, 1]), we can represent the fragment we presented in a
point based algebra, by building the inequality graph for the labels in the con-
straints (which is a particular case of a temporal constraint network [11]), that
is, a directed graph with a node for each temporal label in L(Σ), and edges
(li, lj) labeled with the arithmetic comparisons =, <,≤, that models Allen’s
relationships in Σ. As an example, the constraint [l1, l2] during [l3, l4] yields
l1 ≤ l2, l3 ≤ l4, l3 < l1, and l2 < l4. The graph has also edges that capture the
natural ordering between timestamps mentioned in the constraints and between
each pair of time labels that mark the bound of an interval. The arithmetic con-
straint in the inequality graph can be propagated by simple transitive closure
computation, yielding the closed inequality graph, which can be used for imple-
menting an efficient testing of entailment and consistency of a set of constraints.
We refer the reader to e.g., [3, 1, 11] for further details.

In this paper we consider constraints Σ whose inequality graph is totally
ordered (modulo renaming time labels that are entailed to be equal). Therefore,
even though the intervals themselves may be unknown, the relationship between
any two of them is fully determined by the constraints, that is for all i, i′ ∈ I(Σ)
we have Σ|=constri ω i′ (or the inverse i′ ω i) for some interval relation ω .

5.2 Basic Definitions

We extend the notion of temporal graph to handle anonymous labels in timestamps
and interval. So we consider a temporal triple to be an element of the form p : i,
where p is an RDF triple and i is an interval.

Definition 3. A temporal graph with temporal constraints (subsequently called
a c-temporal graph) is a pair C = (G, Σ), where G is a graph with temporal triples
and Σ is a set of temporal constraints over the intervals of G.
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For simplicity, we sometimes write the temporal constraints and the temporal
triples in a single set. Given a c-temporal graph C = (G, Σ), we denote by I(C)
and L(C) the intervals and time labels that appear in the triples in G.

Interval maps defined in Section 4 can be naturally extended to consider inter-
vals defined with temporal labels. If we apply an interval map ν to a c-temporal
graph C, we obtain another c-temporal graph, denoted ν(C), by renaming each
interval r with ν(r). A time-ground instance of a c-temporal graph C = (G, H)
is a temporal graph with intervals ν(C) (i.e., ν maps each interval to an interval
defined by timestamps) such that ν(Σ) is consistent.

Definition 4 (Entailment). Let C1 = (G1, Σ1) and C2 = (G2, Σ2) be c-
temporal graphs. Define C1|=τ(constr)C2 if and only if for each time-ground in-
stance ν1(C1) of C1 there is a time ground instance ν2(C2) of C2 such that
ν1(C1)|=τν2(C2).

Example 4. Let C1 be the c-temporal graph

{(a, sc, b) : i1, (b, sc, c) : i2, i1 during i2, i1 starts [3,now ]}.

The following entailment holds: C1|=τ(constr){(a, sc, c) : i3, i3 starts [3,now ]}.

The following lemma can be easily verified.

Lemma 2. Let C1 = (G1, Σ1) and C2 = (G2, Σ2) be c-temporal graphs. If
C1|=τ(constr)C2, then C1|=τ(constr)(G2, ∅).

5.3 Reasoning

First, we extend the interval containment relationship of Section 4.2 to intervals
over anonymous timestamps restricted by constraints. Given a set of intervals
S, and an interval i, we denote by CoverSetΣ(i, S) the set of intervals i′ ∈ S

that can be entailed from Σ to contain i.
The following definition extends the notion of slice closure (Definition 2) to

c-temporal graphs.

Definition 5. Let C = (E, Σ) be a c-temporal graph. The slice closure of C,
denoted H = cscl(C), is a c-temporal graph (F, Σ), where F is defined as
follows:

1. Let F ′ be the following c-temporal graph. For each pair of labels l1, l2 ∈ L(C),
F ′([l1, l2]) = cl(

⋃

i∈CoverSetΣ([l1,l2],I(C))
C(i)).

2. Then, for each set of consecutive labels l1, l2, l3, . . . , ln−1, ln in L(C), we have
F ([l1, ln]) =

⋂

[lj,lj+1]∈S
F ′[lj, lj+1].

Lemma 3. Let C = (G, Σ) be a c-temporal graph.
(1) For each time-ground instance γ(C) of C, γ(cscl(C)) = iscl(γ(C)).
(2) cscl(C)≡τ(constr)C.
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A c-temporal graph is consistent if it has at least one temporal-ground in-
stance. Since we can entail anything from a inconsistent c-temporal graph, we
will study entailment from consistent graphs. In order to simplify the presenta-
tion, we subsequently assume that c-temporal graphs C = (G, Σ) are consistent.

We define interval mappings between c-temporal graphs. Let C1 = (G1, Σ1)
and C2 = (G2, Σ2) be two independent c-temporal graphs. An interval mapping
from C2 to C1 is a function µ : I(C2) → I(C1), which satisfies Σ1|=constr(Σ2 ∪
Σu), where Σu is the following set of constraints {l3 ≤ l1, l2 ≤ l4 : µ([l1, l2]) =
[l3, l4]}.

Theorem 4. Let C1 = (G1, Σ1), C2 = (G2, Σ2) be c-temporal RDF graphs.
Then C1|=τ(constr)C2 if and only if there exist an interval map γ from C2 to C1

and a map µ from γ(C2) to cscl(C1).

5.4 Algorithm and Complexity

Theorem 4 yields an algorithm for testing the entailment C1|=τ(constr)C2, which
consists of the following two steps: (i) compute the slice closure cscl(C1) by
applying rules (1) and (2) of Definition 5; and (ii) find an interval map γ from
C2 to C1 and a map µ from γ(C2) to cscl(C1). Step (ii) is similar to finding a
mapping between non-temporal graphs [15]. In the remaining of this section we
study the complexity of the two steps of the algorithm.

A standard result regarding RDFS entailment is that the closure cl(G) of
an RDF G graph is of polynomial size in |G|; computing the closure also takes
polynomial time (an upper bound for both is O(n3), where n is the number
of RDF terms mentioned in G). We consider a polynomial p(|G|) that bounds
the size of the closure and the time it takes to compute it. We also consider a
polynomial q(|Σ|) that bounds the time of computing an implication of temporal
constraints.

Lemma 4. Let C = (G, Σ) be a temporal graph with intervals and let (E, Σ) =
cscl(C). (1) The graph E is of size O(N2p(|G|)), where N = |L(C)|. (2) The
slice closure cscl(C) can be computed in time O(N4(q(|Σ| + p(|G|))).

Better complexity bounds for computing the slice closure could be certainly
obtained by developing more efficient algorithms, an issue we do not address in
this paper. We next show that the decision problem of entailment for c-temporal
graphs is NP-complete, thus maintaining the complexity of temporal graphs (and
also of the non-temporal case).

Theorem 5. (1) Given two temporal c-temporal graphs C1, C2, the problem of
deciding whether C1|=τ(constr)C2 is NP-complete. (1) Given two temporal graphs
with intervals G1, G2, the problem of deciding whether G1|=τG2 is NP-complete.

As stated previously, for testing whether C1|=τ(constr)C2, Theorem 4 requires
the inequality graph of Σ1 to yield a total ordering of time labels. However, if this
is not the case, the condition can be adapted to be required by each topological
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ordering of the inequality graph. So, testing entailment for graphs with few
topological orderings still does not add extra complexity to RDF entailment.
Further techniques can be used to make this case of entailment more efficient.
As an example, if the graph has connected components it is enough to consider
combinations of topological orderings inside each component, while keeping a
fixed ordering for the components themselves, thus reducing significantly the
processing. We left this problem for future work.

6 Conclusion

In this paper we have extended temporal RDF graphs with a class of tempo-
ral constraints over intervals. In this way, temporal reasoning about these con-
structs is enabled. First, taking advantage of the support of blank nodes in RDF,
we introduced intervals such that one and/or both boundaries are anonymous
timestamps. We developed a notion of closure for temporal RDF graphs with
intervals.

Then, we introduced c-temporal graphs (temporal graphs with constraints
and the intervals previously defined), and gave a notion of closure for these
temporal graphs. We also proved that entailment from such graphs reduces to
finding mappings to the “closed” version of the graphs. These results also show
that query processing for temporal graphs with constraints also reduces to com-
puting a matching between the query and the closed graphs. We also sketch an
algorithm for computing the slice closure of c-temporal graphs. All these can be
handled within standard RDF syntax plus an additional vocabulary.

We left as future work the study of entailment for more expressive classes
of constraints based either in Allen’s interval algebra or point algebras [10]. In
particular, we plan to study entailment for the case where the constraints do
not entail a total ordering of anonymous timestamps. We are also beginning to
work on an implementation of the theoretical framework presented here.
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Abstract. We describe ongoing work on a bidirectional mapping be-
tween Attempto Controlled English (ACE) and OWL DL. ACE is a
well-studied controlled language, with a parser that converts ACE texts
into Discourse Representation Structures (DRS). We show how ACE can
be translated into OWL DL (by using the DRS as interlingua) and how
OWL DL can be verbalized in ACE. This mapping renders ACE an
interesting companion to existing OWL front-ends.

1 Introduction

The Web Ontology Language OWL in all its versions (Lite, DL, Full) has a
normative syntax which is based on RDF and XML which both are inherently
difficult to read and write. OWL can be alternatively expressed in the OWL
Abstract Syntax notation ([15]) which is concise and easier to use, but the main
problem still remains — the user is required to possess a large knowledge of
Descriptions Logics (DL) to work with OWL. In order to enable wide adoption
of OWL on the web, the users are encouraged to use front-end tools. Such tools
(Protégé3, SWOOP4, etc) are user-friendly graphical editors, but for complex
class descriptions they revert to using a DL-like syntax and thus fail to hide the
complexities of OWL. E.g. [16] list the problems that users encounter when work-
ing with OWL DL and express the need for a “pedantic but explicit” paraphrase
language.

To answer this need, we envision a text-based system that allows the users
to express the ontologies in the most natural way — in natural language. Such
a system would provide a natural syntax for logical constructions such as dis-
jointness or transitivity, i.e. it would not use keywords but instead a syntactic
structure to represent those complex concepts. The system would be tightly in-
tegrated with an OWL DL reasoner, but the output of the reasoner (if expressed
in OWL DL as a modification of the ontology) would again be verbalized in nat-
ural language, so that all user interaction takes place in natural language and
the central role in the system is carried by plain text.
3 http://protege.stanford.edu
4 http://www.mindswap.org/2004/SWOOP/



As a basis of the natural language, we have chosen Attempto Controlled En-
glish (ACE), a subset of English that can be converted through its DRS repre-
sentation into first-order logic representation and automatically reasoned about
[5] (see [1] for more information). The current version of ACE offers language
constructs like countable and mass nouns; collective and distributive plurals;
generalized quantifiers; indefinite pronouns; negation, conjunction and disjunc-
tion of noun phrases, verb phrases and sentences; and anaphoric references to
noun phrases through proper names, definite noun phrases, pronouns, and vari-
ables. The intention behind ACE is to minimize the number of syntax and in-
terpretation rules needed to predict the resulting DRS, or for the end-user, the
reasoning results. At the same time, the expressivity and naturalness of ACE
must not suffer. The small number of ACE function words have a clear and pre-
dictable meaning and the remaining content words are classified only as verbs,
nouns, adjectives and adverbs. Still, ACE has a relatively complex syntax com-
pared to the OWL representation e.g. in the OWL Abstract Syntax specification
([15]), but as ACE is based on English, its grammar rules are intuitive (already
known to English speakers) and experience shows that ACE can be learned in
a few days. [2] show also that users are likely to prefer ACE to visibly formal
languages such as SQL.

Our work towards using ACE as a front-end to OWL DL addresses the fol-
lowing issues:

1. Show that there is a mapping from a subset of ACE (which we call OWL
ACE) into a syntactic subset of OWL DL (i.e. a subset which does not use
all the syntactic constructs in OWL DL but is still capable of expressing
everything that OWL DL can express). This mapping uses the DRS as in-
terlingua.

2. Show that the two involved subsets and the mapping from one to the other
are easy to explain to the users. This means that the entailment and con-
sistency results given by the OWL DL reasoners “make sense” on the ACE
level.

3. Show that there is a mapping from the syntactic subset of OWL DL into
OWL ACE (possibly using the DRS as interlingua). This mapping (which
can be called a verbalization) must, again, be easily explainable.

4. Implement a converter from OWL DL to the chosen syntactic subset of OWL
DL. By this, we will be able to handle all OWL DL ontologies on the web.

5. If needed, extend ACE to provide a more natural syntax or more syntactic
variety for expressing the OWL DL constructs.

6. Extend the verbalization process to target a richer syntactic subset of OWL
ACE.

7. Extend all the aspects of this work in order to be compatible with future
standards of OWL DL, e.g. OWL 1.1 ([14]) or extensions of it, e.g. SWRL
([10]).
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So far, we have focused on the first 3 steps. In the following, we describe a
mapping from OWL ACE to OWL DL (in RDF/XML syntax)5, the problems
encountered, the OWL ACE subset and the verbalization of OWL DL.

2 From ACE to OWL

The following figure shows the DRS corresponding to the ACE text

Bill who is a man likes himself. Bill is not John. Every businessman
who is richer than at least 3 things is a self-made-man or employs a
programmer who knows Bill.

(Note that the example is somewhat artificial to demonstrate concisely the
features of OWL DL as expressed in ACE.)

[A, B, C, D, E, F]

object(A, atomic, named_entity, person, cardinality, count_unit, eq, 1)

named(A, Bill)

object(C, atomic, man, person, cardinality, count_unit, eq, 1)

predicate(E, state, be, A, C)

predicate(B, unspecified, like, A, A)

object(D, atomic, named_entity, person, cardinality, count_unit, eq, 1)

named(D, John)

NOT

[F]

predicate(F, state, be, A, D)

[G, H, I, J]

object(H, atomic, businessman, person, cardinality, count_unit, eq, 1)

predicate(J, state, be, H, I)

property(I, richer_than, G)

object(G, group, thing, object, cardinality, count_unit, geq, 3)

=>

[]

[K, L]

object(K, atomic, self-made-man, person, cardinality, count_unit, eq, 1)

predicate(L, state, be, H, K)

v

[M, N, O]

object(M, atomic, programmer, person, cardinality, count_unit, eq, 1)

predicate(N, unspecified, know, M, A)

predicate(O, unspecified, employ, H, M)

The DRS (see [3] for a complete overview of the DRS language used to rep-
resent ACE texts) makes use of a small number of predicates, most importantly
5 A preliminary implementation of this mapping is available among the Attempto

tools at http://www.ifi.unizh.ch/attempto/tools
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object derived from nouns and predicate derived from verbs. The predicates
share information by means of discourse referents (denoted by capital letters)
and are further grouped by embedded DRS-boxes, that represent implication
(derived from ‘every’ or ‘if... then...’), negation (derived from various forms of
English negation), and disjunction (derived from ‘or’). Conjunction — derived
from relative clauses, explicit ‘and’, or the sentence end symbol — is represented
by the co-occurrence in the same DRS-box.

The mapping to OWL DL does not modify the existing DRS construction
algorithm but only the interpretation of the DRS. It considers everything in
the toplevel DRS to denote individuals (typed to belong to a certain class), or
to denote relations between individuals. Individuals are introduced by nouns,
so that propernames (‘Bill’, ‘John’) map to individuals with type owl:Thing
and common nouns to an anonymous individual with the type derived from the
corresponding noun (e.g. class Man). Properties are derived from transitive verbs
(‘likes’) and transitive adjectives. Special meaning is assigned to the copula ‘be’
which introduces an identity (or difference, if negated) between individuals.

An embedded implication-box introduces a subClassOf -relation between class
descriptions — the head of the implication maps to a class description, the body
to its superclass description. Transitive verbs (‘employ’, ‘know’) and transitive
adjectives (‘richer than’) introduce a property restriction with someValuesFrom
a class denoted by the object of the verb or adjective, and the copula introduces
a class restriction. Co-occurrence of predicates maps to intersectionOf. Negation
and disjunction boxes introduce complementOf and unionOf, respectively. Any
embedding of them is allowed. The plural form of the word ‘thing’ and the usage
of numbers and generalized quantifiers (‘more than’, ‘less than’, ‘at least’, ‘at
most’) allow to define cardinality restrictions. Thus our DRS has the following
meaning (in DL notation):

bill ∈ >
m1 ∈ Man
bill = m1
likes(bill, bill)
john ∈ >
bill 6= john

(Businessman u isRicherThan ≥ 3) v
(SelfMadeMan t (∃ employs (Programmer u (∃ knows {bill}))))

Note that an ACE construct like “A man who owns a dog likes an animal.”
describes relationships between individuals and not classes, since the correspond-
ing DRS does not have any embedded DRSs. (One could have less ambiguously
said “There is a man. He owns a dog and likes an animal.”). In full English, this
sentence is ambiguous by also having a reading which relates classes. In ACE,
one would have to use ‘every’ instead of ‘a’ to get this reading.

The mapping to OWL DL allows also to describe properties. A superproperty
(e.g. ‘likes’) for a given property (e.g. ‘loves’) can be defined as:
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Everybody who loves somebody likes him/her.

Describing the transitivity of properties and inverse properties is quite “math-
ematical” in ACE, but there does not seem to be a better way in natural lan-
guages, unless one defines keywords such as ‘transitive’ or ‘inverseOf’ which then
have to be explained to the average users. Consider e.g.

If a thing A is taller than a thing B and B is taller than a thing C then
A is taller than C.

If a thing A is taller than a thing B then B is shorter than A. If a thing
A is shorter than a thing B then B is taller than A.

Note that property definitions make use of indefinite pronouns (‘everybody’,
‘somebody’) or a noun ‘thing’, which all map to owl:Thing.

The current mapping does not target all the syntactic variety defined in the
OWL DL specification, e.g. elements like disjointWith or equivalentProperty can-
not be directly expressed in ACE, but their semantically equivalent constructs
can be generated.

3 Problems and missing features

Now we look at some of the problems that we have encountered when implement-
ing the mapping from ACE to OWL DL. On the one hand, some expressions
that can be concisely handled in OWL DL do not have an elegant counterpart
in ACE. This calls for an extension of the grammar of ACE. On the other hand,
some DRS structures cannot be directly mapped into OWL DL syntax which
differs from DRS syntax by being heavily influenced by the standard Description
Logics’ syntax. This calls for a preprocessing of the DRS structures.

The biggest problem that we have encountered is that allValuesFrom cannot
be expressed in ACE in the most natural way, i.e. by using constructions like
‘only’, ‘nothing but’ or ‘nothing else than’. Note that existing approaches to
verbalizing allValuesFrom tend to use ‘only’ (see [16, 18]) and ‘always’ (see [7]).
ACE has excluded ‘only’ even as a general adverb, in order to reduce the possible
ambiguity that this word might introduce. Therefore a concise form to express
e.g. the statement Carnivore ≡ ∀eat.Meat is missing in ACE.

∗Every carnivore eats nothing but meat.
∗Everything that eats nothing but meat is a carnivore.

In order to express this meaning, the ACE user can choose double negation
(essentially using the equivalence ∀R.C ≡ ¬∃R.¬C) or an if-then construc-
tion (essentially using the mapping φ to first-order logic syntax φ∀R.C(x) =
∀y.R(x, y) → φC(y)). E.g. the DL statement Carnivore v ∀eat.Meat can be
expressed in ACE in the following ways (the equality sign points to a different
formulation that gives exactly the same DRS representation).
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No carnivore eats something that is not a meat.
(= If there is a carnivore then it does not eat something that is not a
meat.)
Everything that a carnivore eats is a meat.
(= If a carnivore eats something then it is a meat.)
For every carnivore everything that it eats is a meat.
(= If there is a carnivore then everything that it eats is a meat.)

The opposite direction, i.e. the DL statement ∀eat.Meat v Carnivore can
be expressed in ACE as

If there is a thing that does not eat something that is not a meat then
the thing is a carnivore.
If there is something and everything that it eats is a meat then it is a
carnivore.

Some of those constructions might even be acceptable in verbalizations of
existing ontologies or paraphrases of existing ACE texts (i.e. they might be
suitable for reading and confirmation), but they are unacceptable as the only
way to express allValuesFrom in ACE.

Some problems emerge from the difference of the Description Logics’ syntax
and the DRS syntax. E.g. complex class descriptions as arguments to someVal-
uesFrom are difficult to map to OWL DL, since the DRS representation resem-
bles more a rule language than a DL-style property restriction.

The ACE negation does not generate an implication-box, but for class de-
scriptions like “No man is a woman.” it would be desirable. Therefore, we first
convert the negation-box into an implication-box (containing a negated then-
part).

The fact that inverseOf is symmetrical is also difficult to implement because
the ACE-way of expressing this creates two implication-boxes which have to be
handled as one unit in the mapping.

Some OWL DL features are missing altogether. Currently, there is no support
for enumerations (oneOf ). One possibility would be to extend ACE with noun
phrase disjunction.

∗Every student is John or Mary or Bill.
∗Everybody likes John or Mary or likes John or Bill.
∗Everybody who is John or Bill is a man and is a student.

Also, at this point, ACE has no support for datatype properties. One could
imagine using ACE’s of -construction (or Saxon genitive) for that purpose, e.g.

John’s age is more than 21 years.
If a person drinks a beer then the age of the person is more than 21
years.

And finally, metalevel constructions such as URIs, imports, annotation prop-
erties, versioning, etc, which essentially make OWL DL a Semantic Web language
cannot be cleanly expressed in ACE.
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4 Explaining OWL ACE

As is the case with full ACE, in order to be successful, OWL ACE must be
easy to use for the average users. This means that the user can quickly learn to
resolve the syntactic and semantic errors that he encounters when inputing an
OWL ACE text. Assuming that full ACE has achieved the required simplicity,
we now look at the various restrictions to OWL ACE as compared to full ACE.

Some of those restrictions are easy to explain: there is no support for in-
transitive and ditransitive verbs, prepositional phrases, adverbs, intransitive ad-
jectives, and most forms of plurals. Also, query sentences (e.g. “Who employs
Bill?”) are not allowed in OWL ACE.

In addition, there are constraints on the DRS structure which might turn
out to be difficult to explain. E.g. disjunction is not allowed to occur at the
toplevel DRS and negation at the toplevel is handled by converting it first into
an implication, or alternatively, as a difference between individuals. A further
restriction requires the predicates in the implication-box which defines a subclass
relation between class descriptions to share one common discourse referent as
the subject argument, unless the subject is directly or indirectly an object of a
predicate that binds it to the common subject. Also, no object can be repeated as
an object in the implication-box. Those restrictions allow us to exclude sentences
like “If a man sees a dog then a cat hears the dog.” but to include sentences
like “If a man sees a dog that sees a cat then the man sees a mouse.” The first
sentence does not seem to map nicely to OWL DL but instead to a more powerful
rule language (such as SWRL).

As the DRS-level restrictions are difficult to formulate and understand, an
ACE-level explanation must be found. E.g. a suggestion to avoid the unwanted
argument sharing in the implication-box is to use only every-sentences which
put a natural restriction on how the subject can be used in the sentence. Ev-
ery-sentences can express complex structures via relative clauses (which can be
conjoined, disjoined or negated using verb phrase conjunction, disjunction or
negation, respectively). A further restriction is to avoid any kind or anaphoric
references, apart from relative pronouns (‘who’, ‘which’, ‘that’) and references
to top-level objects (i.e. individuals).

5 From OWL to ACE

The mapping in the opposite direction must handle all OWL DL constructs,
some of which the ACE-to-OWL mapping does not produce. A bigger issue is
raised by the naming conventions used for OWL classes and properties. Those
names are not under the control of current OWL editing tools and the user is
guided only by informal style-guides, which mainly discuss the capitalization of
names (see e.g. [9]). OWL ACE would prefer classes to be named by singular
nouns, properties by transitive verbs or adjectives, and individuals by singular
nouns or propernames. Real-world OWL ontologies, however, can contain class
names like SpicyPizza, MotherWith3Children, property names like accountName,
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brotherOf, isWrittenBy, and individual names like red, married. Still, [13] analyze
the linguistic nature of class and property names in real-world OWL ontologies
and find that those names fall, in most cases, quite well into the categories of
nouns and verbs, respectively, with only a small overlap in linguistic patterns
used. (They do not study the morphological features of names of individuals.)

Mapping from OWL to ACE also involves parsing RDF/XML, which is the
normative syntax for OWL DL. So far, we have implemented a simple prototype
in XSLT, which generates ACE from the XML Presentation Syntax of OWL
[8] and hope that more OWL tools will support this syntax as an alternative
output format. The current mapping directly generates ACE. An alternative
would target the DRS instead, and use an existing general mapping from the
DRS to a canonical ACE form (the so called Core ACE form) [4].

Currently, the ACE representation ends up being quite repetitive and un-
ordered. For large ontologies this might become a problem and a more complex
strategy is needed. Consider e.g. the following sentences.

Every wine which originates-from France is a french-wine.
Everything which is a wine and which originates-from France is some-
thing which is a french-wine.
If there is a wine and it originates-from France then the wine is a french-
wine.
If there is a wine W and W originates-from France then W is a french-
wine.

Those sentences are equivalent, as far as the mapping to OWL DL is con-
cerned. Still, one could argue that some of those sentences are more readable
than others, e.g. the every-construction with a relative clause is more readable
than the if-then constructions with full clauses. On the other hand, relative
clauses cannot express more complex structures (without causing ambiguity in
the output), thus the more general if-then construction must be used. A flexible
ACE generation system could use relative clauses in case they allow to correctly
express all the references in the DRS and revert to using if-then sentences in case
a more flexible reference system is needed. It might turn out that the expres-
sivity provided by every-sentences (using relative clauses) is enough to verbalize
OWL DL.

Note also, that a variety of different verbalizations can be achieved by chang-
ing the input ontology with a reasoner which restructures the ontology and/or
modifies it by adding/removing certain (possibly redundant) information. I.e.
we could provide a relatively direct OWL-to-ACE mapping, but use a reasoner
to customize the verbalization procedure for our needs.

6 Related work

Some existing results show the potential and the need for a natural language
based interface to OWL, and to the Semantic Web in general. [11] discusses
the so-called “people axis” of the Semantic Web, i.e. technologies which would
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make the Semantic Web accessible to the widest possible audience. He describes
Pseudo Natural Language which provides an interface to RDF, and points to
the need for a dedicated natural interface to extensions of RDF, such as OWL.
[17] proposes writing OWL ontologies in a controlled language, but does not
provide a natural syntax for writing terminological statements (i.e. TBoxes).
[18] extends this work to cover also the terminological statements in a rather
ACE-like syntax and describes a bidirectional mapping to the OWL Abstract
Syntax. The details of this mapping as well as a working prototype are not
presented. TRANSLATOR6 (TRANSlator from LAnguage TO Rules) is a tool
which maps the DRS representation of ACE sentences into RuleML syntax,
covering full ACE. Its goal is to allow non-experts to write facts and rules in
formal representation for use on the Semantic Web.

There is more work on the verbalization of OWL ontologies, although not in
controlled languages, i.e. such verbalization cannot be edited and parsed back
into a standard OWL representation. [12] discuss inferences (so called natural
language directed inference) to be applied on the ontology which are necessary
to make the verbalization of the ontology linguistically more acceptable, e.g. the
verbalization must not violate the Gricean maxims. [7] paraphrase OWL class
hierarchies and use a part-of-speech tagger to analyze the linguistic nature of
class names and then split the names apart to form more readable sentences. [6]
extends this work to OWL individuals and their properties.

7 Future work

The current mapping lacks support for datatype properties and enumerations.
Also, allValuesFrom cannot be directly generated, but its semantics can be cap-
tured by using double negation. We will add support of those constructs along
with support of proposed extensions to the current version of OWL DL, such
as qualified cardinality and local reflexivity restrictions. Some of those changes
require modification of the existing ACE syntax. ACE also needs support for
URIs and namespaces, at least on the tokenizer level.

The ACE parser uses a large lexicon of content words to know which words
belong to which word class. ACE texts containing domain specific words can-
not be parsed unless the built-in general-purpose lexicon is updated to contain
knowledge about these words. This makes parsing faster and allows us to point
out spelling mistakes. On the other hand, the dependency on the lexicon can
make the system less convenient to use. The restrictions that the OWL ACE
subset of ACE sets on ACE syntax, might be strong enough, so that the word
class information could be unambiguously derived from the context (e.g. a de-
terminer such as ‘every’ or ‘a’ signals that the following word is a singular noun).
We are thus in search for a lexicon-independent subset of ACE and explore its
relation to OWL ACE.

6 http://www.ruleml.org/translator/
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Our long term goal is to develop ACE into a Semantic Web language which
can capture both ontology languages and rule languages in a uniform syntax and
thus hide the sometimes artificial distinction between those paradigms.
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Abstract. The paper addresses the problem of using semantic anno-
tations in XML documents for better querying XML data. We assume
that the annotations refer to an ontology defined in OWL (Web On-
tology Language). The intention is then to combine syntactic querying
techniques on XML documents with OWL ontology reasoning to filter
out semantically irrelevant answers. The solution presented in this paper
is an extension of the declarative rule-based XML query and transfor-
mation language Xcerpt. The extension allows to interface an ontology
reasoner from Xcerpt rules. This makes it possible to use Xcerpt to fil-
ter extracted XML data using ontological information. Additionally it
allows to retrieve ontological information by sending semantic queries to
a reasoner. The prototype implementation uses DIG (Description Logic
interface) for communication with the OWL reasoner RacerPro where
the ontology queries are answered.

1 Introduction

XML, designed by W3C1, is increasingly used for representing semistructured
data on the Web. XML is considered a basic layer in the W3C Semantic Web
initiative initiated by Tim Berners-Lee. As stated by Antoniou and van Harme-
len [2] the objective of the initiative is “to represent Web content in a form
that is more easily machine-processable and to use intelligent techniques to take
advantage of these representations”. The intention is not to build a new Web
from scratch, but to stimulate gradual evolvement of the existing Web in the
above-mentioned direction.

Another layer of the Semantic Web is the so-called ontology layer. Ontologies
provide information about concepts, roles and individuals in a given application
domain. Thus an ontology gives a common vocabulary to be understood in the
same way by various applications in the domain. For example the concept tree
in graph theory applications is understood to be a special kind of the concept
graph. The same concept would be understood to be a special kind of the concept
plant in a botanical vocabulary. The roles defined by an ontology are binary
relations on concepts. The Web Ontology Language OWL [1], recommended by
the W3C, is used for specifying Web ontologies. Formally the language is based
on a Description Logic. An OWL ontology can thus be seen as a set of logical
1 http://www.w3.org/
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axioms. Querying a given ontology is done by reasoning in the underlying logic.
For example, if the graph ontology states that the individual t is a tree it can
be concluded that t is a graph.

XML is supported by query languages, including the W3C Candidate Rec-
ommendation XQuery [4]. Querying of XML data in such languages relies on the
structure of the queried XML data: a query identifies a (possibly empty) set of
fragments of given XML data. The structure-based querying of XML data is thus
based on the syntax of the data. XML data may include semantic annotations,
referring to concepts defined by ontologies. However, XML query languages do
not provide ontology reasoning capabilities. The objective of this paper is to
show how structure-based querying can be combined with ontology reasoning.
For this we combine the XML query language Xcerpt [7,6] with ontology queries.
Xcerpt is being developed by the EU Network of Excellence REWERSE 2 in the
6th Framework Programme. It differs from most other XML query languages in
that it is deductive and rule based. This makes it more suitable for integration
with ontology queries.

As already stated, the objective of our work is to enhance structural querying
of XML data with ontology reasoning. We assume that XML data contains
annotations referring to an ontology defined in OWL. We would like to filter XML
documents returned by a structural query by reasoning on semantic annotations
included therein. This can be illustrated by the following example. Assume that
an XML database of culinary recipes is given. Each recipe indicates ingredients
(like flour, salt, sugar etc.). We assume that the names of the ingredients are
defined by a standard ontology, accessible separately on the web and providing
also some classification. For example, the standard may specify disjoint classes of
gluten-containing and gluten-free ingredients (see Figure 1). Thus, the names of
ingredients in the XML recipe can be seen as semantic annotations. To prepare
dinner we would query the XML database for recipes. To check if the ingredients
of a chosen recipe are gluten-free we have additionally to query the ontology.

Thus, the problem outlined above can be seen as the problem of interfacing of
an XML query language with an ontology reasoner. We decided to choose Xcerpt
as the query language as variables of Xcerpt can naturally be used for passing
semantic annotations from results of Xcerpt queries to an ontology reasoner. Also
we had access to the source code of the Xcerpt implementation which made it
possible to implement our solution by modification of this code. The prototype
implementation uses DIG (Description Logic interface [3]) for communication
with the OWL reasoner RacerPro3 where the ontology queries are answered.

The prototype implements two ways of interfacing a reasoner from Xcerpt.
One of them involves boolean ontology queries, which are used to filter out irrel-
evant answers. Another one allows arbitrary DIG queries to retrieve ontological
information from the reasoner. Such information can be further used by other
rules in an Xcerpt program.

2 http://www.rewerse.net/
3 http://www.racer-systems.com/
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Fig. 1. Recipe ontology graph (generated by RacerPorter - a graphical user
interface of RacerPro).

The rest of the paper is organised as follows. Section 2 briefly introduces
the query language Xcerpt and gives some background information on the DIG
interface. Section 3 presents an extension of Xcerpt allowing querying XML
using ontological information. It also presents a prototype implementing new
constructs in Xcerpt. Finally, Section 4 provides some conclusions.

2 Preliminaries

This section gives a brief introduction to the XML query and transformation
language Xcerpt and the DIG Interface. These are basic techniques applied in
the presented work.

2.1 Xcerpt

An Xcerpt program is a set of rules consisting of a body and of a head. The
body of a rule is a query intended to match data terms. If the query contains
variables such matching results in answer substitutions for variables. The head
uses the results of matching to construct new data terms. The queried data is
either specified in the body or is produced by rules of the program. There are two
kinds of rules: goal rules produce the final output of the program, while construct
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rules produce intermediate data, which can be further queried by other rules.
Their syntax is as follows:

GOAL CONSTRUCT
head head

FROM FROM
body body

END END

Sometimes, we will denote the rules as head ← body neglecting distinction be-
tween goal and construct rules.

XML data is represented in Xcerpt as data terms. Data terms are built
from basic constants and labels using two kinds of parentheses: brackets [ ] and
braces { }. Basic constants represent basic values such as attribute values and
character data (called PCDATA). A label represents an XML element name.
The parentheses following a label include a sequence of data terms (its direct
subterms). Brackets are used to indicate that the direct subterms are ordered
(in the order of their occurrence in the sequence), while braces indicate that the
direct subterms are unordered. The latter alternative is used to encode attributes
of an XML element by a data term of the form attr{l1[v1], . . . , ln[vn]} where li
are names of the attributes and vi are their respective values.

Example 1. This is an XML element and the corresponding data term.

<CD price="9.90"> CD[ attr{ price["9.90"] },
<title>Empire</title> title[ "Empire" ],
<artist>Bob Dylan</artist> artist["Bob Dylan"],
<country>USA</country> country["USA"]

</CD> ]

There are two other kinds of terms in Xcerpt: query terms and construct
terms.

Query terms are (possibly incomplete) patterns which are used in a rule
body (query) to match data terms. In particular, every data term is a query
term. Generally query terms may include variables so that a successful match-
ing binds variables of a query term to data terms. Such bindings are called
answer substitutions. A result of a query term matching a data term is a set of
answer substitutions. For example a query term a[ b[ ], varX ] matches a data
term a[ b[ ], c[ ] ] resulting in answer substitution set {X/c[ ]}. Query terms can be
ordered or unordered patterns, denoted, respectively, by brackets and braces. For
example a query term a[ c[ ], b[ ] ] is an ordered pattern and it does not match a
data term a[ b[ ], c[ ] ] but a query term a{ c[ ], b[ ] }, which is an unordered pattern,
matches a[ b[ ], c[ ] ]. Query terms with double brackets or braces are incomplete
patterns. For example a query term a[[ b[ ], d[ ] ]] is an incomplete pattern which
matches a data term a[ b[ ], c[ ], d[ ] ]. As the query term uses brackets the match-
ing subterms of the data term must occur in the same order as in the pattern.
Thus the query term a[[ b[ ], d[ ] ]] does not match a data term a[ d[ ], b[ ], c[ ] ]. In
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contrast a query term a{{ b[ ], d[ ] }} matches a[ d[ ], b[ ], c[ ] ]. To specify subterms
at arbitrary depth a keyword desc is used e.g. a query term desc d[ ] matches a
data term a[ b[ d[ ] ], c[ ] ].

A query term q in a rule body may be associated with a resource r storing
XML data or data terms. This is done by a construction of the form in[r, q].
The meaning of this construction is that q is to be matched against data in r.
Query terms in the body of a rule which have no associated resource are matched
against data generated by rules of the Xcerpt program.

Rule bodies are constructed from query terms (possibly with indicated re-
sources) using logical connectives such as or, and, and not.

Construct terms are used in rule heads to construct new data terms. They
are similar to data terms, but may contain variables which act as place holders
for data selected in a query. They may also use a grouping construct all which
is used to collect all instances that result from different variable bindings [5].

A construct term c in a goal rule head may be associated with a resource r
to which the goal results are written. This is done by a construction of the form
out[r, c]. If a head of a goal rule is a construct term which is not associated with
a resource the results of the rule are directed to the standard output.

Example 2. Consider a document catalogue.xcerpt containing a data term:

catalogue[

cd[ title["Empire"], artist["Bob Dylan"], year["1985"] ],

cd[ title["Hide your heart"], artist["Bonnie Tyler"], year["1988"] ],

cd[ title["Stop"], artist["Sam Brown"], year[ "1988"] ]

]

Here is an Xcerpt rule which queries the document and extracts titles and artists
of the CD’s issued in 1988 and presents the results in a changed form (title as
name and artist as author).

GOAL

results [

all result[ name[ var TITLE ], author[ var ARTIST ] ]

]

FROM

in[ "file:catalogue.xcerpt",

catalogue{{

cd{ title[ var TITLE ], artist[ var ARTIST ], year[ "1988" ] }

}}

]

END

The results returned by the rule are:

results[ result[ name[ "Hide your heart" ], author[ "Bonnie Tyler" ] ],

result[ name[ "Stop" ], author[ "Sam Brown" ] ] ]

Xcerpt rules may be chained to form complex query programs, i.e. rules may
query the results of other rules.
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2.2 DIG interface

Ontologies provide information about concepts, roles and individuals in a given
application domain. Thus an ontology gives a common vocabulary to be under-
stood in the same way by various applications in the domain. A main language
used to defined ontologies is OWL developed by W3C. OWL is based on descrip-
tion logics.

An OWL file representing an ontology is just an encoding of a set of axioms.
To make use of the axioms one needs an ontology reasoner. Using an ontology
reasoner it is possible to draw conclusions from the set of axioms such as dis-
covering implicit subclass relationships and discovering class equivalence. In the
presented work we use the ontology reasoner RacerPro. To allow Xcerpt pro-
grams to communicate with the reasoner we need to use a reasoner interface.
For this purpose we have chosen DIG (Description Logic interface [3]) which is
supported by RacerPro.

The DIG interface is an API for a general description logic system. It is
capable of expressing class and property expressions common to most description
logics. Using DIG clients can communicate with a reasoner through the use
of HTTP POST requests. The request is an XML encoded message of one of
the following types: management, ask or tell. Management requests are used
e.g. to identify the reasoner along with its capabilities or to allocate a new
knowledge base and return its unique identifier. Tell requests, expressed in the
Tell language, are used to make assertions into the reasoner’s knowledge base.
Ask requests, expressed in the Ask language, are used to query the knowledge
base. Replies to ask requests are provided with the Response language. Tell,
Ask and Response languages use expressions from the Concept language which
is used to define classes, properties, declare individuals etc. Here we present an
extract of expressions from the Concept language:

– Primitive concepts, roles and individuals:
• <top/> - the universal concept (like owl:Thing)
• <bottom/> - the empty concept (like owl:Nothing)
• <catom name="CN "/> - introduces a concept (i.e. class) CN
• <ratom val="RN "/> - introduces a role (i.e. property) RN
• <individual name="IN "/> - introduces an individual IN

– Boolean operators:
• <and>C1 . . . Cn</and> - intersection of concept expressions C1, . . . , Cn

• <or>C1 . . . Cn</or> - union of concept expressions C1, . . . , Cn

• <not>C</not> - complement of a concept expression C

This is an excerpt from the Ask language (C,C1, . . . , Cn are concept expres-
sions):

– satisfiability queries for which the response is a boolean value
• <satisfiable>C</satisfiable>
• <subsumes>C1 C2</subsumes>
• <disjoint>C1 C2</disjoint>
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– concept retrieval queries for which the response is a set of concepts
• <allConceptNames/>
• <parents>C</parents>
• <children>C</children>
• <descendants>C</descendants>
• <equivalents>C</equivalents>

3 Extended Xcerpt

This section presents a way for extending Xcerpt to enable it to interface with an
ontology reasoner while querying XML data. First we present a kind of filter used
in Xcerpt rules to filter out semantically irrelevant answers. Then, we propose a
more general way for interfacing an ontology reasoner with Xcerpt.

In order not to confuse keywords from Xcerpt like or, and etc., with similar
keywords used in DIG, we precede them with the character ’ !’. Thus, for example,
!or in Extended Xcerpt is equivalent to or in Xcerpt. Also, the character ’ !’ is
used to denote a label of a data term representing attributes (!attr).

3.1 Answer filtering

Here we present a new Xcerpt construction called filter. Such a filter can be used
between a body and a head of an Extended Xcerpt rule to filter out semantically
irrelevant answers:

GOAL CONSTRUCT

head head
FILTER FILTER

filter filter
FROM FROM

body body
END END

A filter is an expression !dig[ URL, cterm], where URL is an URL of an
ontology reasoner answering DIG queries and cterm is a construct term used
to produce a DIG query. Evaluation of a body of a rule results in a set Ψ of
answer substitutions. The substitutions are then used by the construct term
cterm to build a data term asks[a1, . . . , an] where a1, . . . , an are expressions
from the DIG’s Ask language for which boolean answers can be given. The data
term asks[a1, . . . , an] corresponds to a result of an Xcerpt rule cterm ← body.
The data term is transformed into an XML document and sent to an ontology
reasoner specified by URL. The XML document sent to the reasoner additionally
contains a header with DIG namespace declarations and unique identifiers for
the elements corresponding to a1, . . . , an. The reasoner replies with a boolean
answer for each ask expression. If the answer for the query ai is ’false’ the answer
substitutions used to construct ai are discarded4; otherwise they are retained.
4 As cterm may contain grouping constructs ai may originate from more than one

answer substitution.
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As a result we obtain a subset Ψ ′ of the set of answer substitutions Ψ . Only the
substitutions from Ψ ′ are used then to build the results of the initial rule.

Our prototype of Extended Xcerpt implements this method of filtering. How-
ever, the present version of the prototype is somewhat restricted. It only allows
filters in goal rules and forbids use of grouping constructs such as !all in filters.
As the grouping constructs are forbidden there is no need to use explicitly a
common label asks for ask expressions in the filter. Thus a construct term cterm
in a filter !dig[ URL, cterm] is used to build separate ask expressions ai for each
answer substitution from Ψ . Then a data term asks[a1, . . . , an] is built automat-
ically; it is translated into XML and sent to a reasoner. In order to be able to
further query the results of goal rules with filters the Xcerpt implementation has
been altered in such way that the files produced by goal rules can be queried
by other goal rules. The goal rules are evaluated in the order they appear in a
program.

Usage of the filter is illustrated on the following example which can be run
on the prototype. Consider an XML document recipes.xml, which is a collection
of culinary recipes. The document is represented by the data term:

recipes[

recipe[

name[ "Recipe1" ],

ingredients[

ingr[ name[ "sugar" ], amount [ !attr{ unit[ "tbsp" ] }, 3 ] ],

ingr[ name[ "orange" ], amount[ !attr{ unit[ "unit" ] }, 1 ] ]

]

]

recipe[

name[ "Recipe2" ],

ingredients[

ingr[ name[ "flour" ], amount[ !attr{ unit[ "dl" ] }, 3 ] ],

ingr[ name[ "salt" ], amount[ !attr{ unit[ "krm" ] }, 1 ] ]

]

]

recipe[

name [ "Recipe3" ],

ingredients[

ingr[ name[ "barley" ], amount[ !attr{ unit[ "dl" ] }, 1 ] ],

ingr[ name[ "salt" ], amount[ !attr{ unit[ "dl" ] }, 2 ] ]

]

]

]

Also consider the culinary ingredients ontology from introduction (Figure 1).
We assume that the ontology is loaded into an ontology reasoner which is acces-
sible via the URL http://localhost:14159/. We also assume that the names
of the ingredients used in the XML document are defined by the ontology. Thus,
ingredients in the XML recipe can be seen as semantic annotations. We want
to find all the recipes in the XML document which are gluten-free. This can be
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achieved using the following program with two goal rules, one of them with a
filter:

GOAL

!out [

!resource [ "file:bad-recipes.xcerpt" ],

bad-recipe-names [ !all name [ var R ] ] ]

FILTER

!dig [ "http://localhost:14159/",

subsumes [

catom [ !attr { name [ "gluten-containing" ] } ],

catom [ !attr { name [ var N ] } ] ] ]

FROM

!in [ !resource [ "file:recipes.xml" ],

recipes [[

recipe [[

name [ var R ],

ingredients [[ ingredient [[ name [ var N ] ]] ]] ]] ]] ]

END

GOAL

recipes [ !all name [ var R ] ]

FROM

and[

!in [ !resource [ "file:recipes.xml"],

recipes [[ recipe [[ name [ var R ] ]] ]] ],

!in [ !resource [ "file:bad-recipes.xcerpt"],

not bad-recipe-names [[ name [ var R ] ]] ]

]

END

Evaluation of the program starts from the first goal rule. Evaluation of the
body of the rule results in the set of answer substitutions Ψ = {{R/”Recipe1”,
N/”sugar”}, {R/”Recipe1”, N/”orange”}, {R/”Recipe2”, N/”flour”},
{R/”Recipe2”, N/”salt”}, {R/”Recipe3”, N/”barley”}, {R/”Recipe3”, N/”salt”}}.
Then the substitution set Ψ is used in construct term from the filter to build
data terms representing ask expressions. A separate ask expression is built for
each substitution from Ψ . The obtained ask expressions are grouped together
under a common label asks:

asks[

subsumes[

catom[ attr{ name [ "gluten-containing" ] } ],

catom[ attr{ name [ "sugar" ] } ] ],

subsumes[

catom[ attr{ name [ "gluten-containing" ] } ],

catom[ attr{ name [ "orange" ] } ] ],

subsumes[

catom[ attr{ name [ "gluten-containing" ] } ],

catom[ attr{ name [ "flour" ] } ] ],

subsumes[
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catom[ attr{ name [ "gluten-containing" ] } ],

catom[ attr{ name [ "salt" ] } ] ],

subsumes[

catom[ attr{ name [ "gluten-containing" ] } ],

catom[ attr{ name [ "barley" ] } ] ],

subsumes[

catom[ attr{ name [ "gluten-containing" ] } ],

catom[ attr{ name [ "salt" ] } ] ] ]

The asks data term is sent to a reasoner. The reasoner replies with a posi-
tive answer for the third and the fifth ask expressions as only flour and barley
contain gluten wrt. the ontology. As the answers for the remaining ask expres-
sions are negative the substitutions used to build them are discarded. Thus,
the obtained set of substitutions used to build the final result of the rule is
Ψ ′ = {{R/”Recipe2”, N/”flour”}, {R/”Recipe3”, N/”barley”}}. Hence, the fi-
nal result written by the first goal rule into the file bad-recipes.xcerpt is:

bad-recipe-names[ name["Recipe 2"], name ["Recipe 3"] ]

The second goal rule returns those names of recipes from recipes.xml which are
not in bad-recipes.xcerpt. Thus the final result of the program returned by the
second goal rule is

recipes[ name["Recipe 1"] ]

The kind of queries which can be sent to a reasoner is limited due to the DIG
interface which is often not sufficiently expressive. It lacks e.g. logical operators
such as and and or (keywords and and or are used in DIG to denote intersection
and union of concepts, respectively). This is a reason why we had to use two goal
rules instead of one rule in the example above. To obtain the same result using
a program with only one rule we need to be able to use grouping constructs in
a filter and e.g. conjunction in the ask expression constructed by the filter. The
latter would be needed to assure that each ingredient of a recipe is subsumed by
the concept gluten-free.

3.2 DIG rules - querying ontology reasoner with Xcerpt

In the previous section we introduced a filter which sends boolean queries to
an ontology reasoner and based on the reasoner replies, filters out irrelevant
answers. However, we can take more general approach where the queries sent to
a reasoner are arbitrary DIG ask expressions (not only boolean). An ordinary
Xcerpt rule, say ask rule, can be used to produce such an ask expression which
is sent to a reasoner. Then another Xcerpt rule, say response rule, captures the
response received from the reasoner and transforms it to a desired format.

This can be reflected by a higher level rule called e.g. a DIG rule. A DIG
rule can be denoted as (hR ← bR) � (hA ← bA), where hA ← bA is an ask
rule and hR ← bR is a response rule. Thus hA is a construct term of the form
asks[. . .] and bR a query term of the form e.g. responses{{. . .}}. DIG rules could
be handled by an external application which executes relevant Xcerpt programs
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and communicates with a reasoner. Another solution is extending Xcerpt itself
with DIG rules so it interfaces an ontology reasoner. Beside ordinary rules (i.e.
Xcerpt query rules) such an extended Xcerpt could use response and ask rules,
respectively, of the forms:

CONSTRUCT CONSTRUCT
hR !out[!dig[ URL], hA ]

FROM FROM
!in[ !dig[ URL], bR ] bA

END END

To implement this idea based on backward rule chaining we need to assure
that a response rule invokes a relevant ask rule, the result of the ask rule is sent
to a reasoner, and the reasoner response is queried by the initial response rule.

We can consider a special, simple case of a DIG rule (hR ← bR) � (hA ←
bA), where its body, the ask rule, is of the form hA ← !and[ ]. Thus the ask rule
is equivalent to a data term hA which represents fixed ask expressions i.e. hA is a
data term asks[. . .]. Such a simple DIG rule can be denoted as (hR ← bR) � hA.
The prototype of Extended Xcerpt is restricted to such simple DIG rules. DIG
rules (hR ← bR) � hA are incorporated into Xcerpt goal rules which are of the
form:

GOAL
hR

FROM
!in[ !dig[ URL, hA ], bR ]

END

hA is a data term asks[a1, . . . , an] containing ask expressions a1, . . . , an or
a data term tells[t1, . . . , tn] containing tell expressions t1, . . . , tn. Alternatively,
hA can be a URI of an XML file storing an ask or tell expression. The ask ex-
pressions a1, . . . , an (and tell expressions) must contain unique identifiers to be
able to relate reasoner responses with them. As the programmer handles the
reasoner responses by himself/herself this time the identifiers cannot be added
automatically. The rule is evaluated in the following way. The data term hA is
transformed into an XML document to which a header containing DIG names-
pace declarations is added. Such a document is sent to the reasoner specified by
URL. The response returned by the reasoner is queried by the query bR. Then
the resulting answer substitutions are applied to a construct term hR and a rule
result is returned.

Consider the following example. We want to query the ingredients ontology
to build a document containing gluten-free ingredients. We use the following
rule:

GOAL

results [ !all var C ]

FROM

!dig [ "http://localhost:14159/",

asks [
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descendants [

!attr{ id [ "q1" ] },

catom [[ !attr { name [ "gluten-free" ]} ]],

]

],

responses {{

conceptSet {{

!attr { id [ "q1" ] },

synonyms [[

catom [[ !attr { name [ var C ] } ]]

]]

}}

}}

]

The result returned by the rule is

results [

"water",

"rice",

"salt",

"orange",

"sugar"

]

Although the approach using DIG rules is in some sense more general than
answer filtering presented in the previous section, it cannot be used directly for
answer filtering. This is because a response rule can only query a response of the
reasoner and does not have access to the answers of the body of the ask rule.
Thus the answers cannot be filtered based on the reasoner responses. However, a
workaround for achieving the same goal as with answer filtering is possible. First,
the needed ontological information could be captured by a DIG rule. Then an
ordinary Xcerpt rule could query both an XML document and the ontological
data obtained from a reasoner. In this way the irrelevant (wrt. the ontology)
XML data could be filtered out.

4 Conclusions

The paper addresses the problem of how to use ontological information in the
context of querying XML data. The problem seems to be important for achieving
the Semantic Web but it is not sufficiently covered in literature. The solution
proposed in this paper extends the XML query language Xcerpt by allowing
the combination of XML queries with ontology queries. The extension allows
Xcerpt rules to communicate with an ontology reasoner using the DIG interface.
We presented two ways of extension. The first of them is a kind of a filter used
in between the body and the head of an Xcerpt rule to filter out semantically
irrelevant answers. Another approach, which is more general in some sense, allows
interfacing an ontology reasoner with arbitrary DIG queries.
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A restricted version of the presented techniques of interfacing an ontology
reasoner are implemented in a prototype of Extended Xcerpt. The prototype
requires further development. Allowing grouping constructs in filters, filters in
construct rules and unrestricted DIG rules would substantially increase the func-
tionality of the prototype.
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tiating this work.

This research has been funded by the European Commission and by the
Swiss State Secretariat for Education and Research within the 6th Framework
Programme project REWERSE number 506779 (cf. http://rewerse.net).

In the work presented here the RacerPro Software was used under a free ed-
ucational license from Racer Systems GmbH & Co. KG5 for ontology reasoning.

References

1. OWL Web Ontology Language Overview. February 2004. W3C Recommendation.
http://www.w3.org/TR/owl-features/.

2. G. Antoniou and F.van Harmelen. A Semantic Web Primer. The MIT Press, 2004.
3. S. Bechhofer. The DIG Description Logic Interface: DIG/1.1. In Proceedings of

DL2003 Workshop, Rome, 2003.
4. W3 Consortium. XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/2005/WD-xquery-20050915/.
5. T. Furche, F. Bry, and O. Bolzer. Marriages of Convenience: Triples and Graphs,

RDF and XML in Web Querying. In International Workshop, PSWR 2005, Dagstuhl
Castle, Germany, September 2005, Proceedings, number 3703 in LNCS, pages 72–84.
Springer Verlag, 2005.

6. S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the
Web. PhD thesis, University of Munich, Germany, 2004.

7. S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction
to Xcerpt. In Proceedings of Extreme Markup Languages 2004, Montreal, Quebec,
Canada (2nd–6th August 2004), 2004.

5 http://www.racer-systems.com/

XML Querying Using Ontological Information     199

http://rewerse.net
http://www.racer-systems.com/


Semantic Web Reasoning using a Blackboard

System

Craig McKenzie, Alun Preece, and Peter Gray

University of Aberdeen, Department of Computing Science
Aberdeen AB24 3UE, UK

{cmckenzie,apreece,pgray}@csd.abdn.ac.uk

Abstract. In this paper, we discuss the need for a hybrid reasoning ap-
proach to handing Semantic Web (SW) data and explain why we believe
that the Blackboard Architecture is particularly suitable. We describe
how we have utilised it for coordinating a combination of ontological
inference, rules and constraint based reasoning within a SW context.
After describing the metaphor on which the Blackboard Architecture is
based we introduce its key components: the blackboard Panels containing
the solution space facts and problem related goals and sub-goals; the
differing behaviours of the associated Knowledge Sources and how they
interact with the blackboard; and, finally, the Controller and how it
manages and focuses the problem solving effort.
To help clarify, we use our test-bed system, the AKTive Workgroup
Builder and Blackboard (AWB+B) to explain some of the issues and
problems encountered when implementing a SW Blackboard System in
a problem oriented context.

1 Introduction & Motivation

The W3C Semantic Web Activity Group1 describes the Semantic Web (SW)
as providing “...a common framework that allows data to be shared and reused
across application, enterprise, and community boundaries.” Unfortunately, since
this machine processable information is essentially a “symbolic” version of the
current web, the drawback is that there is no regulation over the proffered con-
tent, creating many complicating factors and making the task of utilising (and
reasoning against) “open web” data far from trivial. Because the Logic Layer of
the SW architecture means not only the use of logic to enrich data but also the
application of logic to “do something” with the data [12], our research interest
lies in exploring the suitability of a Blackboard System to utilise incomplete, SW
information in a closed world, problem oriented context, i.e. using SW data to
create a (finite domain) Constraint Satisfaction Problem (CSP) before attempt-
ing to solve it.

An interesting starting domain was within the context of the CS AKTive
Space2 [16], namely the Computing Science (CS) community in the UK. Our

1 http://www.w3.org/2001/sw/
2 http://cs.aktivespace.org



demo application, the AKTive Workgroup Builder and Blackboard (AWB+B),
is a SW application that attempts to construct one or more working groups of
people from a pool of known individuals. Workgroup composition must adhere
to a set of user defined constraints, e.g. “the workgroup must contain between 5
and 10 individuals” or “at least half the members of the workgroup must have
a research interest of Agents”.

Since our problem combines ontological inference, rules and constraint based
reasoning, we believe that a combination of reasoning methods are necessary.
The “one size fits all” reasoning theory was questioned in [17] when a DL based
reasoner was compared to a First-Order prover. The final conclusion was that
when dealing with a very expressive OWL DL ontology a combination of both
is necessary because there was no known single reasoning algorithm able to
adequately cope with the full expressivity possible with the OWL DL language.
They also flagged slow performance speed as a potential hurdle. Therefore, for
this to be efficient, a hybrid reasoning [2] approach is required.

Once this necessity for hybrid reasoning was identified, we realised that there
is nothing in the architecture of the Semantic Web for coordinating this effort. We
believe the Blackboard architecture is appropriate as it meets our requirements
– supporting the use of distributed Knowledge Sources (KSs) responding to a
central, shared knowledge base via a control mechanism [15, 3].

The paper is organised as follows: Section 2 introduces our test-bed applica-
tion, the AWB+B, and explains the process of building workgroups; Section 3
describes the blackboard analogy before comparing the traditional approach to
our Semantic Web based approach; Section 4 describes the role of the Knowledge
Sources and discusses their individual attributes; Section 5 describes the con-
trolling mechanism of the blackboard; Section 6 describes the planned direction
of our future work; and Section 7 provides discussion and our conclusions.

2 Building Workgroups

The AKTive Workgroup Builder and Blackboard (AWB+B) is a new incarnation
of our earlier version of the system (AWB [13]) that did not use the blackboard
architecture. Like its predecessor, the AWB+B is a web-based application that
tackles the problem of assembling a workshop containing one or more work-
groups from a pool of known people. Since the user is not expected to have
knowledge about the lower level operations of the blackboard, we assume that
all the necessary RDF information resources (describing the people, constraints,
derivation rules, etc) to be included are known to the user (via URIs). This al-
lows the blackboard to be initialised and the KSs to be dynamically created and
registered with the blackboard “behind the scenes”.

The RDF data processed by the AWB+B contains information about each
individual’s research interests, publications and projects they have been involved
in. The detail of this information will vary depending upon what is published
by a particular data source. Ideally, this information will need to be reasoned
against in order to infer additional facts that may not have been explicitly stated
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– for example projects that a person has worked on or papers that they have
published can imply additional research interests.

3 The Blackboard Analogy

The concept of a Blackboard System is based upon a metaphor whereby a group
of people, each with differing expertise and knowledge, are all standing around a
blackboard deliberating over a problem that has been written up on it. Everyone
understands that the ultimate goal is to solve the problem and that they will
know the solution when they see it but, at this point in time, no single individual
can derive the final solution on their own. The process begins when one person
looks at the problem description on the board and realises that he/she can make
a small relevant contribution. They write their finding onto the blackboard for
the others to see. This inspires another person to a further idea, which they also
write on the blackboard. This scenario continues until eventually a solution is
reached via these incremental, cooperative steps (for a fuller description see [15]).
No-one is allowed to communicate directly, everything must be done through the
blackboard which becomes a shared “thinking space” for all the participants. We
must also consider the protocol of how everyone writes on the blackboard. For
example, if there is only one piece of chalk, how is the decision made as to whom
gets to use it (and when) to write on the blackboard? Potentially, this could be
by having someone act as a controller. In computing terms, the architecture of
a Blackboard System has the “blackboard” as a shared Knowledge Base, and
the “people” as various Knowledge Sources – we discuss KSs in more detail in
Section 4.

3.1 Traditional Approach

The pioneering blackboard systems (Hearsay-II [6], HASP/SIAP [8], CRYSALIS
[5] and OPM [11]) maintained the blackboard as a shared data repository repre-
senting a communal work area or “solution space” of potential solution compo-
nents. The associated KSs were able to view the contents of the blackboard and
react by indicating what they could contribute. They were only allowed to mod-
ify the contents of the blackboard if/when requested to do so by the Controller.
For this to work efficiently, the data held on the blackboard must be structured
hierarchically into Abstraction Levels (see Figure 1); multiple distinct hierarchies
were referred to as Panels.

This organisation served two purposes. Firstly, it aided each KS to check if
it can contribute (i.e. the KS was activated, or triggered, by the propagation
of information onto an abstraction level that it was monitoring). Secondly, it
helped focus the search for the solution. As the name suggests, each layer is an
abstraction using concepts that hide the detail on the layer below it. To clarify,
using the domain of speech understanding, suppose the lowest abstraction level
could be the phonetic sounds accepted by the system; the level above could be
potential combinations of these sounds into letter groups; the next level being
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Fig. 1. Each Knowledge Source (KS)
can view the Abstraction Levels within
a Blackboard Panel. A KS can be trig-
gered by any of the items on black-
board, allowing it to contribute some-
thing at any of the abstraction levels.

Fig. 2. The core architectural compo-
nents of a Blackboard System. Each
KS can view the contents of the Black-
board Panels, but it is the Controller
that decides which KS(s) are allowed
to contribute to the Blackboard.

single words; the next level could be phrases; with, finally, the topmost level
consisting of potential whole sentences. A word-dictionary KS would examine
the phonetic letter groups and combine these to form words, which (controller
permitting) it would then post onto the level above.

The nature of each abstraction level and the actual entries within each level,
can vary from implementation to implementation depending upon the nature of
the problem attempted. Instead of the bottom-up approach used in the example,
a top-down approach may be required, so the first abstraction level is vague with
later ones becoming more refined. Likewise a KS’s trigger could span multiple
layers with a contribution also affecting one or more layers (see Figure 2).

As mentioned already, the decision of what is (or is not) placed on the
blackboard is made by the controller, and the complexity of the solving strat-
egy adopted can vary from a simplistic “just action everything” approach to a
more complex goal driven algorithm. The key point is that it directs the solving
process, via goals and sub-goals, that each of the KSs can be triggered by. This
also helps to ensure that only relevant information is added. Since the triggering
action can be dependent upon information added by a different KS, this results
in an opportunistic solving paradigm. A blackboard system is fundamentally
backward chaining – it is goal driven. In our case, the initial goal placed on the
blackboard is to find a solution to a specified workgroup problem.

3.2 Semantic Web Approach

Our Semantic Web Blackboard maintains all the principles of the traditional
blackboards but improves upon them by incorporating some of the concepts of
the Semantic Web. The notion of Abstraction Levels aligns itself well to the
hierarchical, structured nature of an ontology. In our test-bed system, AWB+B
(discussed later), the information represented on blackboard is stored as an RDF
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graph. This also has the advantage that the contents of the blackboard can be
easily serialised into textual form – either for debugging purposes or propagation
of the contents – and represented in a well known and understood format (e.g.
RDF, N3).

To the best of our knowledge, in the past the blackboard has always been
passive with any deductive mechanism placed in the KSs. While not wishing
to stray too far from the original concepts of the architecture, we decided to
introduce an element of intelligence to the blackboard itself by enabling it to
perform reasoning on the class hierarchy being added to it. Here we are only
materialising all the transitive sub-class/property relations and all the instance
type relations. For example, if a class C1 is defined as being a sub-class of C2 and
C2 is a sub-class of C3 then the blackboard would assert that C1 is a sub-class
of C3. The blackboard also has the ability to assert new <rdf:type> statements
about individuals. Continuing the previous example, if X is an instance of C1

and C1 is a sub-class of C2 then we can assert that X is also an instance of C2.
We elected to only perform this type of reasoning and not a richer type

of classification that is possible within OWL (e.g. using property domain and
ranges) since this is such a common operation that having it done by the black-
board eliminates the need for frequent call outs to KS that would perform the
same function. Unfortunately, enabling the Blackboard to make inferences about
itself must be treated with caution. Since reasoning is both difficult and time
consuming, it would be undesirable if the actual blackboard became a bottle-
neck while it attempted to fully reason about itself and denied all KSs from
contributing – hence we have not increased the blackboard’s inference ability
any further. The problem is that there is absolutely no guarantee of decidability
w.r.t. information placed on the blackboard. In ontological terms, a KS could
contribute triples that make the blackboard contents OWL Full (meaning that
it could not be fully reasoned against anyway). To prevent this, we inhibit the
statements placed by the KSs to be OWL Lite. We can guarantee decidability
by ensuring all contributed statements are based upon a known URIs which can
be checked to classify its OWL species. This can be done in one of two ways: the
underlying ontology is checked against a register of known OWL Lite Ontologies;
or, providing it is not too computationally expensive, the OWL species can be
checked with an existing validator (e.g. Pellet3, WonderWeb4, BBN5).

4 Behaviours of Knowledge Sources

The KSs represent the problem solving knowledge of the system. Each KS can
be regarded as being an independent domain expert with information relevant
to the problem at hand. The key point is that no assumptions should be made
about the capabilities of a KS – conceptually it should be regarded as a black
box. Due to the tightly coupled nature of the KSs and the Blackboard, all KSs

3 http://www.mindswap.org/2003/pellet/species.shtml
4 http://phoebus.cs.man.ac.uk:9999/OWL/Validator
5 http://owl.bbn.com/validator/
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must be “registered” so that they can view the blackboard contents and inform
the Controller of any potential contributions.

KSs can access the blackboard and continually check to see if they can con-
tribute. Each one has a precondition (or event trigger) and an action (what it
can add to the blackboard). The blackboard is monotonic, facts are only ever
added by the KSs, never retracted. This mechanism is usually overseen by a
controller that monitors changes to the blackboard and delegates actions ac-
cordingly. The whole process is driven by the posting of goals which a KS either
offers a direct solution to, or breaks down further into sub-goals, indicating that
more knowledge is required.

The following sub-sections describe the main types of KS currently imple-
mented within the AWB+B system based on their behaviours w.r.t. the black-
board. This is by no means an exhaustive list of all the possible types of KS and
it should be noted that future KSs could combine some of these behaviours, but
we have not explored this yet. Since our interest lies in rule and constraint based
reasoning, we discuss the KSs relating to these areas in greater depth.

4.1 User (Human) KS

While this may not be immediately obvious, the user of the system can be re-
garded as a type of KS. This represents “human” knowledge which is entered via
the web-based user interface. In AWB+B terms this would be a user specifying
the problem parameters, e.g. the number of workgroups to be built, the size
of each workgroup, any associated compositional constraints etc. Once all the
necessary information for the CSP has been entered, the KS transforms it into
the starting goals for the system which are then posted onto the blackboard.
Each starting goal is a skeletal instance of the Workgroup class containing only
those properties that describe its composition and constraints. There are no
hasMember properties implying its membership. It is the posting of these goals
onto the blackboard that kick-starts the whole process.

In the current AWB+B implementation this interaction is minimal, merely
the problem definition. However, there is nothing to prevent a more “interactive”
human KS. Another variation of a User KS could, for example, continually check
the blackboard for inconsistencies and when one is found present the user with
pop-up windows asking them to offer a possible resolution, i.e. it gives the user
a “view” of inconsistencies found on the blackboard.

4.2 Instance based KS

This type of KS contains instance data corresponding to an ontology but not the
actual schema itself. This could either be from a simple RDF file, a Web Service
or data held in an RDF datastore. This KS contributes in the following way:

i) Try to add a “solution” to a posted (sub-)goal by adding instance data for
classes and/or properties defined on the blackboard.
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ii) Try to add a “solution” to classify any property’s direct subject and/or
object which the blackboard does not have a class definition for.

For example, if the ontological class Professor is defined on the blackboard and
this KS has instances of that class then, as per (i), the offered solution is all the
Professor instances that it knows about. Property definitions work in the same
way, but are slightly more complex. As per (i), when this KS responds to the
property based goal worksFor the KS would offer the statement:
<ex:john> <ont:worksFor> <ex:abdnUni> .

However, this gives no information about the subject or the object of that triple.
This is not an issue if they are already instantiated on the blackboard, but if
they are not (and assuming the object is not a literal) then subsequently, as per
(ii), the KS could also offer the following:
<ex:john> <rdf:type> <ont:Lecturer> .

<ex:abdnUni> <tdf:type> <ont:University> .

Since this KS does not know the underlying schema, it cannot contribute class
definition information about the Lecturer or University classes.

If this KS is a repository of RDF triples (e.g. 3Store [9]) then no reasoning
ability is assumed. We require a wrapper for this KS, allowing us to commu-
nicate with the datastore via its API. In the case of the 3Store, it uses a http

interface that accepts SPARQL6 queries. We transform any blackboard goal into
a query, the result of which can be transformed into triples and asserted onto
the blackboard.

Since this type of repository can contain a vast amount of information, this
raises the issue of the state which that information is in. Since access to the data
is via a query mechanism, we are still effectively querying an RDF graph for
which we have no means of knowing whether all, some or no additional entail-
ments have been inferred. For example, while an ontology describes a Professor

as a sub-class of Academic and the datastore contains instances of Professor

for this schema, it might not actually contain the triples saying that Professor
instances are also Academics. Consequently, a SPARQL query for Academics
would not return the Professors as it does not follow sub-class links. The only
way around this is to query for all the sub-classes; which will eventually occur,
as the Schema based KS (described next) will post the sub-classes as sub-goals
prompting more refined queries.

4.3 Schema based KS

This represents a KS that only contains information at an ontological schema
level. Since the blackboard initially contains no ontological structure (i.e. it does
not contain any RDFS/OWL statements for the domain), it is the job of this
KS to help facilitate the construction of the relevant ontological parts on the
blackboard. This type of KS attempts to contribute in the following ways:

6 SPARQL (SPARQL Protocol And RDF Query Language), is documented at:
http://www.w3.org/TR/rdf-sparql-query/
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i) Try to add new sub-goals to the blackboard by looking for:
- Ontological sub-classes of a class defined on the blackboard.
- Ontological sub-properties of property defined on the blackboard.

ii) Try to improve the (limited) reasoning ability of the blackboard by adding
and inferring:

- subClassOf statements connecting classes already defined on the black-
board.

- subPropertyOf statements connecting properties already defined on the
blackboard.

Note: Statements are only added for direct sub-class/sub-property relations.
iii) Try to add new sub-goals for any property’s subject and/or object on the

blackboard that does not have a class definition. The sub-goals, in this case,
being the missing class definitions.

In (i) and (ii) super-classes/properties are never added to the blackboard as
these are deemed irrelevant and would widen the scope of the blackboard con-
tents too much. Likewise, we need to be careful in (iii), as we do not just want
to use the domain and range values of a property because they might (inten-
tionally) be set very open. Continuing our previous example from section 4.3,
let us suppose that when the ontology was first authored, the worksFor prop-
erty was assigned a domain of Person and a range of <owl:Thing>. This was
because the author believed that only a Person is capable of working, but what
it is they actually work for could either be another Person or an Organisation.
Therefore, for simplicity, they just widened the domain to encompass as many
classes as possible. If we were to use these domain and range values, we would
introduce a sub-goal asking for all instances of <owl:Thing> which would end
up with each KS offering every instance it has. Therefore, in an attempt to nar-
row the search space as much as possible, only the class definitions of instances
with the worksFor property are added as sub-goals (in this case Lecturer and
University respectively).

4.4 Rule Based KS

A Rule KS, like all the other KS types, can be viewed as a black box, encapsu-
lating its rules and keeping them private. The ability to derive new information
through rules is an extremely important and powerful asset. Since we assume
that these rules come from the open SW, we use SWRL7 for expressing them
as it is currently the dominant representation. This KS works by examining the
contents of the blackboard to determine if any of the rules that it knows about
are required and then attempts to contribute. A rule is required only if any of
the elements in the consequent (head) are present on the blackboard8. The KS
attempts to contribute to the blackboard in the following ways:

7 SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C Mem-
ber submission, http://www.w3.org/Submission/SWRL/

8 The reason why this is “any head element” is because SWRL allows the consequent
to contain a conjunction of atoms.
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i) Try to add a “solution” by firing the rule against instances already on the
blackboard and asserting the appropriate triples.

ii) Try to add new sub-goals to the blackboard by looking for:
- Any ontological classes that are antecedents of the rule and that have

not been defined on the blackboard.
- Any ontological properties that are antecedents of the rule and that have

not been defined on the blackboard.
The sub-goals in this case are the ontological class or property definitions.

We need to be careful here, remembering that we want to keep the blackboard
contents relevant to the problem at hand and not introduce superfluous classes
or properties. The following example illustrates one way a Rule Based KS can
comply with this relevancy criteria of the blackboard:

“If a person is known to be an author of a book and that book has a topic
then this implies that the person is an expert on that particular topic.”
In informal SWRL syntax, where ?x denotes a variable, this can be written as:

(1) Person(?p) ∧ Book(?b) ∧ hasTopic(?b,?t) ∧ authorOf(?p,?b)
⇒ PublishedAuthor(?p) ∧ expertOn(?p,?t)

Here Person, Book and PublishedAuthor are predicates denoting ontological
classes and hasTopic, authorOf and expertOn are predicates relating properties
to classes. If a rule has a conjunctive consequent it can be split into separate
rules for each head atom. This means that if a consequent is not needed, that
rule will not be considered avoiding the placement of unnecessary sub-goals
(i.e. class/property definitions) onto the blackboard that could, subsequently,
cause other KSs to add irrelevant information relating to these (either solution
instances or sub-class/property sub-goals). Because of the conjunction in the
consequent, this can be split up and re-written as 2 separate rules:

(2) Person(?p) ∧ Book(?b) ∧ authorOf(?p,?b) ⇒ PublishedAuthor(?p)
(3) Person(?p) ∧ Book(?b) ∧ hasTopic(?b,?t) ∧ authorOf(?p,?b)

⇒ expertOn(?p,?t)

Using rule (1) from the above example, if the blackboard only contains the
property expertOn then we apply the equivalent of rule (3) to the blackboard
and since (2) is not needed, it will not be considered – we only want to add new
expertOn properties and ignore instances of the class PublishedAuthor.

Now if PublishedAuthor does exist on the blackboard and we assume no new
antecedent information has been placed on the blackboard between cycles, the
first cycle would involve adding all values of PublishedAuthor as per rule (2).
In the 2nd cycle, it would see that no new instance data for PublishedAuthor

can be added and, iteratively, move onto the next consequent item (expertOn)
to see if it can contribute as per rule (3) – which it can. Finally, in the 3rd cycle,
the rule would check both (2) and (3) and find that no new data can be added,
so it would respond by saying it cannot contribute.

The current implementation of the AWB+B rewrites each rule into SPARQL
queries, which it places against the blackboard contents to determine if any
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new triples can be asserted – essentially this is a brute force, forward chain-
ing approach to deriving new entailments. The query results are then added
to the blackboard. From the previous example, using rule (3) to determine the
expertOn property, we can create the following query, where rdf is the RDF
namespace, and ont is the appropriate ontology namespace:
SELECT ?p, ?t

WHERE { ?p rdf:type ont:Person .

?b rdf:type ont:Book .

?b ont:hasTopic ?t . }

The result set of this query contains value pairs of Person URI and Topic URI
which are asserted onto the blackboard as the new triples of the form:
?p <ont:expertOn> ?t .

We avoid adding duplicate instance values by checking the query results and only
adding new values. Since multiple rules could be applied, with new antecedent
instances added at any time by any of the KSs, this is an iterative process with
the entire sequence repeated until no new entailments are generated.

While this may not be the most efficient implementation, it does reflect the
opportunistic nature of a blackboard system. The current implementation only
has one starting rule per Rule KS (it can be split as per the above example), but
we plan to extend this to allow multiple, different rules within one KS. This also
allows for the interdependency between each of the rules within a KS as well as
rule chaining.

From the Blackboard’s perspective, all the KSs are goal oriented (backward
chaining). When a rule based KS posts a sub-goal it is understood that it (the
KS) has concluded that, by backward chaining, a solution can be posted once
this sub-goal has been achieved. However, internally it could be forward chaining.
Suppose the KS in question is an efficient implementation of a RETE forward
chaining algorithm. The KS works by constantly monitoring the blackboard’s
contents and, within its own Knowledge Base, duplicates all elements it requires
to forward chain using its known rules. Once all the processing has completed,
it then offers those newly derived facts as solutions to goals posted on the black-
board. In this scenario the KS might never post a single sub-goal onto the black-
board, merely offering solutions to blackboard goals.

In our future work we wish to further investigate the trade-off between op-
portunism and relevancy of the blackboard data, specifically by examining the
effect that Rule Chaining, with its inter-dependent antecedents, will have on
the posting of sub-goals onto the blackboard. If a KS encapsulates its rule’s an-
tecedents then these will never be placed upon the blackboard as sub-goals. Our
main concern is how this will effect the reasoning process. Since the other KSs
are not aware of these potential sub-goals (which they may have instances of,
and hence solutions too) they will never make a relevant contribution. There-
fore, the overall potential solving ability of the system decreases, due to this
unnecessary curtailment of the solution space. Conversely, it might be the case
that these intermediate antecedents are not actually required/relevant at all and
so by placing them as sub-goals on the blackboard a whole raft of irrelevant in-
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stance data (and consequential sub-goals) would placed upon the blackboard.
This would be detrimental to the solving process as effort could be expended on
non-relevant data.

4.5 CSP Solver KS

This KS allows us to perform constraint-based reasoning and attempts to solve
the CSP goal posted on the blackboard. The constraints for the workgroup(s)
are expressed using CIF/SWRL [13] – our Constraint Interchange Format (CIF),
which is an RDF based extension of SWRL that allows us to express fully quan-
tified constraints. These constraints are placed on the blackboard by the User
KS when the workgroup is first defined. Since the goal of the AWB+B is to form
workgroups that adhere to these specified constraints, this KS has the trigger:

i) Try to add a “solution” by using instance data already on the blackboard
to perform CSP solving and assert the appropriate hasMember triples to the
corresponding instance of the Workgroup class.

The triggering mechanism of this KS requires it to continually monitor the black-
board contents and attempt to provide a solution to the CSP. To improve ef-
ficiency, we decided that rather than attempting full blown CSP solving each
cycle, the solver should perform the faster check of each of the constraints indi-
vidually and only if they can all be satisfied, should it attempt the more difficult
task of solving them combinatorially. If no solution can be found then this KS
will simply not offer a contribution.

In our implementation the CSP solver is unique, in that it is the only KS that
can post a solution to the Workgroup goal, initially posted onto the blackboard
by the User KS. However, there is no restriction on the number of CSP solver
KSs that could be used within the system. In our future work there is also the
possibility of greater user interaction (via the User KS) w.r.t to acceptance or
rejection of a solution. Here the user could ask the CSP Solver KS to contribute
again (provided there are alternate solutions) or accept the current one.

5 The Controller

As the name suggests, the role of the Controller is to oversee the running of the
system as a whole. In the initial blackboard systems, one of the main problems
was the lack of direction or a statement of goals to focus the solving effort.
The BB1 system [10] extended the blackboard architecture by adding a second
blackboard to control the state of the problem, and so better direct the solving.
So far we have talked about the contents of the blackboard as merely containing
the solution. In actual fact, like BB1, the AWB+B blackboard is divided into
two panels. The first panel is the Data Panel which holds the solution related
information. In order to inhibit the actions of the KSs accessing this panel,
there are a couple of safeguards in place. The Controller will not allow the goal
of “instances of <owl:Thing>” to be placed onto the blackboard since this is the
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OWL super-class, this would result in all class (and sub-class) instances known
by a KS being added onto the blackboard.

The second panel is the Tasklist Panel and is used, primarily, by the Con-
troller to coordinate the actions of each KS by storing information about what
each knowledge source can contribute, based on the current state of the black-
board. Like the Data Panel, this is visible to all the KSs however, unlike the Data
Panel, the KSs are allowed to add to this panel directly (but not remove items
from it). The KSs add TasklistItems that describe the nature of any contribu-
tion they could offer. The Controller looks at the items on the Tasklist Panel and
determines which KS is allowed to contribute. Once a TasklistItem has been
actioned, the Controller removes it from the panel. This “request for contribu-
tion” and “make your contribution” sequence is applied using a Java interface,
which each registered KS must implement and consists of the two method calls:
canContribute and makeContribution. When a KS’s canContribute method
is called it first determines what it can contribute (as per the steps previously
outlined) and then checks, in the following order, that its “current” proposed
contribution is not on the blackboard already; has not been contributed pre-
viously by itself; and is not already on the Tasklist, i.e. already proposed by
another KS. Only then is a TasklistItem created and added to the Tasklist
Panel.

In our current implementation the Controller is relatively simple. After all the
KSs have been registered, the system “cycles” over each one asking it to populate
the Tasklist Panel. Next, the Controller examines the contents of the Tasklist
and decides which items to action (by calling the appropriate makeContribution
method of a KS). After actioning the appropriate TasklistItems on the Tasklist
Panel, the Controller has the option of retaining tasks that have not been ac-
tioned, or removing any remaining items from the Tasklist completely. This is
purely a housekeeping measure as it prevents redundant or “out of date” items
remaining on the Tasklist Panel. Then the cycle begins again. If nothing new has
been added to the Tasklist Panel after a complete cycle, it is assumed that none
of the KSs can contribute further and so the CSP Solver KS is activated and at-
tempts to find a solution. While this is relatively straightforward to implement,
it is far from optimised. We plan to increase the intelligence of the Controller to
further focus the problem solving, which should improve performance.

6 Future Direction

Currently, the CSP solver adopts a closed world reasoning model. Since the
Semantic Web is open world, it seems logical to investigate the influencing and
enabling factors for performing effective open world reasoning based upon closed
world reasoners as well as the analysis and combination of constraints to solve
the CSP. The importance of negation and negative information is argued by
Analyti and Wagner in [1]. The difficulty here is that negation is only partially
supported in OWL DL (via disjunction) but not at all in OWL Lite. This would
require either the extension of OWL at the language level in much the same way
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as the RDF(s) extension suggested in [1]; or through the application of rules to
explicitly state negative information (as described in [14]).

We plan to incorporate the Local Closed World Assumption (LCWA) [7,
4] into the AWB+B, since this can be thought of as a compromise between
both the open and closed world assumptions. The LCWA means that a query
placed against a Knowledge Base (KB) can be answered with true, false or
unknown. For example, if we posed the query “Is Person(x) also a Professor?”
against our KB, what answer would we get? With both assumptions, if the result
Professor(x) or ¬Professor(x) exists in the knowledge base (either explicitly or
via some derived means) then the result would be true or false as appropriate.
However, if there is no explicit statement describing x as a Professor then in
the open world assumption, the result would be unknown since we cannot prove
this definitively either way. In the case of a closed world the result would be
false – the assumption being made that if we do not know a fact for definite,
then it is always regarded as false. Now, suppose we do know that there is only
one Professor in the world – Professor(y) and, therefore it is not Person(x).
How could we guarantee that our query correctly returns false? With the closed
world assumption this would already be the case, however with the open world
assumption we would still have the value unknown. The only way to correct this
error would be to state the fact ¬Professor(?) for the (potentially infinite) set of
everything else in the world. The LCWA overcomes this problem by maintaining
two databases of world information. The first contains the known facts describing
the world. The second one contains metadata indicating what sets of facts in the
first database can be regarded as closed (since it would be impossible to store a
potentially infinite set of non-members). So, using our example above, the first
database would contain the fact Professor(y) and the second one would contain
ClosedWorld(Professor). Using the query mechanism of the LCWA we could
extend how data is contained within each KS and on the blackboard, whereby
the result of a query is either true, false or unknown. This allows the option
of creating a specific goal as an attempt at resolving an unknown that would
otherwise have been regarded as a false.

This process should stop when we believe that the closed world problem is
now complete enough to enable realistic problem solving. A closed collection of
values is crucial since the problem solving we are attempting is that of a Finite
Domain CSP. When a generated workgroup is “released” back onto the open
Semantic Web, the composition will need some explanation as to the assump-
tions used in its creation (i.e. it has been created using negation as failure).
Therefore we require an appropriate representation that would better enable
someone else to reuse the data and to reason against further. For example, if
a published workgroup is constrained to only contain Students but, on closer
examination, one member is actually a Lecturer then this is a contradiction. By
annotating the composition such that it is clear that it was constructed using a
closed world, negation as failure, approach, a consumer may be more forgiving
as their assumption would be the Lecturer was simply misclassified at the time
of construction due to a lack of data.
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7 Discussion and Conclusion

In this paper we have explained why we believe the blackboard architecture
aligns itself well with the hybrid reasoning approach necessary for reasoning
with Semantic Web data. An important issue we encountered was the ineffi-
ciency of the two stage “trigger” and “action” approach to KS interaction with
the blackboard. The work involved for a KS to know if it is “triggerable” is
comparable to that of making the actual contribution itself, which it may never
be called upon by the controller to do. However, we believe the benefits of the
blackboard architecture outweigh this shortcoming since the paradigm allows us
to perform a mix of reasoning methods on instance data and we would argue that
performance could be improved by committing more time to the development of
the AWB+B to further optimise the triggering conditions.

There are also complexity issues to be considered with the Blackboard frame-
work giving us a number of options on how to explore these in our future work.
For example, what if a KS starts to perform reasoning that could take hours
or days to complete? The architecture supports the addition or removal of KSs
from the system with the only adverse effect being on quality of the results and
so guards against the inefficiency of KSs – the overall process of controlling the
problem solving remains with the Controller. For example, had we implemented
an asynchronous version of the application, then a time-out mechanism could
be added to the Controller, so if a KS takes an inordinate amount of time to
respond it could just be ignored, allowing the rest of the system to continue.

We have also highlighted the importance of ensuring only relevant items are
placed on the blackboard and how this effects the opportunism of the system.
Since the blackboard system is attempting to centralise distributed SW data it
does not want all the data available from each of the KSs; it is only interested
in as small a subset of this as is possible in order to solve the CSP problem.
It is the job of the Controller to ensure that this is the case, otherwise it may
become intractable. Since we place a great deal of importance upon relevancy,
the high level strategy of the controller is that of a goal driven (backward chain-
ing) approach – in our case, the initial goal placed on the blackboard is to
find a solution to a specified workgroup problem. In our future work there is
the possibility of adopting a forward chaining approach, overseen by a suitable
controlling strategy. We also believe there is scope for further investigation of
complexity and scalability trade-offs (e.g. using multiple ontologies that require
mapping, increasing the size of the dataset, etc) as well as the modification of
the Controller strategy to enhance performance.
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Abstract. Access to Web data has become an integral part of many ap-
plications and services. In the past, such data has usually been accessed
through human-tailored HTML interfaces. Nowadays, rich client inter-
faces in desktop applications or, increasingly, in browser-based clients
ease data access and allow more complex client processing based on XML
or RDF data retrieved through Web service interfaces. Convenient spec-
ifications of the data processing on the client and flexible, expressive
service interfaces for data access become essential in this context. Web
query languages such as XQuery, XSLT, SPARQL, or Xcerpt have been
tailored specifically for such a setting: declarative and efficient access and
processing of Web data. Xcerpt stands apart among these languages by
its versatility, i.e., its ability to access not just one Web format but many.
In this demonstration, two aspects of Xcerpt are illustrated in detail: The
first part of the demonstration focuses on Xcerpt’s pattern matching con-
structs and rules to enable effective and versatile data access. It uses a
concrete practical use case from bibliography management to illustrate
these language features. Xcerpt’s visual companion language visXcerpt
is used to provide an intuitive interface to both data and queries. The
second part of the demonstration shows recent advancements in Xcerpt’s
implementation focusing on experimental evaluation of recent complexity
results and optimization techniques, as well as scalability over a number
of usage scenarios and input sizes.

1 Introduction

Web querying has received considerable attention from academia and industry
culminating in the recent development of the W3C Web query languages XQuery
and SPARQL. These main-stream languages, however, focus only on one of the
different data formats available on the Web. Integration of data from different
sources and in different formats becomes a daunting task that requires knowledge
of several query languages and to overcome the impedance mismatch between the
query paradigms in the different languages. Xcerpt [10, 11] addresses this issue
by garnering the entire language towards versatility in format, representation,



Terms as formulas: 
Terms may contain boolean connectives, variables, negation, etc.

Subterm negation: 
Some subterms may be required not to occur in matching data

Optional subterms:
Local form of disjunction essential for variable schema  data

Value Joins:
Expressed through multiple variable occurrences

Optional construction:
Limited form of conditional construction based on variable bindings

Accessing Web resources: arbitrary XML 
documents can be accessed using their URL

Incomplete patterns in depth: 
descendant allows additional intermediary elements

Grouping collects alternative bindings for variables:
essential for structural assembly 

Incomplete patterns in breadth: 
partial patterns allow additional child elements

Fig. 1. Exemplary visXcerpt Query Patterns

and schema of the data, cf. [6]. It is a semi-structured query language, but very
much unique among such languages (for an overview see [1]):

(1) In its use of a graph data model, it stands more closely to semi-structured
query languages like Lorel than to recent mainstream XML query languages.

(2) In its aim to address all specificities of XML, it resembles more main-
stream XML query languages such as XSLT or XQuery.

(3) In using (slightly enriched) patterns (or templates or examples) of the
sought-for data for querying, it resembles more the “query-by-example” paradigm
[12] than mainstream XML query languages using navigational access.

(4) In offering a consistent extension of XML, it is able to incorporate ac-
cess to data represented in richer data representation formats. Instances of such
features are element content, where the order is irrelevant, and non-hierarchical
relations.

(5) In providing (syntactical) extensions for querying, among others, RDF,
Xcerpt becomes a versatile query language, cf. [6]. These extensions are currently
under development and not implemented in the demonstration.

(6) In its strict separation of querying and construction in rules, it makes
programs more readable and optimization over intermediary results feasible.

visXcerpt [3] is Xcerpt’s visual companion language related to it in an un-
usual way: visXcerpt is a visual query language obtained by mere rendering
of Xcerpt without changing the language constructs or the runtime system for
query evaluation. This rendering is mainly achieved via CSS styling of Xcerpt’s
constructs. The authors believe that this approach is promising, as it makes
those languages easy to learn—and easy to develop. An extension of CSS useful
for this kind of visual language design is illustrated in [7].

This demonstration is split in two parts: first the novel language constructs
for versatile pattern matching and rule-based data integration are illustrated
along a practical demonstrator application using visXcerpt. Xcerpt’s core fea-
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tures, especially the pattern-oriented queries and answer-constructors, its rules
or views, and its specific language constructs for incomplete specifications are
emphasized in this application. It is demonstrated (a) how incomplete specifi-
cations are essential for retrieving semi-structured data, (b) how access to both
Web and Semantic Web data in the same query program is achieved and (c) how
visXcerpt complements and integrates with Xcerpt. Special emphasis is placed
on recent advancements in language constructs and concepts.

The second part of this demonstration focuses on the evaluation and opti-
mization of Xcerpt queries. In particular, it shows experimental confirmation of
recent complexity results for various Xcerpt subsets. Furthermore, an impres-
sion of the effects of recent optimizations of complex queries involving negated
or optional subterms is given.

The demonstration is based on and in the first part most similar to a previous
demonstration of Xcerpt [2].

2 Part I: Language Features and visXcerpt

Setting of the Demonstrator

Excerpts from DBLP1 and from a computer science taxonomy form the base for
the scenario considered in the application. DBLP is a collection of bibliographic
entries for articles, books, etc. in the field of Computer Science. DBLP data is
a representative for standard Web data using a mixture of rather regular XML
content combined with free form, HTML-like information. A small Computer
Science taxonomy has been built for the purpose of this demonstration. Very
much in the spirit of SKOS, this is a lightweight ontology based on RDF and
RDFS. Combining such an ontology as metadata with the XML data of DBLP is
a foundation for applications such as community based classification and anal-
ysis of bibliographic information using interrelations between researchers and
research fields. Realizing such applications is eased by using the integrated Web
and semantic Web query language (vis)Xcerpt that also allows reasoning using
rules.

Realizing Versatility

Query and construction patterns in (vis)Xcerpt are used, both for binding vari-
ables in query terms and for reassembling the variables in so-called construct
terms. The variable binding paradigm is that of Datalog: the programmer spec-
ifies patterns including variables. Interactive behavior of variables in visXcerpt
highlights the relation between variables in query and construct terms. Arguably,
pattern based querying and constructing together with the variable binding
paradigm make complex queries easier to specify and read.

To cope with the semistructured nature of Web data, (vis)Xcerpt query
patterns use a notion of incomplete term specifications with optional or un-
ordered content specification. This feature distinguishes (vis)Xcerpt from query
1 http://www.informatik.uni-trier.de/~ley/db/
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Fig. 2. Experimental Evaluation of “Memoization Matrix” Approach

languages like Datalog and query interfaces like QBE [12]. Simple, yet powerful
textual and visual constructs of incompleteness are presented in the demonstra-
tor application, cf. Figure 1 showing two exemplary visual query patterns and a
breakdown of used language constructs.

An important characteristic of (vis)Xcerpt is its rule-based nature: (vis)Xcerpt
provides rules very similar to SQL views. Arguably, rules or views are convenient
for a logical structuring of complex queries. Thus, in specifying a complex query,
it eases the programming and improves the program readability to specify (ab-
stract) rules as intermediate steps—very much like procedures in conventional
programming. Another aspect of rules is the ability to solve simple reasoning
tasks.

Referential transparency and answer closedness are essential properties of
Xcerpt and visXcerpt, surfacing in various parts of the demonstration. They
are two precisely defined traits of the rather vague notion of “declarativity”.
Referential transparency means that within a definition scope all occurrences of
an expression have the same value, i.e., denote the same data. Answer-closedness
means that replacing a sub-query in a compound query by a possible single
answer always yields a syntactically valid query. Referentially transparent and
answer-closed programs are easy to understand (and therefore easy to develop
and to maintain), as the unavoidable shift in syntax from the data sought for to
the query specifying this data is minimized.

3 Part II: Effectiveness and Efficiency

Currently, two main threads are considered in the Xcerpt project: (1) A careful
review of language constructs is underway that aims at an improved effective-
ness for query authoring, cf. [8]. Related is a better support for RDF, including
proper handling of b-nodes in results and incomplete data specifications. Fur-
thermore, a type system [4] for Xcerpt is under development that eases error
detection and recovery. (2) Novel evaluation methods for Xcerpt, enabled by
high-level query constructs, are being investigated. Xcerpt’s pattern matching
is based on simulation unification. An efficient algorithm of simulation unifica-
tion that is competitive with current main-stream Web query languages both in
worst-case complexity and practical performance is described in [5]. The demon-
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stration shows that the employed evaluation algorithm, called “memoization
matrix” scales over a large set of query scenarios, empirically confirming the
theoretical complexity derived in [5]. Figure 2 shows on the left hand the effect
of the memoization on query evaluation time. The right hand side illustrates that
the algorithm scales quite nicely over large amounts of data, assuming realistic
queries and data (here the Nasa XML dataset from the University of Wash-
ington XML Repository2 is used). Furthermore, the scalability of basic pattern
queries over a broad range of data sizes is illustrated. Finally, the effect of sev-
eral advanced query constructs is investigated. It is shown that constructs such
as optional or qualified descendant do not only make queries easier to express
and understand, but in many practical cases also more efficient to evaluate. Ef-
fects of optionality, injectivity, order, totality, and subterm negation are shown
in detailed evaluations.

In further work, optimizations of the rule chaining algorithm are investigated,
partially based on dependency analysis provided by the above mentioned type
system. Furthermore, rule unfolding and algebraic optimization beyond interme-
diary construction similar to optimization of nested construction in languages
such as XQuery is investigated, cf. [9] for details on the relation of the two.
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Abstract. Styling and formatting of XML documents for various target
media is often specified with the Cascading Style Sheet (CSS) language.
An appealing feature of CSS is that it specifies formatting instructions
using rather simple guarded rules. A limitation of CSS is that it focuses
on static formatting rules. As a consequence scripting languages such as
ECMA Script are used in practice for dynamic adaptation of format-
ting. CSSNG is a novel extension of CSS 3, the newest version of CSS,
introducing just a few rules for a dynamic rendering and for markup vi-
sualization. This limited extension of CSS 3 turns out to make possible
a rather advanced visualization of programs. This article (1) introduces
into the extensions of CSSNG with respect to CSS 3, (2) describes a
proof-of-concept prototype implementation of CSSNG, and (3) demon-
strates CSSNG on Xcerpt query programs.

1 Introduction

CSS style sheets in the currently implemented version CSS 2.1 [6] have
gained in importance, since the Web has become a mass medium. This
language is used for a sophisticated rendering of semi-structured data
especially expressed in XML [7]. CSS 3 [5], the newest version of CSS, is
about to receive the status of a W3C recommendation, which is in fact a
standard.

With the emerging trend from static to dynamic Web pages, the ex-
pressive power of the dynamic document rendering features in CSS 2.1 and
in CSS 3 are not any longer sufficient. Sub-menus, for instance, which can
be superimposed on a mouse click, are widespread on Web pages. They
cannot be specified in CSS 3. Furthermore, CSS 2.1 and CSS 3 are often
insufficient for a user-friendly rendering of XML documents with complex
structures.

In practice, scripting languages supporting the DOM [12] interface to
XML documents like ECMA Script [10] are used to obtain dynamic ren-
dering features. In XHTML documents, for instance, scripts are rather
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often invoked in the context of an XHTML element by XHTML intrinsic
event [1] attributes like onclick. As a consequence the styling specifica-
tion is not separated from content like in CSS. That means that

– dynamic styling via scripting is relatively complicated,
– the maintenance of styling programs is expensive, and
– applying dynamic styling to multiple documents is rather difficult

CSSNG [16] is an extension of CSS 3. The strengths of this extension
are the visualization of query languages like Xcerpt [14] as well as the
visualization of RDF [13] graphs such as FOAF [8] definitions (see [16]
for details on such Semantic Web applications). CSSNG is a rather limited
and conservative extension. Nonetheless CSSNG makes it possible

– to specify dynamic styling,
– to generalize markup visualization, and
– to integrate the keyboard as input device.

The extension of CSSNG allows for a declarative and, therefore, con-
cise and quite simple specification of dynamic document rendering by
comparison to query languages like XSLT [15] or scripting languages like
ECMA Script [10].

2 CSS 3: A brief introduction

CSS 3 and its predecessors have been developed to simplify changes of
the content as well as of the presentation of HTML and XML documents
by separating content from presentation. The following rule demonstrates
a well-known static styling feature already introduced in CSS 1:

a { text-decoration: underline; }

The left-hand head of the CSS rule, a, selects HTML anchors. The
so-called declaration on the right-hand side assigns the styling parameter
to XML elements selected by the head of a CSS rule. In the example
above it specifies that anchors are presented underlined as customary in
Web pages to mark hyperlinks.

Also dynamic styling features are offered in CSS 3. The background
color of an HTML anchor can be switched to yellow while the mouse
cursor is hovering (:hover) over it:

a:hover { background-color: yellow; }
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3 How CSSNG extends CSS 3

Markup especially in XML documents often conveys application relevant
information. Therefore, it might be useful to visualize it. However, CSS
2.1 and CSS 3 offer quite limited means for markup visualization. The
following subsections 3.1 to 3.3 briefly introduce novel static CSSNG rules
mainly aiming at visualizing XML markup. Finally Section 3.4 introduces
the rule-based interface for dynamic document styling. Full details on how
CSSNG extends CSS 3 can be found in [16].

CSSNG rules such as specified in a file can be linked in an XML
document via a so-called processing instructions (PI) or in the header of
an XHTML document. Note that CSSNG extensions introduced for XML
elements apply also to XHTML elements.

3.1 Markup Insertion

CSS 3 allows the insertion of plain text specified in a CSS style sheet. The
pseudo-elements ::before and ::after cause insertion of text before and
after a selected XML or HTML element.

CSSNG extends these pseudo-elements of CSS 3. In addition to insert-
ing plain text in CSS 3, the CSSNG functions element(NAME,ATTRIBUTES,
VALUE) and attribute(NAME,VALUE) provide also inserting XML ele-
ments and attributes before and after XML elements. The following ex-
ample inserts tabs (see Fig. 3) inscribed with element before each element
in an XML document (The CSSNG function element(NAME,VALUE) has
only two arguments, if there are no attributes.):

<a title="Tab">elem</a>

is inserted before each XML element by the rule
*::before { content: element("a",

attribute("title","Tab"),

"elem") }

3.2 Markup Querying

CSS 3 provides the function attr(X) for querying the content of a known
XML attribute X of an XML element. The name of an XML element
and its XML attributes can not be queried. Implementing the markup
visualization in Fig. 1 without generalized markup querying would mean
one rule for every XML type like bib.

CSSNG adds the function element-name() yielding the name of the
currently selected XML element. Furthermore, one XML element can
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XML source Presentation

1 <bib>

2 <book year="1994" id="42">

3 <title>

4 TCP/IP Illustrated

5 </title>

6 <author>

Fig. 1. CSSNG styling of an XML document and rendering.

host several XML attributes. Therefore, CSSNG offers attribute rules se-
lecting XML attributes instead of XML elements. The CSSNG functions
attribute-name() and attribute-value() query XML attribute names
and values in the context of a selected XML element. The example in
Fig. 2 implements a tab in front of each XML element listing the XML
element name and all of the XML elements’ attributes including their
values as shown in Fig. 1.

XML source (see Fig. 1)

1 ... <book year ="1994" id ="42"> ... </book> ...

CSSNG style sheet

1 *::before { content:

2 element("span", element("span", element-name())

3 * { element("span", attribute-name() " "

4 attribute-value() )

5 } )

6 }

intermediate representation

1 ... <span>

2 <span>book<span>

3 <span> year 1994</span>

4 <span> id 42</span>

5 </span>

6 <book year="1994" id="42"> ... </book> ...

Fig. 2. Generation of tabs. The presentation in Fig. 1 is obtained by
rendering the intermediate representation using further CSS 3 means.

Web Queries with Style: Rendering Xcerpt Programs with CSS-NG     223



3.3 Depth-dependent Styling

Styling depending on breadth is planned in CSS 3 [5]. Tables, for instance,
can be styled using alternating background colors for each line. CSSNG

additionally offers styling depending on the depth of an XML element in
an XML document: The pseudo-class :nth-descendant(an+b) restricts
selections to XML elements having an + b ancestors.

Fig. 3 demonstrates the visualization of a highly nested XML docu-
ment with colors repeating on every sixth level. On the left side this ren-
dering is realized using CSSNG and alternatively using CSS 3. Thanks to
its depth-dependent styling features, the upper CSSNG style sheet needs
only six rules. The CSS 3 style sheet below needs one rule for every level.
Hence, styling in CSS 3 is possible up to a certain depth only as shown
on the right side of Fig. 3 using the CSS 3 style sheet on the lower right
side of Fig. 3. Such a styling would also be useful for applications such as
the visualization of threads in a discussion forum.

CSSNG Presentation using CSS 3

1 *:nth-descendant(6n+1) { background-color: A; }

2 *:nth-descendant(6n+2) { background-color: B; }

3 *:nth-descendant(6n+3) { background-color: C; }

4 *:nth-descendant(6n+4) { background-color: D; }

5 *:nth-descendant(6n+5) { background-color: E; }

6 *:nth-descendant(6n+6) { background-color: F; }

CSS 3

1 * { background-color: A; }

2 * * { background-color: B; }

3 * * * { background-color: C; }

4 * * * * { background-color: D; }

5 * * * * * { background-color: E; }

6 * * * * * * { background-color: F; }

7
8 * * * * * * * { background-color: A; }

9 * * * * * * * * { background-color: B; }

10 ...

Fig. 3. Comparing Depth-dependent Styling using CSSNG and CSS 3.

3.4 Dynamic Styling Generalized

Dynamic styling in CSS 3 is limited to the dynamic pseudo-class :hover.
This construct allows dynamic styling in the local context of the mouse
cursor only as demonstrated in Section 2. This is not sufficient to imple-
ment a behavior like folding a tab as demonstrated in Section 4: when
the mouse cursor moves away, the cursor does no longer hover over the
selected XML element, and its tab would be automatically unfolded.
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CSSNG introduces dynamic pseudo-classes for all HTML intrinsic
events [1] such as onclick or onkeypress (see [16] for sample applica-
tions). Instead of using HTML intrinsic event attributes like for scripting
languages, CSSNG allows a standalone specification of dynamic styling
in separate CSSNG files that can be applied for multiple documents. The
following example shows a rather simple dynamic CSSNG rule:

a:onclick(10) { background-color: green; }

The rule above implements an adaptive hyperlink. After 10 clicks on
the hyperlink the background color changes to green meaning that the
hyperlink on the Web page is frequented by the user.

This extension makes it possible to apply dynamic styling on differ-
ent sections of an XML document at the same time. For instance if two
hyperlinks were clicked ten times in a Web page, both will be presented
with different background colors.

Similar extensions using HTML intrinsic events have been already
proposed by the W3C (see Section 7). The following paragraphs introduce
to novel capabilities of CSSNG:

Recurrence Patterns. All CSSNG dynamic pseudo classes support re-
currence patterns, an+b, as parameters. For instance the CSSNG selector
*:onclick(3n+1) detects the first, the fourth, the seventh, etc. click on
an arbitrary XML element. More generally, a CSSNG selector fires, if
an + b events occurred before.

On one hand such recurrence patterns allow to reuse CSSNG rules for
folding and unfolding as demonstrated in the following paragraph. On the
other hand recurrence patterns allow to “delay” the application of rules
up until a number of events, for instance clicks, as demonstrated in the
previous Section (see adaptive hyperlink above).

Dynamic Styling Combined. A noticeable feature of the (novel) dy-
namic pseudo-classes of CSSNG is their compatibility with CSS 3 combi-
nators, which allow to specify tree patterns.

A CSS 3 selector is an alternating sequence of so-called simple selec-
tors (already informally introduced in Section 2) and combinators. For
instance, the combinator + means that the simple selector on its left side
must be a preceding sibling of the simple selector on the righthand side.
The CSS declaration (in curly braces) is only applied to the XML element
matched by the right simple selector.
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Fig. 4. Folded visualization of an XML element title. The corresponding
unfolded example is shown in Fig. 1.

The following example implements alternating folding and unfolding
for the visualization of arbitrary (simple selector *) XML elements (see
Fig. 4). A click on a tab of a visualized XML element like title folds
its visualization. Another click on a tab unfolds it (see title in Fig. 1):

1 tab:onclick(2n+1) + * {display:none} Fold on odd number of clicks.
2 tab:onclick(2n+2) + * {display:block} Unfold on even number of clicks.

In the example above, the lefthand selector of the first CSSNG rule
above is composed of the two simple selectors tab:onclick(2n+1) and
* combined with the CSS 3 combinator, +. The visualization of an XML
element matched by the simple selector * disappears, if a mouse click
was performed on its preceding sibling XML element, while its tab stays
visible.

Structure-Independent Styling. A static CSS 3 styling rule is applied
to all XML elements matching its selector. A dynamic CSS 3 styling rule
is applied only to XML elements being in the context of an input device
such as an XML element laying under the mouse cursor. CSSNG abolishes
this restriction and allows (novel) so-called monorama and panorama se-
lections as demonstrated in Fig. 6. The Author element on the left side is
highlighted, while the mouse cursor is hovering over the Author element
on the right side.

1 Author { background-color: black; }

2 Author:hover ? Author { background-color: white; }

The CSS 3 rule in line 1 defines the standard background black for
XML Author elements. In line 2 the CSSNG combinator ?, called if, is
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applied as follows: If an XML Author element is hovered in an XML
document, set the background color of all XML Author elements to white.

4 System Architecture of the Prototype

The CSSNG extension of CSS 3 is planned and implemented for proving
the concept of CSSNG. Therefore we draw on established components for
getting a transparent and easily scalable prototype instead of implement-
ing a high-performance extension of a single Web browser.

Fig. 5. CSSNG styling of an X(HT)ML document and rendering.

This system compiles XHTML as well as XML ‘Input Documents’
according to rules in ‘CSSNG style sheets’ for rendering in standard Web
browsers such as Mozilla Firefox 1 or MS Internet Explorer 2.

The upper row in Fig. 5 manages the compilation of an input ‘CSSNG

Style Sheet’ to a ‘Styler’ (see Section 4.1 for details). On the lower row,
this ‘Styler’ is responsible for compiling a preprocessed (see Input Prepro-
cessing below) ‘XML input document’ to a ‘Styled Document’ that can be
rendered by the Web browser. All further dynamic styling activities such
as triggered by mouse clicks in a Web browser window update meta-data
of the ‘Styled Document’. Changes on these meta-data are evaluated by
the ‘Styler’ and are finally rendered by a Web browser.

4.1 Styler Generation

On the upper row (see Fig. 5), the ‘CSSNG style sheet’ is parsed resulting
in an ‘Abstract Syntax Tree’ (AST), which is based on a slightly extended
Grammar of CSS 2.1 [6]. In a next step the ‘Configurator’ condenses the
1 http://www.mozilla.com/firefox/
2 http://www.microsoft.com/windows/ie/default.mspx
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‘AST’ to a human readable ‘Styler Configuration’. Finally, this configu-
ration is implemented by a ‘Styler-Generator’ yielding the ‘Styler’.

4.2 Input Preprocessing

Since many of the current Web browsers do not offer standard event
APIs for XML documents, we transform ‘XML Input Documents’ to get
‘XHTML Input Documents’3 as demonstrated in the following table. The
XML markup on the left side is expressed using XHTML markup exclu-
sively on the right side. (XHTML input documents can be initialized
directly without reification.)

Source XML: XML as XHTML:

<workshop>

PPSWR 2006

</workshop>

<div>

<span class="element">workshop</span>

PPSWR 2006

</div>

The ’Meta-Initializer’ installs listeners as well as histories for relevant
XHTML elements. An XHTML element is called dynamically relevant
with respect to the CSSNG Style Sheet, if a dynamic rule (see Dynamic
Styling) defines its styling.

5 Proof-of-Concept Implementation

The main principles of the proof-of-concept implementation are

– drawing on Web standards for
– gaining platform independency and
– reducing implementation effort.

Therefore all data formats and transformations (see Fig. 5) except
CSSNG Parser are based on W3C standards. Since the CSS 2.1 grammar
[6] is specified in extended Yacc and Flex syntax, the Yacc parser and the
Flex lexical scanner are used to transform CSSNG style sheets into XML
format (there are no W3C standards for this kind of transformation). All
other transformations are implemented as XSL Transformations [15].

The Styler is the heart of the system. It processes all XHTML ele-
ments in the document tree of an (Un)styled Document recursively.
Each XHTML element passes through one test for each CSSNG rule in
3 This transformation is called reification.
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a CSSNG style sheet. If a test succeeds, the XHTML style attribute of
the current XHTML element is modified. The tests are implemented in
XPath [9]. Since tests are executed from the perspective of each XML
element, CSSNG selectors need to be translated to XPath selecting XML
elements in reverse direction as demonstrated in the following example:

CSSNG XPath

div :onclick(2n+1) + * self:: * /preceding-sibling:: div [

span[@class=’onclick’] mod 2 = 1 mod 2 ]

6 Proof-of-Concept Application: Rendering of Xcerpt
Programs

Fig. 6. Query Visualization as Textual Query Rendering. All occurrences
(panorama) of Author are highlighted by white background color.

CSSNG can be applied to implement query visualization as textual
query rendering as shown in Fig. 6. Here, the viewer of the visual interface
visXcerpt [3] [4] for the XML query and transformation language Xcerpt
[14] is re-implemented by only a few CSSNG rules (131 lines of code). It
is worth stressing that

– the original implementation of visXcerpt (ECMA Script, XSLT, and
Python) is much longer (2060 lines of code) and much more complex,

– CSSNG is a high level styling language applicable not only to visualize
Xcerpt programs but more generally any XML document,
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– specifying advanced visual features using CSSNG does not require
programming skills as required by ECMA script

– but instead offers much more limited programming capabilities suffi-
cient for styling using CSS.

The example above demonstrates highlighting of Xcerpt variables hav-
ing the same name: All occurrences of the Xcerpt variable Author are
highlighted because the mouse cursor is hovering over one occurrence,
while Xcerpt variables named Title stay black. We refer to [16] for fur-
ther examples of CSSNG applications.

7 Related Work

The so-called Behavioral Extension of CSS [11], a derivative of Action
Sheets [2], is a proposal for extending CSS toward dynamic styling fea-
tures. The main idea is to separate scripts from content using the selector
mechanism of CSS. The approach draws on scripting languages for im-
plementing dynamic styling. The Behavioral Extension of CSS specifies
events in the declaration of the rule. Rather simple dynamic tree patterns
of CSSNG, as demonstrated in Section 3.4, can only be simulated in the
Behavioral Extension of CSS using rather complicated scripts. The fol-
lowing use case of Behavioral Extension of CSS is taken from the working
draft of the W3C:

Behavioral Extension of CSS CSSNG

1 .Rollover {

2 border : thin solid blue;

3 onmouseover: "this.src=

4 this.getAttribute(’oversrc’);

5 this.style.borderColor= ’red’;

6 statusText.data=

7 this.getAttribute(’status’);"

8 onmouseout : "this.src=

9 this.getAttribute(’outsrc’);

10 this.style.borderColor= ’blue’;

11 statusText.data= ’’;" }

1 .Rollover {

2 border:thin solid blue;}

3 .Rollover:onmouseover {

4 borderColor:red; }

5 .Rollover:onmouseout {

6 borderColor:blue; }

The right side of the example above shows a CSSNG style sheet that
re-implements the style sheet implemented with the Behavioral Extension
of CSS on the left side. This example demonstrates how scripting, which
is also possible in CSSNG via insertion of markup, can be avoided in many
use cases (see [16] for more use cases).
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8 Conclusion

In this article we presented how CSSNG extends CSS 3 toward dynamic
styling features and markup visualization. As shown in Section 6, CSSNG

allows program visualization of Xcerpt programs as textual program ren-
dering. However we believe that CSSNG allows generic visualizations of
programming languages. Such visualizations realized as textual docu-
ment rendering (see Fig. 6) could help making visual programming more
widespread than today because the huge quantity of tools for textual
programming languages can still be used. To the best of our knowledge
further approaches of visual languages never allow visual and textual pro-
gramming as well.

9 Acknowledgments

This research has been funded by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework
Programme project REWERSE number 506779 (cf. http://rewerse.net).

References

1. S. Adler, A. Berglund, J. Caruso, S. Deach, T. Graham, P. Grosso, E. Gutentag,
A. Milowski, S. Parnell, J. Richman, and S. Zilles. HTML 4.01. W3C, 1999.

2. V. Apparao, B. Eich, R. Guha, and N. Ranjan. Action Sheets: A Modular Way of
Defining Behavior for XML and HTML. W3C, 1998.

3. S. Berger. Conception of a Graphical Interface for Querying XML. Diploma thesis,
Institute for Informatics, LMU, Munich, 2003.

4. S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt and visXcerpt: From Pattern-
Based to Visual Querying of XML and Semistructured Data. In Proceedings of 29th
Intl. Conference on Very Large Databases, 2003.

5. B. Bos. Cascading Style Sheets Under Construction. W3C, 2005.
6. B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading Style Sheets. W3C, 1998.
7. T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup

Language (XML) 1.0, 2nd Edition. W3C, 2000.
8. D. Brickley and L. Miller. FOAF Vocabulary Specification, 2005.
9. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C, 1999.

10. ECMA. Standard ECMA-262, ECMAScript Language Specification, 1999.
11. V. A. et al. Behavioral Extensions to CSS. W3C, 1999.
12. A. L. Hors, P. L. Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion, and S. Byrne.

Document Object Model (DOM) Level 2 Core Specification. W3C, 2000.
13. O. Lassila and R. R. Swick. Resource Description Framework (RDF). W3C, 1999.
14. S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction

to Xcerpt. In Proc. of Extreme Markup Languages, 2004.
15. W3C. Extensible Stylesheet Language (XSL) 1.0, 2001.
16. C. Wieser. CSSNG: An Extension of the Cascading Styles Sheets Language (CSS)

with Dynamic Document Rendering Features. Diploma thesis, Institute for Infor-
matics, LMU, Munich, 2006. http://www.pms.ifi.lmu.de/publikationen/.

Web Queries with Style: Rendering Xcerpt Programs with CSS-NG     231

http://rewerse.net
http://www.pms.ifi.lmu.de/publikationen/


Information Gathering in a Dynamic World

Thomas Hornung, Kai Simon, and Georg Lausen

Institute of Computer Science, Albert-Ludwigs University Freiburg, Germany
{hornungt, ksimon, lausen}@informatik.uni-freiburg.de

Abstract Web resources with constantly fluctuating content, such as
virtual market places, are becoming more and more relevant as informa-
tion resources. Classic search engines, unfortunately, crawl and index the
Web in sporadic intervals and therefore rely on outdated information. In
this paper we present OntoGather, a framework based on ontology-driven
inferences on dynamically gathered annotated instances from the Web,
which consists of two main components: the Web data-extraction and
annotation system ViPER and the deductive object-oriented database
system Florid.

1 Introduction

Classic search engines (e.g. Google) crawl the Web in intervals and build up
indexes from vast amounts of data to be able to answer user queries within a
reasonable time frame. This was (and still is) well-suited for static Web pages
that remain stable for a longer period of time, but today many resources on
the Web are in constant flux. Prominent examples for this are virtual market
places or real-time information systems, e.g. stock-exchange price services. The
underlying volatile nature of the aforementioned domains necessitates a dynamic
approach to support user queries of the form what is the cheapest price for an
IXUS digital camera (at the moment)?
To solve this problem we propose an approach that relies on dynamic integration
of information sources which are accessed at query time. The core of our system
is Florid [1], a deductive object-oriented database system based on F-Logic [2],
which operates on top of a domain-specific background ontology. It serves as
inference engine used for Web resource selection and evaluates a user query on
up-to-the-minute information. In this paper we deal with information extracted
from HTML pages with the aid of a wrapper tool. Web resources that can be
accessed via Web Service interfaces, such as WSDL APIs or RSS feeds have not
been considered yet, but can be easily integrated into our system. Wrapper tools
range from semi-automatic approaches, such as LIXTO [3], to fully-automatic.
In our scenario a fully-automatic approach is most suitable, because the wrapper
generation and maintenance effort is negligible, which suits the requirements of
our dynamic world scenario best. Therefore we use our fully-automatic extraction
system ViPER [4], that is able to extract up-to-date information from arbitrary
HTML pages consisting of data records, which have a similar structure.
The paper is structured as follows: In section 2 we present our extraction and



integration system ViPER. Next we describe the underlying background ontol-
ogy in section 3. The section 4 presents the main components by an example.
Finally we conclude in section 5 and give an outlook in section 6.

2 Information Integration

Aiming at a robust, fast and extensible information system we opt for our
fully-automatic wrapper extraction tool named ViPER (Visual Perception-based

Extraction of Records). ViPER is able to extract and discriminate with high
accuracy the relevance of different repetitive Web information content with re-
spect to the user’s visual perception of a single Web page. After ViPER has
identified the most relevant data region the tool generates a pattern (extraction
rule), matching similar data records. These data records can usually be found
in static Web catalogs as well as dynamic Web pages. Since these sites are of-
ten filled with information from back-end databases by predefined templates or
server-side scripts, the extraction process can be seen as reverse engineering on
the basis of materialized database views which have been published in HTML
pages.

3 Resource Ontology

In the OntoGather system, we expect our information sources to be organized
in a domain-specific ontology. This ontology initially contains meta-information
about accessible Web resources, which can be referenced by unique resource ids
resolved by ViPER into Web URLs. The ontology in principle could be given
in any kind of formalism, e.g. OWL. Since we are particularly interested in
answering queries, we have chosen F-Logic where we can specify the background
ontology and the queries themselves in the same language. To further illustrate
this point, we use the following running example:

top[resourceID⇒⇒integer; name⇒string].

product :: top[price⇒float].

...

digital camera :: product[model⇒string; resolution⇒integer].

ixus :: digital camera[name•→"IXUS"; resourceID�{23, 42}].
canon :: digital camera[name•→"CANON"; resourceID�{12, 23}].

(3.1)

Example (3.1) shows an excerpt of a simple product ontology. The first expres-
sion defines the concept top with the multi-valued method resourceID and the
functional method name via their signatures. These signature definitions are in-
herited to every instance and subclass. The second expression declares product
to be a subclass of top with the additional functional method price. The third
expression introduces the class digital camera which has ixus and canon as
subclasses (expression four and five), that provide an implementation of the
methods name and resourceID. The method name has been declared to be in-
heritable, therefore all instances of ixus and canon will have the result of the
method name set to ”IXUS” or ”CANON”, respectively.
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Figure 1. OntoGather system overview

4 OntoGather by Example

Our framework is depicted in figure 1, which describes the processing of a query
in seven steps. On the upper left part we see the user interface, which offers
three form fields to specify a request: the field entitled ”Class” narrows down
the search area to a specific subpart of the ontology. The ”Ontology properties”
field selects the required attributes the class of interest has to provide, where it is
possible to select a value (for instance name="IXUS") to further restrict possible
candidates. The ”Result properties” field lists the desired output attributes with
the constraints that have to hold. The request in figure 1 asks for products falling
in the digital camera subpart of the ontology, which provide information on price,
model and name, where name has to be ”IXUS”. Finally the result is restricted
to all models having a price lower than 270. To allow most users an intuitive use
of the system the interface is held simple, but support for automatic inference
of remaining possible attributes and graphical selection of subparts of the graph
are envisioned. Furthermore we are looking into ways to allow for more complex
queries, e.g. where attributes of two distinct classes (analog and digital cameras
for instance) can be requested.
After the user starts her request, the contents of the form fields are sent to the
Communication Interface, that acts as a negotiation layer translating requests
between ViPER and Florid (step 1). The Communication Interface generates a
Florid query based on the the provided information, asking for all resources that
can contribute to the answer:

Obj :: digital camera[price⇒ Price; model⇒ Model;

name•→"IXUS"; resourceID�Resources].
(4.1)

In query (4.1) strings starting with a capital letter are treated as variables, where
strings preceded by an underscore are anonymous variables, whose bindings are
not returned in the answer. The result value for the method name is used as
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restriction on the possible answer set. We forward this request to the Florid
engine which yields the following variable bindings as result (with respect to our
example ontology (3.1)):

Obj/ixus, Resources/23

Obj/ixus, Resources/42
(4.2)

thus completing step 2. The variable bindings are processed by the Communica-
tion Interface and passed to ViPER with the attributes requested as name-value
pairs (step 3):

resourceID = {23, 42}
name = !"IXUS"

model = ?Model

price = ?Price

resource = ?Resource

(4.3)

Every string that occurs in the input is marked with an exclamation mark (!),
to indicate ViPER that it can be used for query generation to fill out search
forms. On the other side, variables marked with a question mark (?) indicate
the annotated data items we are interested in. ViPER internally resolves the
resource ids to valid Web URLs and extracts the desired data records. With a new
extension of ViPER we are also able to annotate these data records according
to our background ontology (step 4). The resulting bindings are returned to the
Communication Interface with the resource ids resolved to URLs (step 5):

[resourceID = 23

resource = "http://www.amazon.de",

name = "IXUS",

model = "Digital Ixus 60",

price = 269],

[resourceID = 42

resource = "http://www.mediaonline.de",

name = "IXUS",

model = "Digital Ixus 700",

price = 295]

(4.4)

In listing (4.4) each resource only contributes one result, but generally multiple
results per resource are usual. These results are converted to F-Logic facts and
inserted into our ontology.

...

ixus[name→"IXUS"; resourceID�{23, 42}].
ixus 1 : ixus[model→"Digital Ixus 60"; price→269;

resource→"http://www.amazon.de"].

ixus 2 : ixus[model→"Digital Ixus 700"; price→295;

resource→"http://www.mediaonline.de"].

(4.5)

Listing (4.5) shows the final state of our ontology instantiated with the extracted
data items. The new instances have been inserted into the fact base as instances
of the respective class, i.e. ixus, inheriting the name attribute from it with the

Information Gathering in a Dynamic World     235



value set to ”IXUS”. The instances could either be stored for later time series
analysis or the ontology will be reset to its initial state after having finished the
query.
Now we are able to select the attributes of interest, taking into account the
information from the ”Result properties” form field in figure 1, resulting in the
following F-Logic query (step 6):

Obj :ixus[price→Price; model→Model;

name→"IXUS"; resource�Resources], Price < 270.
(4.6)

The Florid results are shown in listing (4.7) and are finally transformed into
a tabular HTML representation, were we additionally list the resources that
provided the data items (step 7).

Resources/http://www.amazon.de,

Price/269,

Model/"Digital Ixus 60"

(4.7)

5 Conclusion

We presented the OntoGather system, an ontology-based dynamic Web resource
querying engine, that is geared towards the requirements of a dynamic world.
Because of our resource preselection mechanism we are able to process a user
query from a pool of different resources that we decide on at runtime. This is
made possible by our fully-automatic Web data extraction system ViPER. Our
main contributions are twofold: first the selection of the query-relevant resources
and second the reasoning on fresh data items extracted and annotated by ViPER,
which both happens at query time.

6 Outlook

Our future goals include time series analysis, which is explicitly supported by our
object-centered approach, by aggregating the results of several user queries. This
could be realized by introducing a method time stamp to indicate the freshness
of the information. Additionally including ECA rules might be an interesting
topic while monitoring specific dynamic resources over a given time frame for an
invariant query.
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Abstract. Mining the layers of ontologies and rules provides an interest-
ing testbed for inductive reasoning on the Semantic Web. Systems based
on Inductive Logic Programming (ILP) could serve the purpose if they
were more compliant with the standards of representation for ontologies
and rules in the Semantic Web and/or interoperable with well-established
tools for Ontological Engineering (OE) that support these standards. In
this paper we present a middleware, SWing, that integrates the ILP
system AL-QuIn and the OE tool Protégé-2000 in order to enable Se-
mantic Web Mining applications of AL-QuIn. This showcase highlights
practical issues of performing induction on the Semantic Web.

1 Introduction

Most of the effort spent by the community of Knowledge Representation and
Reasoning (KR&R) in the Semantic Web area is currently concentrated on the
logical layer. Indeed, whereas the mark-up language OWL for ontologies is al-
ready undergoing the standardization process at W3C, the debate around a uni-
fied language for rules is still ongoing. Proposals like SWRL1 extend OWL with
constructs inspired to Horn clauses in order to meet the primary requirement of
the logical layer: ’to build rules on top of ontologies’. Since the design of OWL
has been based on Description Logics (DLs) [1] (more precisely on the DL SHIQ
[9]), SWRL is intended to bridge the notorious expressive gap between DLs and
Horn clausal logic [4] in a way that is similar in the spirit to hybridization in
KR&R systems such as AL-log [6]. In fact, AL-log has been very recently men-
tioned as the blueprint for well-founded Semantic Web rule mark-up languages
because its underlying form of integration (called safe) assures semantic and
computational advantages that SWRL - though more expressive than AL-log -
currently can not assure [24]. Also it has been adopted as the KR&R setting in
a framework for learning Semantic Web rules [15] that resorts to the method-
ological apparatus of Inductive Logic Programming (ILP) [22]. The framework
is general in the sense that it does not depend on the scope of induction (pre-
diction/description). The ILP system AL-QuIn [17,16] (a previous version is

1 http://www.w3.org/Submission/SWRL/



described in [18]) implements the framework in the case of characteristic induc-
tion, i.e. description. More precisely it supports a variant of the data mining
task of frequent pattern discovery [21].

Semantic Web Mining [2] is a new application area which aims at combining
the two areas of Semantic Web [3] and Web Mining [13] from a twofold perspec-
tive. On one hand, the new semantic structures in the Web can be exploited to
improve the results of Web Mining. On the other hand, the results of Web Mining
can be used for building the Semantic Web. Most work in Semantic Web Mining
simply extends previous work to the new application context. E.g., Maedche and
Staab [19] apply a well-known algorithm for association rule mining to discover
conceptual relations from text. Also there is an increasing amount of work on
mining the RDF/RDFSchema layer. E.g., Maedche and Zacharias [20] propose
distance measures to cluster RDF-based metadata descriptions. Mining the lay-
ers of ontologies and rules provides an interesting testbed for inductive reasoning
on the Semantic Web. ILP systems could serve the purpose if they were more
compliant with the standards of representation for ontologies and rules in the
Semantic Web and/or interoperable with well-established tools for Ontological
Engineering (OE), e.g. Protégé-2000 [23], that support these standards.

In this paper we present a middleware, SWing, that integrates AL-QuIn
and Protégé-2000 in order to enable Semantic Web Mining applications of AL-
QuIn. This showcase highlights practical issues of performing induction on the
Semantic Web.

The paper is structured as follows. Section 2 and 3 briefly introduce AL-
QuIn and Protégé-2000 respectively. Section 4 presents the middleware SWing.
Section 5 draws conclusions and outlines directions of future work.

2 The ILP system AL-QuIn

In data mining a pattern is considered as an intensional description (expressed
in a given language L) of a subset of r. The support of a pattern is the relative
frequency of the pattern within r and is computerd with the evaluation function
supp. The task of frequent pattern discovery aims at the extraction of all frequent
patterns, i.e. all patterns whose support exceeds a user-defined threshold of min-
imum support. The blueprint of most algorithms for frequent pattern discovery is
the levelwise search [21]. It is based on the following assumption: If a generality
order � for the language L of patterns can be found such that � is monotonic
w.r.t. supp, then the resulting space (L,�) can be searched breadth-first start-
ing from the most general pattern in L and by alternating candidate generation
and candidate evaluation phases. In particular, candidate generation consists of
a refinement step followed by a pruning step. The former derives candidates for
the current search level from patterns found frequent in the previous search level.
The latter allows some infrequent patterns to be detected and discarded prior
to evaluation thanks to the monotonicity of �.

The ILP system AL-QuIn (AL-log Query Induction) [17,16] solves a variant
of the frequent pattern discovery problem which takes concept hierarchies into

238     F. A. Lisi



Fig. 1. Organization of the hybrid knowledge bases used in AL-QuIn.

account during the discovery process, thus yielding descriptions of a data set r
at multiple granularity levels. More formally, given

– a data set r including a taxonomy T where a reference concept Cref and
task-relevant concepts are designated,

– a multi-grained language {Ll}1≤l≤maxG of patterns
– a set {minsupl}1≤l≤maxG of minimum support thresholds

the problem of frequent pattern discovery at l levels of description granularity,
1 ≤ l ≤ maxG, is to find the set F of all the patterns P ∈ Ll frequent in r,
namely P ’s with support s such that (i) s ≥ minsupl and (ii) all ancestors of P
w.r.t. T are frequent. Note that a pattern Q is considered to be an ancestor of
P if it is a coarser-grained version of P .

In AL-QuIn the data set r is represented as an AL-log knowledge base B
and structured as illustrated in Figure 1. The structural subsystem Σ is based
on ALC [25] and allows for the specification of knowledge in terms of classes
(concepts), binary relations between classes (roles), and instances (individuals).
In particular, the TBox T contains is-a relations between concepts (axioms)
whereas the ABox M contains instance-of relations between individuals (resp.
couples of individuals) and concepts (resp. roles) (assertions). The relational
subsystem Π is based on an extended form of Datalog [5] that is obtained
by using ALC concept assertions essentially as type constraints on variables.
The portion K of B which encompasses the whole Σ and the intensional part
(IDB) of Π is considered as background knowledge. The extensional part of Π is
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partitioned into portions Ai’s each of which refers to an individual ai of Cref .
The link between Ai and ai is represented with the Datalog literal q(ai). The
pair (q(ai),Ai) is called observation.

The language L = {Ll}1≤l≤maxG of patterns allows for the generation of
AL-log unary conjunctive queries, called O-queries. Given a reference concept
Cref , an O-query Q to an AL-log knowledge base B is a (linked and connected)2

constrained Datalog clause of the form

Q = q(X)← α1, . . . , αm&X : Cref , γ1, . . . , γn

where X is the distinguished variable and the remaining variables occurring
in the body of Q are the existential variables. Note that αj , 1 ≤ j ≤ m, is
a Datalog literal whereas γk, 1 ≤ k ≤ n, is an assertion that constrains a
variable already appearing in any of the αj ’s to vary in the range of individuals
of a concept defined in B. The O-query

Qt = q(X)← &X : Cref

is called trivial for L because it only contains the constraint for the distinguished
variable X. Furthermore the language L is multi-grained, i.e. it contains expres-
sions at multiple levels of description granularity. Indeed it is implicitly defined
by a declarative bias specification which consists of a finite alphabet A of Data-
log predicate names and finite alphabets Γ l (one for each level l of description
granularity) of ALC concept names. Note that αi’s are taken from A and γj ’s
are taken from Γ l. We impose L to be finite by specifying some bounds, mainly
maxD for the maximum depth of search and maxG for the maximum level of
granularity.

The support of an O-query Q ∈ Ll w.r.t an AL-log knowledge base B is
defined as

supp(Q,B) =| answerset(Q,B) | / | answerset(Qt,B) |

where Qt is the trivial O-query for L. The computation of support relies on
query answering in AL-log. Indeed, an answer to an O-query Q is a ground
substitution θ for the distinguished variable of Q. An answer θ to an O-query
Q is a correct (resp. computed) answer w.r.t. an AL-log knowledge base B if
there exists at least one correct (resp. computed) answer to body(Q)θ w.r.t. B.
Therefore proving that an O-query Q covers an observation (q(ai),Ai) w.r.t. K
equals to proving that θi = {X/ai} is a correct answer to Q w.r.t. Bi = K ∪Ai.

The systemAL-QuIn implements the aforementioned levelwise search method
for frequent pattern discovery. In particular, candidate patterns of a certain level
k (called k-patterns) are obtained by refinement of the frequent patterns discov-
ered at level k−1. In AL-QuIn patterns are ordered according to B-subsumption
(which has been proved to fulfill the abovementioned condition of monotonicity
[18]). The search starts from the most general pattern in L and iterates through
the generation-evaluation cycle for a number of times that is bounded with re-
spect to both the granularity level l (maxG) and the depth level k (maxD).
2 For the definition of linkedness and connectedness see [22].
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Since AL-QuIn is implemented with Prolog, the internal representation
language inAL-QuIn is a kind of DatalogOI [26], i.e. the subset of Datalog 6=

equipped with an equational theory that consists of the axioms of Clark’s Equal-
ity Theory augmented with one rewriting rule that adds inequality atoms s 6= t to
any P ∈ L for each pair (s, t) of distinct terms occurring in P . Note that concept
assertions are rendered as membership atoms, e.g. a : C becomes c C(a).

3 The OE tool Protégé-2000

Protégé-20003 [7] is the latest version of the Protégé line of tools, created by
the Stanford Medical Informatics (SMI) group at Stanford University, USA. It
has a community of thousands of users. Although the development of Protégé
has historically been mainly driven by biomedical applications, the system is
domain-independent and has been successfully used for many other application
areas as well. Protégé-2000 is a Java-based standalone application to be installed
and run in a local computer. The core of this application is the ontology editor.
Like most other modeling tools, the architecture of Protégé-2000 is cleanly sep-
arated into a model part and a view part. Protégé-2000’s model is the internal
representation mechanism for ontologies and knowledge bases. Protégé-2000’s
view components provide a Graphical User Interface (GUI) to display and ma-
nipulate the underlying model.

Protégé-2000’s model is based on a simple yet flexible metamodel [23], which
is comparable to object-oriented and frame-based systems. It basically can rep-
resent ontologies consisting of classes, properties (slots), property characteristics
(facets and constraints), and instances. Protégé-2000 provides an open Java API
to query and manipulate models. An important strength of Protégé-2000 is that
the Protégé-2000 metamodel itself is a Protégé-2000 ontology, with classes that
represent classes, properties, and so on. For example, the default class in the
Protege base system is called :STANDARD-CLASS, and has properties such
as :NAME and :DIRECT-SUPERCLASSES. This structure of the metamodel
enables easy extension and adaption to other representations.

Using the views of Protégé-2000’s GUI, ontology designers basically create
classes, assign properties to the classes, and then restrict the properties facets at
certain classes. Using the resulting ontologies, Protégé-2000 is able to automati-
cally generate user interfaces that support the creation of individuals (instances).
For each class in the ontology, the system creates one form with editing compo-
nents (widgets) for each property of the class. For example, for properties that
can take single string values, the system would by default provide a text field
widget. The generated forms can be further customized with Protégé-2000’s form
editor, where users can select alternative user interface widgets for their project.
The user interface consists of panels (tabs) for editing classes, properties, forms
and instances.

3 The distribution of interest to this work is 3.0 (February 2005), freely available at
http://protege.stanford.edu/ under the Mozilla open-source license.
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Fig. 2. Architecture of the OWL Plugin for Protégé-2000.

Protégé-2000 has an extensible architecture, i.e. an architecture that al-
lows special-purpose extensions (aka plug-ins) to be easily integrated. These
extensions usually perform functions not provided by the Protégé-2000 standard
distribution (other types of visualization, new import and export formats, etc.),
implement applications that use Protégé-2000 ontologies, or allow configuring
the ontology editor. Most of these plug-ins are available in the Protégé-2000
Plug-in Library, where contributions from many different research groups can
be found. One of the most popular in this library is the OWL Plugin [12].

As illustrated in Figure 2, the OWL Plugin extends the Protégé-2000 model
and its API with classes to represent the OWL specification. In particular it
supports RDF(S), OWL Lite, OWL DL (except for anonymous global class ax-
ioms, which need to be given a name by the user) and significant parts of OWL
Full (including metaclasses). The OWL API basically encapsulates the internal
mapping and thus shields the user from error-prone low-level access. Further-
more the OWL Plugin provides a comprehensive mapping between its extended
API and the standard OWL parsing library Jena4. The presence of a secondary
representation of an OWL ontology in terms of Jena objects means that the
user is able to invoke arbitrary Jena-based services such as interfaces to classi-
fiers, query languages, or visualization tools permanently. Based on the above
mentioned metamodel and API extensions, the OWL Plugin provides several
custom-tailored GUI components for OWL. Also it can directly access DL rea-

4 http://jena.sourceforge.net
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soners such as RACER [8]. Finally it can be further extended, e.g. to support
OWL-based languages like SWRL.

4 The middleware SWing

To enable Semantic Web Mining applications of AL-QuIn we have developed
a software component, SWing, that assists users of AL-QuIn in the design of
Semantic Web Mining sessions. As illustrated in Figure 3, SWing is a middle-
ware because it interoperates via API with the OWL Plugin for Protégé-2000 to
benefit from its facilities for browsing and reasoning on OWL ontologies.

Example 1. The screenshots reported in Figure 4, 5 and 6 refer to a Semantic
Web Mining session with SWing for the task of finding frequent patterns in the
on-line CIA World Fact Book5 (data set) that describe Middle East countries
(reference concept) w.r.t. the religions believed and the languages spoken (task-
relevant concepts) at three levels of granularity (maxG = 3). To this aim we
define LCIA as the set of O-queries with Cref = MiddleEastCountry that can be
generated from the alphabet A= {believes/2, speaks/2} of Datalog binary
predicate names, and the alphabets

Γ 1= {Language, Religion}
Γ 2= {IndoEuropeanLanguage, . . . , MonotheisticReligion, . . .}
Γ 3= {IndoIranianLanguage, . . . , MuslimReligion, . . .}

of ALC concept names for 1 ≤ l ≤ 3, up to maxD = 5. Examples of O-queries
in LCIA are:

Qt= q(X) ← & X:MiddleEastCountry
Q1= q(X) ← speaks(X,Y) & X:MiddleEastCountry, Y:Language
Q2= q(X) ← speaks(X,Y) & X:MiddleEastCountry, Y:IndoEuropeanLanguage
Q3= q(X) ← believes(X,Y)& X:MiddleEastCountry, Y:MuslimReligion

where Qt is the trivial O-query for LCIA, Q1 ∈ L1
CIA, Q2 ∈ L2

CIA, and Q3 ∈ L3
CIA.

Note that Q1 is an ancestor of Q2.
Minimum support thresholds are set to the following values: minsup1 = 20%,

minsup2 = 13%, and minsup3 = 10%. After maxD = 5 search stages, AL-QuIn
returns 53 frequent patterns out of 99 candidate patterns compliant with the
parameter settings. One of these findings is the pattern Q2 which turns out to
be frequent because it has support supp(Q2,BCIA) = 13%. This has to be read
as ’13 % of Middle East countries speak an Indoeuropean language’.

A wizard provides guidance for the selection of the (hybrid) data set to be mined,
the selection of the reference concept and the task-relevant concepts (see Figure
4), the selection of the relations - among the ones appearing in the relational
component of the data set chosen - with which the task-relevant concepts can be
linked to the reference concept in the patterns to be discovered (see Figure 5), the

5 http://www.odci.gov/cia/publications/factbook/
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Fig. 3. Architecture and I/O of SWing.

setting of minimum support thresholds for each level of description granularity
and of several other parameters required by AL-QuIn. These user preferences
are collected in a file (see ouput file *.lb in Figure 3) that is shown in preview
to the user at the end of the assisted procedure for confirmation (see Figure 6).

4.1 A closer look to the I/O

The input to SWing is a hybrid knowledge base that consists of an ontological
data source - expressed as a OWL file - and a relational data source - also
available on the Web - integrated with each other.

Example 2. The knowledge base BCIA for the Semantic Web Mining session of
Example 1 integrates an OWL ontology (file cia exp1.owl) with a Datalog
database (file cia exp1.edb) containing facts6 extracted from the on-line 1996
CIA World Fact Book. The OWL ontology7 contains axioms such as

AsianCountry @ Country.
MiddleEastEthnicGroup @ EthnicGroup.
MiddleEastCountry ≡ AsianCountry u ∃Hosts.MiddleEastEthnicGroup.
IndoEuropeanLanguage @ Language.
IndoIranianLanguage @ IndoEuropeanLanguage.
MonotheisticReligion @ Religion.
MuslimReligion @ MonotheisticReligion.

and membership assertions such as

’IR’:AsianCountry.
’Arab’:MiddleEastEthnicGroup.

6 http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-rel-facts.flp
7 In the following we shall use the corresponding DL notation
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Fig. 4. SWing: step of concept selection.

<’IR’,’Arab’>:Hosts.
’Persian’:IndoIranianLanguage.
’ShiaMuslim’:MuslimReligion.
’SunniMuslim’:MuslimReligion.

that define taxonomies for the concepts Country, EthnicGroup, Language and
Religion. Note that Middle East countries (concept MiddleEastCountry) have
been defined as Asian countries that host at least one Middle Eastern ethnic
group. In particular, Iran (’IR’) is classified as Middle East country.

Since Cref=MiddleEastCountry, the Datalog database is partitioned ac-
cording to the individuals of MiddleEastCountry. In particular, the observation
(q(’IR’),AIR) contains Datalog facts such as

language(’IR’,’Persian’,58).
religion(’IR’,’ShiaMuslim’,89).
religion(’IR’,’SunniMuslim’,10).

concerning the individual ’IR’.

The output file *.db contains the input Datalog database eventually en-
riched with an intensional part. The editing of derived relations (see Figure 7)
is accessible from the step of relation selection (see Figure 5).
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Fig. 5. SWing: step of relation selection.

Example 3. The output Datalog database cia exp1.db for Example 1 enriches
the input Datalog database cia exp1.edb with the following two clauses:

speaks(CountryID, LanguageN)← language(CountryID,LanguageN,Perc),
c Country(CountryID), c Language(LanguageN)

believes(CountryID, ReligionN)←religion(CountryID,ReligionN,Perc),
c Country(CountryID), c Religion(ReligionN)

that define views on the relations language and religion respectively. They
represent the intensional part of ΠCIA.

The output file *.lb contains the declarative bias specification for the language
of patterns and other directives.

Example 4. With reference to Example 1, the content of cia exp1.lb (see Fig-
ure 6) defines - among the other things - the language LCIA of patterns. In
particular the first 5 directives define the reference concept, the task-relevant
concepts and and the relations between concepts.

The output files *.abox n and *.tbox are the side effect of the step of concept
selection as illustrated in the next section. Note that these files together with the
intensional part of the *.db file form the background knowledge K for AL-QuIn.

4.2 A look inside the step of concept selection

The step of concept selection deserves further remarks because it actually ex-
ploits the services offered by Protégé-2000. Indeed it also triggers some supple-
mentary computation aimed at making a OWL background knowledge Σ usable
by AL-QuIn. To achieve this goal, it supplies the following functionalities:
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Fig. 6. SWing: preview of the language bias specification.

– levelwise retrieval w.r.t. Σ
– translation of both (asserted and derived) concept assertions and subsump-

tion axioms of Σ to DatalogOI facts

The latter relies on the former, meaning that the results of the levelwise retrieval
are exported to DatalogOI (see output files *.abox n and *.tbox in Figure 3).
The retrieval problem is known in DLs literature as the problem of retrieving all
the individuals of a concept C [1]. Here, the retrieval is called levelwise because
it follows the layering of T : individuals of concepts belonging to the l-th layer
T l of T are retrieved all together.

Example 5. The DatalogOI rewriting of the concept assertions derived for T 2

produces facts like:

c AfroAsiaticLanguage(’Arabic’).
. . .
c IndoEuropeanLanguage(’Persian’).
. . .
c UralAltaicLanguage(’Kazak’).
. . .
c MonotheisticReligion(’ShiaMuslim’).
c MonotheisticReligion(’SunniMuslim’).
. . .
c PolytheisticReligion(’Druze’).
. . .

that are stored in the file cia exp1.abox 2.
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Fig. 7. SWing: editing of derived relations.

The file cia exp1.tbox contains a DatalogOI rewriting of the taxonomic
relations of T such as:

hierarchy(c Language,1,null,[c Language]).
hierarchy(c Religion,1,null,[c Religion]).

for the layer T 1 and

hierarchy(c Language,2,c Language,
[c AfroAsiaticLanguage, c IndoEuropeanLanguage, . . .]).

hierarchy(c Religion,2,c Religion,
[c MonotheisticReligion, c PolytheisticReligion]).

for the layer T 2 and

hierarchy(c Language,3,c AfroAsiaticLanguage,[c AfroAsiaticLanguage]).
. . .
hierarchy(c Language,3,c IndoEuropeanLanguage,

[c IndoIranianLanguage, c SlavicLanguage]).
hierarchy(c Language,3,c UralAltaicLanguage,[c TurkicLanguage]).
hierarchy(c Religion,3,c MonotheisticReligion,

[c ChristianReligion, c JewishReligion, c MuslimReligion]).

for the layer T 3.
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Note that the translation from OWL to DatalogOI is possible because we
assume that all the concepts are named. This means that an equivalence ax-
iom is required for each complex concept in the knowledge base. Equivalence
axioms help keeping concept names (used within constrained Datalog clauses)
independent from concept definitions.

5 Conclusions and future work

The middleware SWing represents a practical step towards Semantic Web Min-
ing considered as a testbed for inductive reasoning on the Semantic Web. It
follows engineering principles because it promotes:

– the reuse of existing systems (AL-QuIn and Protégé-2000)
– the adherence to standards (either normative - see OWL for the Semantic

Web - or de facto - see Prolog for ILP)

Furthermore the resulting artifact overcomes the capabilities of the two systems
when considered stand-alone. In particular, AL-QuIn was originally conceived
to deal with ALC ontologies. Since OWL is equivalent to SHIQ and ALC is a
fragment of SHIQ, the middleware SWing allows AL-QuIn to deal with more
expressive ontological background knowlege.

The middleware SWing supplies several facilities to AL-QuIn, primarily fa-
cilities for compiling DL-based background knowledge down to the usual Datalog-
like formalisms of ILP systems. In this respect, the pre-processing method pro-
posed by Kietz [11] to enable legacy ILP systems to work within the framework
of the hybrid KR&R system CARIN [14] is related to ours but it lacks an ap-
plication. Analogously, the method proposed in [10] for translating OWL to
disjunctive Datalog is far too general with respect to the specific needs of our
application.

For the future we plan to extend SWing with facilities for extracting informa-
tion from semantic portals and for presenting patterns generated by AL-QuIn.
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Fuzzy Time Intervals

System Description of the FuTI–Library
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Abstract. The FuTI–library is a collection of classes and methods for
representing and manipulating fuzzy time intervals. Fuzzy time intervals
are represented as polygons over integer coordinates. FuTI is an open
source C++ library with many advanced operations and highly optimised
algorithms. Version 1.0 is now available from the URL
http://www.pms.ifi.lmu.de/CTTN/FuTI.

1 Fuzzy Time Intervals

Many temporal notions used in everyday life have a deliberate imprecise mean-
ing. For example, if I say in the morning “tonight I’ll go to the disco”, and
somebody asks me “will you go to the disco at 8 pm?” I may neither want to
say “yes” nor may I want to say “no”. As another example, consider a database
with, say, a cinema timetable. If you query the timetable “give me all perfor-
mances ending before midnight”, do you really want to exclude a performance
ending just one minute after midnight? I think, not. One could solve this problem
by giving the ‘before’ relation a fuzzy meaning, such that performances ending
before midnight get a fuzzy value 1, and performances ending after midnight
get a fuzzy value which decreases the later the performance ends. In the CTTN
system [1] (Computational Treatment of Temporal Notions) which is currently
under development, one can define such relations. One of the key modules in
this system is the FuTI libraray.

Fuzzy Intervals are usually defined through their membership functions. A
membership function maps a base set to a real number between 0 and 1. This
“fuzzy value” denotes a kind of degree of membership to a fuzzy set S. The base
set for fuzzy time intervals is the time axis. In FuTI it is represented by the set R

of real numbers. Real numbers allow us to model the continuous time flow which
we perceive in our life. A fuzzy time interval in FuTI is now a fuzzy subset of
the real numbers.

A typical fuzzy interval may look like:

-

6

R
0

1

Party Time

6pm 7pm 10pm 12pm 2am 3am



This set may represent a particular party time, where the first guests arrive
at 6 pm. At 7 pm all guests are there. Half of them disappear between 10 and
12 pm (because they go to the pub next door to watch an important soccer
game). Between 12 pm and 2 am all of them are back. At 2 am the first ones
go home, and finally at 3 am all are gone. The fuzzy value indicates in this case
the number of people at the party.

Fuzzy intervals in FuTI may be infinite, but the membership must be constant
from certain time onwards.

2 Data Structures and Algorithms

There are four basic data types: time points, fuzzy values, fuzzy temporal inter-
vals and y-functions.

Time Points: The time points are points on the R-axis. Arbitrary real numbers
cannot be represented on computers. The choice is therefore between floating
point numbers and integers as representation of time points. The range of float-
ing point numbers is much higher than the range of integers. Unfortunately, al-
gorithms operating on floating point numbers are prone to uncontrollable round-
ing errors. Therefore the FuTI–library represents time with integer coordinates.
There is no assumption about the meaning of these integers. They may be years,
seconds, picoseconds or even cycles of the Caesium 133 light. The system can
use two types of integers, 64 bit long integers, and multiple precision integers
from the GMP library (http://www.swox.com/gmp).

Fuzzy Values: Fuzzy values are usually real numbers between 0 and 1. A first
choice would therefore be to use floating point numbers for the fuzzy values.
Again, floating point numbers are prone to rounding errors. Moreover, compu-
tation with floating point numbers is more expensive than computation with
integers. Therefore FuTI uses again integers instead of floating point numbers.
This means of course that one cannot represent the fuzzy value 1 as the integer
1. We could then use just 0 and 1 and no other fuzzy value. Instead one better
represents the fuzzy value 1 as a suitable unsigned integer of a certain bit size.
Since fuzzy values are estimates only anyway, 16 bit unsigned integer (unsigned
short int in C) are precise enough for fuzzy values.

Fuzzy Time Intervals: Fuzzy intervals are usually implemented by a repre-
sentation of their membership functions. Arbitrary membership functions are
almost impossible to represent precisely on a computer. A natural choice for
realizing approximated fuzzy time intervals over integer time and integer fuzzy
values is the representation with envelope polygons over integer coordinates. This
has a number of advantages: the representation is compact and can nevertheless
approximate the membership functions very well; simple structures, like crisp
intervals, have a simple representation; we can use ideas and algorithms from
Computational Geometry, there are very efficient algorithms for most of the
problems, and it is clear where rounding errors can occur, and where not.
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3 The Class Hierarchy

The data structures are organised in the following hierarchy:

FuTI::FuTITop

FuTI::Interval FuTI::Operation FuTI::Point

FuTI::YFunction

FuTI::BinaryYFunction FuTI::UnaryYFunction

FuTI::SDGoedel FuTI::SDKleene FuTI::SDLukasiewicz FuTI::TCoNorm FuTI::TNorm FuTI::NegationYFunction

FuTI::HamacherCoNorm FuTI::HamacherNorm FuTI::lambdaComplement

3.1 Point

The class ‘Point’ represents 2D points with integer coordinates. These points
form the vertices of the envelope polygons for fuzzy sets. Since two points de-
termine a line segment, all the algorithms for line segments are also contained
in ‘Point’. The algorithms range from simple ‘leftturn’ tests up to integration
over two multiplied linear functions, where the linear functions are determined
by two lines.

3.2 Interval

This is the most important class in the FuTI–library. It contains the represen-
tation of fuzzy intervals as polygons. There are two types of operations on these
polygons. The first type consists of some dozens of ‘hardwired’ operations which
transform the fuzzy sets in a certain way. Computing three different types of
hulls (monotone, convex and crisp hull) is an example. Multiplying a crisp or
fuzzy interval with a linear or Gaussian distribution is another example. Fur-
ther operations are, for example, normalised integrations over the membership
functions, from past to future and the other way round.

The second type are parameterised operations on fuzzy intervals where the
parameters themselves are operations on membership functions (called Y-functions
in FuTI).

An example for a unary transformation of a fuzzy interval is the complement
operation, which is defined by a negation function on the membership function.
The so-called λ-complement nλ(y)=def 1−y

1+λy
function can be used for this purpose.

The function nλ is then a parameter to a ‘unary-transformation’ operation (left
picture in Fig. 1).

More complex combinations of these transformation functions can compute,
for example, a fuzzified point–interval ‘before’ relation (right picture in Fig. 1).
F (I) (the dotted line in this picture) is a fuzzified and extended version of the
interval I where a Gaussian distribution is multiplied with I. C is a complement
operation. The result, C(F (I)) gives for every time point t the fuzzy value for ‘t
is before I’.

Besides unary transformations, there is also a function ‘binary–transformation’
on intervals, which is parameterised by a function that takes two fuzzy values as
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input and computes a new fuzzy value. Set operations like union or intersection,
which are determined by so-called T-Norms and T-Conorms are examples for
binary transformations.

A particular binary transformation is the (normalised) integration over mul-
tiplied membership functions. A definition of a fuzzy interval–interval ‘before’
relation as the weighted average over the point–interval ‘before’ relation B(J)
could be beforeB(I, J)=def

∫

I(t) · B(J)(t) dt/|I| which is computed by a suitable
binary transformation function. B(J) could be a fuzzy interval where for each
point t, B(J)(t) indicates the degree of ‘beforeness’ between t and the inter-
val J . Some of the transformations are non-linear, i.e. they turn straight lines
into curves. The algorithms in FuTI approximate the curves automatically with
sufficiently dense polygons.

3.3 Operation

This class is the top class for all unary and binary Y-functions and other oper-
ations on intervals. The subclasses of ‘Operation’ implement a standard reper-
toire of Y-functions. New Y-functions can easily be added by adding further
subclasses of the class ‘YFunction’. The classes ‘SDGoedel’, ‘SDKleene’ and ‘SD-
Lukasiewicz’ implement binary Y-functions which realise three different types of
fuzzy set difference operations.

-
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The classes ‘TCoNorm’ and ‘TNorm’,
with their subclasses ‘HamacherCoNorm’
and ‘HamacherNorm’ are used for real-
ising fuzzy union and intersection oper-
ations. The picture below illustrates the
operations. The class ‘UnaryYFunction’
has, so far, only subclasses for standard
and lambda-complement.
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4 Summary

The FuTI-library is a component of the CTTN-system (Computational Treat-
ment of Temporal Notions) [1], a program for evaluating temporal expressions
like ‘three weeks after Easter’. CTTN is currently under development. CTTN
contains in particular the specification language GeTS for specifying and work-
ing with temporal notions [3]. Many of the language primitives in GeTS are
the operations of the FuTI–library. Other language primitives in GeTS use the
PartLib–library for representing periodical temporal notions [4]. GeTS is in par-
ticular suitable for specifying fuzzy relations between fuzzy time intervals [5, 2].
Therefore FuTI is only one piece in a bigger mosaic. Some of the design decisions
in FuTI are motivated by the needs of the GeTS language. Nevertheless the API
for FuTI is general enough to be useful also for other applications.
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Abstract. The paper presents a prototype implementation of a descrip-
tive type system for the XML query language Xcerpt. Its intended appli-
cation is finding (a certain kind of) errors in programs. The implemen-
tation is able to check correctness of an Xcerpt program with respect to
a type specification. A type specification describes a set of possible data
bases to which the program is to be applied and an expected set of re-
sults. Program correctness means that all its results are in the expected
set. Failure of a correctness check suggests an error in the program. Un-
der certain conditions such failure indeed means that the program is
incorrect.
Current implementation works for a restricted, but interesting subset
of Xcerpt. The system provides (approximations of) the set of program
results and the sets of values of program variables; this information is
useful for programmers (and is produced even when the specification of
the expected set of results is not given).

1 Introduction

This paper presents a prototype implementation of a descriptive type system
for the XML query language Xcerpt [6,5]. The type system has been presented
in [8,1,2,3,7]. The prototype, called here typechecker, implements a method for
computing the type of results of an Xcerpt program given a type of documents
which are queried. If additionally a user provides a specification of an expected
result type of a program, the typechecker can prove the program correctness
wrt. the specification or warn about a possible error. Similarly as in Xcerpt
we use data terms as an abstraction of XML data. In our approach types are
sets of data terms. To specify types we use a formalism of Type Definitions [1].
Additionally, our typechecker supports type specifications given by DTD’s [9]
which are translated into Type Definitions.

The prototype is restricted to the fragment of Xcerpt covered by our type
system defined in [7]. It is still under development and the goal is to extend it to-
wards the full Xcerpt. A simplified version of Xcerpt handled by the typechecker
deals with basic and the most important Xcerpt constructs. An important simpli-
fication is that our data terms represent trees while in full Xcerpt terms are used



to represent graphs (by adding unique identifiers to some tree nodes and intro-
ducing nodes which are references to these identifiers). Other neglected Xcerpt
features in respect to the Xcerpt version described in [6,5] are: functions and
aggregations, non-pattern conditions, optional subterms, position specifications,
negation, regular expressions and label variables. Moreover, our typechecker is
restricted to Xcerpt programs consisting only of one query rule.

The typechecker has been added as an extension to the Xcerpt prototype
written in the functional language Haskell. Xcerpt runtime system together with
its type system can be accessed online via the link http://www.ida.liu.se/
∼artwi/XcerptT. The website contains also some examples illustrating usage of
the type system.

The rest of the paper is organised as follows. Section 2 describes usage of the
type system prototype. Section 3 presents possible application of the type system
together with simple scenario examples. Finally, Section 4 discusses directions
for future work.

2 Usage of the Prototype

This section uses notation where square brackets [ ] and strings enclosed by
triangle parentheses <...> belong to a metalanguage: [ ] represents optional part
and <...> is a nonterminal which can be replaced with a string without spaces.

The type system is invoked like the standard Xcerpt run-time system (i.e.
executing xcerpt or xcerpt.exe). To perform type checking (or type inference)
of a program a parameter -t is used:

xcerpt -t <program file> [<type specification>]

The typing mechanism can also be invoked using the interactive Xcerpt com-
mand mode with the command:

:type <program file> [<type specification>]

In the abovementioned commands <program file> is a name of a file containing
an Xcerpt program consisting of one query rule and <type specification> is a
name of a text file specifying the types of resources3 which are queried and the
types of expected results. A <type specification> file may contain:

– a Type Definition i.e. rules defining types,
– one or more input type specifications,
– one output type specification.

The input type specification has the syntax:

Input::
[ resource = <resource URI> ]
[ typedef = <typedef location> ]
typename = <type name>

3 A resource corresponds to a database db in a targeted query term in(db, q) from [1].
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and the output type specification has the syntax:

Output::
[ typedef = <typedef location> ]
typename = <type name>

where

– <resource URI> is an URI of the resource being queried whose type we
specify. If the parameter resource is omitted the input type specification
specifies a type of every resource occurring in the <program file> whose type
was not specified (overridden) by other input type specification. A <type
specification> can contain at most one input type specification without the
parameter resource.

– <typedef location> is a URI of an external file containing a Type Definition
(or DTD). If the the parameter typedef is omitted the input or output type
specification refers to the local Type Definition i.e. specified in the current
<type specification> file.

– <type name>, if used in an input type specification, is a type name specifying
the type of the resource the specification refers to. If it is used in an output
type specification it is a type name specifying the result type of the program.
It can be the most general type Top or a type name which is defined in the
Type Definition or the DTD the input or output type specification refers
to. If the specification refers to a DTD then a type name can be one of the
element names declared in the DTD.

A syntax of a Type Definition in the typechecker is slightly different than
the one used in [8,1,7]. The difference is that the rules defining types do not use
quotation marks to denote basic constants [1].

Example 1. This is an example of a <type specification> file books.xts:

Books -> books[ Book* ]
Book -> book[ Title Author+ Editor+ ]
Title -> title[ Text ]
Author -> author[ P ]
Editor -> editor[ P’ ]
P -> person[ S ]
P’ -> person[ F? S? ]
Person -> person[ F+ S ]
F -> firstname[ Text ]
S -> surname[ Text ]
Result -> result[ Person+ ]

Input::
resource = file:books.xml
typename = Books
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Output::
typename = Result

Invoking the typing mechanism (e.g. with command xcerpt -t <program
file> <type specification>) starts the process of type inference for the query
rule. The type inference is done using the types of resources given by input
type specifications. If the type of a resource is not specified by any input type
specification it is assumed to be the most general type Top (which can be seen
as a default type of a resource). After the type of results for the query rule has
been inferred it is checked whether it is included in the corresponding output
type (specified by the output type specification). If the corresponding output
type is Top type checking is needless i.e. type inference is only performed. If
the output type specification is missing the specified output type is assumed to
be Top. Invoking the typing mechanism without <type specification> parameter
has the same effect as invoking it with an empty <type specification> file.

As a result of typing an Xcerpt program we get a printout containing:

– information whether type checking or only type inference was performed
with the result of type checking (if it was performed),

– the inferred result type,
– variable type mappings for variables occurring in the query rule,
– a Type Definition defining the inferred type, the specified result type and

types of resources.

For types being intersections of other types their content models are provided
by DFA’s (Deterministic Finite Automata) instead of regular type expressions.
(Regular expressions and DFA’s are equivalent formalisms [4].) The intersection
of regular languages is computed by constructing a product automaton of DFA’s
representing the languages. Transformation of a DFA to a regular expression is
of exponential time complexity, and the resulting expression is often complicated
and hard to understand. That is why we decided not to perform this transfor-
mation.

A DFA representing an intersection of regular languages is presented by de-
scriptions of all its states. Each such a description is of the form Si => a1 > Ski1
. . . an > Skin , where Si is the number of the state being described, a1, . . . , an

are the symbols of the alphabet on which the DFA is defined and each Skij
is

the number of the state reached from the state Si by reading the symbol aj .
Additionally, the number of the state being described may be preceded by the
character ’>’ which denotes the initial state or it may be followed by the char-
acter ’!’ which denotes a final state. This is an example of a DFA corresponding
to the language defined by a regular expression AF ∗:

0 => A>0 F>0
>1 => A>2 F>0
2! => A>0 F>2
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A name given by the system for a type being the intersection of types T1,T2

is T1^T2. The type checker also invents type names for the newly inferred types.
The devised new type names are the labels of the corresponding construct terms
occurring in heads of query rules. If there is a need to define a type with a type
name which has already been used the new type name is augmented with an
index i.e. a number added at the end of the type name (underscore separated).
If a type name with a given index already exists the new type name has the
index increased by 1.

Example 2. Here we present a printout being a result of typing the following
Xcerpt program:

CONSTRUCT
result [ all var X ]

FROM
in {
resource { "file:books.xml" },
books {{
book {{
title [ var Y ],
author [ var X ],
editor [ var X ]

}}
}}

}
END

A type specification for the program is given by books.xts file from the previous
example. The obtained printout is:

==============================================
Type checking ... FAILED
----------------------------------------------
Result type: result (not a subset of Result)

----------------------------------------------
Variable-type mappings:
----------------------------------------------
Y->Text, X->P^P’

==============================================
Type Definition:
----------------------------------------------
result -> result[ P^P’+ ]
Books -> books[ Book* ]
Book -> book[ Title Author+ Editor+ ]
Title -> title[ Text ]
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Author -> author[ P ]
Editor -> editor[ P’ ]
P -> person[ S ]
P’ -> person[ F? S? ]
Person -> person[ F+ S ]
F -> firstname[ Text ]
S -> surname[ Text ]
Result -> result[ Person+ ]
P^P’ -> person[
0 => S>0
>1 => S>2
2! => S>0
]
==============================================

The printout points out that the type result is not a subset of the type Result.
This is because the type P^P’, whose content model corresponds to the regular
expression S, is not a subset of the type Person.

The typechecker can be used online, at http://www.ida.liu.se/∼artwi/
XcerptT. Figure 1 presents a screen shot of the user interface which can be
used more conveniently than the presented command line user interface. The
online interface includes two main text areas which are used to edit an Xcerpt
program and a type specification. The typechecker can be executed by pressing
the button Type Program. Then a printout containing a result of typing appears
at the bottom of the screen in the section Result of last Evaluation.

3 Application of the Type System

This section describes main purposes of the type system. Then we present two
simple scenarios illustrating the way the presented type system can be helpful
for programmers using Xcerpt for querying Web data. The main purposes for
which the type system can be used are:

– Type inference. An approximation (a superset) of the set of a program
results can be computed given a type for each database to which the program
refers. These are the ways it can be helpful for a user:
• A programmer can check manually if the inferred result type conforms

to his/her expectations. He/she may also check if the inferred types of
variables are as expected.

• Emptiness of the inferred result type of a program suggests an error as
the program will never give any results.

• An inferred program result type can be used for documentation of the
program.

– Checking type correctness. Given a specification of a result type for a
program it can be checked whether the inferred result type is included in the
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Fig. 1. Online user interface of the typechecker.

specified one. A success of such inclusion check is a proof of type correctness
of the program. In general, a typechecking failure suggests a possibility of a
type error. However, such a failure is a proof of an unquestionable type error
for the restricted form of Xcerpt programs and Type Definitions described
in [7] (Section 4.3.6).

3.1 Use Cases

Here we show simple scenarios illustrating the usage of the typechecker. The
presented examples can be found and typechecked at http://www.ida.liu.se/
∼artwi/XcerptT.

Music store We consider a simple Xcerpt program:
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CONSTRUCT
result [
all entry [
var ARTIST,
all var TITLE

]
]

FROM
in { resource [ "file:cds.xml" ],
bib {{
cd [[ var TITLE, var ARTIST, "Pop" ]]

}}
}

END

The program queries the document cds.xml. It is intended to extract titles
and artists of the Cd’s of the pop category. Then it should produce a result with
entries containing an artist and a list of all his/her Cd titles. We assume that a
type of the document cds.xml and a type of intended query results are given by
the following type specification:

Cds -> bib[ Cd* ]
Cd -> cd[ Title Artist+ Category? ]
Title -> title[ Text ]
Artist -> artist[ Text ]
Category -> pop | rock | classic

Result -> result[ Entry* ]
Entry -> entry[ Artist Title+ ]

Input::
resource=file:cds.xml
typename=Cds

Output::
typename=Result

As a result of typing the program we obtain the following printout:

==============================================
Type checking ... FAILED: empty result type
----------------------------------------------
Result type: 0
----------------------------------------------
Variable-type mappings:
----------------------------------------------
0
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==============================================
Type Definition:
----------------------------------------------
Cds -> bib[ Cd* ]
Cd -> cd[ Title Artist+ Category? ]
Title -> title[ Text ]
Artist -> artist[ Text ]
Category -> pop | rock | classic
Result -> result[ Entry* ]
Entry -> entry[ Artist Title+ ]
==============================================

The printout says that the typing of the program has failed. Formally, the
program is not incorrect w.r.t. the result type specification. However the obtained
result type is empty. This indicates that the program will not give any results
when applied to a document of type Cd. This clearly suggests an error. The error
is a typo in the query term cd [[...]] as Pop is written with a capital letter while
the type specification requires pop.

We correct the program changing Pop into pop and run the typechecker
again. We obtain the following printout:

==============================================
Type checking ... FAILED
----------------------------------------------
Result type: result (not a subset of Result)

----------------------------------------------
Variable-type mappings:
----------------------------------------------
TITLE->Artist, ARTIST->Artist
TITLE->Title, ARTIST->Artist

==============================================
Type Definition:
----------------------------------------------
result -> result[ entry+ ]
entry -> entry[ Artist (Artist|Title)+ ]
Cds -> bib[ Cd* ]
Cd -> cd[ Title Artist+ Category? ]
Title -> title[ Text ]
Artist -> artist[ Text ]
Category -> pop | rock | classic
Result -> result[ Entry* ]
Entry -> entry[ Artist Title+ ]
==============================================
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This time the inferred result type is not empty but type checking has failed
again. This is because the inferred result type result is not a subset of the
specified result type Result which is a consequence of the fact that type entry is
not a subset of type Entry. To build data terms of type entry we use the variable
TITLE which can be either of type Title or Artist. However, in order for data
terms entry [...] to be of type Entry the variable TITLE can be only bound to
data terms of type Title. This means that in order to correct the query rule we
need to restrict the variable TITLE in the body of the rule such that it is only
bound to data terms of type Title. This is reflected by the following program:

CONSTRUCT
result [
all entry [
var ARTIST,
all var TITLE

]
]

FROM
in { resource [ "file:cds.xml" ],
bib {{
cd [[ var TITLE -> title{{}}, var ARTIST, "pop" ]]

}}
}

END

As a result of typechecking for the program we obtain the following printout
which shows that the program is correct wrt. the type specification.

==============================================
Type checking ... OK
----------------------------------------------
Result type: result
----------------------------------------------
Variable-type mappings:
----------------------------------------------
TITLE->Title, ARTIST->Artist

==============================================
Type Definition:
----------------------------------------------
result -> result[ entry+ ]
Cds -> bib[ Cd* ]
Cd -> cd[ Title Artist+ Category? ]
Title -> title[ Text ]
Artist -> artist[ Text ]
Category -> pop | rock | classic
Result -> result[ entry* ]
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entry -> entry[ Artist Title+ ]
==============================================

Book store Here we consider a program which queries a document representing
a book store:

CONSTRUCT
results [

attr{},
all result [ attr{}, var X, all var Y]

]
FROM
in {
resource {"file:bib.xml"},
bib {{
book {{var X -> author {{}},

var Y -> title {{}}
}}

}}
}
END

This example of a query is similar to the one from the previous scenario.
However, this time we specify types using DTD’s instead of a Type Definition.
This is a type specification for the program:

Input::
resource=file:bib.xml
typename=bib
typedef=http://www.ida.liu.se/~artwi/xcerpt-schema/bib.dtd

Output::
typename=results
typedef=http://www.ida.liu.se/~artwi/xcerpt-schema/bibR.dtd

This is the content of the file bib.dtd :

<!ELEMENT bib (book* )>
<!ELEMENT book (title, (author+ | editor+ ), publisher, price )>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first )>
<!ELEMENT editor (last, first, affiliation )>
<!ELEMENT title (#PCDATA )>
<!ELEMENT last (#PCDATA )>
<!ELEMENT first (#PCDATA )>
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<!ELEMENT affiliation (#PCDATA )>
<!ELEMENT publisher (#PCDATA )>
<!ELEMENT price (#PCDATA )>

This is the content of the file bibR.dtd :

<!ELEMENT results (result* )>
<!ELEMENT result (author, title* )>
<!ELEMENT author (last, first )>
<!ELEMENT title (#PCDATA )>
<!ELEMENT last (#PCDATA )>
<!ELEMENT first (#PCDATA )>

The printout from the typechecker for the program is:

==============================================
Type checking ... OK
----------------------------------------------
Result type: results_1
----------------------------------------------
Variable-type mappings:
----------------------------------------------
X->author, Y->title

==============================================
Type Definition:
----------------------------------------------
results_1 -> results[ &NoAttr result_1+ ]
result_1 -> result[ &NoAttr author title+ ]
bib -> bib[ &NoAttr book* ]
book -> book[ &book title (author+|editor+) publisher price ]
&book_year -> year{ Text }
&book -> attr{ &book_year }
editor -> editor[ &NoAttr last first affiliation ]
affiliation -> affiliation[ &NoAttr Text ]
publisher -> publisher[ &NoAttr Text ]
price -> price[ &NoAttr Text ]
results -> results[ &NoAttr result* ]
result -> result[ &NoAttr author title* ]
author -> author[ &NoAttr last first ]
title -> title[ &NoAttr Text ]
last -> last[ &NoAttr Text ]
first -> first[ &NoAttr Text ]
&NoAttr -> attr{ }
==============================================
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It says that the program is correct w.r.t. the type specification. It also
presents the Type Definition corresponding to DTD’s used in the type speci-
fication.

4 Future work

Further development of the type system prototype will address the following
issues:

– Handling the full Xcerpt. Currently the prototype handles a fragment of
Xcerpt. Assuming a most general type for constructs where no other type
information can be inferred will make it possible to extend the presented
techniques to full Xcerpt.

– Implementation of the techniques presented in [7] to handle multiple rule
programs and to check type correctness of recursive programs.

– Location of a type error. The presented type system is able to check whether
an error is possible, but it does not locate the error in the program. The pro-
grammer’s role is to locate the actual error. An important issue is what addi-
tional information should be presented to the programmer to assist him/her
in this task. The current prototype provides inferred types of variables. An-
other idea is to provide an example of a query rule result which is not in-
tended by a user i.e. an example of a result which is not of the specified
result type.

– A user should be given information whether the inferred result type is exact
or it is an approximation. If the inferred type is exact then failure of type
checking implies that the program is indeed incorrect.

– Several improvements outlined in [7,3], for instance those allowing computing
more precise types, will be implemented.
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