

Knut Hinkelmann
Dimitris Karagiannis

Nenad Stojanovic
Gerd Wagner

(Editors)

Proceeding of the Workshop on
Semantics for Business Process Management

Workshop at the 3rd European Semantic Web Conference
11 June 2006, Budva

Content

Automatic User Support for Business Process Modeling 1
Stefanie Betz, Stefan Klink, Agnes Koschmider, and Andreas Oberweis

Integrating Semantic Web Services and Business Process Management: A Real Use Case 13
Christian Drumm, Jens Lemcke, and Kioumars Namiri

Expressing SemanticWeb Service Behavior using Description Logics 28
Markus Fronk and Jens Lemcke

POVOO – Process Oriented Views On Ontologies 40
Eva Gahleitner, Wolfram Wöß

Modeling Web Services with URML 51
Adrian Giurca, Sergey Lukichev, and Gerd Wagner

m3pl: A Work-FLOWS ontology extension to extract choreography interfaces 62
Armin Haller and Eyal Oren

Process Ontologies Facilitating Interoperability in eGovernment - A Methodological Framework 76
Timo Herborn, Maria Wimmer

Semantic Reference- and Business Process Modeling enables an Automatic Synthesis 89
Florian Lautenbacher, Bernhard Bauer

Towards Business Level Verification of Cross-Organizational Business Processes 101
Kioumars Namiri, Nenad Stojanovic

Adaptive technologies to address operational complexity in highly configurable value chains 113
Ray Richardson, Aidan Boran

Semantic Event-driven Process Chains 125
Oliver Thomas, Michael Fellmann

Automatic User Support
for Business Process Modeling

Stefanie Betz, Stefan Klink, Agnes Koschmider, and Andreas Oberweis

Institute of Applied Informatics and Formal Description Methods
Universität Karlsruhe (TH), Germany

{betz,klink,koschmider,oberweis}@aifb.uni-karlsruhe.de

Abstract. The main purpose of business process modeling is the repre-
sentation and analysis of alternative process designs by formal or semi-
formal process models. Manual modeling of business processes is a time-
consuming task. Typos and structural modeling errors make it particu-
larly error prone to model business processes manually. Users can be
assisted in modeling business processes by providing an autocompletion
mechanism during the modeling process. In this paper we will describe
on-going work for autocompletion of business process models. This app-
roach is based upon an OWL DL description of Petri nets. Our au-
tocompletion mechanism requires validation methods to check process
properties of the automatically completed business process, which we
will introduce as well. Consequently, we aim to improve manual process
modeling by automating process modeling to a significant extent.

1 Introduction

The main purpose of business process modeling is the representation and analy-
sis of alternative process designs by formal or semiformal process models. Many
modeling languages – most of them being based on textual programming lan-
guages or graphical notations such as Petri nets [20], EPCs [23] or BPMN [27] –
have been proposed for process modeling. Novel orchestration- and choreography
languages such as BPEL [1] focus on tracking and executing business processes
by business applications. To enable verification of BPEL [8] proposes a Petri
net semantics. Petri nets have been established as a suitable language for mo-
deling business processes with intuitive graphical notation. Furthermore, Petri
nets have a mathematical foundation, which enables simulation and analysis of
system behavior.

In this paper we will describe on-going work for autocompletion of Petri
net based business process models. Manual modeling of business processes is a
time-consuming task. Typos and structural modeling errors make it particularly
error prone to model business processes manually. Users can be assisted in mo-
deling business processes by providing an autocompletion function during the
modeling process. However, process element names might differ in syntax even
when they have the same meaning (homonyms) or one process can be modeled
in different ways even when utilizing the same modeling language. It is possible

1

that these process elements will not be suggested as fitting elements to provide
autocompletion.

To solve ambiguity issues caused by the use of different names for descri-
bing the same tasks a machine readable and interpretable format, which might
be used for machine reasoning, is required for Petri nets. Business processes
modeled with Petri nets can be translated into the Web Ontology Language
OWL [17], an unambiguous format which allows ontological reasoning. So-called
semantic business process models combine process modeling methods with se-
mantic technologies to achieve automatic processing of business process models
instead of manual processing. We will use a semantic description of Petri nets to
make it easier to find appropriate process templates (reference processes), which
can be proposed for autocompletion. During the modeling process, a recommen-
dation mechanism determines possible subsequent fragments of all templates by
computing similarities. If the system detects a high similarity between one ele-
ment of a template and a modeling element, then subsequent elements of this
element template are proposed for autocompletion. To ensure correct process
flow behavior the system has additionally to check properties such as deadlock-
freeness.

The structure of this paper is as follows. Firstly, we will recall the main no-
tions of Petri nets and a semantic description of Petri nets with OWL DL. In
Section 3 we will describe an approach for measuring similarity between semantic
business process models by utilizing syntactic-, linguistic- and structural simi-
larity measurements. To validate process behavior properties we will illustrate
analysis methods in Section 4. Modeler’s behavior can be observed and learned
with machine learning techniques, which we will briefly survey in Section 5.
Section 6 concludes the paper with an outlook on future research.

2 Foundations

Next subsection introduces Petri net notation and Petri net modeling of business
processes.

2.1 Petri nets

Petri nets are a graphical language and a formalism used to model business
processes and verify system behavior. Formally, a Petri net is a directed bipartite
graph with nodes and arcs. It can be described by the triple N = (P, T, F),
where P is a set of places, T is a set of transitions (which is disjoint from P)
and F ⊆ (P × T) ∪ (T × P) is a flow relation. Elements of P are graphically
represented as circles, elements of T as boxes and elements of F as directed
arcs between places and transitions. A place p is an input place of a transition
t, if there exists a directed arc from p to t. A place p is an output place of a
transition t, if there exists a directed arc from t to p. The set of all input places
of a transition t is denoted by •t and is called preset. The set of all output places
is denoted by t• and is called postset.

2

Numerous Petri net variants have been proposed, which can be subsumed
in elementary or high-level Petri nets. In elementary Petri nets places contain
tokens, which represent anonymous objects. A transition t is enabled to change
the marking m of the net, if each place p in the preset contains at least one
token. If such a transition t occurs, then t consumes tokens from the preset and
inserts tokens in the postset. The occurrence sequence, which leads from m to
m′ is defined by m

t→ m′. A marking m′ is called reachable from m, if there
exists an occurrence sequence from m to m′ (m δ→ m′) with δ = t1, t2 . . . tn.

For modeling system behavior or business processes with Petri nets we dis-
tinguish several process flow structures [26] as depicted in Figure 1. The flow
structure OR-split allows to model alternative branching. The two alternative
branches are again integrated by a so-called OR-join or a so-called AND-join
(synchronization). By the use of AND-split (concurrency) tokens are distributed
to two places.

Fig. 1. Overview of Process Flow Structures

The formal foundation of Petri nets allows to verify whether a modeled busi-
ness process meets certain properties such as deadlock-freeness. If a marking is
reached, which is not an intended final process state and which doesn’t enable
any transition, then the process is in a deadlock, as depicted in Figure 2.

Fig. 2. Deadlock in a Petri net

To make tokens distinguishable, variants of high-level Petri nets have been
proposed such as Coloured Petri nets [6] or Predicate/Transitions nets [10]. In
this paper, we focus on Predicate/Transitions nets (Pr/T nets) where places
are interpreted as predicates representing relation schemes. Transitions occur
according to a logical expression which may be attached to them.

3

2.2 Semantic Business Process Models

To describe business processes modeled with Petri nets in an unambiguous for-
mat we have proposed a translation of Pr/T nets to OWL DL [13]. For our work
we will refer to OWL DL (Description Logic) in order to be able to use available
off-the-shelf reasoning technologies. OWL DL can be considered as a syntactic
variant of the SHOIN (D) Description Logic which is known to be decidable
[9]. In Table 1 the main constructs of SHOIN (D) are shown.

Table 1. Constructs of SHOIN (D) Syntax

subClass A1 v A2

intersection A1 u ... uAn

union of A1 t ... tAn

allValuesFrom ∀ P.A
someValuesFrom ∃ P.A
maxCardinality ≤ nP
minCardinality ≥ nP

In our Pr/T net ontology each Petri net element corresponds to an OWL
concept. Places are described by the concept Place, transitions by Transition
and arcs by FromPlace (P ×T) and ToP lace(T ×P). For instance, the concept
PetriNet is defined by at least one transition, place and arc.

Table 2. Pr/T net Ontology

PetriNet ≡ ≥ 1hasNode.(Transition u Place)
u ≥ 1hasArc.(FromPlace t ToP lace)

Transition ≡ placeRef.P laceu = 1haslogicalConcept.LogicalConcept
P lace ≡ transRef.Transitionu = 1hasMarking.IndividualDataItem
FromPlace ≡ ≥ 1hasInscription.Delete u ∃hasNode.P lace
ToP lace ≡ ≥ 1hasInscription.Insert u ∃hasNode.Transition
LogicalConcept ≡ = 1hasConditon.Conditiont = 1has.Operation.Operationu

∃hasAttribute.IndividualDataItem
IndividualDataItem ≡ ≥ 1hasAttribute.Attribute
Delete ≡ ∀hasAttribute.IndividualDataItem
Insert ≡ ∃hasAttribute.IndividualDataItem
Atrribute ≡ ≤ 1hasV alue.V alue
V alue ≡ hasRef.V alue
Condition ≡ forall(string) t exists(string) t and(string)
Operation ≡ function(string)

To the best of our knowledge, there exists no other approach that transforms
high-level Petri nets into OWL DL. In the next section we will explain how to
measure similarity between a pair of semantic business process model elements.

4

3 Measuring Similarity between Process Elements

Before proposing appropriate process fragments, the recommendation mecha-
nism has to compare modeling elements with process templates and has to find
similar elements, which will be proposed as fitting subsequent elements. Thus,
the mechanism has to compare process templates with process elements, which
are currently modeled, by computing their similarities. The autocompletion sys-
tem observes and learns from the modeler’s behavior. Figure 3 gives an overview
of our recommendation process1. Instead of representing OWL syntax, which is
not readable for modelers, we have depicted business processes in graphical Petri
net notation. However, the automatical similarity computation between process
elements is based upon the OWL serialisation of Petri nets.

Fig. 3. Overview of the Auto Completion process

Our approach for automatic process element propositions is similar to the
autocompletion function in mobile phones. The installed system observes what
the user is currently typing, and tries to complete words automatically.

We propose to compute similarities between two process element names by
utilizing the similarity measures syntactical, linguistic and structural measure-
ments. Syntactical similarity measures take as input two character strings and
compare them. A well-established string similarity measurement has been pro-
posed by Levenshtein [14] which takes into account the amount of operations
(insertion, deletion and substitution) needed to transform one string into an-
other. For example, to turn flight request to request requires seven deletions.
Based on the Levenshtein method [16] has proposed a syntactic similarity mea-
surement which returns for the similarity calculation similarity degrees between
0 and 1. But, syntactical similarity measurements alone are not sufficient since
they do not regard the semantics of words. In addition to the syntactical similar-
ity measurement we are utilizing background knowledge in terms of ontologies.
1 different shading of process templates visualizes independent process models.

5

Petri nets obey an operational semantics that describes the control flow.
However, a missing semantic description of Petri net components hampers the
automated processing of process elements. To uncover synonyms or homonyms
of process element names we need a description of Petri nets in an umambiguous
format such as OWL DL. With the background ontology – numerous background
ontologies are modeled with OWL – we compute linguistic similarity measures.
Ontologies have paved the way for standardized formal conceptualizations of all
kinds of knowledge. To compute linguistic similarity degrees we have worked
with WordNet2 via the JWNL API [5] and with a specific UML Profile [4]. The
benefit of the UML-based background ontology is that a converting tool provides
an automatic translation from the visual UML modeling to OWL DL syntax.
WordNet is in contrast to the UML Profile predefined and fix.

However, to improve the aggregation of syntactical and linguistic similarity
measurements we take into account the context of element names by considering
structural information of names. For instance, the structure of place names is
influenced by places attributes, values and the subsequent transitions as depicted
in Figure 4 exemplarily for the place flight request. This place has a marking with
the name R flight request and the corresponding attributes Name, Destination,
Date and Quantity where Destination has the values PAR (corresponding to the
destination Paris) and FRA (corresponding to the destination Frankfurt). The
subsequent transition of flight request is check request.

Fig. 4. Context of the Place flight request

However, each concept influences place names with different weights. There-
fore, we have determined different weights for the concepts as shown in Table
3. In business process models with a lot of places, attributes and transitions
weights play a less important role than in small processes with less process ele-
ments. The more instances are modeled in a SBPM the more extensive is the
context of instances. The processes modeled in this paper have only few places
and transitions3. Furthermore, depending on the features the similarity mea-
sure might differ. To determine structural similarity between place names we
compute the syntactical similarity degree of names (measure for names is syn-

2 an english online lexical reference system, which provides synonym and hypernym
sets consisting of nouns, verbs, adjectives, and adverbs [18].

3 To make the business processes readable we did not assign values for attributes

6

tactical similarity) and the linguistic similarity degrees of their attributes, values
and subsequent transitions.

Table 3. Features and Similarity Measures for Petri nets

Comparing Feature Measure Weight

Places name synt sim. 0.2
Attribute/Value str sim. 0.5

successor ling sim. 0.3

Attributes name synt sim. 0.2
sibling Attribute ling sim. 0.3

Values ling sim. 0.3
Place ling sim. 0.2

Values name synt sim. 0.2
Attribute ling sim. 0.5

Value reference ling sim. 0.3

Transitions name synt sim. 0.2
ToPlace sling sim. 0.4

FromPlace ling sim. 0.4

By aggregating these three similarity measures to a combined similarity mea-
sure we consider syntactical, linguistic, and structural properties of elements and
can compute a more significant similarity between two elements. Table 4 shows
some combined similarity degrees (simcom) for process names (nameBP) and
fragments (nameBF). If the algorithm computes a combined similarity degree
> 0.5 between a template element and a process element, which is currently
modeled, then the recommendation system proposes it for autocompletion. The
user can then decide if (s)he accepts the proposition or rejects it. To learn a
threshold θ instead of using a fix value we will present in Section 5 several ma-
chine learning techniques.

Table 4. Results of Combined Similarity

nameBP nameBF simcom

flight request request 0.8
check request check request 1.0

request checked checked 0.9
...

In the following section we will sketch a method for validating behavior pro-
perties of autocompleted business processes.

7

4 Analysis Methods for Petri nets

To check if a process model meets certain properties, several analyzing methods
have been proposed [25]. In our approach we utilize such methods to validate
that the insertion of the proposed process fragments does not cause deadlocks
and synchronization errors. Thus, our automatic user support includes more
than the recommendation of process fragments.

In the following we are focusing on validation of process properties by check-
ing if the autocompleted business process is deadlock free and without lack of
synchronization. While utilizing validation algorithms for Pr/T nets we are not
considering any inscriptions of places, transitions, or arcs. Instead we are fo-
cusing on the net structure of the modeled process by identifying all possible
flows based on instance subgraphs [22] (see Figure 5 where we have modeled the
instance subgraph for Figure 2). We assume, that the analysis of a specific Pr/T
net satisfies the following requirements: the Pr/T net has only one source place
and one sink place, every place p and every transition t is on the path between
the source and the sink [24]. Additionally, cycles in the net structure must be
regarded as single execution units.

Fig. 5. Instance Subgraphs of Petri net in Figure 2

A deadlock can occur, if branches of an OR-split (such a split can be easier
identified by an instance subgraph) are synchronized by an AND-join, as depicted
in Figure 2. For instance, if the user inserts the transition complement data
and its subsequent place data complemented and intends to synchronize these
elements by inserting a connection from checked and data complemented to send
data, then a deadlock occurs.

A lack of synchronization occurs, if an AND-split is synchronized by an OR-
join, as depicted in Figure 6. For instance, if the user inserts the transition travel
request and intends to synchronize the concurrent branches by inserting the place
transport request, then a lack of synchronization occurs. To facilitate manual
modeling we aim to develop a recommendation mechanism, which advices only
validated fragments.

We have sketched how deadlocks and lack of synchronization can be discov-
ered and now we will introduce reduction rules to validate both process properties
[22], [15], [25]. According to the reduction rules a process is free of structural

8

Fig. 6. Example for a Lack of Synchronization

errors if the reduction results in an empty graph. Because of the simplification of
the presented processes, we applied only two of the rules, the terminal reduction
rule (trr) and the sequential reduction rule (srr) as shown in Figure 7. At the
end there are two nodes left over, so the modeled process is not free of deadlocks.

Fig. 7. Execution of the Reduction

5 Learning User Behavior

As described in Section 3 our system is capable of recommending similar ele-
ments and the user is asked to select appropriate templates. For further recom-
mendations the users behavior could be observed, i.e., logging which decisions
have been made in which situation/context and at which process position or
template.

To recommend appropriate elements, a classification method must be utilized
to classify the set of stored elements into partitions. These partitions can then be
compared with the current user-behavior and the best one(s) concerning context
and other criteria as described above will be recommended for selection. Several
methods can be utilized to learn user’s behavior. The following list gives an
overview of established learning techniques.

Support Vector Machines The goal of a support vector machine (SVM) is
a classifier in a high-dimensional feature space which can handle even not-
separable problems. SVMs can be used to find hypotheses which guarantee
a minimal error [11]. SVMs determine those coefficients which separate the
training set with the shortest distance vectors. Only the so-called support
vectors are of interest and are spanning the separating hyperplane. One ad-
vantage of SVMs is that they can learn non-linear hypotheses by using a

9

mapping function which maps the original feature space into a (commonly)
higher dimensional feature space or by using learning techniques like poly-
nom classifiers, radial-basis classifiers [3] or two-hidden layer (2HL) networks
which can form even more complex decision boundaries [2]. Another advan-
tage of SVMs is that they can handle noise-(error-)reduction by deleting
those examples – in our case the observed user-behavior – which cause the
non-separability. SVMs are robust and do not need any parameter optimiza-
tion, i.e., they can work on raw data.

Neural Nets Neural nets are a well-established and a successfully constituted
technique in the area of soft computing to process information in a vague
and tolerant manner. But the most important feature of neural nets is their
learning capability which increases the adaptivity of the system and supports
the complexity of heterogenous data. A variety of models are available to
choose. For recommender systems in general backpropagation algorithms
are especially suitable to handle the users feedback and selections to train
the net. In our case, neural nets can be used for example to learn a threshold
θ in Section 3 for the combined similarity – instead of using a threshold with
a fixed value of 0.5.

Bayesian Networks Alternative names are belief networks, probabilistic in-
dependence networks, influence diagrams, or causal nets [19]. A Bayesian
network is a directed acyclic graph (DAG) which represents probabilities of
dependencies between a set of random features [7]. The nodes of the graph
represent the set of random variables X = {X1, . . . , Xn} and the directed
edges represent the dependency between these variables. The second part of
a Bayesian network is a set of conditional probabilities P (Xij |Xi) according
to the associated graph. One advantage of Bayesian networks is that the
representation of a probability distribution as a directed graph enables the
analysis of complex conditional user events with a graph theoretical approach
and ensures the consistency of the system [21]. With Bayesian networks it
is possible to calculate conditional probabilities, i.e., to estimate the users
future behavior in case of observations made in the past.

Information Filtering Information Filtering is well known from shopping web
sites. When the customer clicks on an item I1, then the system proposes:
”Customers who have bought this item I1 also have bought another item I2

too. . .”. The advantage of this technique is its simplicity. It can be imple-
mented very easily (only log files have to be parsed) and it can learn incre-
mentally. In our case, Information Filtering can be used to learn behaviors
like: ”Customers who have inserted this process template at this position
also have done this and that. . .”. Furthermore, with Information Filtering
techniques the system is able to generate and to compare user-profiles which
help to categorize users, e.g., in beginners or specialists [12].

Content-based Information Filtering Content-based Information Filtering
is a new extension which also takes the content of the underlying items
into account, i.e. I1 and I2 is also compared and their similarity is regarded
while ranking. With this method the combined similarity of process template
elements described in section 3 can be used to calculate the similarity and

10

to rank the recommendations retrieved by the Content-based Information
Filtering technique.

Summarizing the upper list, especially each variant of Information Filtering
is a promising technique for recommending process templates, which will be
further considered.

6 Conclusion

In this paper we have presented on-going work for assisting users in business pro-
cesses modeling. Compared to manual process modeling we aim to improve the
reusability of business processes by an autocompletion mechanism. We propose
to use a recommendation system, which observes the user’s behavior and suggests
possible subsequent elements. Furthermore, the system facilitates validated pro-
cess properties of the automatically completed process to avoid deadlocks and
lacks of synchronization.

Modeling languages such as EPCs, BPMN or BPEL have no direct formal
foundations and thus do not enable analysis methods. Hence, if the process is
modeled with these languages the process to be automatically completed can
not be directly validated regarding deadlocks or lacks of synchronization.

Currently, we are developing an algorithm to automatically analyze hierar-
chical specifications of process elements and to detect errors in process models.
Processes with hierarchical specifications generally appear to be more intuitive
and easier to understand.

References

1. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu,
S. Thatte, P. Yendluri, and A. Yiu. Web services business process execution lan-
guage version 2.0. wsbpel-specification-draft-01, OASIS, September 2005.

2. R. Beale and T. Jackson. Neural Computing: An Introduction. Institute of Physics
Publishing, Bristol, U.K. and Philadelphia, PA, 1990.

3. C. M. Bishop. Neural networks for pattern recognition. Technical report, Oxford,
Clarendon, P., 1995.

4. S. Brockmans, M. Ehrig, A. Koschmider, A. Oberweis, and R. Studer. Semantic
Alignment of Business Processes. In Proceedings of the 8th International Confer-
ence on Enterprise Information Systems, Paphos, Cyprus, May 2006. to appear.

5. J. Didion. JWNL 1.3, November 2003. http://www.codezoo.com/pub/component/
196?/category=5.

6. H. J. Genrich and K. Lautenbach. System modelling with high level petri nets.
Theoretical Computer Science, (13):109–136, 1981.

7. D. Heckerman. A Tutorial on Learning with Bayesian Networks. Technical report
MSR-TR-95-06, Microsoft Research, March 1995.

8. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri Nets. In Business
Process Management, pages 220–235, 2005.

11

9. I. Horrocks. Applications of Description Logics: State of the Art and Research
Challenges. In Proceedings of the International Conference on Conceptual Struc-
tures, Lecture Notes in Computer Science, pages 78–90. Springer, 2005.

10. K. Jensen. An Introduction to the Theoretical Aspects of Coloured Petri Nets. In
J. de Bakker, W. P. de Roever, and G. Rozenberg, editors, A Decade of Concur-
rency – Reflections and Perspectives, Lecture Notes in Computer Science, pages
230–272. Springer, 1994.

11. T. Joachims. Text Categorization with Support Vector Machines: Learning with
Many Relevant Features. In C. Nedellec and C. Rouveirol, editors, Proceedings of
the 10th European Conference on Machine Learning (ECML’98), Lecture Notes in
Computer Science, pages 137–142, Chemnitz, Germany, 1998.

12. S. Klink. Query reformulation with collaborative concept-based expansion. In
Proceedings of the First International Workshop on Web Document Analysis (WDA
2001), pages 19–22, Seattle, Washington, USA, 2001.

13. A. Koschmider and A. Oberweis. Ontology based Business Process Description.
In J. Castro and E. Teniente, editors, Proceedings of the CAiSE-05 Workshops,
Lecture Notes in Computer Science, pages 321–333, Porto, Portugal, June 2005.

14. V. I. Levenshtein. Binary Code capable of correcting deletions, insertions and
reversals. Cybernetics and Control Theory, (8):707–710, 1966.

15. H. Lin, Z. Zhao, H. Li, and Z. Chen. A Novel Graph Reduction Algorithm to
Identify Structural Conflicts. In Proceedings of the 35th Hawaii international Con-
ference on System Sciences, pages 536–550. IEEE Computer Society Press, 2002.

16. A. Maedche and S. Staab. Measuring similarity between ontologies. In Proceedings
of the European Conference on Knowledge Acquisition and Management, Lecture
Notes in Computer Science, 2002.

17. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
W3c recommendation, World Wide Web Consortium, 2004.

18. G. A. Miller, C. Fellbaum, and R. Tengi. WordNet – a lexical database for the
English language, 2006. http://wordnet.princeton.edu/.

19. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, 1988.

20. W. Reisig and G. Rozenberg. Lectures on Petri Nets: Basic Models. Lecture Notes
in Computer Science. Springer, 1 edition, 1998.

21. B. A. Ribeiro-Neto and R. Muntz. A belief network model for IR. In H.-P. Frei,
D. Harman, P. Schäuble, and R. Wilkinson, editors, Proceedings of the 19th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 252–260, Zurich, Switzerland, August 18-22 1996. ACM Press.

22. W. Sadiq and M. E. Orlowska. Analyzing Process Models Using Graph Reduction
Techniques. Inf. Syst., (2):117–134, 2000.

23. A.-W. Scheer and M. Nüttgens. ARIS Architecture and Reference Models for Busi-
ness Process Management. In Business Process Management, Models, Techniques,
and Empirical Studies, volume 1806, pages 376–389. Springer, 2000.

24. W. M. P. van der Aalst. Workflow verification: Finding control-flow errors using
petri-net-based techniques. In Business Process Management, pages 161–183, 2000.

25. W. M. P. van der Aalst, A. Hirnschall, and H. M. W. E. Verbeek. An Alternative
Way to Analyze Workflow Graphs. In CAiSE, pages 535–552, 2002.

26. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

27. S. A. White. Business Process Modeling Notation. Specification, BPMI.org, 2004.

12

Integrating Semantic Web Services
and Business Process Management:

A Real Use Case?

Christian Drumm, Jens Lemcke, and Kioumars Namiri

SAP Research Center CEC Karlsruhe
SAP AG

firstname.lastname@sap.com

Abstract. In this paper we aim to investigate how semantic Web ser-
vices can improve standard business process management tools. Using a
standard SAP process in the area of logistics as an example, we show
the limitations of current approaches, both during design- and runtime.
Based on this investigation we will present a new solution enabling the
automation of certain task in the process of creating cross organizational
business processes using ontologies and Semantic Web Services.

1 Introduction

In this paper we aim to investigate how semantic Web services can improve stan-
dard Business Process Management (BPM) software. Based on a standard SAP
process in the area of logistics, we show the limitations of current approaches
and present a solution based on semantic Web services. The remainder of this
paper is organized as follows: After an brief introduction to the SAP Enterprise
Services Architecture we will describe the process used throughout the paper
as en example and highlight limitations of current implementations. Next we
investigate advantages of BPM-based implementations and show where and how
this tools can be improved using semantic Web services. We will close with a
summary and an outlook on future work.

SAP Enterprise Service Architecture

Vision SAP is a provider of business software supporting enterprises to perform
their more or less standardized business tasks as efficient as possible. The main
target is to lower the Total Cost of Ownership (TCO) of their SAP business
solutions needed to carry out these business activities. The main challenge with
respect to business tasks in today’s companies is to keep track with increasingly
? This material is based upon work partially supported by the EU funding under the

projects DIP (FP6 - 507483) and ATHENA (FP6 - 507312). This paper reflects the
author’s views and the Communities are not liable for any use that may be made of
the information contained therein.

13

2 C. Drumm, J. Lemcke, K. Namiri

dynamic markets. This changing business environment demands for more and
more flexibility of the companies to adapt to changing market requirements.
Therefore, SAP solutions aim at equipping its customers with solutions meeting
this demand for flexibly performing business.

The demand for flexibility in markets results in the need for high adaptability
of internal company IT structures, simplification of interoperation with business
partners as well as strong support for integration and outsourcing of business
units, respectively. At the same time, prior investments of SAP customers in
their existing IT infrastructure should be leveraged.

Description In order to provide maximum support for the market requirements
mentioned above, SAP aims at building an integrative platform for individual
service providers and requesters. The facilitating SAP technology is called Busi-
ness Process Platform. It provides a uniform means for companies to represent
the interfaces of their business functionality by Enterprise Services which are
fully based on the Web Service Description Language (WSDL) standard. How-
ever, Enterprise Services extend Web Services by providing business level func-
tionality that is also concerned explicitly with aspects like scalability, security,
and transactions etc., which are important in an industrial setting. For instance,
the task of canceling an order in a real world scenario has usually subsequent
consequences, which must be handled as well. An order can usually not be sim-
ply deleted in the database; rather it may involve a complex business process,
where following questions might occur: Is roll-back of the order in the backend
system possible at all and are manual steps in the roll-back process necessary?
Which roles are involved and need notification through another Enterprise Ser-
vices such as Logistic services, Loan services etc.? Must the approval process be
stopped as well and is a cancellation fee applicable? With Enterprise Services
this related business information is made explicit.

The facilitator of the Business Process Platform is the design of the SAP
products in the so-called Enterprise Services Architecture (see Fig. 1). It defines
a clear structuring of the SAP software architecture into separate layers. SAP
NetWeaver basically acts as application server and technical integration plat-
form for different business partners. The mySAP Business Suite provides the
SAP business software in an Enterprise-Service-enabled way while xApps tech-
nology allows for simplified composition of new functionality re-using existing
applications or parts of those. The Business Solutions layer provides a clear doc-
umentation on the different components of the SAP solutions from a manager’s
perspective.

2 Example Process

The process we want to investigate in this paper is the standard SAP order-to-
cash process in the logistics domain. This process, depicted in Fig. 2, involves
three parties: i) A customer, ii) a shipper, and iii) a carrier. As illustrated the
customer first places a sales order with the shipper, which enters it in its local

14

Integrating Semantic Web Services and Business Process Management 3

Fig. 1. The SAP Enterprise Service Architecture.

SAP system. After that, the appropriate steps for delivery and picking and
packing are taken through. After sending the shipping information to the Express
Shipping Interface (XSI), the goods are labeled and the manifest is sent to the
carrier. This is the trigger for the actual shipping by the carrier which is tracked
by the shipping process step in the SAP system of the shipper. The last activity is
the execution of the billing process. Sometimes, carriers change their conditions
of service. In this case, they need to notify the shipper of those updates. Also,
for a new contractual cooperation between a shipper and a carrier, the new
conditions need to be input into the shipper’s system.

2.1 Architecture

In the order-to-cash process described in the previous section, different systems
are involved. For this use case, we assume that the functionality of the carriers is
provided via Web service interfaces. The shipper uses an SAP system. The SAP
solution of the shipper is used to integrate the systems of the different parties.
However, as connotated in Fig. 2, not all process steps are directly used as they
are pre-existent in the SAP system.

Some process steps rather need some configuration adoption in order to fit the
needs of the respective SAP customer (here: the shipper) for its specific business
case. This is illustrated by the gold coloring in Fig. 2. Also, the process steps
of labeling, preparing the manifest, and the shipping itself are highly influenced
be the specific requirements of the respective carrier. Therefore, these steps are
mainly implemented by the carries. This is illustrated by the blue coloring in
Fig. 2.

15

4 C. Drumm, J. Lemcke, K. Namiri

Fig. 2. Current Order-to-Cash Process.

To sum this up, the SAP system is a software that provides some main
business functionality that is similar in most companies. Specific adoption to
special requirements need to be done by extending the current SAP product via
its interfaces in a static manner.

2.2 Pain Points

Due to the more or less static nature of the current solution, the different parties
involved face some difficulties. These are explained in the following.

Carriers On the carrier side the following problems occur:

Difficulty to Publish New Services The publication of new services is difficult,
because the process with an individual carrier is firmly implemented in the spe-
cific SAP system configuration of the shipper. Therefore manual development is
necessary if a new service requires to enter this implementation.

Difficulty to Notify Customers of Service Update For this action, the carrier
needs to interact with the shipper. If the change of service implies the adoption
of the process between both partners, they face the same problem as in the
former case.

Difficulty to Connect to SAP Systems In order to connect a third party system
to a SAP system in general message mappings are necessary. In addition custom
development might be necessary to adapt the business process of the carrier to
fit the frame the SAP system sets.

Shippers

16

Integrating Semantic Web Services and Business Process Management 5

Difficulty to Add or Update Services Due to the firm implementation of the
processes, this problem also appears to the shipper.

Difficulty to Change Service Provider Since processes are firmly coded into the
SAP system, the change from an existing carrier with an already implemented
process to a new business partner is difficult. The cost for changing carriers are
quite high due to the implementation effort to take.

Different Service Interfaces Provided by Carriers The setup of a process with
different carriers requires always new effort, because little knowledge can be
reused due to their different interfaces.

Difficulty to Compare Services Provided by Carriers The diversity of interfaces
and properties (like pricing model) of the services provided by the carriers makes
their comparison difficult.

3 BPM-Based Implementation

In this section we will provide a high-level description of how current BPM
tools could be used to implement the scenario described. A BPM-based imple-
mentation of the process described above would involve two main components:
i) A process modeling tool, and ii) a process execution engine capable of exe-
cuting the modeled processes. In our case, the process modeling tool is called
Maestro [1] and the process execution engine is called Nehemiah (see Fig. 3).

Focusing on the shipper we will now describe the steps necessary to create an
executable process using current BPM tools. Using the Maestro tool, a domain
expert would create a graphical representation of the process executed at the
shipper whenever a new sales order is processed. Note that this graphical repre-
sentations is at first not linked to any of the shippers’ business systems or any
carrier services. Therefore in a second step, the domain expert manually connects
the single process steps of the business process to services offered by either the in-
ternal or the partner business systems. Connecting different services and systems
usually requires a mapping between different message formats. Consequently the
domain expert also needs to create the necessary mappings converting between
the input and output messages of the different business systems involved.

After the business process has been manually modeled and the involved busi-
ness systems have been connected to the different process steps, the business
process is stored into the process repository. During run-time the BPEL engine
retrieves the process from this repository and executes an instance of the process
for each incoming sales order.

The main advantage of BPM-based implementations of the scenario described
above is the design-time flexibility. After the business process has been modeled
using the graphical editor, services implementing different process steps can eas-
ily be exchanged during design-time. Integrating a new carrier into the systems

17

6 C. Drumm, J. Lemcke, K. Namiri

Design-Time

Run-Time

Process
Repository

Maestro (Process Modeling)

Nehemiah (Process Execution)

D
ep

lo
y

Lo
ad

Business
System A

Business
System B

Business
System C

In
vo

ke
Inv

ok
e Invoke

Fig. 3. Current solution using BPM tools.

for example only requires the connections of the carrier services to the appro-
priate process steps as well as the development of the necessary message trans-
formations. However, BPM-based implementations do not have any additional
flexibility during run-time, as the BPEL engine simply executes predefined pro-
cesses. Therefore, dynamic exchange of carriers during run-time based on the
availability of their services is not possible with current BPM-based solutions.

Public vs. Private Processes In the previous paragraph, we have described on
a very high abstraction level how the given scenario would be implemented
using current BPM tools. However we omitted an important detail during this
description. Services available in the business systems of partners usually need
to be invoked in a certain order as they are involved in the internal processes
of the parter. In our scenario for example it does not make sense to invoke a
“track and trace” service of a carrier before a shipping request has be send to
that carrier. However, partners interacting during a business process only want
to make parts of their internal processes visible to the outside. Therefore the
notion of private and public processes becomes necessary. A private process is the
detailed, internal process of a partner. Based on this process, a view—the public
process—can be created. This public process hides all the confidential process
details and only show the process steps that are required for an interaction. The
public process is then used by business partners to create a so-called Collaborative
Business Process (CPB) involving both internal and external business services
(see Fig. 4).

18

Integrating Semantic Web Services and Business Process Management 7

A1 A2 A3 A4 A5 A6

A1 A2 + A3 A4 + A5 + A6

B1 + B2 B3 + B4

B1 B2 B3 B4

Private Process
Partner A

Public Process
Partner A

Public Process
Partner B

Private Process
Partner B

Fig. 4. Relation between public and private processes.

4 Added Value through Semantic Web Services

The previous high-level description of a BPM-based implementation of the order-
to-cash process in the logistics domain shows several limitations of current solu-
tions. The most prominent ones are:

– Necessity for manual development of message mappings
– Manual creation of the CPB
– Flexibility limited to design-time.

Using technologies developed in the semantic Web services area, these limita-
tions of current BPM-based implementations can be overcome. In the subsequent
sections, we will first describe our overall architecture for integration of semantic
Web service technologies into current BPM tools. Following this, we will describe
in detail how this architecture enables i) the automatic generation of necessary
message mappings, ii) the automatic integration of the public processes of differ-
ent partners into one Collaborative Business Process (CBP), and iii) the flexible
service selection during run-time.

4.1 Definitions

Before we start with the description of our solution we first need to define some
elementary terms which we will use during the later discussions.

Definition 1 (Ontology). An ontology O is a structure

O := (C,R,A, T,≤C ,≤R,≤A,≤T , σR, σA)

where:

19

8 C. Drumm, J. Lemcke, K. Namiri

– C is a set of concepts aligned in a hierarchy ≤C

– R is a set of relations aligned according to ≤R

– A is a set of attributes aligned according to ≤A

– T is a set of data types aligned according to ≤T

– σR : R → C × C is the signature of R
– σA : A → C × T is the signature of A.

In addition to that we define the domain of r ∈ R as dom(r) := π1(σR(r)) and
the range as range(r) := π2(σR(r)). This definition of ontologies is based on [2].

Definition 2 (XML Schema). An XML schema is a structure

S := (E,A, CT, ST, δe, αe, δa, Γ)

where:

– E is a set of element names
– A is a set of attribute names
– CT is a set of complex type names
– ST is a set of simple type name
– a function δe : E → (CT ∪ ST) defining the data type of an element e ∈ E
– a function δa : A → ST defining the data type of an attribute a ∈ A
– a function αe : E → P(A) defining the set of attributes for each element

e ∈ E
– a regular tree grammar Γ specifying the structure of a valid XML schema

Definition 3 (Mapping). A mapping map between two structures S and T is
defined as set of mapping elements me. Each mapping element relates entities of
the source structure eS,i, . . . , eS,j to entities of the target structure eT,m, . . . , eT,n

using a mapping expression. The mapping expression specifies how entities of the
source structure and the target structure are related.

mapS→T = {me}
me = (eS,i, . . . , eS,j , eT,m, . . . , eT,n,mapexp)

This definition of mapping has a number of important implications. First a map-
ping is unidirectional as indicated by the arrow form S to T in our definition
and cannot easily be inverted. Second the definition of a mapping given above
does not restrict the relation between entities of the source and the target struc-
ture to be 1 : 1, but rather allows for m : n relations. Third the nature of the
involved mapping expressions is not further restricted. This is due to the fact,
that it depends strongly on the type of the source and target structure involved.

Definition 4 (Alignment). An alignment ASS→OT
from an XML schema SS

to an ontology OT is a mapping with:

ASS→OT
= {(eSS ,i, . . . , eSS ,j , eOT ,m, . . . , eOT ,n,mapexp)}

eSS ,x ∈ ESS
∪ASS

eOT ,y ∈ COT
∪ROT

∪AOT

20

Integrating Semantic Web Services and Business Process Management 9

Public
Process

A

Public
Process

B

Domain Ontology

Lifting
Engine

Import

Import

Align.

Semantic Process Desc.

Mapping
Engine

Composition
Engine Maestro

Mapp.

CBP

Fig. 5. Design-Time Architecture of the Enhanced Maestro Tool.

4.2 Solution Overview

Our overall architecture consists of two parts: A design-time, and a run-time
component. During design-time, we want to simplify the creation of the CBP as
much as possible. After loading two public processes, the Maestro tool should
generate the CBP automatically (if possible) and present it to the user. Fur-
thermore the tool should generate the message mappings necessary for invoking
the involved Web service. Figure 5 shows the design-time architecture of our
enhanced Maestro tool. We assume, that the representations of the two public
processes not only contain the process flow but also the XSDs of the in- and
output messages associated with each process step. After loading the two public
processes specifications into our tool, the lifting engine generates two things:
i) An alignment between the message elements of the XSDs and the domain
ontology, and ii) a semantic description of the public processes. In the next step
the mapping engine uses the alignments between the ontology and the XSDs
to generate a list of possible mappings. Now the composition engine takes this
list of possible mappings and the semantic process descriptions to generate the
CPB which is finally presented to the user using the Maestro tool. After a check
by the user and possible modifications of the CBP the result is stored into the
central process repository.

Details on how the lifting, the mapping generation and the composition are
performed will be given in subsequent sections.

During run-time we want to enable the dynamic selection of services based
on different criteria. In our scenario we would for example like to select the
carrier offering the cheapest price for a given shipment. Therefore we introduce
a component called semantic service selection. Based on the concrete request,
contractual information modeled in the domain ontology and a selection goal, the
best process is selected from the process repository, instantiated and executed.
Details on the semantic service discovery will be given in section 4.6.

21

10 C. Drumm, J. Lemcke, K. Namiri

4.3 Lifting Process Descriptions

The first step in our design-time architecture is the lifting of the public processes
of the two partners. This lifting consists of two parts, the lifting of the input and
output messages associated with the process steps and the lifting of the process
descriptions itself.

Lifting Input and Output Messages In order to create an alignment between
the domain ontology and the in- and output messages the lifting component
executes a set of elementary matching algorithms. We are currently evaluating
which elementary matching algorithms perform best in the given setting. An
list of possible elementary algorithms can be found in [3] or [4]. These matching
algorithms exploit the information available in in the XML schema and the
ontology (like, e. g., element and concept names) to create a similarity matrix.
This similarity matrix associates each pair of XML schema and ontology entities
(eS , eO) with eS ∈ E ∪A and eO ∈ C ∪R ∪A with a similarity value. Based on
this similarity matrix an alignment between the XML schema and the domain
ontology can be calculated.

Creating Semantic Process Descriptions For the automatic process com-
position by the composition engine connotated in Fig. 5, the public process
description of the shipper as well as the available WSDL descriptions of the
carrier services need to be transformed to a format that the composer can work
with. This step will be detailed in this section.

Format The composer technology we are going to use bases on the semantic
Web services composition approach described in [5] and [6]. This approach will
be detailed later on. For now, it is enough to know that for each partner which
is to be integrated in the composed process, we need a semantic Web service
interface description consisting of the following parts:

– The messages communicated by the semantic Web service given as ontology
concepts, and

– Behavioral constraints between the single message exchanges of the semantic
Web service.

In other words, the behavioral constraints can be understood as a workflow dia-
gram, like an UML 2.0 Activity Diagram, containing control nodes, like decision,
merge, fork and join. The activities in this diagram would be connected to input
and output nodes representing the messages communicated. Here, each mes-
sage is not understood as a technical XML schema description, but an ontology
concept for that later on the corresponding XML schema can be nominated.

Shipper The information that is available for the shipper partner is its public
process and the liks of the public process steps to specific WSDL operations.
From this information, we build the semantic Web service description as follows:

22

Integrating Semantic Web Services and Business Process Management 11

1. Each WSDL operation becomes represented by an input node and an output
node connected via a sequential control edge. We refer to this construct as
a semantic Web service operation.

2. The data communicated by the input and output node are represented by
ontology concepts that are obtained by the alignment step of the Lifting en-
gine from the corresponding WSDL operation’s XML schema (cmp. Fig. 5).

3. The semantic Web service operations are connected by semantic Web service
behavioral constraints that resenble the workflow of the public process of the
shipper.

Carrier For the carrier services, the only information we can get are the WSDL
files of their Web servcies. From the lifting component, we again get the align-
ment of XML schema types communicated to ontology concepts. What is miss-
ing however, is a representation of causal interdependencies between the opera-
tions that we can use to create the semantic Web service behavioral constraints.
Therefore, we build a trivial workflow that is required as input to the composer
component. Details follow.

1. Each WSDL operation becomes represented by an input node and an output
node connected via a sequential control edge. We refer to this construct as
a semantic Web service operation.

2. The data communicated by the input and output node are represented by
ontology concepts that are obtained by the alignment step of the Lifting en-
gine from the corresponding WSDL operation’s XML schema (cmp. Fig. 5).

3. The semantic Web service behavioral constraints describe a workflow that
consists of a fork and a join node. Each branch of this fork-join construct
contains exactly one semantic Web service operation.

4.4 Automatic Generation of Message Mappings

The automatic generation of message mappings is performed by the mapping
engine. This component takes the alignments created by the lifting engine as
input and generates executable mappings between XML schemas. In order to
create a mapping between S1 and S2, the mapping engine takes the alignments
AS1→O and AS2→O as input. For each mapping element in AS1→O the mapping
engine searches for a mapping element in AS2→O that relates a schema entity
of S2 to the equivalent ontology entity. If such an entity is found, the mapping
expression is used to determine how the schema entities of S1 and S2 are related.
This in turn creates a new mapping expression that is added to the mapping
mapS1→S2 .

Note that mappings are not generated between each pair of schemas but only
between input schemas of one public process and output schemas of the other
and vice versa.

23

12 C. Drumm, J. Lemcke, K. Namiri

4.5 Automatic Integration of Partner Process Steps

As connotated in Fig. 5, the automated process composition by the composition
engine is the final step before presenting the suggested CBP to the user via the
Maestro tool.

Task For creating the CBP, we use the technology described in [5] and [6].
The main observation behind this technology is that business partners follow
their own business processes. These business processes consist of several process
steps that on the one hand exchange data amongst themselves, and on the other
hand also collaborate with their partners. This however means, that, in order to
integrate two business partners with each other, their business processes need to
be interconnected. Here, it is important to understand that a business process
can not be handled like an atomic transaction. In a process step, the company
can have interactions with its partner before proceeding to the next step, which
again results in some communication before it enters the next process step, and
so forth.

The integration of two business partners in a message-based communica-
tion environment, like a service-oriented architecture, can however only work on
the basis of atomic transactions. As an additional requirement, this integration
must follow the sequential constraints of the message exchanges defined by both
parties’ business processes. We call these sequential constraints “behavioral con-
straints” or just the “behavior” of a business partner’s systems. Please note,
that such information cannot be represented by traditional Web service descrip-
tions using WSDL. For an automatic creation of such an integration (the CBP),
a partner’s behavior needs to be explicitly specified in a machine-processable
manner. This is why the observable part of a business partner’s behavior ap-
pears in semantic Web service descriptions. The main task of a composer after
all is to combine these sets of behavioral constraints to a combined business
process of all parties involved.

Realization The inputs for the composer component in general are the semantic
Web service descriptions of the participating business partners. In Sect. 4.3,
we explained how to create these descriptions for the two parties shipper and
carrier. The composition engine basically compares the inputs and outputs that
are defined as ontology concepts in the two behavior descriptions and connects
them where possible. For the decision whether a connection is possible, the
composer relies on the results from the preceding alignment step. The alignment
works in a way that it connects those XML schema elements that it later can
generate a mapping for to the same ontology element. Therefore, the composer
just needs to look for equivalent concepts in the two behavior descriptions that
it can connect.

After identifying matching concepts, the composer connects fitting edges by
a transformation activity node that defines a conversion which possibly needs to
be performed in the real-time execution of the combined process. This conversion

24

Integrating Semantic Web Services and Business Process Management 13

is given by the mapping function mapS1→S2 . It defines how to transform actual
data corresponding to the XML schema of the sender S1 to a message corre-
sponding to the receiver’s format S2. The result of the composition is a business
process that contains the process steps of both parties, their interconnections
via mapping activities, and those inputs and outputs that could not be intercon-
nected. The composition therefore is successful, when there are no inputs and
outputs left that could not be connected to corresponding communications of
the other party.

For the next step of our use case, the composer result needs to be translated
into the process representation format of the Maestro tool and will thus be
presented to the user. Also in the case of an unsuccessful composer execution,
the partly connected bunsiness process will be fed to the Maestro tool as a first
suggestion for adaptation by the user.

4.6 Semantic Service Selection

After discussing how semantic Web service technologies can be used to improve
the design-time of current business process management solutions, we will now
investigate how they can be used to improve their run-time.

As stated in the solution overview, the semantic service selection is respon-
sible for selecting the best fitting carrier for the current shipping request during
runtime. The realization of this component is described in detail in [7]. It is
based on an approach for semantic Web service discovery introduced by Li and
Horrocks [8], and [9]. For applying this approach, an abstract service capability
is described based on the domain ontology. The abstract service capability is
carrier-independent and covers all possible Web service capabilities within the
domain.

Additionally, a successful offline negotiation between a shipper and a carrier is
required. The result of this negotiation phase is a contract between that carrier
and shipper describing the provided service capabilities by that carrier. Each
contract is modeled as a sub-concept of the service capability based on the
domain ontology. These semantically described contracts are stored as OWL
documents on a separate repository. The concrete shipping request created at
run-time is then described either as an instance or as a most specific sub-concept
of the abstract Web service capability according to the domain ontology. A
shipping request can be fulfilled by a carrier Web service if the the concrete
request subsumes a Web service capability. If more than one contract matches
the concrete request an additional selection step is required in order to choose
between the available carriers. This step usually requires run-time invocation of
the carrier Web services in order to get information necessary for the selection
according to the goals of the requester. A selection goal specifies which criterion
defines the best suiting carrier, e. g., best price or shortest delivery. Since these
two parameters are subject of frequent change due to the competition on the
carrier market, we decided not to design these parameters in the semantically
described contracts.

25

14 C. Drumm, J. Lemcke, K. Namiri

The important parts of the shipment request are: Ship from and ship to
addresses, items to be shipped, and the selection goal. The received shipment
request by the component is first semantically lifted according to the ontology in
order to be processed by a DL-reasoner. In the next step, the repository contain-
ing all existing pre-negotiated contracts with carriers is queried. Additionally,
the necessary URL to the WSDL of the Carrier Web service associated with
the contract can also be obtained from the repository. Each available contract is
consequently subsumed by a DL-reasoner to determine the contracts matching
the (semantically lifted) shipment request. If the client application has specified,
e. g., the best price as its selection goal in the shipment request, all matching
carrier Web services are contacted and the carrier with the best price for this
shipment is selected.

After the selection is done, the process associated with the selected carrier is
loaded from the process repository, instantiated and executed.

5 Summary and Outlook

The proposed carrier/shipper-scenario trys to keep the described system simple
in order to be able to concentrate on the important steps first. The important
aspect is mainly to examine how semantic technologies can beneficially be ap-
plied to real-world business scenarios. We identified the automation of the so far
manual business process integration as the main area of contribution for seman-
tic Web technology. The solution extends and therefore bases on standard BPM
modeling tools.

Furthermore, we abstain from the requirement of business partners to adhere
to exactly the same software component interfaces. Thus, mediation comes into
play and its interacting with the semantic Web service composition is a second
aspect to focus on using this scenario.

After the successful implementation of this first scenario, the described set-
ting can be extended to a more comprehensive application in a later version.
In the current proposal, the composed business process is being created during
design-time. When a carrier changes its conditions, the process of composition
needs to be executed again in order to compute the potential adoptions to the
process instance. In a more dynamic implementation, this step could be exe-
cuted each time a customer requests a shipment. This way, the system would
immediately and automatically incorporate changes to the carrier capabilities.

References

1. Greiner, U., Lippe, S., Kahl, T., Ziemann, J., Jkel, F.W.: Designing and imple-
menting crossorganizational business processes - description and application of a
modeling framework. In: Interoperability for Enterprise Software and Applications
Conference I-ESA. (2006)

2. Stumme, G., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle,
D., Schmitz, C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R., Sure, Y., Volz,

26

Integrating Semantic Web Services and Business Process Management 15

R., Zacharias, V.: The karlsruhe view on ontologies. Technical report, University of
Karlsruhe, Institute AIFB (2004)

3. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In: Proc. 28th VLDB Conference. (2002)

4. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Technical
report, Informatica e Telecomunicazioni, University of Trento (2005)

5. Albert, P., Henocque, L., Kleiner, M.: Configuration-based workflow composition.
In: ICWS, IEEE Computer Society (2005) 285–292

6. Albert, P., Henocque, L., Kleiner, M.: A constrained object model for configura-
tion based workflow composition. In Bussler, C., Haller, A., eds.: Business Process
Management Workshops. Volume 3812. (2005) 102–115

7. Friesen, A., Namiri, K.: Towards semantic service selection for B2B integration.
In: submitted to Methods, Architectures & Technologies for e-Service Engineer-
ing (MATeS) at ICWE. (2006)

8. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web
technology. In: Proc. of the Twelfth World Wide Web Conference. (2003)

9. Preist, C., Cuadrado, J.E., Battle, S., Grimm, S., Williams, S.K.: Automated
business-to-business integration of a logistics supply chain using semantic Web ser-
vices technology. In: International Semantic Web Conference. (2005) 987–1001

27

Expressing Semantic Web Service Behavior
using Description Logics?

Markus Fronk and Jens Lemcke

SAP Research, Karlsruhe, Germany
{markus.fronk, jens.lemcke}@sap.com

Abstract. For the automation of major tasks of the traditional Web service (WS)
usage, semantic Web services research has identified the need for (1) the pro-
vision of additional aspects of Web services, as well as (2) the formalization of
these descriptions. This work focuses on the behavioral aspects of Web services
and proposes to use Description Logics (DL) for their formalization. We provide
DL constructs for describing interactions in sequences and parallel splits. This
yields several advantages for the tasks of WS retrieval and composition. (1) The
development of the retrieval and composition software becomes simplified which
therefore results in more robust code. (2) The Web service description can be
extended by additional features without touching the evaluating code. (3) In com-
bination with the ontology language OWL-DL, the Web service description can
directly be integrated with existing semantic Web efforts, e. g. domain ontologies.

1 Introduction

In today’s industries, coping with a growing number of software artifacts in a flexi-
ble and efficient manner becomes a more and more important issue. In addition, faster
changes of market situations force companies to be able to quickly adopt their business
processes and set up interoperations with other parties.

Service-oriented technology arose to address some of the challenges posed by this
development. Using the Web Service Description Language (WSDL)1 in conjunction
with the Simple Object Access Protocol (SOAP)2 and the “Universal Description, Dis-
covery and Integration” (UDDI),3 software components can be accessed through and
communicate via standardized interfaces and protocols. This increases the flexibility of
the companies, but every task of the Web Service (WS) usage process still remains a
manual integration activity.

The aim of Semantic Web Services (SWS) research is to automate major tasks of
this usage process. These are discovery, selection, composition, execution and moni-
toring. Major contributions in this area are OWL-S4 and the Web Service Modeling
? This material is based upon work partially supported by the EU funding under the project

DIP (FP6 - 507483). This paper reflects the author’s views and the Community is not liable
for any use that may be made of the information contained therein.

1 http://www.w3.org/TR/wsdl, also: “Web Service Definition Language”
2 http://www.w3.org/TR/soap12-part0/
3 http://www.uddi.org/
4 http://www.daml.org/services/owl-s/1.1/overview/

28

2 Markus Fronk and Jens Lemcke

Ontology (WSMO [1]). In contrast to traditional Web service descriptions, Web ser-
vice automation requires (1) some more information to be specified, and (2) a formal
representation of all information given to facilitate their automatic processing.

In current approaches for Semantic Web service description, languages bearing a
formal semantics are being used to add further information to “traditional” service de-
scriptions. However, the capabilities of formalism are only used for defining the Web
service description languages itself, rather than exploiting them to draw conclusions
over the semantic of descriptions. For each task of the Web service usage process, spe-
cialized software is needed to work with the respective part of the formalized Web
service description. This result in additional algorithms that have to be developed to in-
terpretate the semantics described. In addition, different SWS approaches using differ-
ent description formalisms can not easily be intergated. We therefore require a semantic
Web service description whose formal capabilities can be further exploited. This means,
that given Web service descriptions, standard software should be able to draw conclu-
sions about which services are close to the evaluations needed to be performed during
the tasks of the Web service usage process. This facilitates the separation of the model
of aspects of the Web service from its interpreting application. Since we then can rely
on standard reasoning software to realize standard parts, the robustness of software im-
proves.

Further requirements for a general Semantic Web service description are its ability
to be extendable for later enhancements and integrable with other aspects of Web ser-
vice descriptions whose modelings were independently developed from each other. As
an example, the “business semantics” aspect is one of these aspects which could be ex-
pressed in Description Logics (DL [2]) [3]. Other efforts are concerned with modeling
Web service policies using DL [4]. Since these different aspects developed indepen-
dently from each other adhere to the same formal semantics (the way inferences are
drawn), they can potentially be integrated in a single analysis module considering all
aspects as a whole.

In this paper, we propose to use Description Logics for the representation of Web
service descriptions. A semantic Web service description consisting of a (1) technical,
(2) behavioral and (3) contextual part provides enough information for the automation
of the major WS usage tasks as named above. The common feature of all these tasks is
finding matching service descriptions to a request description. We therefore design our
Web service descriptions in such a way that through the standard subsumption reasoning
this common task can be accomplished. For the implementation, we can therefore rely
on complete and correct reasoner implementations.

Although all of the three aspects of semantic Web service descriptions should be
expressed using DL, this paper focuses for demonstration on the behavioral aspect, i. e.
the constraints between a service’s operations that define the allowed order of execution.
We choose DL, because it comes with a formal semantics, brings sufficient expressivity
for our purposes, and is decidable. By using OWL-DL, we demonstrate its ability to
serve as a general semantic Web service description language satisfying the previously
described requirements of facilitating robustness of software, and ensuring extendability
and integrability of WS descriptions.

29

Expressing Semantic Web Service Behavior using Description Logics 3

2 Related Work

There are quite a few approaches that deal with the semantic annotation of Web Service
technologies and standards to enable an automatic discovery and matchmaking pro-
cess. The current UDDI discovery mechanism only insufficiently fosters the objective
of automation. Most of the related work uses for the description of behavioral aspects
of services either WSBPEL or language descriptions using ontologies. For matching of
requests and services special algorithms have to be developed. The major difference of
our approach is that we use DL to describe service behavior. Automated discovery and
matchmaking can hence be realized using standard reasoner such as Racer5 or Pellet6.
Services matching a request can easily be determined by the subsumption mechanism
when described with the DL expressions we suggest.

OWL-S Process Model The Web Ontology Language for Services (OWL-S) utilizes
an ontology to describe Web services. Its concept is to provide markup language con-
structs to describe Web services in a semantic and thus computer-interpretable form.
OWL-S builds an upper ontology for service description that consists of three main
parts, namely the service profile, the service model and the service grounding.7 The
process model defines a subset of workflow features to describe a service as a process.
In contrast to our solution special algorithms have to be developed to exploit the process
descriptions characterized in OWL-S for matchmaking or similarity comparisons. Such
algorithms based on OWL-S are described for example in [5] and [6]. The main differ-
ence of our solution is that with describing the service process flow using description
logic, automated reasoning and matchmaking with standard reasoners become possible.

METEOR-S Process Designer The Managing End-To-End OpeRations for Semantic
Web Services (METEOR-S) project at the Large Scale Distributed Information Sys-
tems (LSDIS) Lab at the University of Georgia annotates semantics to the complete
Web service usage process. Its annotation framework is an approach to adding seman-
tics to current industry standards such as WSDL. Finding an appropriate service for
the composition is realized by a discovery engine querying an enhanced UDDI registry.
The semantic descriptions published in this registry are annotated source code that is
later transformed into either WSDL, WSDL-S or OWL-S.The OWL-S process model
generally allows to semantically describe service behavior but the transformation made
by the Semantic Description Generator however only considers the service profile and
the service grounding. The process model is to the best of our knowledge not yet inte-
grated in the transformation [7]. WSDL and WSDL-S anyway do not provide constructs
to express service behavior. Behavioral aspects are hence not published in the registry.
Therefore the METEOR-S approach in contrast to our solution does not consider the
behavioral aspects of services in the discovery of adequate matches.

5 http://www.sts.tu-harburg.de/ r.f.moeller/racer/
6 http://www.mindswap.org/2003/pellet/
7 http://www.daml.org/services/owl-s/1.0/owl-s.pdf

30

4 Markus Fronk and Jens Lemcke

WSMO Choreography The Web Service Modeling Ontology (WSMO [1])8 is a con-
ceptual specification for describing ontologies, Web services, goals, and mediators—
called WSMO entities. The behavioral aspects of a Web service are called its “choreog-
raphy”. The choreography in WSMO is described by an adoption of Abstract State
Machine (ASM [8]) statements. Roughly spoken, these statements are of the form
“if condition then updates endif”. In the condition, the existence of instances of
an ontological concept can be queried, which may refer to a message that was just
received. In the updates, instances of the internal ontology can be manipulated which
may trigger the sending of respective messages. This description of causal dependencies
between single communications is very similar to our approach. However, the ASMs
are very expressive and do not define when, e. g., a service matches a certain request
with respect to their behavioral constraints.

WSBPEL Abstract Processes The Web Services Business Process Execution Lan-
guage (WSBPEL)9 can be used to describe the implementation and the observable be-
havioral interface of Web services. This information could then be used for automating
tasks of the Web service usage process—e. g. WS composition [9]. However, there is no
decidable algorithm for the representation of service behavior in WSBPEL that can be
used for reasoning about relevant properties. The conversion to a suitable representation
is needed.

CoBPIA Particles The Collaborative Business Processes based on Intelligent Agent
Technology (CoBPIA [10]) project uses Constraint Satisfaction Problem (CSP) tech-
niques in order to describe process steps—called particles—that are to be composed to
executable WSBPEL processes. To our knowledge, particles can only be atomic pro-
cesses steps that are going to be composed into workflows. Web services could be in-
terpreted as these particles. However, the interdependencies of Web service operations
that we describe are not addressed in the CoBPIA particle representation.

3 Elements of behavioral aspect

In this section, we point out the behavioral patterns that can appear with regard to ser-
vices and thus have to be represented in the DL. The elements in this section are besides
being introduced described in terms of their meaning with regard to the service behav-
ior. This means that each element has another sense in terms of the allowed order of
messages. This is subsequently be described. The present work focuses on the basic
control patterns. After having shown that these patterns can be represented in DL future
work with regard to more complex patterns such as, e.g., loops can be motivated.
Messages exchanged by services can be distinguished in incoming and outgoing mes-
sages containing either parameters processed (inputs) or provided (outputs) by the ser-
vice. The service behavior, as we understand it, is made up of three constitutive as-
pects that have to be considered. (1) The existence of inputs and outputs (interactions),
(2) The sequence in which inputs and outputs occur and (3) Control constructs repre-
senting the allowed order of interactions.

8 http://www.wsmo.org/
9 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel

31

Expressing Semantic Web Service Behavior using Description Logics 5

Existence of interactions The fact that interactions occur in a service, we call existence.
From a service requestor’s point of view, describing a service environment10, inputs can
be provided and outputs must be received. From a provider’s point of view, the described
inputs are required and the outputs are provided. The semantics of these different inter-
pretations of the existence of interactions is discussed in Sect. 4. For modeling purposes,
the existence of inputs and outputs is in a first step considered individually before be-
ing consolidated. A service can consist of several inputs, outputs or most commonly a
combination of both. The mere existence of interactions makes no statement about the
ordering of interactions.

Sequence The order of interactions is specified defining a sequence of their appear-
ance. Thinking of public and private processes, a special order of interactions needs
for example to be defined when an internal state (that is not obvious for the external
observer) triggered by an interaction has to be reached before another interaction can
be processed. Although this implicit order of interactions is possibly not obvious in the
first instant only seeing the external visible public process, it is however necessary for
the successful execution of the operation. This requirement has to be met by services in
order to match the request. Hence it has to be made explicit. A sequence can be defined
either between inputs or outputs or between both interactions.

Control constructs The third behavioral aspect besides the mere existence of interac-
tions and the sequence are control constructs describing special derivations from the
basic sequence. In [11], 20 workflow patterns based on analysis of existing workflow
management systems and workflow languages are identified and described. Our solu-
tion focuses on the basic control patterns to show how service behavior can be described
with DL. These have been identified to model a common set of service behavior con-
structs. The basic patterns consist of sequence (described in Sect. 3), parallel split along
with its synchronization and exclusive choice along with the simple merge.11 Advanced
patterns such as multiple choice and cycles are generally imaginable, they are however
neglected in this initial approach. The parallel split expresses the concurrency of in-
teractions. This means that the interactions described as concurrent can appear in any
order. They only have to meet other sequential requirements that could be specified,
e.g. when another interaction is defined to occur before the parallel split. An example
use case from a service provider’s point of view could be as follows: After entering
necessary login information a user has to enter both credit card and address informa-
tion. The sequence of entering the credit card and address information is however of no
importance for the service functionality. Both only have to appear after the login. The
exclusive choice describes the case when only one branch of interactions is executed. At
present, the modeling of the exclusive choice in DL has not been realized. The potential
combinations of the realized concepts as there are existence and sequence, existence
and parallel split, sequence and parallel split and combinations of all three have been
modeled and introduced in the design of the DL expressions. This is described in Sect. 5
10 Environment in this regard describes the system or service landscape in which the searched or

requested service is to be embedded with its functionality
11 Parallel split and exclusive choice always include its synchronization or simple merge pattern.

An explicit distinction between these patterns is waived.

32

6 Markus Fronk and Jens Lemcke

4 Service matching

After having described in the previous section the elements that represent the behavioral
aspects of services and their meaning to the order of interactions, this section focuses on
the semantics of these elements with regard to the matching of services. We understand
the matching of services as the major and common task in the SWS usage process.
In this section we will outline the semantics due to which a service matches a request
given the previously introduced elements. The decision whether Web services can be
matched, depends on the previously described behavioral aspects. It can however not
easily be claimed by just comparing the existence of these constructs as the semantic
behind these is quite complex with regards to Web services. This will be described in
more detail in the following sections. Each aspect described by a service request R has
to be analyzed with regard to its effects on the fulfillment by a service S. We use DL in
such a way that a service S fulfills the requirements of a request R when

R w S (1)

can be asserted. The semantic of the behavioral aspects has been modeled in DL to
satisfy this equation. This means that the behavioral constructs are described in a way
that matching services can be identified by satisfying (1).

Existence As indicated in Sect. 3, the existence of inputs described in a request has a
different effect on a services’ ability to assert R w S than the existence of outputs.
For the DL expression representing inputs of a request R and a service S we write IR

and IS , respectively. For outputs we write OR and OS . IR describes the maximum set
of inputs that can be provided by the environment. A service however does not have to
use all the inputs provided. A service delivering the requested goal by using less inputs
still fulfills the request. This is described by (2). The set of outputs specified by the
environment defined as OR is on the other hand mandatory. It specifies the minimum
set that must at least be provided by the service’s set of outputs OS . This relationship is
defined by (3).

Inputs: IR w IS (2)
Outputs: OR v OS (3)

Sequence The sequence describing the order of inputs and outputs specified by a service
request is defined as SeqR. It has to be met by the sequence of a matching service
SeqS in order to satisfy R w S. Equations (2) and (3) must still hold. This means
that a service does not necessarily have to consume an input, even if it is described
in SeqR. This is discovered by the standard reasoning mechanism. However, when a
service consumes an input that is described in a special order in SeqR, it has to appear
with the same sequential constraints in SeqS . Outputs, in contrast, always have to be
provided. Additional outputs provided by the service S that are not necessarily required
by R (i.e. they are not defined in OR) can be part of the sequence SeqS at any position.
The same applies for interactions specified without any special order (cp. Sect. 3)in R.

Sequence: SeqR w SeqS (4)

33

Expressing Semantic Web Service Behavior using Description Logics 7

Control constructs The semantics related to a parallel split is as follows: A request that
defines a parallel split between interactions (for example I1 and O1)12 explicitly states,
that the order of these interactions is not relevant. (cp. Sect. 3). This means for a service
to fulfill the request that it can either specify the parallelism as well, or define an order
of the interactions involved. A service stating the sequence ”I1 and then O1” or vice
versa also matches the request. The identification of possible matches has to consider
this specialty since it can not just be derived from a one-to-one mapping of control
constructs. A service does not necessarily has to have the same control construct as the
request to match. The aspects of existence, sequence and the control constructs can be
combined in any combinations. The previously described characteristics of each of the
aspects is still considered for the matching when combined to a more complex behavior.

5 DL for behavioral aspects

In the previous sections we described the elements of service behavior and their
semantics with regard to the matching of services. In this section we will introduce the
DL-constructs that have been developed to represent the previously discussed elements
and their semantics. This will outline the basis for automated reasoning and matching.
The following proof of concept using the subsequently introduced DL-constructs will
finally show the obtained advantages.

The Description Logics approach, and more precisely OWL-DL, was chosen be-
cause of its decidability and its ability to be integrable with other semantic web
technologies facilitating the expandability of the WS descriptions. The matching of
requests and services is represented by a subsumption relation of their DL constructs.
(cp. (1)) Given several services annotated with the language constructs subsequently
defined for describing the behavioral aspects, standard reasoners can be exploited
to infer this classification. The following constructs are modeled and developed in
order to be used with the conception of classification. Matching services in terms of
the aspects previously described in Sect. 4 are automatically identified and classified
as subordination of the service request. The required DL constructs are succedingly
introduced. Requests, services and interactions are modeled as classes. The behavioral
aspects are expressed by special properties representing the relationships between
classes.

Existence For describing the semantics of the existence of interactions (specified in
Sec. 4) we introduced the existence property “has”. This can colloquially be interpreted
as: “A service has the following inputs and outputs!” Due to the fact that inputs and
outputs have different semantics for fulfillment, they are also modeled in a different
way. The DL expression for a set of inputs I1, I2, . . . , In for a request R or service
S is represented through the inputs combined by the union of specifier. Thereby, (2) is
satisfied. The set for a service S and request R, respectively, is hence defined as follows.

IS/R ≡ (I1 t I2 t . . . t In) (5)

12 The parallel split can contain only inputs or only outputs or all kind of combinations

34

8 Markus Fronk and Jens Lemcke

A request R providing several inputs is then described through defining a has-
relationship with the relevant set:

R ≡ ∃has.IR ≡ ∃has.(I1 t I2 t . . . t In) (6)

A service S described as S ≡ ∃has.(I1 t I2 t . . . t Im) where m ≤ n is hence iden-
tified as being adequate for R, because of satisfying R w S. Services requiring more
inputs (m > n) do not satisfy this condition. Outputs, in contrast, are enumerated using
the intersection of operator for representing the semantics in (3). The DL expression
for a set of outputs O1, O2, . . . , On is defined as follows.

OS/R ≡ (O1 uO2 u . . . uOn) (7)

A request relying on several outputs is then described, through defining a has-
relationship with the relevant set:

R ≡ ∃has.OR ≡ ∃has.(O1 uO2 u . . . uOn) (8)

A service S described as S ≡ ∃has.(O1 tO2 u . . . uOm) with m ≥ n is identified
as match, because R w S. Services providing less outputs (m < n) are not considered
to fulfill the request R. The more common case that services consist of both inputs
and outputs is accommodated by the combination of (5) and (7). These concepts are
combined using the intersection of operator. For the DL construct of the combined
interactions we write IOS/R. It is described with following equation.

IOS/R ≡ IS/R uOS/R ≡ (I1 t I2 t . . . t In) u (O1 uO2 u . . . uOm) (9)

Requests providing several inputs and relying on several outputs are then described
through defining a relationship similar to the cases (6) and (8):

R ≡ ∃has.((I1 t I2 t . . . t In) u (O1 uO2 u . . . uOm)) (10)

This expression facilitates reasoning over both the constraints defined in (2) and (3).

Sequence The sequence of inputs and outputs is described through an ordering then-
property. The succession of several interactions is represented by nesting the ordering
property. Inputs and outputs are in a first step again treated independently. The nested
expressions are combined similar the existence of inputs and outputs. Consecutive in-
puts are combined with the union of, consecutive outputs with the intersection of oper-
ator. Requests R and services S with a sequence of interactions are described as shown
in (11) and (12).

SeqR ≡ ∃ then.(I1 t (∃ then.(I2 t (∃ then.(. . . t (∃ then.(In))))))) (11)
SeqR ≡ ∃ then.(O1 u (∃ then.(O2 u (∃ then.(. . . u (∃ then.(On))))))) (12)

35

Expressing Semantic Web Service Behavior using Description Logics 9

The combination of inputs and outputs in a single sequence poses a complication that
could not be completely handled yet. The difference to the combination of interactions
with the DL-expression realized within the existence aspect is that within the sequence
inputs and outputs have to be combined in the nested sequentiell expression. Combina-
tions of the concepts such as inputs following other inputs, as well as outputs following
other outputs can be matched correctly using the combined expression shown in (11)
and (12). Combinations of the concepts such as inputs following outputs and outputs
following inputs however are not correctly matched in every aspect. This means that
some services are identified as match although they are not and vice versa. Goal is to
have a DL representation, that expresses the combined sequence in a way, that all kinds
of cases are correctly classified. In Sect. 6 we provide an example that show a case that
correctly distinguishes appropriate and not appropriate services for a defined request,
given the present DL-constructs.

Control constructs The semantics of a parallel split, as it is described in Sec. 4, is
expressed as follows considering as example three existing interactions.

SeqR ≡ ∃ then.(I1 t (∃ then.((I2 t (∃ then.I3)) t (I3 t (∃ then.I2))))) (13)
SeqR ≡ ∃ then.(O1 u (∃ then.((O2 u (∃ then.O3)) t (O3 u (∃ then.O2))))) (14)

Equations (13) and (14) describe the concurrency of the second and the third interac-
tion. The sequence of occurance is not relevant. Both a service S1 that has the second
before the third13 and a service S2 that has the third before the second14 interaction are
identified as match for the request R. (R w S is satisified)

Service behavior description A service behavior consists (as outlined in the previous
sections) of the existence part (cp. Sec. 5) and the sequential ordering (cp. Sec 5 and
Sec. 5). The DL expression for the service behavior description is hence the combi-
nation of both (represented by the intersection of operator). The behavioral aspects of
requests R and services S are described as follows. Assuming a request that describes
the three inputs (I1, I2, I3) sequentially ordered (first I1 then I2 then I3) is represented
by the DL construct:

R ≡ ∃has.(I1 t I2 t I3) u ∃ then.(I1 t (∃ then.(I2 t (∃ then.(I3))))) (15)

Services described with the same DL expressions can be identified as a match by veri-
fying the satisfaction of R w S. This inference can be done using standard reasoners.
Outputs are described accordingly, combining the existence and sequence constructs
for outputs.

13 Seq(S1) ≡ ∃ then.(I1 t (∃ then.(I2 t (∃ then.I3))))
14 Seq(S2) ≡ ∃ then.(I1 t (∃ then.(I3 t (∃ then.I2))))

36

10 Markus Fronk and Jens Lemcke

6 Proof of Concept

In the following we show a scenario applying the previously described DL-constructs.
The behavioral aspects of a request and possible services are subsequently described
with OWL-DL and existing inference mechanisms are used to draw conclusions about
the match of the described services. This shows how code robustness can be improved
exploiting existing standard reasoners, because the formal semantics of DL facilitates
the separation of the model of aspects of the Web service from its interpreting applica-
tion.
The first example only considering interactions is then extended to also consider behav-
ior showing the simple extendability of our approach. Different aspects developed inde-
pendently from each other that adhere to the same formal semantics can be integrated
in a single analysis module considering all aspects as a whole. The use of OWL-DL
constructs further allows for the later the non-intrusive integration with other ontologi-
cal models using the same ontology language.
The scenario described in the subsequent section is as follows. A user requests an order-
ing service that requires a login, an order and user data as inputs and provides an order
confirmation as output. Furthermore two services, (1) a store service, appropriate for
our request, and (2) a fraud service spying user data are described. The corresponding
DL-constructs are defined as follows.

R ≡ Ordering ≡ ∃has.((login t order t userData) u (conf))
S1 ≡ Store ≡ ∃has.((login t order) u (wMsg u conf))
S2 ≡ Fraud ≡ ∃has.((login t order t userData) u (conf))

The store service requires only a login and an order and provides both a welcome mes-
sage and a confirmation for the order. The fraud service in contrast has the same inter-
actions as the ordering request. The reasoner given these service descriptions has as a
result the inference shown in Fig. 1. Considering only the interactions existent within
the services, both services are identified as match to the request R. (R w S) Consid-
ering in addition the service behavior for the identification of appropriate services, we
just extend the previous expressions with the introduced DL-constructs to define the al-
lowed ordering of interactions. The most important constraint is that the order and user
data is not provided until a login has occured. The store service satisfies this require-
ment, the fraud service however requires the user data before the login. The according
DL-constructs for the request and the services are defined as follows.

R ≡ Ordering ≡ ∃has.((login t order t userData) u (conf)
u ∃then.(login t (∃then.(order t (∃then.(userData u (∃then.(conf))))))))

S1 ≡ Store ≡ ∃has.((login t order) u (wMsg u conf) u ∃then.(login

u (∃then.(wMsg t (∃then.(order t (∃then.(userData u (∃then.(conf))))))))))

S2 ≡ Fraud ≡ ∃has.((login t order t userData) u (conf)
u ∃then.(userData t (∃then.(login t (∃then.(order u (∃then.(conf))))))))

37

Expressing Semantic Web Service Behavior using Description Logics 11

Given these service descriptions, the result inferenced by the reasoner is shown in Fig. 2.
Considering as well the behavioral aspects only the store service is inferred as a match
for the request. The fraud service does not follow the allowed order of interactions.

=⇒

Fig. 1. Inference considering Interactions

=⇒

Fig. 2. Inference considering Behavior

7 Conclusions & Future Work

In this paper we have introduced a way to describe service behavior using OWL-DL.
We described the different constructs for defining the mere existence of interactions,
the sequence and the concurrency. With the use of DL as descriptive element our ap-
proach accomplishes the requirements of robustness, extendability and integrability of-
ten lacking in related work that describes service behavior aspects. On the basis of a
simple example we finally showed the application of the constructs demonstrating the
exploitation of standard reasoners. We see the solution described in this paper especially
adaptable for the automation of the discovery and the composition of web services.

Based on the expressions given, and their evaluation by the subsumption-reasoning
of a standard reasoner (also called “classification” [2, p. 48]), the task of finding Web
services matching the technical (inputs and outputs) and behavioral aspects (causal con-
straints over inputs and outputs) of a Web service request can be automatically executed.
Using the technique described for the matchmaking task, there is no additional applica-
tion logics needed.

In addition, we understand our definition of a formal description of Web service be-
havior suitable for automatic matchmaking of requests and Web services as an impor-
tant step towards the creation of an extensible, robust, automatic semantic Web service
composer. The task of semantic Web service composition, amongst other jobs, mainly
bases on well-known “syntactic” Web service composition as well as “semantic” dis-
covery. Traditional Web service composition uses, e. g., planning [12] or configuration
techniques [13] to come up with the composed workflow of Web services. Semantic
composition mainly differs in the way the composer finds services being candidates for
addition to the final workflow. For this step, it uses the additional information that is
given in a semantic Web service description. This information may be the subsump-
tion relations of different input and output elements, behavioral constraints, policy re-
quirements and properties, or other arbitrary aspects of Web service descriptions. The

38

12 Markus Fronk and Jens Lemcke

described approach can therefore additionally be exploited for the tasks existent in the
service composition as it supports the semantic description of services. Further research
however has to occur in this area.

Future work will focus on three aspects of the service behavior description. (1) The
combination of interactions in the sequence expression to cover all special cases in order
to provide a set of DL constructs that allows to describe the main spectrum of service
behavior. (2) An expression for modeling the exclusive choice. (3) The representation
of cycles and advanced workflow patterns as extension to the basic expressions for
describing even special service behavior. The future research, related to these aspects of
describing the service behavior with the presented DL-constructs, will finally enable us
to understand whether the expressibility of DL is enough for expressing the constraints
that characterize service behavior.

References
1. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier,

C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. In: Applied Ontology 1.
Volume 1. IOS Press (2005) 77–106

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: The
Description Logic Handbook: Theory, Implementation, and Applications. In Baader, F.,
Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: Description Logic
Handbook, Cambridge University Press (2003)

3. Preist, C., Cuadrado, J.E., Battle, S., Grimm, S., Williams, S.K.: Automated business-to-
business integration of a logistics supply chain using semantic Web services technology. In
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A., eds.: International Semantic Web Confer-
ence. Volume 3729 of Lecture Notes in Computer Science., Springer (2005) 987–1001

4. Grimm, S., Lamparter, S., Abecker, A., Agarwal, S., Eberhart, A.: Ontology based spec-
ification of Web service policies. In Dadam, P., Reichert, M., eds.: GI Jahrestagung (2).
Volume 51 of LNI., GI (2004) 579–583

5. Bansal, S., Vidal, J.M.: Matchmaking of web services based on the daml-s service model
(2003)

6. Ankolekar, A., Paolucci, M., Sycara, K.: Spinning the owl-s process model, toward the
verification of owl-s process models (2004)

7. Rajasekaran, P., Miller, J., Verma, K., Sheth, A.: Enhancing web services description and
discovery to facilitate composition (2004)

8. Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-Level System Design
and Analysis. Springer-Verlag (2003)

9. Trainotti, M., Pistore, M., Calabrese, G., Zacco, G., Lucchese, G., Barbon, F., Bertoli, P.,
Traverso, P.: Astro: Supporting composition and execution of web services. In Benatallah, B.,
Casati, F., Traverso, P., eds.: ICSOC. Volume 3826 of Lecture Notes in Computer Science.,
Springer (2005) 495–501

10. Wahl, T.: Konzeption und realisierung einer ontologie zur modellierung und ableitung
von geschaeftsprozessen. Diplomarbeit, Technische Universitaet Berlin, DEUTSCHLAND
(2005)

11. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns (2002)
12. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and monitoring web

service composition. In: AIMSA. (2004) 106–115
13. Stumptner, M.: Configuring web services. In: Proceedings of the Configuration Workshop

at the 16th European Conference on Artificial Intelligence (ECAI). (2004) 10–1/10–6

39

POVOO – Process Oriented Views On Ontologies

Eva Gahleitner, Wolfram Wöß

Institute of Applied Knowledge Processing (FAW)

Johannes Kepler Universität Linz, Austria

A-4040 Linz, Altenbergerstr. 69

{egahleitner, wwoess}@faw.uni-linz.ac.at

Abstract. Ontologies still lack of including and considering the dynamic

aspects of business processes. Therefore existing ontology-based information

systems provide only static information which does not suit the actual working

context of a user. In this project we extend information retrieval techniques

with ontologies through a Process Oriented View On Ontologies (POVOO).

The purpose is to satisfy a user with information that depends on the current

process the user is working in. Due to a context aware approach it is possible to

dynamically adapt the information to the user's current working situation. We

introduce a methodology for generating views on ontologies and we illustrate

how an application can use them to query highly specialized knowledge bases.

1. Introduction

Ontologies are widely used in the area of computer science, but did not really reach

the step into the area of commercial business engineering. Whereas in the field of

information retrieval (IR) ontologies emerged as a major support for improving the

recall and precision of search mechanisms, they only play a subordinate role in

process modeling1. Nevertheless, in daily work business processes are often the

starting point for software development and define requirements for software systems.

Research and industry have addressed the alignment of business processes and

information technology (IT) only marginally. This leads to separate modeling areas:

one for information management and retrieval and one for business engineering.

Ontology-based query techniques suffer from a number of disadvantages which

have major impacts on their usage in business process modeling:

• Ontologies provide a single monolithic structure, splitting them up into small units

is hardly possible.

• Ontologies do not consider dynamic aspects. A process is typically characterized

by a dynamic sequence of events and operations. The need for knowledge may

change according to these different process events and operations. For example, a

technician who designs a new car engine needs information which is different from

1 Within business process modeling ontologies are used to represent explicit formal

specifications of the terms in the entire process management domain and relationships among

them.

40

2 Eva Gahleitner, Wolfram Wöß

the information a worker at the assembly line or a car dealer requires for the

customers.

• As the size of the ontology raises so does the complexity of its structure and

therefore the complexity for a user to find the right concepts (cf. highly specialized

ontologies in medicine like UMLS [24]).

• The context in which a user (an employee in a department, a user of a software

application, etc.) works determines the user's view on the available knowledge.

Much work has already been done in the field of context-based ontologies for

certain users or user groups, but little for particular views on knowledge in the

context of business processes (cf. [31]).

• One structure does not fit all: information can not easily be categorized within a

single (tree) structure, so that users will always find what they are looking for. This

is due to the multi-dimensional nature of the information. Any piece of information

can be categorized according to one or more facets. Such a multi-facet

categorization better reflects the different viewpoints one can have on a single

piece of information.

In this work we introduce our approach to integrate views on ontologies in the

information retrieval process with specific consideration of business processes. The

acronym POVOO stands for Process Oriented Views On Ontologies. The purpose of

POVOO is to satisfy a user with information that depends on the current process the

user is working in. We propose a context aware solution which considers a user's

working process and the corresponding information required by a user during certain

tasks in this process. For example, when office workers are working on a specific task

they are working in a certain context, thus only specific information is necessary to

get the work done. Working contexts differ according to the required information and

the involved people. This characteristic of work is exploited in the IR mechanism of

our approach where views on ontologies represent the working contexts. In this way

the system can search and present relevant information in the current context.

For highly specialized knowledge bases which can be found e.g. in medicine or

biology, we assume that the information itself, which is relevant to execute a certain

task (the documents in a knowledge base), stays the same, whereas the relationships,

the various specialization and generalizations, the integration of various concepts in a

new one, the ordering of the concepts etc. may differ depending on the user or the

actual business process step. We therefore emphasize an approach which uses

ontologies not only as simple vocabulary to define a lingua franca in business process

engineering but rather as a way to structure the knowledge for particular processes.

Within POVOO we develop a methodology for generating views on ontologies

(which we call ontology views) and we demonstrate how applications can use them to

query ontology-based knowledge bases.

The remainder of the paper is organized as follows: Section 2 overviews related

work concerning ontologies in IR and process modeling, view based search and

process oriented ontologies. Section 3 describes the characteristics of highly

specialized knowledge bases, presents POVOO’s three ontology levels and the

concept of ontology views. Section 4 gives an explanation of our query mechanisms

and how ontologies are connected with process modeling techniques. Finally, section

5 describes further research and concludes the paper.

41

POVOO – Process Oriented Views On Ontologies 3

2. Related Work

A business process defines the sequence of activities and the kind of resources

(machine or human) which a process or an activity needs for its execution [3]. In

recent years various (business) process modeling techniques have been introduced:

Starting from the well known Petri nets [4] or high-level Petri nets [5], over UML

activity diagrams [6] and object behavior diagrams [7] to more enterprise and

business related techniques such as Event-Driven Process Chains (EPC) [8], UML

Profile for Enterprise Distributed Object Computing (EDOC) [6] or the Business

Process Modeling Language (BPML) [9].

All these techniques have in common that they describe the behavior of a system.

By contrast, ontologies describe the knowledge of the system. Ontology is an explicit

specification of a conceptualization [10], it captures the knowledge of a certain

domain. But ontologies are not limited to the description of domain knowledge. They

can also be used to define problem-solving knowledge (so-called task knowledge or

task ontologies). In business engineering task ontologies create an ordering over sets

of tasks and subtasks and are therefore defined as hierarchically ordered task

ontologies [11] [12] [13].

Whereas in business engineering ontologies are simply used as a common

vocabulary for processes and tasks, ontologies in information engineering are applied

in various ways. E.g. in information retrieval (IR) ontologies have been commonly

used to improve recall and precision [2]. Their main advantage relies in their ability to

organize information into hierarchically ordered taxonomies of concepts, and to

define attributes and relationships between these concepts. Two approaches are used

in IR: query expansion and conceptual distance measures. The former expands the

user query by adding terms semantically related to those used in the original user’s

query and therefore documents that do not necessarily contain the queried terms may

be retrieved [14]. The latter uses a conceptual distance measure to calculate the

similarity between terms in a query and terms in a document [15].

An extension to these IR methods is the concept of view-based or multi-faceted

search methods [16] [17]. Here the idea is to organize the terminological keywords of

the underlying knowledge base into various hierarchies which help the user to better

formulate queries. For example, the keywords of a knowledge base can be ordered

according to different aspects, e.g. “Time” or “Place”. Such hierarchies are often

called facet or views. The facets provide complementary views on the content along

different dimensions.

However, existing multi-facet search tools use simple subclass-taxonomies [18].

They do not consider various relations between the concepts of an ontology (they are

built for database querying). The Ontogator [19] approach combines the usage

benefits of multi-facet search with the answer quality benefits of ontology-based

search. But Ontogator does not support automatic querying; the users have to define

the queries on their own.

42

4 Eva Gahleitner, Wolfram Wöß

3. Views on Ontologies

Ontologies describe those parts of knowledge, which are interesting for a certain

domain. If a user likes to tailor ontologies to specific aspects of the phenomena of

interest (e.g. to implement a certain application) he/she has to create different versions

of the same ontology. Ontology versioning is a well known research area in the field

of ontology engineering [1]. Unfortunately, these approaches only take care of the

changes in the ontology itself, they do not deal with different views somebody may

have when working with the ontology within a given process. In that case the

ontology does not change, only the parts which are relevant to a certain user query

change.

In general, views create virtual schemas and resource descriptions reflecting only

the users’ (applications’) conception of a specific application domain. There is a large

body of work on views for the relational data model. For example, the commonly

used structured query language SQL [25] serves as a view definition language. By

contrast, in the semantic web ontology views have been regarded only marginally

until now. One known adoption is the use of scopes within topic maps [20] [21].

Currently, there are only two semantic web view languages for ontologies, both of

them are built upon RQL query language and are aimed at RDF(S) data models: RDF

View Language (RVL) [22] and the ontology view language proposed by Volz et al

[23].

3.1 3-Level Architecture of Ontologies

Views (also called facets) provide complementary views on the content along

different dimensions. They are widely used by database management systems

(DBMS). A prominent role in DBMS plays the ANSI 3-schema architecture [26] that

describes the different views on a database. In the center of the 3-schema architecture

is the logical schema, which represents a complete business-oriented view on the

information model. The underlying physical schema reflects the physical

representation of data according to the requirements of the database. The external

schema on top of the architecture represents specific views on the logical schema

from the perspective of an individual application.

This ANSI reference model can be adapted to the area of ontologies (cf. Figure 1).

The ontology concepts and their interrelationships, which are described according to

the terms and principles of the domain (the semantic), represent the logical schema.

We call this level the semantic level. The physical schema represents the syntactic

specification of the ontology (e.g. built-in constructs given in RDF(S) or OWL)

(syntactic level). The external schema is a mapping between the ontology schema and

the schema the application is using. In the simplest case this is just a subset of the

concepts, attributes, and relations of the ontology. For more complex applications,

views are arranged in the way how the ontology concepts and relationships are

viewed by an agent (human or software agent). More precisely, creating such a view

over some data on the semantic web essentially consists of the creation of virtual

metadata schemas and descriptions consistent with the agent’s perception of those

data. We call this level the application level.

43

POVOO – Process Oriented Views On Ontologies 5

Whereas the semantic and syntactic level is well discussed in the semantic web,

views on ontologies are only marginally regarded. The application level has a major

impact on the usability of existing ontology based knowledge systems. For example,

ontology change management could be based on views where each view represents a

major change in the knowledge model. Different versions of the same ontology could

be specified in different views on that ontology. Additionally, working with views

makes maintenance of ontologies easier.

RDFS/OWL

representation

Ontology

Ontology Views application level

semantic level

syntactic level

Process

Knowledge
Base

Fig. 1. Ontologies and ontology views analogous to the ANSI 3-level architecture

Another advantage of ontology views is that they describe information according

to different contexts. This characteristic can be used to align ontology management

systems with process oriented approaches. The kind of working process and its

different conditions and dependencies between the single process steps have a major

influence on the kind of information a worker requires. This information is described

through various ontology views (compare Figure 1). The ontology views are based on

the underlying ontology of the system (of the semantic level).

3.2 Specialized Domain Ontologies

Views on ontologies can only be built for relatively static and constant processes.

Such processes can be found e.g. in medicine (e.g. diagnostic processes in medicine

have a common structure). Ontologies belonging to specialized fields of long

academic and professional tradition show a high degree of stability. Although

disciplines such as medicine or biology have experimented drastic changes, this does

not however mean that these novelties completely invalidate earlier conceptual

organizations. An ontology about oncology may be affected by scientific advances

but it is much less likely that it will be reformed in its totality. This relies on the high

level of international consensus that some of these disciplines demonstrate.

Another feature of specialized field ontologies is the high granularity of their

content. For example UMLS [24] provides a content base with highly specialized

terms and documents. Additionally, the sources used for constructing specialized

domain ontologies are well structured. Proof-reading and controlled communication

44

6 Eva Gahleitner, Wolfram Wöß

leaded to a high formality of the sources. This high level of granularity makes it easier

to split up knowledge in small, coherent knowledge pieces.

These properties (stability, high granularity and formality) make specialized

domain ontologies a reliable resource for the retrieval of information, as well as a

more effective one than its counterparts of non restricted fields and those used for

common language. In other domains, which are not that structured and well defined

the building of views on ontologies and the alignment of views to processes may lead

to modeling problems.

3.3 Creating Ontology Views in POVOO

Existing approaches in view based ontology management [19] have a number of

disadvantages:

• Views are only built on taxonomies: the multi-facet search just regards concept

hierarchies (subclass_of or part_of relationships) not the entire semantic

relationships of an ontology.

• The taxonomies are built on hierarchy rules which tell how to construct the

taxonomies. In the mentioned approaches the taxonomies are built on simple Java

applications and are therefore hardly to maintain.

• The GUIs are not suitable for large ontologies with various views on the ontology.

In POVOO we regard ontology views not only as a set of simple taxonomies. In

our approach a view consists of various concepts, attributes and relationships which

themselves build an ontology. The querying is therefore not restricted to a set of

hierarchical ordered concepts but considers the entire semantic dependencies of

concepts. Based on these modeling conventions, in POVOO views on ontologies are

created in two ways:

• Manually by using an editor: this editor allows the integration of different

classification schemas into the ontology as well as various relationships between

the concepts. The editor will be integrated in the Protégé ontology editor

framework2.

• With the help of semantic web querying languages, e.g. RDQL (RDF Query

Language) [27] and OWL-QL (OWL Query Language) [28].

The connection of process modeling and ontology views disburdens the user from

choosing the right facets in the querying process. POVOO automatically identifies the

necessary ontology views for the given process step, expands the user query and

displays the result set according to this view. For example, when searching for

medical reports one gets an anatomical ordering during the anamnesis process,

whereas the same reports are relevant in a temporal ordering when preparing a

surgery. Due to traceability reasons a user can always switch to a non-view-based

search. The result set is then presented according to the underlying ontology of the

information system.

2 http://protege.semanticweb.org/

45

POVOO – Process Oriented Views On Ontologies 7

4. Integrating Process Models and Ontologies

When integrating structural and behavioral system aspects into an information system

it is necessary to know a) which processes should be performed, b) who is responsible

for certain tasks, c) which kind of information is needed and d) which resources are

used. These different viewpoints are regarded in various business process engineering

models. For example, ARIS (ARchitecture of integrated Information Systems [29]) a

well known method in the German speaking part of Europe for analyzing processes

distinguishes between a workflow model, functions, data and data flows as well as

organizational units. In addition, INCOME/WF [30] follows a very similar approach.

It supports four kinds of workflow views, an information object view, a view on

existing resources, and a management view.

Fig. 2. Ontology views for integrating information, workflow, management and

resource model

POVOO maintains the mentioned four viewpoints and connects them with the help

of ontology views. In POVOO ontologies are used to represent the information model

of a company’s knowledge base. The information model (the ontology) is the central

model for which various ontology views are built in order to connect all other models

together (compare Figure 2). The workflow or process models are based on existing

process modeling languages. Analogously this is true for the management and

resource models.

In the first phase of our project we will place emphasis on the integration of

ontologies and workflow models, in later stages we will also integrate of the used

resources (e.g. lexicons) and the responsibilities of the users in the process (their

position in the organization).

46

8 Eva Gahleitner, Wolfram Wöß

4.1 POVOO Querying Mechanisms

With POVOO a user has the opportunity to search for relevant information in two

ways. Firstly, by using a simple keyword based search mechanism, and secondly,

with the help of views on ontologies. The search mechanism then regards the certain

role a user is playing when acting in a process. For example, in a medical

environment a user may be a surgeon, an internist, a nursery, etc. who plays a certain

role in the process. In the first phase of a process one may need more generic

information including only generic knowledge bases, whereas in subsequent process

steps one may need a more specialized view on the ontology, including more

specialized knowledge bases.

Fig. 3. View based search in POVOO

Figure 3 shows a possible scenario where different views provide different result

sets for the same user query. The views are built on the same ontology. Within a view

the structure of the ontology may be changed, e.g. a new or existing concept is added

or deleted, or the relationship between concepts are changed, etc. Whereas on the left

side documents 1, 2 and 3 are in the result set of the query, documents 4 and 5 are in

the result set of the same query based on the view on the right side. Additionally, the

result entries are organized according to the structure of the current ontology view.

For traceability reasons the user can at any time switch to the underlying ontology.

4.2 Connecting Ontologies with Process Modeling Techniques

In order to connect ontologies with process modeling techniques we rely on existing

process modeling languages described in section 2. It is more efficient to use

established de facto standards instead of introducing another new process modeling

language, which then may be perfectly suitable for aligning process models with

ontologies, but which has no acceptance and no support in existing management tools.

47

POVOO – Process Oriented Views On Ontologies 9

function

event 1

event 2 event 3 event 4

XOR

role

triggering

event
ontology view

produced
event

Fig. 4. Example connection EPC with Views

Figure 4 shows a connection between processes and ontology views. In this figure

the modeling language EPC (Event-driven Process Chains) is connected with a certain

ontology view for a certain process step (in EPC this is modeled by using

“functions”). EPC is an important aspect of the ARIS model and connects all other

views and describes the dynamics of the business process. Therefore it is possible to

identify a user's role, the triggering event of the process step and the generated events.

If the user acts in this specific role for this specific function the querying mechanisms

are based on the given ontology view.

5. Conclusion and Further Research

In this paper a new approach to integrate ontology-based information systems with

business process engineering is introduced. To connect and integrate both areas we

use process oriented views on ontologies. Within our project we want to identify

similarities and differences between ontology and process modeling techniques. We

therefore analyze existing process modeling techniques such as EPC, UML 2.0, etc.

and compare their possibilities to connect the various viewpoints on business models

(information model, resources, management and workflow). Both techniques for

process modeling and ontology modeling are then implemented in a prototype using

existing tools (e.g. Protégé). In a later phase of this project we try to integrate the

various used resources and the responsibilities a user has within a process.

One of our visions is to apply POVOO in a Grid Computing middleware layer,

which integrates the underlying information resources and workflows based on grid

computing technology and semantic mediation. GRID networks are characterized by a

huge number of knowledge bases containing semantically related information that's

DBMS make high demands on the used IR techniques. During the Austrian Grid

Project [32] the G-SDAM (Grid Seamless Data Access Middleware) prototype is

developed. G-SDAM enables electronic data interchange between various distributed

and heavily heterogeneous information sources using semantic mediation techniques

and allows (authorized parties) to seamlessly bind those information sources for

48

10 Eva Gahleitner, Wolfram Wöß

querying and processing data in grid environments. G-SDAM processes queries over

multiple data sources and translates data accordingly by applying domain ontologies.

References

1. M. Klein, D. Fensel, A. Kiryakov, D. Ognyanov, Ontology, Versioning and Change

Detection on the Web, in 13th International Conference on Knowledge Engineering and

Knowledge Management (EKAW02), page 197 ff, Siguenza, Spain, October 1 - 4, 2002

2. E. Mönch, SemanticMinerTM: Ein integratives Ontologie-basiertes Knowledge Retrieval

System, Workshop Ontologie-basiertes Wissensmanagement, 2. Konferenz

Professionelles Wissensmanagement - Erfahrungen und Visionen, Schweiz, April 2003

3. Workflow Management Coalition, Terminology & Glossary, Document Number WFMC-

TC-1011, Document Status - Issue 3.0, Feb 99, http://www.wfmc.org/standards/docs/TC-

1011_term_glossary_v3.pdf

4. C.A. Petri, Kommunikation mit Automaten, Ph.D. thesis, Institut für Instrumentelle

Mathematik, Bonn, 1962

5. W. Brauer, W. Reisig, Petri Nets: Central Models and Their Properties, Lecture Notes in

Computer Science, Vol. 254: Advances in Petri Nets 1986, Part I, proceedings of an

Advanced Course, Bad Honnef, Springer-Verlag, September 1986

6. Unified Modeling Language (UML), Object Management Group, http://www.uml.org/

7. P. Bichler, G. Preuner, and M. Schrefl, Workflow Transparency, in Advanced

Information Systems Engineering, in Proceedings of the 9th International Conference

(CAiSE ‘97), Barcelona, Spain, pp. 423 – 436, Springer Verlag, June 1997

8. J. Staud, Geschäftsprozessanalyse: Ereignisgesteuerte Prozessketten und objektorientierte

Geschäftsprozessmodellierung für Betriebswirtschaftliche Standardsoftware, Berlin,

Springer, 2001, ISBN 3-540-41461-4

9. Business Process Modeling Language (BPML), Business Process Management Initiative,

http://www.bpmi.org/BPML.htm

10. T. R Gruber, A Translation Approach to Portable Ontology Specifications, in Knowledge

Acquisition, Vol. 5(2), pp. 199-220, Academic Press, Stanford University, USA, 1993

11. V. R. Benjamins, L. Nunes de Barros, A. Valente, Constructing Planners through

Problem-Solving Methods, in Proceedings of KAW'96 (Banff), pp. 14.1-14.20, 1996

12. A. Tate, Roots of SPAR - Shared Planning and Activity Representation, The Knowledge

Engineering Review, Vol. 13(1), pp. 121-128, Special Issue on "Putting Ontologies to

Use" (eds. Uschold, M. and Tate, A.), Cambridge University Press, 1998.

13. A. Pease, The Warplan: A Method Independent Plan Schema, in L. de Barros, R.

Benjamins, Y. Shahar, A. Tate, A. Valente (edts), in Proceedings of the AIPS 1998,

Workshop on Knowledge Engineering and Acquisition for Planning, AAAI Technical,

Report WS-98-03, 1998

14. N. Guarino, C.Masolo, G. Vetere, Ontoseek: Content-based Access to the Web, IEEE

Intelligent Systems, Vol. 14 (3), pp. 70 – 80, May 1999

15. L. Khan, Ontology-based Information Selection, PhD thesis, Department of Computer

Science, University of Southern California, 2000

16. A.S. Pollit, The Key Role of Classification and Indexing in View-Based Searching,

technical report, University of Huddersfield, UK 1998

17. E. Mäkelä, Hyvönen, T. Sidoroff, View-Based User Interfaces for Information Retrieval

on the Semantic Web, in Proceedings of the ISWC-2005 Workshop End User Semantic

Web Interaction, November, 2005

18. A. S. Pollitt, G. P. Ellis Martin P. Smith, HIBROWSE for Bibliographic Database,

Journal of Information Science Vol. 20 (6), pp. 413 – 426, 1994, ISSN:0165-5515

49

POVOO – Process Oriented Views On Ontologies 11

19. E. Hyvönen, S. Saarela, K. Viljanen: Ontogator, Combining View- and Ontology Based

Search with Semantic Browsing, in Proceedings of the International SEPIA Conference,

Helsinki, September 18-20, 2003

20. XML Topic Maps (XTM) 1.0, TopicMaps.Org Specification, http://www.topicmaps.org

21. T. Luckeneder, K. Steiner, W. Wöß, Integration of Topic Maps and Databases: Towards

Efficient Knowledge Representation and Directory Services, in lecture notes in Computer

Science 2113, DEXA 2001 – 12th International Conference on Database and Expert

Systems Applications, Springer-Verlag, pp. 744-753, München 2001

22. A. Magkanaraki, V. Tannen, V. Christophides, D. Plexousakis, Viewing the Semantic

Web through RVL Lenses, in Proceedings of the 2nd International Semantic Web Conf.,

Sanibel Island, USA, pp. 96-112, 2003

23. R. Volz, D. Oberle, R. Studer, Views for Light-Weight Web Ontologies, in Proceedings

of the ACM Symposium on Applied Computing, NY, USA, pp. 1168-1173, 2003

24. Unified Medical Language System, http://www.nlm.nih.gov/research/umls/

25. Structured Query Language, http://www.sql.org/

26. D. Tsichritzis, A. Klug, The ansi/x3/sparc/dbms Framework Report of the Study Group

on Database Management Systems, in Information Systems Vol 3 (3), pp. 173 – 191,

1978

27. RDQL - A Query Language for RDF, W3C Member Submission 9 January 2004,

http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

28. R. Fikes, P. Hayes, I. Horrocks, OWL-QL - A Language for Deductive Query Answering

on the Semantic Web, Knowledge Systems Laboratory, Stanford University, CA, 2003

29. A. W. Scheer, Architektur integrierter Informationssysteme, Springer, Berlin/Heidelberg;

1992; ISBN 3540554017

30. A. Oberweis, R. Schätzle, W. Stucky, W. Weitz, G. Zimmermann, INCOME/WF – A

Petri Net Based Approach to Workflow Management, in: H. Krallmann (Edt):

Wirtschaftsinformatik '97, Springer-Verlag, pp. 557-580, 1997

31. A. Abecker, G. Metzas, M. Legal, S. Ntioudis, G. Papavassiliou, Business-Process

Oriented Delivery of Knowledge through Domain Ontologies, in Proceedings of 2nd

International Workshop on Theory and Applications of Knowledge Management,

Munich, 3-7 September 2001

32. http://www.austriangrid.at/

50

Modeling Web Services with URML

Adrian Giurca1, Sergey Lukichev1, and Gerd Wagner1

Institute of Informatics, Brandenburg University of Technology at Cottbus
{Giurca, Lukichev, G.Wagner}@tu-cottbus.de

Abstract. A Web service can be specified on the basis of a business vo-
cabulary, including a business event model, and of a rule-based behavior
model. We use the general rule language R2ML and the UML-based rule
modeling language URML for modeling the behavior of Semantic Web
services.

1 Introduction

A Web Service is a software application identified by a URI, whose interfaces
and bindings are capable of being described in XML, e.g. by means of the Web
Service Description Language (WSDL)[9] and which can directly interact with
other software agents using XML-based messages (represented in the SOAP
format [4]) exchanged via Internet protocols (HTTP or SMTP).

In this paper we discuss the modeling of Web Services with the help of the
UML-Based Rule Modeling Language (URML)[6] developed by the REWERSE
Working Group I11 for the semantic business process management on the Web.
In order to support rule interchange between different rule engines, we have
developed a general rule language, called R2ML ([10], [11]), with an XML seri-
alization format. The metamodels of URML and R2ML largely overlap. URML
can be considered as a language that is derived from R2ML in order to provide
UML-based rule modeling.

We envision the following business process modeling scenario:

– A business process modeler models Web services based on a vocabulary and
rules with a rule modeling tool, f.e. Strelka ([3]);

– The entire Web service specification can be serialized using WSDL and the
rule description language R2ML.

A rule-based Web service may be implemented using a reaction rule engine
and a SOAP listener. The rule engine receives SOAP messages, executes trig-
gered rules and performs actions. The SOAP listener is a Web application, which
captures SOAP messages via HTTP(S) and passes them to the rule engine.

In Section 2 we describe R2ML reaction rules, in Section 3 we describe the
R2ML event metamodel with the focus on atomic events, represented by SOAP
messages, in Section 4 we describe R2ML actions, and in Section 5 we give an
example of a reaction rule, modeled with URML and serialized into R2ML. In
Section 6 we give an outline of the future work and conclusions.
1 Working Group I1 http://www.rewerse.net/I1

51

2 Reaction Rules

The main goal of R2ML is to provide a representation of rules, targeted to the
rule engine platform that is independent of a vendor specific engine (PIM Level).
This allows R2ML to be a rule interchange language between different PSM level
specific rule engines. This section presents R2ML reaction rules also known as
Event-Condition-Action rules (ECA rules) and their usage in describing business
process modeling.

There are several advantages of using REACTION rules for specifying busi-
ness processes: business requirements are often captured in the form of rules in a
natural language, formulated by business people; REACTION rules are easier to
maintain and integrate with other kinds of rules, used in business applications
(integrity rules, which specify constraints the data must fulfill, derivation rules,
which explain how a model element can be derived); the topic of rules validation
and verification is well-studied; REACTION rules emphasis on events gives a
flexible way to specify control flow.

The R2ML metamodel for reaction rules is depicted in Figure 1.

conditions

*

EventExpression

triggeringEvent

1

postcondition

0..1

producedAction

1

{OR}

ReactionRule ActionExpression

AndOrNafNegFormula

Fig. 1. Reaction rule metamodel

A reaction rule is a statement of programming logic that specifies the execu-
tion of one or more actions in the case of a triggering event occurrence and if rule
conditions are satisfied. Optionally, after the action execution post-conditions
may be made true.

Reaction rules therefore have an operational semantics (formalizing state
changes, e.g., on the basis of a state transition system formalism).

A reaction rule has the following components:

– triggeringEvent is an R2ML EventExpression, which is either atomic or
composite (Figure 2);

– conditions are represented as a collection of quantifier free logical formulas;
– producedAction is an R2ML action, which represents the state change of

the system. The latest version of R2ML defines composite actions, which
are, for instance, sequential actions and parallel actions.

– an optional postcondition specifies a state change in a declarative manner.

All components of a reaction rule contain expressions that refer to rule vari-
ables. The R2ML distinguishes between object variables, which are instantiated

52

with objects, and data variables, which are instantiated with data values. The
rule variables are bound to specified classes/datatypes. An object variable in
R2ML can be bound to a specific class either using an ObjectClassificationAtom
or the optional attribute classID of the variable. Similarly, a data variable can be
bound using a DataClassificationAtom or the optional attribute datatypeID
of the variable.

3 R2ML Events Metamodel

The R2ML Events metamodel (see Figure 2) specifies the core concepts, which
are necessary for dynamic behavior of rules and provides the infrastructure for
the support of more detailed behavior definition.

EventExpression
startDateTime : xs:dateTime
duration : xs:duration
/occurDateTime : xs:dateTime = startDateTime + duration

AtomicEventExpr

SequenceEventExpression
timeWindow : xs:duration

2
{ordered}

ParallelEventExpression
timeWindow : xs:duration

1..*

«invariant»
{duration=0}

ChoiceEventExpression
minOccurs : xs:nonNegativeInteger = 1
maxOccurs : xs:nonNegativeInteger
timeWindow : xs:duration

2..*

AndNotEventExpression
timeWndow : xs:duration

2..*
{ordered}

TimeEventExpr

PeriodicTimeEventExpr

SingularTimeEventExpr
dateTime : xs:dateTime MessageEventExpr

/sender : URIRef
receiver : URIRef

{complete}

EventType
eventTypeID : URIRef

1 *

Term

arguments*

SOAPMessageEventExpr

ActionEventExpr
actor : URIRef

«invariant»
{sender=actor}

Fig. 2. R2ML Event Expressions

The basic properties of an R2ML event expression are:

– startDateTime is an event start date and time;
– duration is a value specification that specifies the temporal distance between

two time expressions, which define time instants;
– occurDateTime is a derived property, which is given by the addition of du-

ration to the existent start date time.

All R2ML Events are subclasses of EventExpression. EventExpression is ei-
ther a composite event or an atomic event.

53

3.1 Composite event

Composite event in R2ML is either an AndNotEventExpression, a SequenceEven-
tExpression, a ParallelEventExpression and a ChoiceEventExpression. Each event
expression has a property timeWindow, which represents the duration of the cor-
responding event observation. The event expression metamodel is depicted in
Figure 2.

AndNotEventExpression has two event expressions as arguments (EvtExpr1
and EvtExpr2). It describes a complex event where an instance of EvtExpr1 but
no instance of EvtExpr2 occurs.

SequenceEventExpression refers to an ordered list of event expressions, which
are processed in a sequence of events, following the existent order and consider-
ing a finite value of timeWindow observation.

ParallelEventExpression refers to a collection of events that are concurrently
processed inside of the corresponding timeWindow.

ChoiceEventExpression refers to a collection of events that requires process-
ing of at least one event expression from the collection inside of the corresponding
timeWindow.

3.2 Atomic event

Atomic event in R2ML is an AtomicEventExpression, which main characteristic
is that it has no duration (duration = 0). As a consequence, the occurrence
date time is the same as the start date time.

An atomic event expression:

– Refers to an EventType, which is its classifier;
– Is composed from an ordered, possible empty, list of terms as arguments.

The R2ML distinguishes between two main classes of atomic events:
MessageEventExpression and TimeEventExpression.

Message event expression has a property sender. In the discussing approach
for business process modeling in web services, a sender may be HTTP REFERER.
One category of message event is a SOAP message event.

SOAP Messages Events. SOAP is a lightweight protocol intended for ex-
changing structured information in a decentralized, distributed environment. It
uses XML technologies to define an extensible messaging framework providing
a message construct that can be exchanged over a variety of underlying pro-
tocols. The framework has been designed to be independent of any particular
programming model and other implementation specific semantics[4].

54

We use SOAP messages as transport containers for events, which are ex-
pressed in R2ML as SOAPMessageEventExpr’s (see Figure 3). SOAP is typically
used for Remote Procedure Calls (RPC). The SOAP specification[4] defines two
special message formats: a SOAP RPC Request Message, represented in R2ML
by SOAP-RPC-RequestMsgEvtExpr and a SOAP RPC Response Message, repre-
sented in R2ML by SOAP-RPC-ResponseMsgEvtExpr.

The following example shows a sample SOAP message, which contains an
R2ML SOAP RPC request. The message contains two pieces of application-
defined data not defined by the SOAP specification: a SOAP header block and a
body element with a local name of ref. In general, SOAP header blocks contain
information which might be of use to SOAP intermediaries as well as the ultimate
destination of the message.

SOAPMessageEventExpr

SOAP-RPC-RequestMsgEvtExpr

SOAP-RPC-ResponseMsgEvtExpr

body1

SOAPMessageBody

SOAPMessageBodyChild
localName[1] : UnicodeString
nameSpaceName[0..1] : URIRef
encodingStyle[0..1] : URIRef

children*

SOAPMessageHeader

header

0..1

SOAPMessageHeaderBlock
namespaceName[1] : URIRef
localName[1] : UnicodeString
encodingStyle[0..1] : URIRef
mustUnderstand[0..1] : xs:boolean
role[0..1] : URIRef
relay[0..1] : xs:boolean

headerBlocks*

SOAP-ConversationalMsgEvtExpr

«invariant»
{eventTypeID = "SOAP-RPC-RequestMsg"
and body.children.encodingSytle
= "http://www.w3.org/2003/05/soap-encoding"}

«invariant»
{eventTypeID='SOAP-ConversationalMsg'}

«invariant»
{eventTypeID='SOAP-RPC-RequestMsg'
and body.children.encodingSytle
= "http://www.w3.org/2003/05/soap-encoding"}

Fig. 3. SOAP message event expression in R2ML

In this example an intermediary might prioritize the delivery of the message
based on the priority and expiration information in the SOAP header block. The
body contains the actual event payload, in this case the customer’s request for
a car .

Example 1 (SOAP RPC Request).

<?xml version=’1.0’ ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>
<r2ml:SOAP-RPC-RequestMsgEvtExpr xmlns:rew="http://www.rewerse.net/I1/R2ML"

r2ml:sender="eshop.com"
r2ml:startTime="2006-03-21T09:00:00"
r2ml:duration="P0Y0M0DT0H0M0S"
r2ml:eventTypeID="productOrder">

1 <r2ml:arguments>

55

2 <r2ml:ObjectVariable r2ml:name="car" r2ml:classID="srv:Car"/>
3 </r2ml:arguments>
4 </r2ml:SOAP-RPC-RequestMsgEvtExpr>

</env:Body>
</env:Envelope>

The body of the SOAP is an R2ML SOAP-RPC-RequestMsgEvtExpr. Lines 1-3
define a list of arguments for the event: the ObjectVariable in line 2 is a variable
car of type srv:Car, which is a particular car, requested by the customer.

4 Actions

The R2ML supports both production rules and reaction rules. With this respect
it defines the concept of an action. Following the OMG Production Rule Repre-
sentation submission[2], an action (Fig. 4) is either an InvokeActionExpression
or an AssignActionExpression or a CreateActionExpression or a DeleteAction-
Expression. The R2ML provides also message actions in the form of a concrete
SOAPMessageEventExpr.

ActionExpression

InvokeActionExpression AssignActionExpression CreateActionExpression DeleteActionExpression

*
{ordered}

Property
propertyID : URIRef

*
1

1
1

value

1

*
1

Operation
operationID : URIRef

*
1

*

Class
classID : URIRef

Term

ObjectSlot DataSlot

ObjectTerm

Slot

*

1

*

contextArgument 1

SOAPAction

MessageAction

SOAPRPCAction

* 1
1

arguments *
{ordered}

Fig. 4. Actions

All actions refer to a context which is an R2ML object term.
InvokeActionExpression models an object operation invocation. It refers to a

UML Operation and contains an ordered, possible empty list of arguments repre-
sented as R2ML terms. The execution of this action is done by the corresponding
operation-call.

Example 2 (InvokeActionExpression).

”Calculate the total payment of the purchase order.”

<InvokeActionExpression r2ml:operationID="totalPayment">
<contextArgument>
<ObjectVariable r2ml:name="purchaseOrder" r2ml:classID="Order"/>
</contextArgument>
</InvokeActionExpression>

56

In this example the operation totalPayment has no arguments.

AssignActionExpression refers to a UML Property and contains a DataTerm
as a value. This action assigns a value to a property.

Example 3 (AssignActionExpression).

”Set to 10 the property discount of the object variable purchaseOrder
(purchaseOrder.discount = 10).”

<AssignActionExpression r2ml:propertyID="discount">
<contextArgument>
<ObjectVariable r2ml:name="purchaseOrder"

r2ml:classID="Order"/>
</contextArgument>
<value>
<TypedLiteral r2ml:lexicalValue="10"

r2ml:type="xs:positiveInteger"/>
</value>
</AssignActionExpression>

CreateAction refers to a UML Class and contains a list of slots (object slots
and/or data slots). The execution of this action consist in a constructor-call for
creation of a new object in the system.

Example 4 (CreateActionExpression).

”Create purchase order for one book named ’Harry Potter’ with the price
11.25 and discount 10

<CreateActionExpression r2ml:classID="Order">
<contextArgument>
<ObjectVariable r2ml:name="purchaseOrder"/>

</contextArgument>
<DataSlot r2ml:attributeID="title">
<TypedLiteral r2ml:lexicalValue="Harry Potter"

r2ml:type="xs:string"/>
</DataSlot>
<DataSlot r2ml:attributeID="price">
<TypedLiteral r2ml:lexicalValue="11.25"

r2ml:type="xs:float"/>
</DataSlot>
<DataSlot r2ml:attributeID="discount">
<TypedLiteral r2ml:lexicalValue="10"

r2ml:type="xs:positiveInteger"/>
</DataSlot>
</CreateActionExpression>

DeleteActionExpression refers to an UML Class and contains an ObjectTerm.
This action removes an instance of the Class.

57

Example 5 (DeleteActionExpression).

Delete order puchaseOrder.

<DeleteActionExpression r2ml:classID="">
<contextArgument>
<ObjectVariable r2ml:name="purchaseOrder" r2ml:classID="Order"/>

</contextArgument>
</DeleteActionExpression>

5 Business Process Modeling Example

Let’s consider a part of a business process when a customer makes a request for
a book from a web site. The customer fires an event, which is captured by the
server. The server searches for an appropriate rule for this event and checks rule
condition: whether the requested book is available or not. If the condition holds,
i.e. the book is available, then it performs an action: approve order. The rule
postcondition is that the amount of books in stock must be less by a requested
quantity than before the rule execution. A part of the business vocabulary is
depicted on Figure 5. The rule is modeled using a URML[6].

Customer

ShoppingCart

Item
itemID
quantityInStock

1

*

1
0..1

AvailableItem

RR BookRequest

ApproveOrder

quantityInStock=quantityInStock@pre-
-quantity

quantity=x
itemID=y

Fig. 5. On customer book request, if the book is available, then approve order and
decrease amount of books in stock.

The business vocabulary consists of a customer, which may have a shopping
cart. A shopping cart consists of items. An item has an itemID and quantityIn-
Stock. There is an item category AvailableItem, which contains items, available

58

for the order and delivery. In the URML a rule is represented as a circle with a
label ”RR”. Incoming arrow from AvailableItem is a rule condition. SOAP RPC
request message is represented with a UML signal sign and connects a customer,
who fires the event and a rule circle. The event contains list of parameters: itemID
and quantity. Outgoing double-head arrow to an activity ApproveOrder is an ac-
tion to approve the order. This action is defined in the WSDL interface of the ser-
vice. Outgoing double-head arrow to an Item class represents rule postcondition
with an OCL expression quantityInStock=quantityInStock@pre-quantity,
that states that the amount of items in stock must be less by 1.

In order to be processed by the ECA engine, this rule should be serialized into
rule interchange format R2ML. Corresponding R2ML syntax is the following:

<?xml version="1.0" encoding="UTF-8"?>
<r2ml:ReactionRuleSet xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:rew="http://www.rewerse.net/I1/R2ML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.rewerse.net/I1/R2ML"
r2ml:id="ID000000">

<r2ml:ReactionRule r2ml:id="rr1111" xmlns:srv="http://www.example.org/">
<r2ml:RuleText r2ml:ruleDiagram="" r2ml:textFormat="text/xml"

r2ml:ruleVocabularyDiagram=""/>
<r2ml:SourceCode r2ml:language="R2ML"/>
<dc:subject>Reaction rules, R2ML, Markup Languages</dc:subject>
<r2ml:triggeringEvent>

<r2ml:SOAPMessage r2ml:sender="" r2ml:startTime="2006-03-21T09:00:00"
r2ml:duration="P0Y0M0DT0H0M0S"
r2ml:eventTypeID="productOrder">

<r2ml:arguments>
<r2ml:ObjectVariable r2ml:name="x"

r2ml:classID="srv:Item"/>
<r2ml:DataVariable r2ml:name="quantity"

r2ml:dataTypeID="xsd:integer"/>
<r2ml:ObjectVariable r2ml:name="customre1"

r2ml:classID="srv:Customer"/>
</r2ml:arguments>

</r2ml:SOAPMessage>
</r2ml:triggeringEvent>
<r2ml:conditions>

<r2ml:ObjectClassificationAtom r2ml:classID="srv:AvailableItem">
<r2ml:ObjectVariable r2ml:name="x"/>

</r2ml:ObjectClassificationAtom>
1 <r2ml:EqualityAtom>

<r2ml:AttributeFunctionTerm r2ml:attributeID="srv:quantityInStock">
<r2ml:contextArgument>

<r2ml:ObjectVariable r2ml:name="i" r2ml:classID="srv:Item"/>
</r2ml:contextArgument>

</r2ml:AttributeFunctionTerm>
<r2ml:DataVariable r2ml:name="q" r2ml:dataTypeID="xsd:integer"/>

</r2ml:EqualityAtom>
</r2ml:conditions>
<r2ml:producedAction>

<r2ml:SOAPRPCAction r2ml:operationID="approveOrder">
<r2ml:contextArgument>

<r2ml:ObjectVariable r2ml:name="x"/>
</r2ml:contextArgument>
<r2ml:arguments>

<r2ml:ObjectName r2ml:objectID="customer1"
r2ml:classID="srv:Customer"/>

</r2ml:arguments>
</r2ml:SOAPRPCAction>

</r2ml:producedAction>
<r2ml:postcondition>

2 <r2ml:EqualityAtom>
3 <r2ml:AttributeFunctionTerm r2ml:attributeID="srv:quantityInStock">

59

<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name="i" r2ml:classID="srv:Item"/>

</r2ml:contextArgument>
</r2ml:AttributeFunctionTerm>

4 <r2ml:DataOperationTerm r2ml:operationID="minus">
<r2ml:contextArgument>

<r2ml:ObjectVariable r2ml:name="i" r2ml:classID="srv:Item"/>
</r2ml:contextArgument>
<r2ml:arguments>

<r2ml:DataVariable r2ml:name="q"/>
<r2ml:DataVariable r2ml:name="quantity"/>

<r2ml:arguments>
</r2ml:DataOperationTerm>

</r2ml:EqualityAtom>
</r2ml:postcondition>

</r2ml:ReactionRule>
</r2ml:ReactionRuleSet>

It is important to note, that the postcondition expression
quantityInStock=quantityInStock@pre-quantity is represented as combina-
tion of 2 atoms: equality atom in the condition part of a rule (line 1), which
is considered as a variable q initialization with initial value of the attribute
quantityInStock and equality atom in the postcondition part of the rule (line
2), which is considered as an assignment of a new value for the attribute
quantityInStock. The new value is specified by the DataOperationTerm (line
4) with ”minus” operation on old attribute value q and quantity quantity. For
more rule examples in URML and R2ML we refer to the Working Group I1 web
site and, in particular, to the EU-Rent case study2, which contains a domain
model and rules, modeled using URML and to the R2ML example rule set3.

The transformation of URML model into R2ML is implemented in the Strelka
tool. Metamodels of R2ML and URML largely overlap and URML concepts like
rule, condition and conclusion can be directly mapped into R2ML. So called
OCL filter expressions, used in URML conditions and postconditions to filter in-
stances of a conditioned classifier (f.e. class or association), can be represented in
the R2ML since it has corresponding functional atoms for representing OCL ex-
pressions. Since R2ML does not support collections yet, not all OCL expressions
can be serialized into R2ML.

6 Conclusion

In this paper we have shown how a UML-Based Rule Modeling Language can
be used for the modeling of Web Services, based on reaction rules. We have
also presented a part of the R2ML language, related to reaction rules and gave
examples of rule modeling in XML syntax of R2ML.

Concerning the future work on this topic we consider the following issues:

2 EU-Rent Case Study in URML, using Strelka tool: http://oxygen.informatik.

tu-cottbus.de/rewerse-i1/?q=node/12
3 R2ML project page: http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=
node/6

60

– Give a focus on rule sets and respective control flow modeling in URML.
Control flow modeling by means of reaction rules has been already introduced
in [5] and we are going to adopt it in URML;

– Analyze the suitability of R2ML for expressing control flow patters, identi-
fied, for instance, by Van der Aslst et al. [7]. Control flow patterns represen-
tation by means of reaction rules has been specified in [8] and we have to
investigate how they can be captured in reactive rules part of R2ML;

– R2ML needs a mechanism to specify exceptions.
– The issue of web service composition is currently under consideration.

References

1. Gelfond, M., Lifschitz, V., The stable model semantics for logic programming, In
Proc. of ICLP-88, pp. 1070-1080.

2. W3C Workgroup on RIF Charter, http://www.w3.org/2005/rules/wg/charter
3. Strelka - A UML-Based Visual Rule Modeling Tool. http://oxygen.informatik.

tu-cottbus.de/rewerse-i1/?q=node/10

4. SOAP Version 1.2 Part 1: Messaging Framework W3C Recommendation 24 June
2003, http://www.w3.org/TR/soap12-part1/

5. Wagner G., The Agent-Object-Relationship Meta-Model: Towards a Unified View
of State and Behavior. Information Systems 28:5 (2003), pp. 475-504.

6. A UML-Based Rule Modeling Language (URML) on REWERSE Working Group
I1 website: http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/7

7. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1) (2003)

8. Taveter, K.: A multi-perspective methodology for agent-oriented business mod-
elling and simulation. PhD thesis, Tallinn University of Technology, Estonia, 2004
(ISBN 9985-59-439-8)

9. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,
W3C Candidate Recommendation 27 March 2006 http://www.w3.org/TR/wsdl20

10. G. Wagner, A.Giurca, S. Lukichev (2005). R2ML: A General Approach for Marking
up Rules, Dagstuhl Seminar Proceedings 05371, in F. Bry, F. Fages, M. Marchiori,
H. Ohlbach (Eds.) Principles and Practices of Semantic Web Reasoning, http:

//drops.dagstuhl.de/opus/volltexte/2006/479/

11. Wagner, G., Giurca, A., Lukichev, S. (2006). A Usable Interchange Format for Rich
Syntax Rules. Integrating OCL, RuleML and SWRL. Will appear in proceedings
of Reasoning on the Web Workshop at WWW2006, May 2006

61

m3pl: A Work-FLOWS ontology extension to
extract choreography interfaces

Armin Haller and Eyal Oren

Digital Enterprise Research Institute (DERI)
Galway, Ireland

firstname.lastname@deri.org

Abstract. Cross-organisational interoperability is a key issue for suc-
cess in B2B e-commerce applications. To achieve this interoperability,
choreography descriptions are necessary that describe how the business
partners can cooperate. In existing approaches, these choreography de-
scriptions are independent of the internal workflows of the partners.

We present a framework for extracting choreography interface descrip-
tions from internal workflow models. Our approach comprises two steps:
first we map internal workflow models into a intermediary formal model,
then we generate choreography interfaces from it. In this paper we present
m3pl, an ontology extension based upon the First Order Ontology for
Web Services (FLOWS) [2]. The extensions provide relations to model
workflow views and choreography interfaces.

1 Introduction

Organisations offer business functionalities to their customers, and implement
these functionalities in their business processes. For years, organisations have
used Workflow Management Systems (WfMSs) to describe and execute their
business processes [6]. Underlying these WfMS are different workflow languages
with many different metamodels. These workflow languages vary in the avail-
able modelling constructs and in the semantics of their constructs. To capture
these semantics and to allow interoperability of WfMS the Process Specification
Language (PSL) [16] was developed. PSL is an ontology that defines workflow
concepts and their semantics. Various extensions have been developed (as part of
the PSL standard), including the First Order Logic for Web Services (FLOWS)
[2] ontology for modelling (compositions of) Web Services.

With the advent of Service Oriented Computing [13] organisations started to
expose their business functionality explicitly as reusable and composable services
using standardised protocols such as WSDL and SOAP. Web Services abstract
the access to the business functionality from the specifics of programming lan-
guages. For using these services organisations provide choreography descriptions
written in languages such as WS-CDL [11], Abstract BPEL [20] or ebXML CPP
[10]. A choreography describes the message exchange patterns employed by a
Web Service interface. These patterns describe how consumers should interact

62

with the Web Service; they can be described from a global (collaboration) view-
point or from a local (participant) viewpoint. We will use the term choreography
for the global viewpoint, and choreography interface for the participant’s view-
point1.

A fundamental limitation in current approaches to model choreographies is
its independence to the underlying workflow definitions. Although a few recently
published work address the correlation between a choreography interface and its
underlying workflow, current approaches do not focus on an automated map-
ping between them. This independence leads to two problems: (1) if any change
occurs in the internal workflow model, choreography descriptions have to be
manually synchronised with the workflow definition, and (2) it is not possible to
automatically verify consistency of internal workflow descriptions and external
choreography interfaces.

This paper presents a framework for combining internal workflow definitions
and external choreography descriptions; an overview is shown in Fig. 1. With
the framework one can semi-automatically generate choreography interfaces in
various languages from workflow models in various languages. The framework
is based on PSL [16], an ontology for capturing business processes and FLOWS
[2], an extension to PSL for Web Service interactions.

Workflow Model I
(Web Service

Composition Language
e.g. BPEL)

Workflow Model II
(Workflow Management

System e.g. IBM
Workflow MQ)

Workflow Model
...

m3pl

Choreography
Interface I

(formal model e.g.
WSMO Choreography)

Choreography
Interface II
(Web Service
Choreography

Language e.g. WS-
CDL)

Choreography
Interface III

(Business Protocol e.g.
ebXML CPP,
RosettaNet)

Unidirectional
mapping

Bidirectional
mapping

Process Specification Language (PSL) /
First Order Logic for Web Services (FLOWS

Fig. 1. Relating workflow models to choreography interfaces

The paper is structured as follows: based on a motivating RosettaNet col-
laboration example described in section 2, we analyse the requirements for our
framework in section 3. We present our ontology in section 4. In section 5 we
outline the methodology to follow to map from the internal workflow model to
m3pl and to extract different choreography interfaces. Finally we discuss related
work in section 6 and conclude in section 7.
1 The choreography interface is also called behavioural interface by Dijkman and Du-

mas [5] or abstract process in BPEL4WS [20].

63

2 Motivating Example

In this section we present an example cross-organisational collaboration. We
will illustrate the problems that companies face when designing collaborative
business processes with a request-for-quote (RFQ) process.

2.1 Current situation

An automotive parts vendor implements and executes his internal processes with
IBM Websphere MQ Workflow2. One of the vendor’s processes concerns the
processing of requests for quotes. Figure 2 shows a simplified view of this mod-
elled in MQ Workflow. The symbols on the left of the picture denote a source
and sink node and represent the start and end of the MQ Workflow process
model. Dashed arrows show data transferred between activities and solid arrows
denote the control flow.

Fig. 2. IBM MQ Workflow RFQ

The process starts with an RFQ from a customer. The vendor checks whether
the requested part, say an electric generator, is available in stock and can be
delivered within the time specified. If the product is available the vendor prepares
a quote, otherwise he returns a referral including the reason for non-delivery.

2.2 Preferred situation

The vendor wants to automate the collaboration with his partners. This would
minimise the manual labour by enforcing partners to directly invoke interfaces to

2 for our analysis we have used v3.4 of the product.

64

its internal WfMS. An example for such an automation is the initial data input.
Currently this data is manually entered into the system; the goal of the vendor
is for this input to come directly from the external business partner. To enable
automatic collaboration the vendor needs to describe the public view on his
business processes. To comply with industry standards this public process should
conform to the standardised RosettaNet choreography interface PIP 3A13; which
describes a request for quotation.

Figure 3 shows a RosettaNet collaboration and the internal process model
described above in a UML activity diagram. Public activities (the RosettaNet
PIP 3A1) are displayed in black and private activities in white. The seller’s
choreography is formed by the black activities in the right swimlane and the
buyer’s choreography by the black activities in the left swimlane respectively.

SellerBuyer
Request for
Quote (RFQ) Process RFQ

Receive
RFQ

Send
RFQ

Check Product
Availability

Send
Part
Info

Process Quote

Prepare
Referral

Receive
Part
Info

Send
Referral

Receive
Referral

Quote
Response

Send
Account

Info

Receive
Account

Info
Send
Quote

Receive
Quote

Fig. 3. External Process (RosettaNet PIP)

In this example the internal workflow is straightforward and for the purpose
of simplification it is already aligned to an external standard process in terms
of a RosettaNet PIP 3A1. Thus it is not difficult to model the external part
of the process in any choreography description language. However, in reality
the processes can be significantly more complex, and automatic extraction of
choreography interfaces is desired.

In order to automatically extract the choreography interface, the internal
business process has to be extended by information specific to external processes
identified in the following section. Subsequently the model should be extracted
to a choreography descriptions language. These features are currently not offered
by MQ Workflow or any other WfMS.
3 http://www.rosettanet.org/PIP3A1.

65

3 Requirements Analysis

We can derive four basic requirements for the above collaboration scenario. They
also reflect requirements on a choreography language identified in [1].

1. Model internal workflow: we need to model the internal workflow (shown
in figure 2) of the business partner whose choreography interface we want to
generate (the supplier in this example).
The internal workflow has to be formally specified to describe the business
processes unambiguously. A mere syntactic model could lead to inconsistent
interpretations; e.g. a split can have different meanings in different models.

2. Model choreography-related concepts in the workflow: to generate
the choreography interface from the internal workflow we need to add ad-
ditional annotations. These annotations (such as visibility of activities or
role of partners) are not part of the internal workflow, because they are of
no significance for workflow enactment, but only for a cross-organisational
choreography. It is necessary to annotate:

(a) the choreography interface as a partial view on the internal workflow
of the service provider. Choreography interfaces are currently modelled
in a multitude of languages. These languages are either task-flow based
(i.e. WS-CDL, BPEL4WS) or dependency based (i.e. WSMO Chore-
ography, OWL-S Process Model). Thus the choreography interface model
has to be capable of capturing both modeling alternatives.

(b) the visibility of tasks: some tasks in a collaboration are private, other
are public. Also, some tasks might be publicly visible to one participant,
but private to another. The generated choreography interface for one
partner should only include the tasks marked as visible to him.

(c) the role a party can play when engaging in collaborations. A role defines
the observable behaviour a party exhibits in order to collaborate with
other parties. A “buyer” role for example is associated with the purchase
of goods or services and the “seller” role is associated with providing
those goods or services.

(d) the direction of the communication represents the communication
route in a specific interaction and represents constraints on what roles
have to be adopted by the participants. A wholesaler for example might
play the “seller” role in one interaction and the “buyer” role in some
other interaction. A direction relation requires a sending and a receiving
participant.

(e) messages. As it can be seen in figure 3 messages are used to transfer data
between activities. The explicit representation of messages is commonly
not part of workflow models. Even if this fundamental approach to model
data flow is possible in the underlying workflow model, it is only used to
transfer data internally between activities. In the case of a collaboration
these messages are sent between the participants and have usually a
message type and some payload associated with it.

66

(f) the transactional boundaries of activities to facilitate recovery in the
event of a participant failure. The model should allow to define transac-
tional blocks that contain one or many activities that are followed when
the effects of a service need to be reversed.

3. Construct choreography interface from internal workflow: this is
the requirement that drives the framework: the internal workflow model of
a particular business process should be reused when constructing a choreog-
raphy interface, and this process should be automated. Automation requires
that mediators are available to different choreography specification represen-
tations.

4. Validate compatibility of choreography interface to internal work-
flow: there are several cases where a pre-existing choreography interface
has to be validated against an existing workflow model. For example, when
partners use a standardised choreography, and extract the choreography in-
terfaces of the participants from this agreement. But a participant might
very well already have a workflow model implemented for his business func-
tionality. It is then necessary to verify whether the existent workflow model
is compatible to the choreography interface (behavioural equivalence).

4 Ontology for Choreography Interfaces

In what follows we describe the relations in m3pl capturing the requirements
identified in the previous section. Our ontology is an extension to PSL [16] mod-
elled in a first-order language. Due to space limitations we do not include the
axioms constraining the relations described below. However, where possible we
explain how a relation is constrained by the primitive lexical relations axioma-
tised in PSL-Core.

4.1 Introducing m3pl

To model the internal workflow we base our model on PSL [16]. PSL follows
a layered approach in the language design, which gives us the resources to express
information involving concepts that are not part of the PSL-Core. Thus we can
represent arbitrary any workflow model in PSL by introducing extensions which
are either defined by relations in the PSL-Core or by axioms that are constraining
the interpretation of each new language construct.

The first requirement on the relations associated with the choreography
model in m3pl is to encompass the two prominent modelling primitives. First
we have to be able to extract to different task-flow based choreography descrip-
tion languages, i.e. to Abstract BPEL [20], WS-CDL [11] and ebXML CPP [10]
and second to dependency-based ontology-based choreography descriptions, i.e.
WSMO Choreography [18], OWL-S Process Model [12]. PSL provides relations
to incorporate both workflow modelling primitives.

The m3pl extension offers a model to describe the choreography interface of
some internal workflow model, whereas the choreography interface represents a

67

model of some functionality (i.e. services). The functional entity in m3pl is a
member of the set of such services in the universe of discourse of the interpreta-
tion. Services are reusable behaviours within the domain and relate to activities
in PSL. A service occurrence models an occurrence of a PSL complex activity
that is associated with the service.� �

service(?functional entity)
service activity(?functional entity,?activity)
service occurrence(?functional entity,?occurence)� �

Listing 1.1. Service Relations

The views extension defines a relation to give one the possibility to restrict
the visibility of specific activity occurrences to a certain role and thus create
different views [4, 17] on a workflow model. The visible(?occurrence,?role)
relation associates an activity occurrence to a role. By relating a participant to a
specific role the visibility of activity occurrences is guaranteed to be constrained
to the defined business partner only.� �

visible(?occurrence,?role)� �
Listing 1.2. Visibility Relation

Roles define the conversational relationship between two or more partners by
defining the part played by each of them in the conversation. The partner link(
?role,?functional entity) relation models such conversational relationships.
The participate(?agent,?role) relation is used to relate an organisation to
a role that it is playing in a specific collaboration.� �

partner link(?role,?functional entity)
participate(?agent,?role)� �

Listing 1.3. Conversational Role Relations

A key element in choreography description languages as identified above is
the notion of messages. Since there exist different strategies of data passing
in commercial workflow systems and workflow models, we offer relations which
allow to model all three strategies as identified in [14].

Data is modelled with predicates and terms in first-order language. They act
as fluents whose values may change as the result of service occurrences. Similar
to FLOWS we use the described by relation to associate a message type to a
fluent. Multiple fluents might be associated with one message type, which should
be interpreted as a conjunction of them.

Further we allow to associate the fluent to a channel. The send and receive
relations are used to “transfer” fluents from one activity occurrence to the next.
Both relations are associated with the participates in relation of PSL, which
is used to constrain which objects are involved in a particular occurrence of
an activity. Thus in this data passing modelling approach no occurrence of an
activity can begin without first receiving, and cannot send before it ends. The
read relation is similar to receive, but with a weaker ontological commitment on
the occurrence. It is not required that a send occurrence preceded the occurrence
associated with the read relation.

68

� �
described by(?message type, ?fluent)
send(?fluent, ?channel, ?occurrence)
receive(?fluent, ?channel, ?occurrence)
read(?fluent, ?occurrence)
input port(?channel,?occurrence)
output port(?channel,?occurrence)� �

Listing 1.4. Data Modelling Relations

Channels are used to model message-based communication as used in Web
Services. We adopt the relations offered in FLOWS [2]. However, we do not relate
channels to service occurrences, but to activity occurrences. Channels are a way
to model explicit data passing, but are not required to exist since fluents can be
related to activity occurrences via the read relation.

In order to capture dependency based workflow models every atomic activ-
ity occurrence can be associated with preconditions and effects. The occurrence
of an atomic activity therefore transforms an initial state of the world (precon-
ditions) into a final state that represents the world (effects) after the execution.
Essentially the two relation are similar to the send and receive relation described
earlier, since preconditions and effects are also represented by fluents in the on-
tology. The only difference being that they are not associated with a channel.
However, they are a different concept in the real world, since preconditions and
effects are not necessarily constraints on data, but might be constraints on the
existence of objects.� �

precondition(?conditional fluent,?occurrence)
effect(?conditional fluent,?occurrence)� �

Listing 1.5. Dependency relations

All task-flow based choreography languages use control constraints to model
the control flow of Web Services. However they are not natively included in PSL.
Thus we reuse the definitions in FLOWS with minor extensions, which are to-
gether sufficient to model the majority of constructs available in choreography
description languages.� �

sequence(activity)
split(activity)
IfThenElse(activity)
LoopUntil(activity)
wait(activity)� �

Listing 1.6. Control Constraint Relations

A sequence relation specifies that all subactivity occurrences of a complex
activity are totally ordered. It corresponds to a soo precedes relation in the
Duration and Ordering Theory of PSL.

The subactivity occurrences of a split (corresponds to a flow construct in
BPEL) activity are constrained by two relations from the PSL ontology. One sub-
activity occurrence soo precedes any number of subactivity occurrences while
they are strong parallel to each other.

The IfThenElse activity is a nondeterministic activity such that the sub-
activity occurrences are constrained on the state conditions that hold prior to

69

the activity occurrence. The use of IfThenElse is equivalent to a conditional
activity in PSL.

The subactivity occurrences of a LoopUntil activity occur multiple times
until the state condition is satisfied. It is equivalent to a conditional activity in
the PSL ontology whose occurrences are repetitive, whereas the occurrence trees
have different structure, depending on the cardinality.

The subactivity occurrences of a wait activity delays the process for a certain
timeperiod or until a timepoint has passed.

Error handling in collaborative interactions is as important as transac-
tional support in local application environments. The use of ACID transactions
[7] is not feasible in collaborations, because locks on some activities cannot be
maintained for periods of an asynchronous interaction. Error handling therefore
relies heavily on the well-known concept of compensation. That is, if some state
occurs alternate activities are performed which reverse the effects of a previous
activity that was carried out and caused the error. To model such situations,
we add failure handling activities, which are conditioned over an exception state
raised by an earlier activity occurrence.

5 A methodology to extract choreographies

In the following section we show the applicability of the m3pl ontology exten-
sions by outlining the methodology to follow when extracting choreography de-
scriptions from internal workflow definitions. We apply the methodology to our
example introduced in section 2, whereas we will focus on the supplier.

1. First the syntactic model (c.f. figure 2) underlying most Workflow Manage-
ment Systems has to be lifted to the PSL/FLOWS ontology. In order to
generate it automatically, mapping rules are required. This is not a trivial
task since the generic mapping rules have to capture the operational seman-
tics of the underlying WfMS.
In our scenario the supplier models and enacts its business processes with
IBM MQ Workflow. The workflow model is serialised in a proprietary de-
scription file called .ftl. We have identified the mapping rules necessary to
translate our example workflow. However, it is not in the scope of this paper
to define a generic mapping framework for arbitrary any workflow in IBM
MQ Workflow. Listing 2.1. shows a snippet of the model from figure 2, i.e.
the Check Product Availability activity followed by a decision point and ei-
ther the Prepare Referral or the Prepare Quote Response activity. The full
listing can be found at http://m3pe.org/ontologies/PSLRFQ.kif.

70

state(productListedOK)
state(productListedFailed)

∀(?occRFQWorkflow)
occurence of(?occRFQWorkflow, RFQWorkflow)

⇒ ∃(?occProcessRFQ, ?occCheckProductAvailability)
(occurrence of(?occProcessRFQ, ProcessRFQ) ∧
occurrence of(?occCheckProductAvailability, CheckProductAvailability) ∧
subactivity occurrence(?occProcessRFQ, ?occRFQWorkflow) ∧
subactivity occurrence(?occCheckProductAvailability, ?occRFQWorkflow) ∧
root occ(?occProcessRFQ) ∧
soo precedes(?occProcessRFQ, ?occCheckProductAvailability, ?occRFQWorkflow)) ∧

(holds(productListedFailed, ?occCheckProductAvailability) ∧
not(productListedOK, ?occCheckProductAvailability))
⇒ ∃(?occPrepareReferral)

(occurrence of(?occPrepareReferral, PrepareReferral) ∧
subactivity occurrence(?occPrepareReferral, ?occRFQWorkflow) ∧
leaf occ(?occPrepareReferral, ?occRFQWorkflow)) ∧

(holds(productListedOK, ?occCheckProductAvailability) ∧
not(productListedFailed, ?occCheckProductAvailability))
⇒ ∃(?occPrepareQuoteResponse)

(occurrence of(?occPrepareQuoteResponse, PrepareQuoteResponse) ∧
subactivity occurrence(?occPrepareQuoteResponse, ?occRFQWorkflow) ∧
leaf occ(?occPrepareQuoteResponse, ?occRFQWorkflow)) ∧

Listing 2.1. Snippet of internal workflow in PSL/FLOWS

2. Next, the ontology instance representing a semantically equivalent model
to the underlying workflow definition has to be annotated with choreogra-
phy specific constructs from m3pl. Since domain experts knowledgeable of
what parts of the workflow model are required to be published to partners
and technology experts competent in defining the message exchange are not
necessarily familiar with formal frameworks (i.e. First Order Logic), editor
support is required to ease the annotation task. We are currently building
a domain specific GUI-based tool for annotating the extracted model with
concepts defined in our ontology.
However, in the context of this paper we have manually annotated the gener-
ated ontology instance without tool support. The complete annotated model
can be found at http://m3pe.org/ontologies/RFQm3pl.kif. This annota-
tion is comprised of relations defined in section 4 capturing the collaborative
role model, the visibility constraints, the message descriptions and its passing
directions.
Listing 2.2. shows the m3pl annotations added to the snippet of our internal
workflow from Listing 2.1.

71

service(RFQProcessing)
service activity(RFQProcessing, RFQWorkflow)
service occurrence(service, activity occurrence)
role(Customer, RFQProcessing)
role(Supplier, RFQProcessing)
participant(Bosch, Supplier)
...
∀(?occRFQWorkflow)

occurence of(?occRFQWorkflow, occRFQWorkflow)

⇒ ∃(?occProcessRFQ, ?occCheckProductAvailability)
...

visibility(?occProcessRFQ, Customer) ∧
visibility(?occCheckProductAvailability, Supplier) ∧
input port(transmitRFQ, ?occProcessRFQ) ∧
...
⇒ ∃(?occPrepareReferral)
...

visibility(?occPrepareReferral, Customer) ∧
output port(transmitReferral, ?occPrepareReferral)) ∧

...
⇒ ∃(?occPrepareQuoteResponse)
...

visibility(?occPrepareQuoteResponse, Customer) ∧
output port(transmitQuoteResponse, ?occPrepareQuoteResponse) ∧

Listing 2.2. Annotation added to the extracted PSL/FLOWS model

3. Based on this ontological model choreography interfaces for each partner in
the collaboration can be generated. Most importantly all activities marked
in the previous step as private to the supplier will be omitted in the chore-
ography interface. The split modelled in the choreography interface pub-
lished to the customer is abstracted in a way that the evaluation of the
condition is non-deterministic to the buyer and is modelled in the choreog-
raphy interface as follows: (holds(True, ?occCheckProductAvailability) ∧
not(False, ?occCheckProductAvailability))

4. If required a multiparty choreography can be assembled. Since our model is
based on a formal ontology this matching process can be on different levels
of abstraction. The simplest matching algorithm compares the message type
and the counterparting message passing direction. More complex matching
can include full reasoning over the first-order models proving the equivalence
of two choreography interface models.

5. Finally, choreography descriptions in existing languages such as WS-CDL,
Abstract BPEL or ebXML CPP can be generated. Similar to step one, map-
ping rules have to be defined for each choreography description language.
Different to above though the mapping is unidirectional, since the choreog-
raphy descriptions represent an abstraction omitting information necessary
in the internal workflow definition

72

An example extracted choreography interface from our model in a BPEL
description is shown in listing 2.3. The interface starts with the definition of
the partners, generated from the manually added annotations. The actual
process starts at line 8 and contains the three workflow activities as invoke
and receive operations. The check-product-availability activity, the split con-
ditions and the internal data transfer are omitted from the choreography
interface since they were marked as private information.� �

1 <wsdl>
2 <plnk:partnerLinkType name=”buyerSellerRelation”>
3 <plnk:role name=”seller”><plnk:portType name=”rfqpw”/></plnk:role>
4 <plnk:role name=”buyer”><plnk:portType name=”rfqpwCallback”/></plnk:role>
5 </plnk:partnerLinkType>
6 </wsdl>
7
8 <process name=”RFQProcessing”>
9 <partnerLink name=”buyerSellerRelation” partnerLinkType=”lns:buyerSellerRelation”

10 myRole=”seller” partnerRole=”buyer”/></partnerLinks>
11 <variables>
12 <variable name=”rfqMessage” messageType=”lns:rfq”/>
13 <variable name=”quoteMessage” messageType=”lns:quote”/>
14 <variable name=”referralMessage” messageType=”lns:referral”/>
15 </variables>
16 <sequence name=”main”>
17 <receive name=”processRFQ” partnerLink=”buyerSellerRelation”
18 portType=”lns:rfqpw” operation=”initiate” variable=”rfqMessage”/>
19 <assign><copy>
20 <from opaque=”yes”/><to variable=”condition” property=”xsd:boolean”/>
21 </copy></assign>
22 <switch name=”quoteDecision”>
23 <case condition=”if bpws:getVariableData(’condition’) = true”>
24 <invoke name=”prepareReferral” partnerLink=”buyerSellerRelation”
25 portType=”lns:rfqpwCallback” operation=”onResult”
26 inputVariable=”quoteMessage”/>
27 </case>
28 <otherwise>
29 <invoke name=”processQuote” partnerLink=”buyerSellerRelation”
30 portType=”lns:rfqpwCallback” operation=”onResult”
31 inputVariable=”referralMessage”/>
32 </otherwise>
33 </switch>
34 </sequence>
35 </process>� �

Listing 2.3. Abstract BPEL description

6 Related Work

Our work is most closely related to several approaches to views on process mod-
els, i.e. [3, 4, 17, 15, 21].

Chebbi et al. [3] propose a view model based on Petri Nets. They introduce
cooperative activities, which can be partially visible for different partners. The
approach is validated on mappings from two different WfMSs. However, the
model requires n2 mappings and does not explain how to model the data aspect,
i.e. the message transfer between partners.

Chiu et al. [4] present a cross-organisational meta model which is imple-
mented in XML. Similar to the cooperative activities in [3] the model provides
so called cross-organisational communications, which allow to define message
transfer and its direction. The model is implemented in an extension to the
ADOME-WfMS, called E-ADOME. The model deals only with sequential ac-
tivities in the abstracted view and does not tackle an integrated approach in
choreography extraction and requires the specific model to be used in the E-
ADOME tool.

73

Schulz and Orlowska [17] introduce a Petri-Net based state transition ap-
proach that binds states of private workflow tasks to their adjacent workflow
view-task, where existing workflows are augmented by means of one or more
activities or sub-workflows of an external workflow. The model is conceptualised
in a supporting architecture. The approach identifies mappings in its conceptual
architecture, but it does not describe how to integrate different workflow models.
Further the approach abstracts from the data aspect.

Sayal et al. [15] introduce service activities (that represent trade partner
interaction) as workflow primitives, but their approach is specific to one work-
flow modelling tool and addresses neither workflow integration nor choreography
interface extraction.

Zhao et al. [21] define a relative workflow model representing the view of
one partner on local workflows of another partner. They present composition
rules how to generate the relative workflow and a simple matching algorithm to
connect two local workflow process. Similar to the other approaches it is meta
model independent.

Several approaches address interoperability issues between Workflow Man-
agement Systems (WfMS), such as Mobile [9], Meteor [19] and CrossFlow [8].
However, all of these approaches require a pre-established partner agreement on
the semantics of the process models. Further they were all proposed before the
advent of Service Oriented Architectures and therefore do no deal with standard
choreography description languages.

7 Conclusion

In existing approaches, choreography descriptions are independent of the internal
workflows of the partners and have to be manually mapped.

We presented m3pl, an ontology extension to PSL and FLOWS to formally
capture choreography-specific information. The ontology extension together with
PSL can act as a connecting ontology to integrate different workflow models and
subsequently extract external process models.

We have shown how the framework can be used to extract a choreography
interface of an example workflow in a RosettaNet collaboration. This initial
validation is based on the translation of an example workflow represented in
IBM Websphere MQ Workflow to PSL, which is then manually annotated with
relations offered in the m3pl extension to further extract a BPEL process.

One direction of our future work is to check the equivalence of to choreog-
raphy models. Given a choreography interfaces it is desirable to verify whether
it is compatible with the choreography interface of a partner and -if they are
indeed compatible- to construct a multiparty choreography.

Acknowledgment

This material is based upon works supported by the Science Foundation Ireland
under Grant No. SFI/04/BR/CS0694.

74

References

1. D. Austin, A. Barbir, E. Peters, and S. Ross-Talbot. Web Services Choreography
Requirements. Working draft, W3C, Mar. 2004.

2. S. Battle, et al. Semantic Web Services Ontology (SWSO). Member submission,
W3C, Sep. 2005.

3. I. Chebbi, S. Dustdar, and S. Tata. The view-based approach to dynamic inter-
organizational workflow cooperation. Data Knowl. Eng., 56(2):139–173, 2006.

4. D. K. W. Chiu, et al. Workflow view driven cross-organizational interoperability
in a web service environment. Inf. Tech. and Management, 5(3-4):221–250, 2004.

5. R. Dijkman and M. Dumas. Service-oriented design: A multi-viewpoint approach.
Int. Journal of Cooperative Information Systems, 13(4):337–368, Dec. 2004.

6. D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases, 3(2):119–153, 1995.

7. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Francisco, 1993.

8. P. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner. CrossFlow: Cross-organizational
workflow management for service outsourcing in dynamic virtual enterprises. IEEE
Data Engineering Bulletin, 24(1):52–57, 2001.

9. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Archi-
tecture and Implementation. Int. Thomson Computer Press, 1996.

10. N. Kartha et al. Collaboration-protocol profile and agreement specification, v2.1,
Apr. 2005.

11. N. Kavantzas et al. Web services choreography description language, Nov. 2005.
12. D. Martin, et al. Owl-s: Semantic markup for web services. Member submission,

W3C, 2004. Available from: http://www.w3.org/Submission/OWL-S/.
13. M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing. Commu-

nications of the ACM, 46(10):25–28, 2003.
14. N. Russell, A. H. ter Hofstede, D. Edmond, and W. M. P. van der Aalst. Workflow

data patterns. FIT-TR-2004-01, Queensland University of Technology, 2004.
15. M. Sayal, F. Casati, U. Dayal, and S. Ming-Chien. Integrating workflow manage-

ment systems with business-to-business interaction standards. In Proc. of the 18th
Int. Conf. on Data Engineering, pp. 287–296. 2002.

16. C. Schlenoff, et al. Process specification language (PSL): Overview and version
1.0 specification. Tech. Rep. NISTIR 6459, National Institute of Standards and
Technology, Gaithersburg, MD, 2000.

17. K. A. Schulz and M. E. Orlowska. Facilitating cross-organisational workflows with
a workflow view approach. Data Knowl. Eng., 51(1):109–147, 2004.

18. J. Scicluna, A. Polleres, and D. Roman. Ontology-based choreography and orches-
tration of wsmo services. Wsmo working draft v0.2, DERI, 2005. Available from:
http://www.wsmo.org/TR/d14/v0.2/.

19. A. Sheth, et al. The METEOR workflow management system and its use in pro-
totyping significant healthcare applications. In Proc. of the Toward an Electronic
Patient Record Conf. (TEPR’97), pp. 267–278. Nashville, TN, USA, 1997.

20. S. Thatte et al. Business process execution language for web services, v1.1, May
2003.

21. X. Zhao, C. Liu, and Y. Yang. An organisational perspective on collaborative
business processes. In Proc. of 3rd Intl. Conf. on Business Process Management,
pp. 17–31. Sep. 2005.

75

Process Ontologies Facilitating Interoperability
in eGovernment

A Methodological Framework

Timo Herborn and Maria A. Wimmer

Institute for IS Research, Research Group eGovernment
Universitaetsstr. 1, 56070 Koblenz, Germany

{therborn|wimmer}@uni-koblenz.de

Abstract. eGovernment is characterized by the usage of multiple applica-
tions and heterogeneous data environments. Although the outcomes of adminis-
trative processes are defined quite good, the processes themselves are different
depending on geographical, political or systemic factors. A vivid example for such
a diversity are the business registers (BR) of the member states of the European
Union (EU). They all have in common that they are gathering and providing
information about companies and related data. But not only their data pro-
cessed is totally different - also the underlying processes are. The project BRITE
(Business Register Interoperability Throughout Europe) aims to build interop-
erability between the BRs in order to facilitate EU-wide transactional services
for companies to e.g. register their branch in another country. These goals will
be achieved by the application of ontology-driven semantics. This paper intro-
duces the approach to develop a common BRITE domain ontology which links
up national domain ontologies and BR processes. In this way, interoperability is
reached among various national business registers and their respective services.
The BRITE platform thereby serves as an intermediary to link up the diverging
ontologies of national business registers.

Keywords. Interoperability, eGovernment Domain Ontology, High Level
Domain Ontology (HLDO), Process Ontology, Business Registers, BRITE

1 Motivation

Governments are more and more using ICT to facilitate their tasks and respon-
sibilities as well as to collaborate among public organizations more efficiently. In
order to guarantee the free movement of European citizens and companies, the
European Community perceives the imperative necessity to establish an appro-
priate and interoperable ICT basis [3]. To pave the way for interoperability by
large, the EC co-funds a series of research and technology developments under
IST1, MODINIS [1] or IDABC [4].

1 Examples of such projects from the 6th Framework Program IST of
the EC are: GUIDE, INTELCITIES, ONTOGOV, QUALEG, Semantic-

76

In its visionary documents, the European Community (EC) attempts to become
the world leading knowledge society [2] and [5]. Not only does this mean to
enlarge the Community with new member states. Likewise importantly envis-
aged is a liberal market with companies being able to establish their branches
in other EC Member State countries as quickly and simply as possible. A ma-
jor aspect within this topic, which is, by the way one of the most important
rights written down in the Roman Treaty, is the interoperability of registration
systems. Therefore, the EU undertakes extensive homogeneisation efforts on po-
litical, economical and organizational levels. These efforts result in multiple bills
and directives2 which are demanding cooperating efforts of the Member State’s
governments.
This paper gives a short introduction to the scope of the EC co-funded project
BRITE. Then, a methodological framework for developing a domain ontology for
European Business Registers is presented. Thereby, different aspects of ontolo-
gies which are considered as key success factor in guaranteeing interoperation
among Business Registers throughout Europe are discussed.

2 Context of Business Registers (BR) in Europe

In Europe, in order to run a business or company, the organization has to be
registered at a business register office in the state, where the company or its seat
is officially established. Legal forms of companies strongly depend on particular
legislation of the country. The number of registration offices varies from country
to country (depending on the state’s constitutional distribution of responsibili-
ties) as well as on the organization of the registration offices themselves. In some
countries, the responsibilities for the company registration process are delegated
to federal state or even district administration level3. With the vision of the EC
becoming a world leading knowledge society with liberal market opportunities
and simple registration procedures, the business registration processes need to
be kept very simple, effective and without barriers. Consequently, the BRs need
to smoothly interact. However in Europe, Business Register interoperability is
currently not achieved. Especially in countries with BRs located at regional level,
massive problems of interoperability may occur when interacting with BRs of
other countries. In some cases, even within a country, interoperability among
regional BRs is not reached yet. The barriers Business Registers are facing may
start with language barriers, passing on to data and system incompatibility and
ending in inconsistent registration processes as well as distinct strategic policies.
Providing interoperability among BRs for the respective registration processes
of a business are the topic of investigation in the Integrated Project BRITE,

Gov, SMARTGOV, TERREGOV, R4eGov, Access-eGov, etc. (see http :
//europa.eu.int/comm/research/fp6/index en.htm)

2 These directives are to be seen as framework and are translated into national law
by the member states

3 In Germany, business registers are organized on ”Länder” (federal state) level, not
on national level

77

a project co-funded by the EC within the 6th framework program of IST4.
Based on the legal groundings such as the 11th Directive of the EC, BRITE
aims to build an agile and dynamic governmental environment for the emerg-
ing European market place. The approach pursued in BRITE will heavily build
on semantic technology, especially ontologies, to facilitate interoperability and
process-oriented information exchange [9]. The next section therefore introduces
the methodological framework to develop a BR ontology. By developing this
methodology we emphasizes the importance of not being too general and focus-
ing on the migration tasks [8].

3 Methodological Frame for BR Ontology Development

In the context of guaranteeing interoperability among systems, services and orga-
nizations, ontology development has become an important issue. We understand
ontologies as a key enabling concept for the Semantic Web. Ontologies ’inter-
weave human understanding of symbols with their machine processability [and]
promise a shared and common understanding of a domain that can be commu-
nicated between people and application systems’ [6]. The general term ontology
is further detailed in various literature. Guarino for example defines domain
ontology as [7]:

– constituted by a specific vocabulary used to describe a certain reality
– a set of explicit assumptions regarding the intended meaning of the vocab-

ulary.

According to that, a domain ontology is extended by some specifications:

– ontologies describe a formal specification of a specific domain
– share understanding of a domain of interest
– represent a formal and machine executable model of a domain of interest.

This article focuses on the use and development of ontologies in respect to the
intended interoperability of eGovernment applications and public administration
systems especially in the context of European Business Registers (EBR). In this
context, already implemented domain ontologies based on different geographi-
cal, organizational and historical roots have to be faced and harmonized resp.
linked up with each other. Instead of ”reinventing the wheel”, the re-usability of
existing ontologies has to be checked and aggregation of existing data, document
and process schemata should be aspired on an overarching level. Furthermore,
an ontology has to fulfill criteria such as openness, dynamics and flexibility in
order to allow for future changes and integration of laws to come. The aim of
BRITE is to combine Domain Ontologies and Process Ontologies in a way to
achieve maximum productivity. See fig. (?? This combination is necessary in
order to a) harmonize the vocabulary toward a common upper level conceptual
standard, b) to get an understanding of the individual, national processes and

4 see http : //europa.eu.int/comm/research/fp6/index en.htm

78

Fig. 1. Combination of Domain Ontologies and Process Ontologies

c) to integrate the corresponding processes correctly. In order to achieve the
goals mentioned above, we introduce a methodological framework to secure real
interoperability between different institutions, even with language barriers and
massive process diversities. The approach has the advantage of not having to
change legacy systems, but to link them up via standardized overall, domain
and process ontologies. It consists of the following steps:

– Defining a high level domain ontology (HLDO)
• Identifying Domain ontologies of interest
• Selecting subset of vocabulary of Domain Ontology
• Merging subsets
• Mapping merged subsets to HLDO
• Adding semantics to the HLDO
• Provide interoperability layer through the usage of the HLDO

– Identifying national BR process ontologies (BRPO)
– Developing high level BR process ontologies
– Integrating national processes

4 Defining the High Level Domain Ontology (HLDO)

This paper is based on the idea that a general eGovernment ontology is con-
sidered as top level Domain Ontology (figure (reffig:hierarchy)). Technically, the
HLDO is an aggregation of at least two Domain Ontologies based on similar
semantic backgrounds. This definition bears on the idea of generating semantic
interoperability between different Domains without destroying historical data
architectures. Legacy systems and data structures can work without any restric-
tions or losses, because data structures are not changed but enlarged. Addition-
ally, we see it as basis for the development of a standardized process ontology
within BR environment. The methodology how to define an HLDO is described
in the following figure (3. All steps mentioned in this model are to be done
iteratively and are to be repeated until all participating project members feel
comfortable with the solution.

79

Fig. 2. Hierarchy of Ontologies within eGovernment

4.1 Identifying Domain Ontologies of interest

Domain Ontologies are - in most cases - not explicitly described in the Domains
of interest. Mostly they hidden within legacy systems, databases and in people’s
minds. The last place mentioned is the most interesting but also most difficult
to exploit. The methodologies to identify these various ontologies are as different
as the ontologies themselves. Concerning the legacy systems and databases, field
and data descriptions can be extracted and then imported into an ontology
modeling tool. Getting ontologies out of people’s head is much more difficult.
Brainstorming, Soft System Methodologies, and Mind Maps are examples of how
to retrieve knowledge residing in human brains.

4.2 Selecting subset of vocabulary of Domain of Interest

This task is easy to be done. Basically, all BR Domains are of interest for the de-
velopment of the HLDO. Starting with these project partners that already have
explicitly defined their very own ontologies seems to be a reasonable approach.

4.3 Merging subsets of national vocabulary

The idea of merging is to finally build an ontology combining all relevant subsets
of vocabularies known in the Domain of BR within the project. Merging subsets
includes deleting redundant entries. Historical sources are to be tracked by the
help of semantics in order to re-assign them to their source of origin.

4.4 Mapping merged subsets to HLDO

After having defined the HLDO by merging different subsets, a mapping is to be
done in order to validate the new version of the HLDO against the formerly exist-
ing Domain Ontologies. Basically, vocabularies and semantics from different do-
mains are to be harmonized. The mapping process carrying out the development
of the HLDO is described in figure 5.A simple example shall demonstrate this:
”< Firmenname >” (domain ontology A) as well as ”< name of company >”
(domain ontology B) are mapped to ”< BRITE company name >”. In this

80

Fig. 3. Methodology to define a HLDO

Fig. 4. Merging subsets of national ontologies

way, the new concept just needs to store the original identifier (in order to re-
verse the process) and its origin domain (for allocation reasons).

On the left side of the figure, a subset of a domain ontology is presented.
One can easily recognize some major differences: a) linguistic (English and Ger-
man), b) structural (database management) and c) organizational (mainly con-
tent based). According to the definition of the HLDO provided above, an on-
tology is more than just translating or mapping data and information. Making
this information valuable for the processes to be executed, semantics need to be
added. First of all, information of the mapping process needs to be stored.

81

Fig. 5. Mapping national domain ontologies to HLDO

4.5 Adding Semantics to the HLDO

Next step is to add semantics to the HLDO. The reasons for adding semantics are
several. First of all, these semantics will support in building inferences between
independent data sets. Apart from that, advanced search mechanisms can be
applied to get qualified retrieval results. Finally, semantics allow to introduce
automatic machine processing of applications. A concept of Wimmer [10] is used
to introduce the application of ontologies within eGovernment contexts. The
concept presented in figure (6) consists of classes (topic) and their concrete
instances (individuum). Adapting this concept to the vocabulary introduced

Fig. 6. Concept for the abstract ontology

before, a basic knowledge map can be build (7), in which simple inferences are
possible. As one can easily see in the figure, the class ”Supertopic” is -according

Fig. 7. Adding semantics to facilitate automatic machine processing and inferences

to the syntax of OWL- translated into a ”BRITE Thing”. ”Subtopics” are named

82

”Company Name”,”Registration Number”, etc. Important for the idea of an
ontology concept is that we can now build inferences like: Instance A (”Müller
und Sohn GmbH”) must have Instance B (”a liable equity capital of at least
25.000 EUR”). This example does not only show the inference mechanism but
also demonstrates the possibilities of using incremental logical conclusions (here:
Country code AND Liable equity capital).

4.6 Provide interoperability layer through the usage of the HLDO

After having developed a HLDO, the domain ontologies need to be revisited be-
cause in some cases, adaptations may be needed to exploit the full potential of
the common overall ontology. There are two ways to approach the interoperation
of domain specific ontologies: In some cases, even legacy systems might have to
be adapted or reengineered based on the new vocabulary in order to smoothly
interoperate. However, this approach would take enormous amounts of person-
power and time, apart from any technical and organizational constraints prob-
ably occurring. On top of that, actualizations of the HLDO could not be done
synchronously. The second solution proposed is to make the common ontology
available in a central storage and make it functioning as intermediary medium.
This approach would allow the individuality of each domain ontology to be main-
tained. Next step is to integrate processes within a distributed eGovernmental
environment.

5 Identifying national BR process ontologies (BRPO)

Identifying corresponding process ontologies is a key success factor for BRITE. In
order to retrieve comprehensive information and generate applicable knowledge
out of it, processes need to be well described and modeled. A business process
is described as ”[..] representation of a business process in a form that supports
automated computation, such as modeling, or enactment by a workflow manage-
ment system. The process definition consists of a network of activities and their
relationships, criteria to indicate the start and termination of the process, and
information about the individual activities, such as participants, associated IT
applications and data, etc.” 5 This definition contains all relevant elements of a
business process modeling approach. On another descriptive level, processes have
a desired output generated by an input and a throughput.6 This classical idea
of processes makes clear distinctions between the process stages. Please refer to
figure (??). Exploring and describing national BR processes is to be done along
the cases provided in the description of work of the BRITE project. Important
in the context of this paper are:

5 WfMC Glossary - WfMCTC- 1011
6 E.g. transfer of a registered office to another country within the EU. Output : estab-

lishment of registered office in another country. Input : all relevant data from source
country. Throughput : all relevant processes and information enabling the transfer.

83

– Transfer of registered office
– Opening a branch in another EU Member State

5.1 Developing high level BR process ontologies

We define process ontology as a conceptual description framework for business
processes. This definition is built on the following basic assumptions:

– Processes ontologies are abstract and generalized
– Processes have interfaces to any repository (databases, other processes etc.)
– Processes have formerly defined inputs [throughputs] and outputs
– All processes described are based on the HLDO

Process ontologies have clearly defined borders between the process stages
(input, throughput and output). Dependent on national conditions, interfaces
to adequate sources (databases, other process in different domains) are to be
defined, as figure (8) illustrates. In this model, an input (e.g. application for a

Fig. 8. Domains as boundaries

transfer of seat) and an output (e.g. transfer of seat) is given. All intermediary
stages (interfaces to legacy systems, data storage, archiving) are defined in the

84

process ontology but executed on legacy systems. According to that idea, a
limitation is also shown in the figure, one of the major threat to interoperability,
the domain boundary. In the figure we refer to ”private” Domain A and B,
which are representatives for two separate Business Registers. The information
flow is shown, but the integration level is very low, because of the clearly defined
domain borders. In order to built real interoperability, these boundaries are to
be broken - as far as possible. Therefore, the abstract process must be prepared
for different kinds of input, due to particular situations and their context.

5.2 Integrating the processes

In the last step of our approach we are now integrating the process ontology
into the heterogeneous landscape of European Business Registers. In order to
protect the idea of an holistic integration and interoperability approach we are
considering all integration possibilities. Depending on language, country, use
case or any other influence, the abstract process can become concrete. By doing
so, the process remains dynamic and adaptable. The HLDO is an indispensable
prerequisite for this procedure. Figure 9 illustrates such an ”opened-up process”.

Fig. 9. Different interoperability layers of a Process Ontology

Figure 9 show three different layers: Process ontologies, domain process on-
tologies and national applications. They are linked together by the usage of dif-
ferent protocol and services, depending on the legacy systems and applications.
All processes in this figure are based on the HLDO which is stored in the knowl-
edge repository of BRITE. The figure shows a use case scenario which could be
every use case, e.g. ”transfer of seat”. The domain process ontologies refer to
the national application level using their specific protocols and service in order
to retrieve, process and store data. Using this architecture, BRITE is enabled to
use every source of all BR involved in the project - directly or indirectly.

– Databases and processes of BRITE
– Databases and processes of national Business Registers
– Third party repositories

85

DB and processes of BRITE The BRITE database contains the HLDO
and all abstract processes. Only selected ”live” data is stored centrally (as it
is already done in the EBR) 7 in order not to get in conflict with the national
regulations. The abstract processes are just the framework to enable the desired
functionality described in the use cases.

Databases and processes of national BR These databases provide the
essential information for the BRITE processes to work. They provide static in-
formation about companies as well as detailed information about processes (e.g.
for registering, increase of capital stock etc.) which have important contributions
to the BRITE process. Major constraints of proper integration are identification
(authorisation/ authentication) of users, security constraints and legal restric-
tions. Detailed investigations in that field are done in literature.

Third party repositories Third parties can be assurances, finance providers,
SCHUFA 8, IHK 9 and others. The (partial) integration of their databases is
to be discussed. But the general architecture of the process ontology should be
open enough for a latter integration of these.

These interfaces may vary from process to process, depending on all param-
eters possibly changing: country, legal form, use case scenarios etc. The usage of
semantics (which are developed within in the HLDO) allows such a diversifica-
tion. As a desired consequence, local variations are not affecting the functionality
of the system. The depth of integration also depends on multiple parameters.

6 Summary

In this contribution, we have introduced an approach to develop a common on-
tology for European Business Registers that links up national Business Register
ontologies. The development of a High Level Domain Ontology for European
Business Registers allows to conciliate national Business Registers and, via the
common high level concept, allows to fully interoperate among national or even
local applications. The work is being carried out within the EC co-funded project
BRITE, an integrated project within FP 6 of IST.
In order to design interoperability between different European Business Regis-
ters, the common high level ontology was used as a mapping tool. It was further
used as a means to narrow down process ontologies and, based on that, to de-
velop an intermediary that links up distinct national applications.
In our approach we firstly define a HLDO which enables a communication be-
tween all project partners and BR involved in the project. The development
7 For an example browse to: http://www.ebr.org

Navigate to: products/view example
8 Schutzgemeinschaft für allgemeine Kreditsicherung [german] Community to protect

general capital interests
9 Industrie und Handelskammer [german] Chamber of Industry and Commerce

86

is described as an iterative and self-repeating methodology consisting of select-
ing subsets of domain ontologies, merging them in order to delete redundancies
and finally mapping the outcome against the domain ontologies. This approach
maintains functionality of legacy systems and keeps them operating.

In the next step we are supporting the identification and description of pro-
cesses related to the use cases. These domain process ontologies are abstracted
to a general process ontology. By the help of this high level process ontology,
legacy systems can be addressed over the borders of domains. The outcome of
our approach is interoperability between different legacy systems on technical,
organizational and semantical levels.

The first step we undertook was to resolve the differences within the vo-
cabulary in order to get a common understanding of Business Register’s topics.
Then, semantics were added to the vocabulary in order to build a knowledge
map and enable inferences. Finally, processes were modeled on a high level and
were opened to other inputs (such as foreign or own data storages and processes)
and created consequently the basis for interoperability. Final step will be to in-
tegrate these processes into the legacy systems, varying in depth and depending
on legal, organizational and technical constraints.

References

1. Modinis Programme. Study on Interoperability at Local and Regional Level. 2006.
http://www.egov-iop.ifib.de/index.html.

2. eeurope 2005. an information society for all. eGovernment, http : //europa.eu.int/
information society/eeurope/newslibrary/
documents/eeurope2005/eeurope2005 en.pdf , 2002.

3. Commission of the European Communities. Linking-up Europe: The Importance
of Interoperability for e-Government Services. Staff Working Document, 2003.

4. Decision of the European Parliament and of the Council on Interoperable Deliv-
ery of pan European Services to Public Administrations, Businesses and Citizens
(IDABC). Decision 2004/387/, http : //europa.eu.int/idabc/, 2005.

5. i2010 Eine europäische Informationsgesellschaft für Wachstum und Beschäftigung:
Mitteilung der Europäischen Kommission und Nachfolgeprogramm von eEurope
2005. http : //europa.eu.int/information society/
eeurope/i2010/i2010/index en.htm, 2005.

6. J. Davies, D. Fensel, and F. Van Harmelen. In Towards the Semantic Web
Ontology-driven Knowledge Management. Sussex: John Wiley and Sons Ltd., 2003.

7. N. Guarino. Formal ontology and information systems. In In Nicola Guarino,
editor, Formal Ontology in Information Systems - Proceedings of FOIS’98, Trento,
Italy, pages 3-15. IOS Press, Amsterdam, 1998.

8. R. Klischewski. Migrating small governments’ websites to the semantic web. In Se-
matic Web meets eGovernment, Papers from the AAAI Spring Symposium, Tech-
nical report SS-06-06, 2006.

9. L. e. a. Van Elst. Business register interoperability throughout europe: The brite
project. In Semantic Web Meets eGovernment - Papers from the AAAI Spring
Symposium, 2006.

87

10. M. Wimmer. Implementing a knowledge portal for egovernment based on semantic
modelling: The e-government intelligent portal (eip.at). In Proceedings of the 39th
Annual Hawaii International Conference on System Sciences (HICSS’06), 2006.

88

Semantic Reference- and Business Process Modeling
enables an Automatic Synthesis

Florian Lautenbacher, Bernhard Bauer

Programming of Distributed Systems
Institute of Computer Science, University of Augsburg, Germany

[lautenbacher|bauer]@informatik.uni-augsburg.de

Abstract. The optimization of business processes is a necessary prerequisite to
reduce transactional costs in and between enterprises. Though the modeling of
processes is supported by a variety of graphical notations and tools, changes to
sub-processes often require the adaptation of the whole process. Thus, methods
are necessary to support automated actualization of process models omitting
this time-consuming manual task. As a result, business models need to be ex-
tended with information describing the semantics of the processes. Machine-
understandable information based on standards of the Semantic Web can be ap-
plied to automate this task. Describing each process with semantic information
enables an automatic synthesis of processes, calculating the optimal combina-
tion of them. This paper shows a first approach how to annotate process models
with semantic data for a synthesis, describes synthesis algorithms and evaluates
a prototypical implementation.

1 Introduction

Over the past few years, enterprises have been undergoing a thorough transformation
in reaction to challenges such as globalization, unstable demand, and mass customiza-
tion. A key to maintain competitiveness is the ability of an enterprise to describe,
standardize, and adapt the way it reacts to certain types of business events, and how it
interacts with suppliers, partners, competitors, and customers. In the context of proc-
ess orientation, enterprises today describe these procedures and interactions in terms
of business processes and invest huge efforts to describe and standardize them. Busi-
ness processes are either notated only on a textual basis or graphically with models.
During the last decades several graphical model standards emerged like event-driven
process chains (EPC) or the Unified Modeling Language (UML2) [11] which is more
established in computer science. In particular, the UML 2.0 standard with its ex-
tended activity diagrams supports an elegant modeling of business processes.

Nowadays, the creation of business process models can be done with several tools.
All of them provide the creation and modification of models, some of them support
the users with wizards, but none of these tools currently provides an assistance how
the modeled processes should be combined for the optimal flow of the process.

This is, in particular, important for reference processes. Reference process models
are the basis for many companies to develop their own business processes. Currently

89

lots of reference processes are available (for a detailed list see e.g. [21]), but each one
uses a different language (EPC, UML, OMT, IDEF0, etc.). Additionally, it is very
difficult to find a reference process which is applicable for the scope of the business
area used in a company. Therefore, these reference processes should be annotated
with semantic information to increase their usability and re-use.

An annotation also supports the adaptation of a reference process. Currently, sev-
eral reference processes are available and companies are using these reference proc-
esses and adapting them, but very often after a few years with the changing demands
of customers and IT, these reference processes need to be actualized. Annotating the
reference processes and the business processes with semantic information, this actu-
alization can be automated. To describe the (reference and business) processes, one
can use the annotation that has been developed for several semantic web service stan-
dards. These are part of the platform specific model in the model-driven architecture
(MDA, [22]) as can be seen in Figure 1. Both, the reference process model (RPM)
and the business process model (BPM) would be layered in the Computation Inde-
pendent Model-layer (CIM). Using similar annotation for RPM and BPM on the one
hand and Semantic Web Services in a platform specific view-layer on the other hand
will enhance the transformation from CIM to PSM later.

Figure 1: Reference process models in the MDA

The upcoming standards of the semantic web provide a set of concepts that can be
used to annotate processes in a way machines can analyze. These concepts are sum-
marized in an ontology which can be built using the resource description framework
(RDF), RDF Schema (RDFS), the web ontology language OWL [1] or other stan-
dards. Based on these standards web services can be augmented to enable an auto-
matic publication, discovery, interoperability and access. These so-called semantic
web service standards (e.g. OWL-S [2] or WSMO [3]) contain parameters for de-
scribing the functional behavior of a web service including input and output parame-
ter, preconditions and effects, description of the quality of a service and others. Most
of these concepts can be applied to business processes as well.

90

This paper describes an approach to annotate business and reference processes
with machine-understandable information based on standards of the semantic web
and semantic web services. Using these metadata a PC is able to compute a (semi-)
automatic composition of all processes (called synthesis). Therefore, synthesis algo-
rithms were developed and are surveyed to calculate an optimal composition of all
processes (concerning the given parameters).

The paper is organized as follows: Section 2 provides an overview on current ap-
proaches of semantic web service standards. The concepts of these standards are the
basis to annotate BPM and RPM as described in section 3. In the same section algo-
rithms for the synthesis of business processes are presented and explained. In section
4 a case study based on a prototype implementation is shown. Section 5 gives an
overview about related research. Finally, section 6 summarizes the opportunities of
our approach and outlines further research activities.

2 Background

In order to obtain a (semi-)automatic synthesis of business processes, processes have
to be annotated with semantic information. This requires a language that computers
can decode and analyze, i.e. it has to be machine-understandable data. Here the ad-
vantages of semantic web standards come into play. Semantic web constructs can be
used to describe the data structure as well as the dynamic behavior of an enterprise.

Ontologies provide a basis for describing e.g. context information in a way that
human and machines can read and understand. The semantic web stack (cf. [14])
shows the standards that can be used to describe several concepts. Based on RDF and
RDFS most ontologies use the standard OWL. But a description of processes needs
additional information e.g. what the process does, when it might be started, which
inputs it needs, etc. Therefore, several semantic web service standards which describe
web services in a similar way can be used to fill this gap: OWL-S, WSMO, SWSF
and METEOR-S. In the following these standards will be explained and compared.

OWL-S
The semantic markup for web services (OWL-S, antecessor was DAML-S [15] which
is now standardized by W3C) is based on the Web Ontology Language OWL and
supplies web service providers with a core set of markup language constructs for
describing the properties and capabilities of their web services in an unambiguous,
computer-interpretable form. It describes a service in three different ways: Service-
Profile (“What does the service provide?”), ServiceModel (“How is the service
used?”) and ServiceGrounding (“How does one interact with it?”). In the ServicePro-
file the type of the service is specified with the ServiceCategory. A ServiceCategory
describes categories of services on the bases of some classification that may be out-
side OWL-S and possibly outside OWL.

91

WSMO
Based on the Web Service Modeling Framework (WSMF) [12], the Web Service
Modeling Ontology (WSMO) is a formal ontology and language that consists of four
different main elements for describing semantic web services:

- Ontologies that provide the terminology used by other elements
- Goals that state the intentions that should be solved by web services
- Web Services which describe various aspects of a service
- Mediators to resolve interoperability problems.

Each of these wsmoTopLevelElements can be described with non-functional proper-
ties like creator, creation date, format, language, owner, rights, source, type, etc.
WSMO comes along with a modeling language (WSML) [16], a reference implemen-
tation (WSMX) and a toolkit (WSMT).

SWSF
Another W3C submission beside OWL-S and WSMO is the Semantic Web Services
Framework (SWSF) [4] which represents an attempt to extend the work of OWL-S
and consists of two major parts: the Semantic Web Service Language SWSL and the
ontology SWSO above. Both were developed on basis of two different logics: the
first-order logic within FLOWS (First-order Logic Ontology for Web Services) and
based on logic-programming the Rules Ontology for Web Services (ROWS).

METEOR-S
Another proposal for a semantic web service standard is the METEOR-S project [5]
of the LSDIS-lab, University of Georgia, collaborating with IBM. METEOR-S is the
abbreviation of “Managing End-To-End OpeRations for Semantic Web Services” and
focuses the process itself. The main point of METEOR-S is the use of semantics in
the complete lifecycle of semantic web processes to represent complex interactions
between semantic web services.

Comparison
OWL-S provides a distinction between atomic processes, simple and composite proc-
esses. This separation is necessary to enable more complex service interactions. The
composition of services is abutted on BPEL [25] which is a commonly used language
in the web service community and can therefore be easily adapted. The differentiation
between ServiceProfile, ServiceModel and ServiceGrounding makes it easier to de-
scribe a service completely. The categorization of a service can be used by a seman-
tic-enhanced service registry to find a corresponding service.

The mediator concept of WSMO is very important to solve interoperability issues.
Defining goals will be necessary when an automatic orchestration of services is
needed. WSMO separates the provider and requester point of view by defining goals
and web service capabilities separately (different to OWL-S where no goals can be
modeled). It also offers the possibility to add non-functional properties (which lacks
in OWL-S) and is not only restricted to web service composition (modeled by transi-
tion rules), but also envisions modeling of orchestration.

92

SWSF extends the OWL-S standard, enables rule languages and extends the de-
scription logic used in OWL-S to a first-order logic in FLOWS which makes it easier
to describe concepts and their relationships. It already offers the usage of rule lan-
guages (similar to WSMO) which is still missing in OWL-S (an extension of the
underlying OWL to SWRL in OWL-S could be used to solve this).

METEOR-S separates different ontologies: data semantics for the definition of the
vocabulary, functional semantics to describe the capabilities of web services, execu-
tion semantics to represent the flow of services and QoS semantics which explains the
quality a service offers. This separation makes it easier to create and modify these
ontologies.

We will come back to the advantages and concepts of the different standards pre-
senting our own approach.

3 Overall Approach

This section defines our overall approach, how reference and business process models
using UML2.0 syntax can be annotated using the concepts of semantic web services.
In particular, we explain how an automated synthesis of processes can be achieved
using matrices and algorithms working on the annotation.

3.1 Semantic Modeling of Reference and Business Processes

The modeling of business processes concentrates on the functional view whereas web
services are focused on the technical view, i.e. different levels of abstraction. Never-
theless, both services and processes can be described with functional (and non-
functional) parameters. The semantic web service standards provide descriptions
what a service does and how it interacts with others. These descriptions can be ap-
plied to business processes and used to describe their choreography.

Each semantic web service standard has advantages when being used to annotate
business processes. We are interested in a general approach for the automated synthe-
sis of reference processes, i.e. pre-defined business processes to be customized and
combined to obtain value-added business processes. In order to get a long-time reali-
zation of the system we decided to combine the concepts and advantages of the stan-
dards presented in section 2 in our approach, hence staying independent in the reali-
zation being able to switch after it is foreseeable which one is accepted most.

OWL-S provides the distinction between atomic processes, simple and composite
processes. Business processes as modeled e.g. in an UML2 activity diagram have
different levels of detail. A general manager is only interested in the high level proc-
ess description whereas a project manager needs a more detailed view. Composing
several atomic processes to a composite one enables this requirement. Thus we will
keep the distinguished views provided by OWL-S. OWL-S also has a possibility to
categorize a service in a taxonomy. This will be important for reference processes,
too. WSMO enables the definition of goals and several tools are already using the
web service descriptions and goal description to create a plan for achieving this goal

93

(e.g. IRS-III [19]). These tools and algorithms might be useful for an improvement of
our work, but are currently limited to semantic web services in WSMO. It is the only
standard that offers the modeling of non-functional properties which is important for
reference and business processes as well. Similar to OWL-S SWSF describes each
action with four different parameters: input, output, preconditions and effects (in
short: IOPEs). This description and abbreviation will be used to describe business
processes which will be modeled through actions in UML2.0 activity diagrams.
METEOR-S separates different ontologies, namely data semantics, functional se-
mantics, execution semantics and QoS semantics. Our approach will use the data
semantics for the description of the underlying ontology, the functional semantics for
the description of each process and the execution semantics to specify how the proc-
esses are related to each other1.

We adopt and merge the advantages of all standards and build the following archi-
tecture which shows how the semantics are interrelated (see Figure 2).

Figure 2: Useful semantics for the synthesis

Our business process model is defined as follows: BPM = (D, F, E, N), whereas D is
the data semantics, F are all processes (containing the functional semantics) and rela-
tions, E describes the execution semantics and N the non-functional properties. A
formal description of a diagram would be F = ∪0 ≤ i ≤ n Pi ∪ ∪0 ≤ i, j ≤ n ConPi, Pj where
n is the number of processes, Pi is a process and ConPi,Pj is a connection between the
two processes Pi and Pj. A connection ConPi,Pj describes that after process Pi has been
executed, process Pj follows.
The ontology used to define all concepts of the company and corresponding business
processes will be called data semantics and provides a basis for the modeling of
processes. It defines all concepts and their relationships that describe the enterprise,
the departments and their tasks which are required to annotate BPM and RPM. Addi-

1 These data, functional and execution semantics can be modeled using each of the presented

semantic web service languages.

94

tionally, (global) variables can be defined to be used in preconditions and effects for
describing the change to a global state, e.g. changes in a database, etc.

Each process is described in the functional semantics using IOPEs. Therefore, the
concepts defined in the data semantics are used for the input and output section. The
variables can be tested for specific values in the preconditions and new values can be
assigned in the effects. Each process Pi includes the functional (and non-functional)
semantics for this process, Pi = (Ii, Oi, Pi, Ei, Ni). Ii and Oi describe the inputs and
outputs of this process and contain concepts that are defined in the data semantics (Ii
⊆ D, Oi ⊆ D). Pi and Ei are well-formed formulas (of an arbitrary logic) describing
preconditions and effects and use variables defined in the data semantics for Boolean
expressions and assignments. Ni is the summary of all non-functional properties of
this sub-process.

To improve the automatic synthesis it is possible to define the necessary chronol-
ogy of some processes. Following the METEOR-S approach this is captured in the
execution semantics E. Using the following statements the user can define his/her
preferences for the composition of the processes. Possible statements for two proc-
esses P1 and P2 are:

- P1 next P2 (P1 ◦ P2, means P2 follows directly on P1),
- P1 eventually P2 (P1 ◊ P2, sometime after P1, P2 will be executed),
- P1 previous P2 (P2 ◦ P1),
- P1 before P2 (P2 ◊ P1),
- P1 parallel P2 (P1 || P2, means P1 and P2 are in two parallel threads).

The non-functional properties N can be modeled using a categorization of the ser-
vice similar to OWL-S and the values in WSMO. The whole process should at least
be annotated with the version of the model, when it was created, the name and the
subject it is about, the type and format it uses (e.g. UML2) and which business areas
it covers. Every sub-process should be annotated with the topic, a short description of
the steps in this sub-process, how much it costs and how long it will normally take or
after which period of time it must have been finished.

3.2 Synthesis of Semantic Process Models

Having defined all pre-defined processes, i.e. modeled the data semantics, functional
semantics and execution semantics, a synthesis task can be started. The non-
functional properties are currently not used for the synthesis. These will be used in a
future version to optimize the synthesis from an economic point of view.

The synthesis works incremental: first, the functional semantics of each process is
compared with the functional semantics of all other processes in a reasoner. The re-
sults of these queries are converted to numbers and stored in a synthesis and identity
matrix. These matrices are then interpreted as a directed and weighted graph. Based
on these graphs the synthesis algorithms can then compute bottom-up what the opti-
mal composition of all processes would look like. We have developed two different
synthesis algorithms (Modified Prim and RandomWalk) which will be described in
section 3.2.2. The following section describes how the synthesis matrix and identity
matrix are built. A more detailed description about the synthesis can be found in [23].

95

3.2.1 Synthesis Matrix and Identity Matrix
The synthesis and identity matrix are responsible to store the values that are com-
puted in the inference engine. The inference engine has loaded the data semantics and
gets queries whether the parameters of two processes fit together. It tests the congru-
ence of the outputs of the first process with the inputs of the second whether they are
equal or the inputs are a subset of the outputs. Furthermore they are checking whether
the preconditions of the second process are satisfied with the effects of the first. The
more these tests are successful, the higher is the value in the synthesis matrix.

The synthesis matrix synmat is a n×n matrix (whereas n is the number of proc-
esses in the business or reference model) with

 0, if (Pi ≡ Pj) or noMatch(Pi,Pj),
 2, if Input(Pj) ⊂ Output(Pi),
 4, if Input(Pj) = Output(Pi),
 5, if Preconditions(Pj) ⊂ Effects(Pi),
synmatPi,Pj = 6, if Preconditions(Pj) = Effects(Pi),
 7, if (Input(Pj) ⊂ Output(Pi)) ∧ (Preconditions(Pj) ⊂ Effects(Pi)),
 8, if (Input(Pj) ⊂ Output(Pi)) ∧ (Preconditions(Pj) = Effects(Pi)),
 9, if (Input(Pj) = Output(Pi)) ∧ (Preconditions(Pj) ⊂ Effects(Pi))
 10, if (Input(Pj) = Output(Pi)) ∧ (Preconditions(Pj) = Effects(Pi)).

We have chosen these numbers for simplification of the implementation: every entry
in the matrix bigger than six can be created by adding the smaller numbers and is
unambiguously factorable into these smaller numbers.

In the example in Figure 3a the outputs and effects of process P1 are sufficient (but
not equal) for the inputs and preconditions of process P2 (a value of 7). The outputs
and effects of process P2 are equal to the inputs and preconditions of process P3
(value: 10). Additionally the outputs of P3 are similar to the inputs of P1 (value of 2).

Figure 3: A synthesis matrix and the corresponding graph

Similar to the synthesis matrix the identity matrix idenmat contains the results of the
comparison of two processes, but this time the equivalence of them is tested. If parts
or all inputs are the same (alternatively outputs, preconditions or effects) there is a
value bigger 0 (maximum 16), otherwise with a value of 0 the two processes are not
parallelizable or the process was compared with itself.

3.2.2 Modified Prim and RandomWalk
Having created both matrices these can be interpreted as a directed and weighted
graph G = (N, E). The nodes N are the processes and there are edges if the entries in

96

the synthesis matrix between two processes are bigger than 0 (cf. Figure 3b). Based
on these graphs the synthesis algorithm can be started.

Modified Prim is an adapted Prim- (or Dijkstra-) algorithm and creates a graph
choosing one edge randomly first. Then the edge with the highest value will be added
to the solution if it fulfills given constraints. This is repeated until all processes have
been visited. After visiting each process, the operation is terminated and the solution
is evaluated. This algorithm is executed with each existing edge as start edge and
after all solutions are computed, the one with the best rating is returned to the user.

The synthesis algorithm RandomWalk operates on basis of an existing solution
(e.g. generated via Modified Prim). RandomWalk was primarily invented to optimize
mathematical problems and tries to converge to a local (or better: global) maximum
by changing the solution iterative. Every solution is rated (using the value of the
applied edges) and computed whether there exist solutions with a better rating. There-
fore, in our case, edges are removed by accident and others (with a better value) are
added. After a period of time the operation is stopped and the so far best solution is
returned which represents the best computed workflow of the annotated processes. Of
course, it is also possible to specify a goal (this would be the effects or outputs of the
whole activity) and the algorithm will reject all solutions which don’t give the re-
quired outputs or effects.

4 Case Study

To test the semantic process modeling and to compare the different synthesis opera-
tions, a prototypical tool was developed [6]. It offers the modeling of a semantically-
enriched UML2 activity diagram and testing the synthesis with the operations ex-
plained above.2 The big advantage of the synthesis comes to the fore using it on ex-
tensive reference process models. However, due to space limitations we only demon-
strate the synthesis of a small business process.

Let us assume a purchase process where a customer buys a product which has to
be adapted to his needs. First, the warehouse has to be checked whether the necessary
raw product is available or perhaps a comparable product can be found. If this is not
the case, then the raw product is ordered. With the raw product the end product can
be manufactured, a bill can be written and the product can be delivered to the cus-
tomer. Without semantic enhancements, the system would not be able to decide
whether the process “Order product” or “Write bill” should come first. Therefore
every process can be annotated with inputs, outputs, preconditions and effects.

A part of the semantics for this example would be the following: Figure 4 shows a
part of the data semantics for one of these processes (“Order product”). The func-
tional semantics for the same process would include (informal):

 Precondition: ProductInStock hasValue FALSE,
 Output: Order,
 Effect: ProductOrdered setValue TRUE.

2 The case study is based on OWL and OWL-S to present the ontologies, but every concept can
be adapted to other semantic web service languages, too.

97

<semBPM:Object rdf:ID="Order"/>
<semBPM:SemDataProperty rdf:ID="executedFor">
 <rdfs:domain rdf:resource="#Order"/>
 <rdfs:range rdf:resource="#Customer"/>
</semBPM:SemDataProperty>
<semBPM:globalVariable rdf:ID=”ProductInStock”/>

Figure 4: Data semantics for the process “Order product”

Having modeled all processes (without transitions!), annotated them with semantics
and started the synthesis, one gets the result of Figure 5. Both algorithms achieve the
same result and the solution the user might have probably expected. If one of these
processes changes or needs to be deleted, one can simply start a new synthesis to get
the new optimal combination and no further action is required.

Figure 5: Result of the synthesis of our business trip example

Testing more complex cases the algorithms sometimes find different solutions which
are syntactically and semantically correct, but not always the optimal and expected
results concerning the given parameters. The creation of the synthesis and identity
matrix has a time and space complexity of O(n²). We are currently working on opti-
mizing Modified Prim, which has a time complexity of O(n³), whereas RandomWalk
only needs O(n⋅log n).

5 Related Work

This is – to our knowledge – the first approach to annotate business processes and use
these annotations to make an automatic synthesis of the modeled processes. Other
institutions are describing business processes as well: [24] describes an approach to

98

use ontologies for business process modeling in Petri nets. Jenz & Partner is develop-
ing a tool named BPEdit [9] which enables users to graphically define and edit busi-
ness process definitions using the Business Process Modeling Notation (BPMN) [8].
BPEdit relies on an open and extensible ontology-based information model which is
defined in OWL and offers the generation of deployable process definitions in proc-
ess definition languages such as BPEL. The METEOR-S development team is devel-
oping a Process Designer [10] to generate BPEL Web Processes based on the
METEOR-S Web Service Annotation Framework (MWSAF) [13] and which sup-
ports dynamic discovery of partner services using semantics. Both tools enable the
annotation of business processes and generate process definitions in BPEL. They use
semantic web languages like OWL and develop concepts to annotate business proc-
esses with semantic information. But at present they are not using these annotations to
make an automatic synthesis of the described processes.

There are several groups working on composition of web services: they either re-
quire static information (e.g. Golog-based [17] or based on Hierarchical Task Net-
works [18]). Some approaches use ontologies [19], others agent technologies [20].
But none of them currently considers business processes and the automatic composi-
tion of UML2 activity diagrams.

6 Conclusions and Outlook

The presented approach is a first step to use annotated business process models to
make an automatic synthesis and compute the best composition of the modeled proc-
esses. This enables a modeling tool to assist humans in modeling and optimizing a
model when changes to the corresponding actions have occurred. Our approach en-
ables the usage of ontologies to describe business processes and to use this informa-
tion to compute an optimal workflow of business processes which is necessary for an
automatic adaptation of reference processes and will increase their utilisability and
usage.

Our approach combines the advantages of the discussed semantic web service
standards, but stays adaptable to each of these standards. We implemented a proto-
typical application which was developed as an eclipse plug-in and provides therefore
an opportunity to be connected with other plug-ins.

Our prototype only offers the modeling of UML2 activity diagrams; other dia-
grams are currently not supported. Especially diagrams to cover organizational or
resource aspects should be included and additional semantics and ontologies created
(e.g. for the organizational structure of the company). We will create a UML2 profile
for the usage of ontologies in business process models and try to combine the higher-
level business process descriptions with lower-level web services. The synthesis will
be extended not to consider optional elements and to use actions (e.g. for consistency
checking) several times.

We are aiming to develop a methodology to annotate reference processes, whereas
we will consider current approaches to model business processes like BPMN and
approaches of business process ontologies.

99

References

1. Guiness, D. and Harmelen, F.: “OWL Web Ontology Language - Overview”, February
2004, W3C Recommendation.

2. Martin, D. et al: “OWL-S: Semantic Markup for Web Services”, November 2004, W3C
Member Submission.

3. Lausen, H., Polleres, A. and Roman, D. (Eds.): “Web Service Modeling Ontology
(WSMO)”, June 2005, W3C Member Submission

4. Battle, S. et al.: “Semantic Web Services Framework (SWSF) Overview”, September
2005, W3C Member Submission.

5. LSDIS, University of Georgia, “METEOR-S: Semantic Web Services and Processes”,
Homepage: http://lsdis.cs.uga.edu/projects/meteor-s/

6. University of Augsburg, Plug-In available at http://pvs.informatik.uni-augsburg.de/eclipse
7. Axenath, B., Kindler, E. and Rubin, V. “the Aspects of Business Processes: An Open and

Formalism Independent Ontology”, Paderborn, April 2005.
8. BPMI.org, “Business Process Modeling Notation (BPMN) – Version 1.0”, May 2004.
9. Jenz & Partner GmbH: “BPEdit – What is it?” available online at

http://wa0529.dw10.de/MamboV4.5.2/content/view/15/28/
10. METEOR-S Download and Release Page: “METEOR-S Process Designer” available

online at http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=4
11. Object Management Group (OMG): “Unified Modeling Language (UML) Specification”.
12. Fensel, D., Bussler, C.: “Web Service Modeling Framework WSMF”, ECommerce, 2002.
13. LSDIS, University of Georgia, “MWSAF: METEOR-S Web Service Annotation Frame-

work”, Homepage: http://lsdis.cs.uga.edu/projects/meteor-s/mwsaf/
14. Berners-Lee, T. “Putting the Web back in Semantic Web”, In: ISWC, Galway, 2005.
15. The DAML Services Coalition: “DAML-S: Semantic Markup for Web Services”, 2003.
16. deBrujin, J., Lausen, H.: “Web Service Modeling Language”, W3C Submission, 2005.
17. McIlraith, S. and Son, T.: “Adapting Golog for composition of semantic web services”. In:

KR-2002, Toulouse, France, 2002
18. Au, T.C., Kuter, U. and Nau, D.: “Web Service Composition with Volatile Information”,

In: ISWC05, Galway, November 2005.
19. Domingue, J., Galizia, S. and Carbal, L.: “Choreography in IRS-III – Coping with

Hetereogeneous Interaction Patterns in Web Services”, In: ISWC05, Galway, 2005.
20. Greenwood, D., Buhler, P. and Reitbauer, A.: “Web Service Discovery and Composition

using the Web Service Integration Gateway”, in: EEE’05.
21. Fettke, P. et al.: “Business Process Reference Models: Survey and Classification”,

BPRM05, Nancy, September 2005
22. Miller J. and Mukerji J. (Eds.): “MDA Guide Version 1.0.1”, June 2003, omg/2003-06-01.
23. Lautenbacher, F., Bauer B. “Automatic Synthesis of Reference Processes Using Semantic

Concepts”, Poster at I-ESA06, Bordeaux, March 2006, available online at www.ds-
lab.org/publications/proceedings/2006_I-ESA2.html

24. Koschmider, A. and Oberweis, A.: “Ontology based Business Process Description”, in:
EMOI-INTEROP’05, Porto, June 2005.

25. OASIS: Business Process Execution Language For Web Services, Version 1.1, 5 May
2003.

100

Towards Business Level Verification of Cross-
Organizational Business Processes

Kioumars Namiri1, Nenad Stojanovic2,

1 SAP Research Center CEC Karlsruhe, SAP AG, Vincenz-Prießnitz-Str.1

76131 Karlsruhe, Germany
Kioumars.Namiri@sap.com

2FZI Karlsruhe, Haid-und-Neu-Str. 10-14

76131 Karlsruhe, Germany
nstojano@fzi.de

Abstract. In this paper we present a novel approach for the verification of a
business process configuration. The approach is formal, so that logic
mechanisms are used in the verification process. The approach has been applied
in the scope of the project ATHENA for the verification of cross organizational
business processes.

Keywords: Formal verification, Business process modeling, Business
configuration, Cross-organizational business processes

1 Introduction

Today most enterprises do not implement their software applications from scratch
on their own. They rather decide to buy pre-built IT-Solutions from software vendors,
where the software applications are built on top of it. This is especially the case in the
area of ERP Software. The software has to be adapted in such a way that the
implemented business processes there meet the needs and requirements of the
customer enterprises. Usually, same business processes differ from company to
company as a result of different and changing business environments. Changing
business environment is caused by frequently changing internal local business
practices and capabilities of an enterprise, its partner ecosystem and the local legal
regulations. That means that customers have to configure the functions in the
purchased solutions accordingly. Business configuration is part of every
implementation project for customers who have bought an ERP product. Soffer et al.
describe in [1] configuration as an alignment process of adapting the enterprise
system to the needs of an enterprise. Typically in praxis, technology and application
consultants take care of an initial business configuration, and the customer business
department is responsible for maintenance.

At the same time, most enterprises focus on specific parts of their business process
and depend on partners in a market to perform the additional parts of the process
required to achieve a complete end-to-end business process. A common business

101

paradigm is that of service outsourcing, in which an enterprise focuses on its core
business process and has secondary process parts enacted on its behalf by service
provider organizations.

In the EU-Project ATHENA [2], these kinds of business processes are called
Cross-organizational Business Processes (CBPs) [3], i.e. processes that cross two or
more enterprises. The ATHENA project deals with the problem of interoperability
between enterprise information systems. Solutions to problems associated with CBPs
are the main goal of the project. Support for the semi-automatic modeling and
automatic execution of these processes are the focus of study in the different research
groups, which investigate the problem at different levels: business, technical and
execution.

We state that in real world situations not fully configured ready to run CBPs are
delivered by ERP vendors to customer enterprises, since the vendors aim to cover the
requirements of their different customers. These requirements are first known when
introducing the CBPs at a customer company. By business configuration of CBPs we
particularly mean in this paper that the customer company is forced to integrate the
set of available external business functionalities provided by partners and internal
systems in not configured CBPs in such a way, that it fulfills the enterprises situation.
Nowadays, both the interface to provide business functionalities provided by partners
and the interface to internal systems of enterprises are exposed mostly as services,
even as web services. The task of business level adaptation of CBPs according to the
available set of existing web services is a costly and time consuming task in most non
trivial cases, since it is dependent on frequently changing business environment of a
customer. A rule based approach is required to express the existing business
environment of an enterprise in terms of business rules to influent the instantiation
and execution of a business process.

One challenging need in this context is to provide a mechanism to ensure that
CBPs are configured and upgraded consistently. The vision is a top-down deployment
of business level requirements on an enterprise application spanning over different
processes and a bottom-up verification of already configured processes making sure
they steadily fulfill the business level requirements.

In this paper we address the problem of verification of a configured CBP whether it
meets the requirements of an enterprise. On requirements level we focus on the
mapping between a process step and the available web services. We will see by an
example that there are different mapping variants dependent on each enterprise
demands how web services are mapped in the same CBP. We will express these
dependencies as declarative rules specific for each enterprise representing its business
requirements in this scope. We propose to use semantic technologies based on SWRL
[4] for representing the configuration constraints on the CBPs. We will use the
reasoning technologies provided in Description Logics [5] to inference the
configuration of a CBP according a knowledge-base in terms of SWRL-rules, thus we
will be able to verify the current CBP Configuration of each enterprise.

This paper is structured as follows: First we take a look at the related work in this
area. Following we introduce the concepts developed in ATHENA in the area of
business processes collaboration. In the next chapter we introduce a motivating use
case for illustrating the need for verification of CBPs. Based on the introduced

102

scenario we show a solution approach how to semantically verify the configuration of
CBPs. Finally we present the planed research and conclude.

2 Related Work

Business Process Execution Language for Web Services (WSBPEL) [6] aims to
provide an XML based language for describing business processes and how web
services are composed together. ATHENA provides the tool Maestro, which is used
for orchestrating business processes. They can be enacted by Nehmiah, a Process
Execution Engine. We argue that both approaches, using Maestro or a BPEL-based
description of a process does not solve the problem of different enterprise-dependent
process configurations since they can be characterized as static in that sense that once
a process is implemented, it runs always in the same way and is not aware of
changing business environments.

As stated clearly in [5], “Configuration” can be considered as one successful
domain for knowledge-based applications built using Description Logics, which
includes application that support the design of complex systems created by combining
multiple components. While there is industry-wide accepted related work in the area
of DL-based product configuration and verification [7] [8], there is less industry-wide
accepted research work done in the area of configuration and verification of process-
based software applications.

In [9] an approach is introduced to express configurable EPCs (CEPCs). The
semantic of business level requirements on business process, which is matter of
frequent change, is here explicitly modeled in CEPCs and not separately outside of
the business processes, as required by our approach.

There are several works done in the area of integrating business rules and service
compositions [10] [11]. While the business rules there address more the runtime
behavior of processes, we concentrate more on the design time of processes and offer
a verification mechanism for the processes whether they fulfill a set of predefined
SWRL-rules. In [12] a formal framework is provided to represent business
requirements and goals of an organization and how they can be operationalized in
terms of BPEL-Processes. The verification mechanism in this framework is based on
model checking.

Finally in [13] with TOVE-Ontology an extension of First-Order-Logic (Calculus
Logic) is provided to verify if business processes in a producing enterprise fulfill
ISO9000 Quality Norms. In this ontology concepts are provided to describe business
processes of an enterprise, but the ontology does not take collaborative aspect of
business processes and web service integration into account.

103

3 Business Process Concepts and Tools in ATHENA

3.1 CBPs

A concept is developed in ATHENA to classify process types pursuing different

goals. Processes are divided in three levels of abstraction: a level suited for business
analysts, an intermediate level suited for process analysts, and a level suited for IT-
experts. At this last level the processes may be executed by computer systems.
Furthermore, ATHENA presents a concept to model cross-organizational processes
without having to reveal internal, private information of enterprises. This concept
includes three different process types that vary in their degree of providing
information about a single enterprise and in their degree of providing information
about the whole collaborative process:

 Cross-Organizational Business Process: This process type is intended to

explain the whole collaborative process and contains mainly abstract
information about the roles the involved enterprises play

 Private Process: This process type is used only internally by an enterprise
and contains all information regarded as necessary by internal users

 View Process: This process type hides sensitive information contained in
the private process of an enterprise and provides partners with information
on how to interact with the enterprise owning this private process.

Based on these concepts, modeling tools were enhanced to support collaborative

business processes on each level; the approach of having three different levels of
abstraction was implemented, too. Thus it is possible to model processes at the
business analyst level and to transform them to the technically detailed BPDM-
models used in Maestro. Apart from this, based on formal operators a method was
developed to enable horizontal transformation. Thus automatic transformation from
view process to private processes and vice versa is supported by the Maestro tool.

To complete the model framework, a modeling procedure was established that

identified three possible procedures for the creation of views and CBPs. In a bottom-
up approach each company starts with the identification of their private processes and
the creation of interaction-specific views which then are combined into CBPs. In a
top-down approach, the partners start identifying a common picture of the interaction
in terms of a CBP model. Each partner then creates its views according to the process
steps that will be executed. As a last step the partners have to define their private
processes. The third scenario (“middle-out”) is that of one partner starting with its
private processes and offering a view process to its partners. The partners can link this
process-based interface to their internal processes via view processes. This
corresponds to a bottom-up approach for one partner and a top-down for the others.

104

3.2 Business Processes vs. Services

In ATHENA a Tool called Gabriel is provided to bridge the gap between the
business process world in terms of CBPs and the SOA world in terms of web services
provided by business partners. Gabriel is responsible for defining and enacting the
concept of business process task particularly as web services. Maestro allows a user to
model business processes as a set of tasks and dependencies between those tasks.
Nehemiah allows the execution of business processes modelled in Maestro; such
processes are exported from Maestro to Nehemiah via a business process repository,
which therefore provides a link between modelling time and runtime. Because both
those tools were originally aimed at simulating business process execution, Maestro
and Nehemiah do not focus on modelling and enacting the business action that should
be performed for a given task. With the aim of cleanly separating modelling and
enactment, Gabriel has two distinct parts. The modelling side allows defining so-
called task profiles, which are a set of attributes that describe what action has to be
performed for a given task. Such an action can be user interaction or service
invocation. Task profiles as well as organisational data are stored in a repository that
connects modelling time and runtime. When the process enactment engine
(Nehemiah) notifies Gabriel that a task is available, Gabriel looks up the task profile
that was associated with the corresponding task model in Maestro, and based on the
type of profile, puts the task at the top of some appropriate principal’s task list, or
causes a web service invocation related to that task.

4 Scenario: Integration of Carrier Web Services in the Shipping
Process

Many enterprises with a need for shipping functionality use various online-services
and tools provided by companies in the transportation industry to facilitate the
shipping process for their customers. For instance United Parcel Service of America
(UPS) provides several on-line XML Tools [14] or FedEx offers various APIs for
integrating their business functionality into a client shipping application [15]. These
Tools can be integrated into the Order-To-Cash-Process of a shipper. Integration
software vendors have been addressing this issue by providing Shipping applications,
but they are mostly carrier dependent and force shippers to implement a specific
business process pattern supported by the solution. The shipping process at a shipper
company, as well as the problems in its configurations is described in following
subsections.

4.1 Description of collaborative Shipping Process

An Order-to-Cash process at a shipper company is generally constituted by
following process steps:

A Sales Order contains information on ordered Goods, shipping address etc. and
is the starting point for the process. The Sales Order can be changed as long as there

105

is no subsequent Delivery processing started. Until then all fields are changeable. The
Delivery is created from a Sales Order. Depending on customer specific criteria (e.g.
delivery dates / shipping mode) several Deliveries can be created from one Sales
Order. Merging of several Sales Orders into one Delivery is possible. From the
Delivery the Picking and Packing Information is created (Pick List / Handling
Units). During this Phase quantities are confirmed. The information is written back to
the Delivery. Depending on the physical availability of goods the Delivery can change
several times (e.g. only a partial shipment is possible, thus correction of delivery is
needed). From a Delivery a Shipment can be entered. Several Deliveries can be
aggregated to one Shipment. The Shipment is the foundation for the manifest /
shipping instructions. After the goods are shipped, a commercial invoice for the
customer is created. The shipper will be invoiced by the selected carrier and is
therefore out of the scope of the shipping process. During After Sales, tasks related to
eventual Return Management are done.

The Shipping Process is handled by several services. In this paper we will
concentrate on core shipping services provided by a carrier as web services:

 Generate Routing Code: The routing code is the carrier specific

representation of the route over which a parcel is shipped.
 Calculate Rate: Rate calculation takes as input the selected shipment

type, the route and some more information on the parcel and calculates
the rate for the shipment.

 Generate Label: This service creates the label for the parcel in the carrier
specific format.

 Manifest: In this service the current shipment is added to the manifest for
the day and sent to the carrier.

4.2 Shipping Process Configuration Variants

Considering the abstract shipping process previously described, the process is
instantiated and executed in such a way that in each process step different internal
systems/services or external carrier services are called.

In case of a shipping process realized through a purchased solution at a shipper
company, the business configuration of the solution according to the requirements of
that enterprise has direct impact on the way, at which process step or activity which
service(s) is called. Different variants occur as web services can be called from
different process activities of the standard order-to-cash process executed at the
shipper. Furthermore, there are particular call dependencies between some of the
services. For instance, a routing code is required to calculate the rate and the label can
only be printed after the rate has been determined.

To exemplify this situation, three different business situations for three different
enterprises are described, which lead to different configurations of the core-shipping
services calculate rate, generate routing code and generate label web services of
carriers into the same standard order-to-cash-process of each shipper. This is a result
of a real world analysis of different shipping companies regarding their
interoperability requirements.

106

 Process Variant 1: In this case, the shipping condition selection, routing

code calculation and rate calculation are all done during sales order. This is
possible if the total weight of the parcels is already known during sales order
entry. After the goods have been picked and packed a label is printed and
finally the manifest is generated. As the manifest is not generated after each
individual shipment this results in adding a new entry to the manifest for the
daily manifest.

 Process Variant 2: In this scenario the shipper only selects the carrier and

the desired shipping condition during sales order entry. Routing code, rate
calculation and label generation are performed after the goods have been
packed. This is either the case if the shipper does not need rate estimations
during sales order entry or if the shipping process starting with picking and
packing is run by a different system.

 Process Variant 3: If the shipper wants to use the option of combining

several sales orders in one shipment the routing code and the rate cannot be
calculated until this combination has been done. Thus, the services for
calculating the routing code and the rate are called during the delivery step.
This is possible if the final weight of the freight is already known during
delivery. Label and manifest are still called after packing.

Figure 1 illustrates the 3 different scenarios:

 Fig. 1 Different Process Variants in the Scenario

We can see that there are 3 different variants how external web services can be
integrated into the same business process. Usually the process is purchased by a
customer enterprise (the shipper) and may be preconfigured in one of these variants.
In this case only a technical configuration is necessary in terms of registering the
technical endpoints of the provided carrier web services in the solution. In other cases
the shipping process is not configured at all and must be first configured according to
the appropriate process variant reflecting the current business demands of that
customer enterprise.

107

In both cases there is no way to verify if the current configuration in fact satisfies
the business level requirements defined by stakeholders of that process, which are
often non-technical persons. This is insofar critical, since either the business level
requirements may change after the process is already configured or the business
process may be reengineered on a technical level. In both cases a mechanism is
required to bridge the gap between the technical and business level in terms of to
verify whether the technical implementation of the business process always reflects
the business level requirements.

It is obvious that in a shipping process not only the carrier web services matter. For
example during sales order activity first the stock management systems will be
queried to make sure that the ordered goods are already available. If not, the
subsequent processes in Supply Relationship Management system will be triggered to
order the missing goods. The same applies after the goods are shipped. At this stage
the invoicing processes will be triggered to send the customer an invoice according to
the applicable customer invoicing process variant for that shipper enterprise. These
aspects are out of scope in this work, since we concentrate only on carrier web service
integration, but they are rather mentioned here to emphasize that the mentioned
problematic pattern in area of different variants on carrier web service integration in a
shipping process currently occurs in nearly every other business process in an
enterprise.

We should additionally remark that we assume that each shipping enterprise uses
one carrier company, thus a dynamic carrier selection from a market-place according
to the current shipment conditions is outside of our scope.

5 Formal Verification of CBPs

In this section we present a general approach for the formal verification of a
process configuration that can be used in the verification of the CBPs. The approach
enables automatic discovery of all parts of a business process that do not satisfy a
predefined business requirement. This process we will call inconsistency detection.

We base our work on the semantic description of a business process introduced in
[16]. Very briefly, a process is a sequence of activities connected through several
types of connectors (join, split, switch). For each activity a set of properties can be
defined, like input, output, assigned resources. Finally, for each activity a set of (web)
services can be bound.

Although the approach is general, we focus on the type of business requirement
mentioned in section 4.2. More precisely, requirements for the service binding of a
process can be defined as:

M: Property(A) Property(WS) n

, where
A is the set of activities from a business process
WS is a set of web services

108

Property(x) is a function that retrieves characteristics of an entity x. A characteristic is
defined according to the underlying process model.

Note that the given mapping directly expresses the original constraints mentioned in
section 4.2:

A WSn ⊂ Property(A) Property(Ws) n

5.1 Formal method for Inconsistency Detection

Verification of process configuration is realized using formal methods. These
methods seek to establish a logical proof that a system works correctly, i.e. that it is
correctly configured. A formal approach provides:

(1) a modelling language to describe the system;
(2) a specification language to describe the correctness requirements; and
(3) an analysis technique to verify that the system meets its specification.

The model describes the possible behaviours of the system, and the specification
describes the desired behaviours of the system. The statement the model P satisfies
the specification α is now a logical statement, to be proved or disproved using the
analysis technique.

Since the goal of the inconsistency detection is to check whether a service
description satisfy the required specification, it can be treated as a formal verification
problem in which a modeling language to describe a system is defined through the
above mentioned process model, a specification language corresponds to the
consistency constraints that must be preserved and an analysis technique can be
treated as inference process. In the rest of this section we give more details about last
two issues.

5.2 Compliance representation

To formally prove the correctness of a model, the first decision is about what claims
to prove. In our case, the claim is that there is no violation of the requirements
regarding binding of services. It means that the system for process verification has to
return an error value in the case that an activity does not comply to a predefined
binding. That can be formally described as follows:

isCompliant(X) ¬ErrorBinding(X)

ErrorBinding(X) Activity(X) ∧ WebService(Y) ∧ Binding(X, Y) ∧
¬M(Property(X), Property(Y))

From the implementation point of view, these constraints can be formally

represented as DL-safe rules and KAON21 engine is used to evaluate these rules in
the process of model verification.

1 http://kaon2.semanticweb.org/

109

5.3 An approach for inconsistency detection / model verification

One of the main advantages of the proposed model, in which everything is defined
rigorously and precisely, is the possibility to verify the service descriptions formally.
In other words, process verification can be done by using formal methods. Formal
methods are those that provide a rigorous mathematical guarantee that a large system
conforms to a specification. Formal methods can be roughly classified as:

(1) Proof-theoretic: a suitable deductive system is used, and correctness proofs
are built using a theorem prover, and

(2) Model-theoretic: a model of the run-time behaviour of the system is built,
and this model is checked for the required properties.

In this work we apply the first method, since once we have a service description
plus the formally defined consistency constraints we can automatically prove whether
these constraints are satisfied in the service description with the help of the reasoning.
The KAON2 inference engine is used, since it implements the proof-theory for DL
and DL-safe rules. By performing an efficient exploration of the possible
inconsistencies that can be built in the service description, the system is able to verify
all the consistency constraints defined for the proposed process model.

The set of the consistency constraints as well as a description of the concrete
service are inputs to the KAON2 inference engine that is used to automatically verify
whether the service description satisfies the consistency. Practically, a trace of the
answer to a query is considered as a model that reflects how different pieces of a
service description are put together to generate the answer. If the KAON2 verifies that
the consistency constrains are fulfilled (i.e. there is no answer), then the service
description is consistent. Otherwise, the KAON2 provides explanation about causes
of problems, since it can identify the conditions under which the problem occurs.

 Fig. 2 The illustration of the verification process

Figure 2 summarizes the verification process: The CBP-ontology will be used for
the description of the validation rules and the existing processes. The verification
module will apply these rules on a concrete process instance in order to determine the
validity of the process configuration.

110

6 Future Research and Conclusion

Changing business environments force software application to be adapted frequently.
One challenge is to verify the behavior of a software application if it still reflects the
business environments, in which it is executed. In this paper we saw by an example
how the business model of a shipper enterprise influences the shipping process
composition in terms of the way the carrier web services are integrated into the
shipping process. We proposed to use SWRL as a knowledge representation form
about the interaction pattern between a shipper and a carrier company. With help of
those SWRL-rules the process composition can be verified if it fulfills the required
interaction pattern.

By having a formal representation model expressing each enterprise’s

collaboration configuration for business processes we will be enabled to automatically
derive an orchestrated CBP based on that model. A non technical person in an
enterprise will be enabled to express and verify the way business processes are
composed through available internal or external services if an appropriate user
interface is provided to express the rules in an easy way hiding the technical
complexity behind those formal models. A very obvious and valuable use case would
be then the ability to verify the interoperability configuration of a process with help of
reasoning technologies.

As mentioned in the introduction of this paper, one aspect of frequently changing

business environments for enterprises is the fulfilling of the growing count of
different regulatory compliance requirements. We find nearly in every business area
various regulatory requirements, such as Sarbanes Oxley Act, Basel II, HIPAA, ISO
9000, to count a few. One direction of our future work is to research how the content
of different regulatory compliance requirements can be captured with semantic
technologies and their impact of business processes can be handled more
automatically on process-based software applications. Our research will go towards
providing a knowledge-based compliance-aware architecture.

Acknowledgment

The research presented in this paper was partially funded by the EC in the projects
ATHENA (IST 507312) and SAKE (IST 027128)

References

1. Soffer, P.; Golany, B.; Dori, D.: ERP modeling: a comprehensive approach. Information
Systems 28(6) (2003) 673-690

2. ATHENA European Integrated Project, http://www.athena-ip.org/
3. Greiner, U., Lippe, S., Kahl, T., Ziemann, J., Jkel, F.W.: Designing and implementing

111

http://www.athena-ip.org/

crossorganizational business processes - description and application of a modeling
framework. In: Interoperability for Enterprise Software and Applications Conference I-ESA.
(2006)

4. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web rule language combining OWL and RuleML, version 0.5 of 19 november
2003, http://www.daml.org/2003/11/swrl/ (2003)

5. Baader, F., Calvanese, D., McGuinnes, D., Nardi, D., and Patel-Schneider, P. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press. (2003)

6. Thatte, S.: Business process execution language for web services version 1.1(2003)
(2003)

7. Jon R. Wright, Elia S. Weixelbaum, Gregg T. Vesonder, Karen E. Brown, Stephen R.
Palmer, Jay I. Berman, and Harry H. Moore. A knowledge-based con-
figurator that supports sales, engineering, and manufacturing at AT&T network systems.
AI Magazine, 14(3) (1993) 69–80

8. Nestor Rychtyckyj. DLMS: An evaluation of KL-ONE in the automobile industry. In Proc.
of the 5th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’96)
(1996) 588–596

9. Rosemann, M. and van der Aalst, W. A Configurable Reference Modelling Language.
Information Systems, In Press (2005)

10. Charfi, A. and Mezini, M. Hybrid Web Service Composition: Business Processes Meet
Business Rules. In Proceedings of the 2nd International Conference on Service Oriented
Computing (2004)

11. Orriens, B., Yang J. and Papazoglou M. P. A Framework for Business Rule Driven Service
Composition. In Proceedings of the Fourth International Workshop on Conceptual Modeling
Approaches for e-Business Dealing with Business Volatility (2003)

12. R. Kazhamiakin, M. Pistore, M. Roveri. A framework for integrating Business Processes
and Business Requirements, 9th International IEEE Enterprise Distributed Object
Computing Conference (EDOC) (2004)

13. Kim, Henry M. and Fox, Mark S. "Using Enterprise Reference Models for
Automated ISO 9000 Compliance Evaluation", In: Proceedings of 35th Hawaii International
Conference on Systems Science (HICSS) (2002)

14. UPS Online Tools,
http://www.ups.com/content/us/en/bussol/offering/technology/automated_shipping/online_t
ools.html, Retrieved January 19, 2006

15. FedEx Ship Manager API, http://fedex.com/us/solutions/fsmapi.html; FedEx Return
Manager API, http://fedex.com/us/solutions/netreturnapi.html; Retrieved January 19, 2006

16. Stojanovic L., Abecker A., Apostolou D., Mentzas G., Studer R. The role of semantics in e-
government service model verification and evolution, Semantic Web meets eGovernment,
AAAI Spring Symposia, AAAI. (2006)

112

http://www.ups.com/content/us/en/bussol/offering/technology/automated_shipping/online_tools.html
http://www.ups.com/content/us/en/bussol/offering/technology/automated_shipping/online_tools.html
http://fedex.com/us/solutions/fsmapi.html
http://fedex.com/us/solutions/netreturnapi.html

Adaptive technologies to address operational

complexity in highly configurable value chains

Ray Richardson
1
, Aidan Boran

1
, Tomas Vitvar

2
, Paavo Kotinurmi

2

David Lewis
3
, John Keeney

3
, Declan O’Sullivan

3

Bell Labs, Ireland
1
,

firstnamelastname@lucent.com
Digital Research Institute, Galway

2
,

firstname.lastname@deri.org
Knowledge and Data Engineering Group, Trinity College, Dublin

3

firstname.lastname@cs.tcd.ie

Abstract Existing B2B infrastructure is primarily focussed on the secure,

reliable, and scaleable transfer of information between business partners.

The time and effort taken to establish these B2B connections has meant

that the resulting business relationships tend to be long-term and rigid in

nature. More recently, however, the configurability of the value chain

connecting business partners has been seen as a key to competitiveness.

There is increasing pressure to establish more transient ad-hoc

relationships whereby dynamic decisions can be made to, for instance,

exchange one partner with a more competitive alternative or to introduce

new trading partners to improve the robustness of an organisations

business model. This new dynamic business model introduces

considerable complexity both in the need to deal with heterogeneous

partner interfaces and the need to support dynamic decision-making. In

this paper we explore how semantic web service technology can be

combined with policy-based management to infuse adaptivity into

existing B2B infrastructure. The discussion focuses on the use of a high

performance policy decision engine to deal with operational complexity

introduced as a result of dealing with new business partners.

1. Introduction

In today's business world outsourcing, off-shoring, and partnering have

combined to create the virtual organisation where value-adding activities from

multiple organisations are connected to form value chains, [1]. There has been

considerable investment in efforts to optimise the operational efficiencies of

these value chains. Heavyweight e-business frameworks such as EDI,

RosettaNet, cXML, and ebXML have been deployed to allow each organisation

113

in the chain to view and modify information inside their own systems rather

than have buyers, sellers, assemblers, and engineers work over the phone, fax,

or e-mail, [3]. A consequence of these considerable investments to connect

businesses is the fact that partnerships, once established, tend to be rigid and

long term. More recently, however, the configurability of the value chain has

been seen as a key to competitiveness. For many organisations there is

increasing pressure to establish more transient ad-hoc relationships whereby

decisions can be made to, for instance, exchange one partner with a more

competitive alternative or to introduce new business partners in an effort to

lessen an organisations dependence on one or more trading partners [1,5].

This dynamic business model introduces considerable complexity both in the

need to deal with heterogeneous partner interfaces and the increased

operational complexity associated with dynamic decision-making, [7].

Organisations participating in these fluid value chains need a highly adaptive

B2B infrastructure to address the additional complexity. In our research we are

investigating the use of an integrated semantic web service (SWS) and policy-

based management approach to infusing adaptivity into existing e-business

framework implementations. Semantic web service technology is used to

mediate process and data conflicts within partner interfaces. Policy based

management techniques are used to automatically or semi-automatically

enforce human governance on dynamic decisions relating to service selection,

pricing, levels of service, and so on. Specific contributions of the paper

include:

• an overview of a system architecture which incorporates an integration

of semantic web services (SWS) technology, widely deployed e-

business frameworks, and policy engineering techniques (section 3.1).

• an account of how the approach delivers adaptivity in a specific use

case scenario (section 3.2)

• an insight into how a high performance decision engine can be utilised

to to enforce organizational policies in decision making related to

service selection, parameter setting, and constraint enforcement

(section 4).

2 Problem domain - Use Case Scenario

To illustrate the problem domain we consider a use case in which a small-scale

supplier, organisation A, supplies widgets to a considerably larger electronics

manufacturer, organisation B. Organisation A and B have a long term B2B

relationship with fixed terms (pricing, service level, shipping locations, etc..)

114

and IT support through a RosettaNet e-business framework. Organisation A

would like to lessen its dependence on organisation B as its main customer and

has recently been approached by other electronics manufacturers requesting

quotes for its widget product.

The nature of this new business is somewhat different insofar as requests are

more ad-hoc and terms more variable, i.e. pricing, service level, shipping

locations, and so on can vary greatly. Specific difficulties exist in that the B2B

interfaces to each of the electronics manufacturers are different and additional

overheads exist due to the requirement to make on-the-fly decisions on pricing,

levels of service, etc..

Organisation A’s plans to diversify its customer base and grow production is

good for business but requires significantly increased adaptivity in its B2B

function. The organisation needs to ensure that profits from its new business

are not wiped out by the overhead associated with managing the additional

operational complexities.

2.1 Interface heterogeneities

The option to standardise B2B interfaces across its customers is not realistic for

Organisation A, primarily due to the company’s size relative to its customers.

B2B interface heterogeneities occur across three layers – network, data, and

process. The network layer is perhaps the most straightforward to deal with as

many of the manufacturers are willing to provide smaller suppliers with B2B

software clients which can handle the encoding and transportation of messages

according to their standard protocol.

Data conflicts are more troublesome. Even for manufacturers sharing the same

e-business standard it’s quite common for data conflicts to arise. For instance

one manufacturer may expect contact phone numbers that include area and

country codes whereas another simply expects phone numbers to have an area

code. Perhaps more serious would be a situation where two manufacturers

have different standard units of measure for the same product (e.g. one uses a 5

pack whereas another uses 10 pack). These mismatches are only apparent by

inspecting the content of messages or even worse as a result of an investigation

following unexpected events.

Process heterogeneities relate to differences in the specific message exchange

sequences. One manufacturer may issue multi-line orders as a series of

individual requests whereas another may bundle them together into a single

request. Again even within the same e-business standards differences can arise.

115

2.2 Dynamic decision making

In its current business Organisation A has long term agreements with its

customer base (Organisation B). Decisions on pricing, levels of service, order

volumes, and so on are agreed up front for a period of 12 to 24 months. These

‘variables’ can be plugged into existing supporting B2B infrastructures. In the

extended business model relationships are more ad hoc in nature and

operational decisions are much more dynamic.

Human involvement in all decision making is an expensive solution which does

not guarantee consistent policy enforcement and fails to scale well. Hard coded

application logic or the use of configurable parameters leads to static policies

that can be difficult to extend and often result in sub-optimal decisions due to

poor models of the real world or poor use of all available relevant information.

There is a requirement to support truly dynamic adaptive decision making.

3 Highlevel Architecture Overview

Our approach to addressing the particular demands of the use case scenario is

to implement an integration of SWS technology, policy based management

techniques, and existing e-business frameworks.

3.1 Overview of Solution

Key elements of the solution include:

Fig 1: High-level view of architecture

Organisation A

PIP

Purchase

 RNI

Adapter

Create

Intern

Shipp

SWS

Exter

Sine

ITem

SWS

Create
Ontology

Mappings

Adapter

WSML Adapter

 Shipping

Decision Point

 SWS

 Shipping

Decision Point

 SWS

Domain

Ontology

 e-business

WSML Models

Order

 Mgt

 SWS

 Shipping

Decision Point

 SWS

Build Order

Policy

Engine

 WSMX SWS Platform

Manu F

Manu E

Manu D

 EDI

Adapter

 cXML

Adapter

Org B

116

Key elements of the architecture include:

• WSMX - we make use of the Web Services eXecution Environment

(WSMX) as our SWS platform, [2]. It provides core support for semantic

service discovery, data meditation, process mediation, and service

invocation. WSMX resides entirely within organisation A. This allows us

to avoid making any assumptions on the semantic technology capability of

partner organisations. WSMX makes use of the Web Services Modelling

Language (WSML) [8] for all internal processing.

• e-business framework ontologies – these ontologies are flat WSML

representations of e-business framework (RossettaNet, ebXML, EDI, etc.)

message contents. XSLT is used to automatically construct these

ontologies from an XML schema representation of the e-business standard.
…

<ProductLineItem>

 <UnitOfMeasureCode>12-pack <UnitOfM../>
 <LineNumber>1</LineNumber>

 <requestedQuantity>

 <ProductQuantity>10</ProductQuantity>
 </requestedQuantity>

…

 …
concept productLineItem
 nonFunctionalProperties
 dc#title hasValue "…"
 endNonFunctionalProperties
 lineno ofType (0 1) _integer
 unitcode ofType UnitOfMsre
 qty ofType (0 1) Quantity

• e-Business Adapters – these exist to translate or ‘lift’ e-business standard

messages into a WSML format, making use of concepts defined in the e-

business framework ontologies. For messages going in the opposite

direction the WSML concepts are ‘lowered’ to become e-business standard

messages. These adapters are also responsible for creating WSML goals on

receipt of ‘kick-off’ messages.

• Semantic web service

descriptions representing back-

end information systems (Order

Mgt., Shipping, etc..) within

organisation A. The

descriptions eliminate semantic

ambiguity by binding input and

output parameters to specific

concepts within an

accompanying domain

ontology. Another adapter

exists to ‘lift’ and ‘lower’

messages received and sent

between back office systems

and their corresponding

semantic web services.

webService OrderMgt

importsOntology { _"http://www.orgA.com/OM" }

capability OrderMgtSWSCapability
 sharedVariables {?request}

 precondition
 definedBy

 //A request to create an order

 ?request memberOf mn#createOrderRequest or
 //A request to add a lineitem to an order

 …

 postcondition

…
 interface OrderManagementInterface

 choreography OrderManagementChoreography

 stateSignature

 …

117

• Design time ontology mappings - these mappings identify equivalences and

relationships between concepts in each of the e-business ontologies and the

domain ontology. A data mediation tool exists to support the process.

• The Policy decision engine is used to enforce organisational policies in

decision making processes. Decision points are exposed as semantic web

services using concepts from the domain ontology (or possibly another

ontology linked to the domain ontology via mappings). The policy decision

engine is discussed in greater detail in section 4.

3.2 Simple walk through

In this section we provide a simple walkthrough of the architecture described

previously. For the walkthrough we assume we are dealing with a purchase

order request received from a customer who utilises RosettaNet. We further

assume there are backend services to both build an order (ProcessOrder) and to

deal with shipping. As part of the decision to broaden its business activities org

A has introduced a range of external shipping functions that can be used in

place of its internal shipping function for certain situations. The basic flow of

activity for processing a purchase order is shown below.

 Fig 2: High-level walk through

Key points include:

• RosettaNet purchase Order request message, PIP 3A1, is ‘lifted’ by the RNI

adapter into an equivalent WSML format. The receipt of this message

WSMX

adapters
Adapters

adapters
WSML

Adapter
RNI

Adapter
WSMX

Discovery
WSMX

Data

Med’n

WSMX

Process

Med’n

Policy

Mgt
1. PO Request

3. Invoke Data Med

Manufacturer Organistaion A Org A Organis
WSMX

Selection
WSMX

Invocation

2. WSMLGoal

6. Process Mediation handles mismatches e.g. need for PO

ACK ….
7. Calls to back-end services – ProcessOrder, Ship

5. Calls to Process Mediation

 during backend service invocations

4. Policy enforcement on selection

118

triggers the adapter to formulate a WSML goal from a set of pre-defined

templates. The goal seeks to have a purchase order processed.

• The WSMX Discovery component matches the WSML goal against

existing service capabilities. There may be capabilities to quote a price, to

create an order, to ship an order, etc.. This match may be quiet simple in

practice with inputs/outputs simply checked – data mediation is invoked

where necessary. In some cases it may be the case there is no direct match

between a goal and the available service descriptions. For instance in this

example there is no single service to process an order. However by

composing the Build Order and one of the Ship Order services the goal can

be achieved.

• The service selection step, in particular which shipping service to utilise can

be partially or fully controlled by policy based management. Further detail

on how this may take place can be found in section 4. The use of policy

based management in this way introduces a significant level of adaptivity

into operations management and provides a consistent scaleable solution to

the increasing operational complexities found when dealing with additional

business partners.

• The mappings defined between the base and domain ontologies are

executed as part of the SWS invocations. The mappings ensure RosettaNet

concepts/attributes such as AddressLine1, CityName, etc., are appropriately

translated into their backend equivalents, e.g. Street, City, etc..

• Process mediation is a further service offered by the WSMX environment.

WSMX is capable of analysing the process choreographies of the goal and

the individual service descriptions to identify and reconcile process

heterogeneities. For instance the RossettaNet message process purchase

order expects to receive an acknowledgement following the issue of a

purchase order message (PIP 3A1). This acknowledgment may not be

provided by the back-end BuildOrder service, the process mediator is thus

responsible for auto-generating the acknowledgement message. Abstract

state machines are used at runtime to keep track of process executions.

• During the service execution WSML individuals will be lowered into a

message format that can be consumed by the Order Mgt and Shipping back-

end services.

4. Policy based management

In our research we propose policy-based management to support dynamic

decision making. Declarative rules are used to enforce organizational policies

in decision making related to service selection, parameter setting, and

constraint enforcement. The Vortex rules engine [10] is being used as the

119

decision engine. Vortex is a high performance, acyclic, forward chaining rules

engine that supports reasonably rich policy management for real time

environments.

Policies, in their simplest form, are event-condition-action rules.

Correspondingly Vortex rules have a simple :

 If(Condition) then

 action1,

 action2,

 action3,

 …

 end

format. The rules language is strongly typed with support for both atomic and

complex typed variables. Vortex is packaged with an extensible range of

support functions that can be called from any rule condition or action.

Permitted actions include assigning a value to a variable, appending a value to a

list variable and removing a value from a list variable. Rules are organized

into what are known as rule sets, i.e. the set of rules that should be used for a

given ‘decision request’. Each rule set has an explicit input/output signature.

From an architectural perspective we expose rule sets as individual services

with ontologically bound input/output parameters. In some cases data

mediation may be necessary as part of decision request processing.

In order to provide an insight into how the decision engine is utilised we build

on the scenario developed in previous sections. In this scenario one of the

decisions required is to select the most appropriate shipping options.

Organisational policies should be adhered to in compiling these options.

Information from the purchase order and candidate shipping services are

forwarded with the decision request – it itself being a WSML goal. The

decision engine is capable of issuing requests to external sources to retrieve

additional information required to evaluate the conditions of all rules. The

information returned from the decision service consists of a set of shipping

options that comply with organisational policies pertaining to the shipping

request. A human administrator may make the ultimate shipping decision from

this short list of valid choices. Alternatively the selection may be based on

some simple criteria such as the cheapest conforming shipping service.

Rule sets begin with a declaration of input, output, and intermediate variables.

In our simplified shipping decision rule set input variables include the list of

concrete shipping candidates, the name of the purchasing organisation, the time

the shipment will be available for pickup, the shipment destination, etc..

120

 variables:

 purchasingOrgName : string;

 availableForPickup : string;

 shipmentDestination : list Record of { location : string };

 shippingCandidates : list of Record { identity : String;

 pickup_Time : string;

 pickup_Date : string;

 cost : string;

 setdown : string; };

An adapter takes care of lowering WSML concepts to become input variables.

In some cases the set of input variables are extended as a result of additional

domain knowledge held in the ontology. For example a single

shipmentDestination of Kista would have the additional locations of Stockholm

and Sweden added as Kista is located in Stockholm which is in turn located in

Sweden. This expanded list of locations results in more robust rule sets.

Intermediate variables are used to store temporary values during the rule set

execution. In some cases these temporary values are populated as a result of

rule actions to retrieve information from external sources.

 shipmentChannel : string;

 internalShippingCapacity : string

 filteredFromInHrs, filteredFromPerf, filteredFromPickup,

 filteredFromPerferred, blacklisted :

 list of Record { identity : String;

 pickup_Time : string;

 pickup_Date : string;

 cost : string;

 setdown : string;

 priority : string; };

 onTimePerf : list of Record {identity : string;

 channel : string;

 perf_Rating : string; };

 preferredVendorList : list of Record {identity : string;

 channel : string; };

The single output variable in this case is the list of shipping options that adhere

to all organizational policies.

 validShippingServices : list of Record { identity : String;

 pickup_Time : string;

 pickup_Date : string;

 cost : string;

 setdown : string;

 priority : string; };

121

The actual rules are typically organized into groups with the initial group

setting intermediate variables, e.g. :

 shipmentChannel = “lane1”;

 if(shipmentDestination[$i] == “USA” || shipmentDestination[$i] == “UK”) then

 shipmentChannel = “lane2”

 end

The shippingDestination[$i] syntax leads to an evaluation of the rule for each

member of the shippingDestination list value.

Subsequent rule groups actually enforce the organizational policies. In our

simplified scenario we assume the following policies exist :

1. A preferred vendor list exists for each shipping lane. Company policy

states for any given shipment the selected shipper must be on the

preferred list for the shipments shipping lane.

2. A shipper must have an on time performance of greater than 95% for the

the shipping channel in question

3. Shippers are required to make pickups within regular hours

4. The pickup cannot be more than 4 days after availableForPickup date

5. Shipments for organization B take priority in the case of the internal

shipment service

Generally speaking policies act to filter the allowable list of shipment services.

The corresponding rules for each of the policies are presented below :

 rule: Rule_1
 if(shippingCandidates[$i].identity == PreferredVendorList[$j].identity &&

 PreferredVendorList[$j].ShippingChannel == shipmentChannel)

 filteredFromPreferred += ShippingCandidates[#i];

 rule: Rule_2
 if(filteredFromPreferred [$i].identity == onTimePerf[$j].identity &&

 onTimePerf [$j].channel == shipmentChannel && onTimePerf [$j] > 0.95)

 filteredFromPerf += filteredFromPreferred[#i]

 rule: Rule_3
 if(Time::between(filteredFromPerf[$i].pickupTime, “08:00”, “18:00”))

 filteredFromInHrs += filteredFromPerf[#i];

 rule: Rule_4
 if(Time::numberOfDaysBetween(filteredFromInHrs[$i].pickupDate,

 availForPickup) < 4)

 filteredFromPickup += filteredFromInHrs[#i];

122

 rule: Rule_5
 if(filteredFromPickup[$i].identity == “Internal” &&

 internalShippingCapacity < 0.2 && requestingOrg != “Org B”)

 blacklisted += filteredFromPickup[#i]

 rule: Rule_6
 if(! (filteredFromPickup[$i] in blacklisted))

 validShippingServices += filteredFromPickup[#i]

Relating organisational policy semantics to the semantics used to define both

back-end systems and partner interfaces has obvious benefits in ensuring policy

constraints operate as expected. By enforcing policies in service selection and

parameter setting an organisation can flexibly and consistently control how it

interoperates with partners. Semantically encoded policies are themselves

more adaptable to change and heterogeneity and are considerably easier to

encode. For instance a policy that states “during public holidays pickups must

take place between 9:00am and 12:00am” can take advantage of domain

knowledge for what constitutes a public holiday to simplify the encoding.

Data mediation further enables policies to adapt to heterogeneity, e.g. a

concrete service description might encode a pickup time using a 24 hour format

in place of the standard 12 hour clock used internally. A mediator can

automatically mediate this

5. Conclusions and future work

In this paper we have presented some of the problems facing organisations

attempting to participate in configurable value chain partnerships. Increased

adaptivity is required within the B2B function to address interface

heterogeneities and operational complexities introduced by the more dynamic

business model. An integration of SWS technology and policy-based

management are proposed to deliver the required adaptivity. Internally

deployed semantic web services are employed to address data and process

heterogeneities present in partner interfaces. Semantically encoded policies are

used to ease difficulties associated with the dynamic decision-making.

The focus of our work is currently on investigating the options available to

integrate the policy management and semantic web services onto a single

platform, preparing an evaluation framework for the architecture, and building

supporting tools. Specific tools in the policy management space include a GUI

123

tool to support the creation of rules and pre-processors to expand rule sets

based on domain knowledge.

References

1. T. Friedman, The World is Flat: A Brief History of the Twenty First

Century, Farrar, Straus and Giroux, 2005.

2. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX – A

Semantic Service-Oriented Architecture. In Proceedings of the 3rd

International Conference on Web Services, pages 321 – 328, Orlando,

Florida, USA, 2005.

3. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K.

lmagarmid. Business-to-business interactions: issues and enabling

technologies. VLDB Journal, 12(1):59–85, 2003.

4. G Olsen, An overview of B2B Integration, eAI Journal, May 2000, p 28-

36.

5. Y Sheffi, The Resilient Enterprise - overcoming vulnerability for

competitive advantage, The MIT Press, 2005.

6. M. Kerrigan, The WSML Editor Plug-in to the Web Services Modeling

Toolkit. In Proceedings of 2nd WSMO Implementation Workshop

(WIW2005). Innsbruck, Austria, 2005.

7. C. Preist, J. E. Cuadrado, S. Battle, S. Williams, and S. Grimm.

Automated Business-to-Business Integration of a Logistics Supply Chain

using Semantic Web Services Technology. In ISWC ’05: Proceedings of

4th International Semantic Web Conference, 2005.

8. J de Bruijn, H. Lausen, and D. Fensel, The WSML Family of

Representation Languages, http://www.wsmo.org/TR/d16/d16.1

9. E Cimpian, and A. Mocan, Process Mediation in WSMX,

http://www.wsmo.org/TR/d13/d13.7/v0.2

10. Richard Hull, Francois Llirbat, Francois Llirbat, Eric Simon, Jianwen Su,

Guozhu Dong, Bharat Kumar, and Gang Zhou, Declarative Workflows

that Support Easy Modification and Dynamic Browsing, International

Joint Conference on Work Activities Coordination and Collaboration

(WACC) held in San Francisco, February, 1999, pp. 69-78.

124

Semantic Event-driven Process Chains

Oliver Thomas, Michael Fellmann

Institute for Information Systems (IWi) at the German Research Center

for Artificial Intelligence (DFKI), Saarbruecken (Germany)

{thomas|fellmann}@iwi.uni-sb.de

http://www.iwi.uni-sb.de

The event-driven process chain (EPC) is a semi-formal modeling language for the description of

business processes [1]. It is used for the planning, visualization and analysis of business processes in

the realm of business process management. EPC models essentially consist of a set of functions and

events, which are connected via a control flow using arcs and connectors. On the one hand, EPC

models are used to describe processes from a business perspective. On the other hand, EPC models

are used to facilitate the adoption and customization of process oriented information systems,

thereby serving as a staring point for the actual implementation [6].

Research regarding the semantics of the EPC so far mainly concentrated on the formal semantics

of the available language constructs [2; 3; 4; 5; 7]. The labels of the individual elements of an EPC

model were not considered in these investigations so far, although they significantly contribute to the

overall use of an EPC model. Usually, the designer of a model adds these labels in a natural lan-

guage. Hence, a substantial part of the semantics of an EPC model is bound to natural language,

introducing a high degree of ambiguity and misinterpretation risk. As long as a model is provided

and read only by one individual, this is less problematic. However, if models of different modelers

are united, queried and translated, or semantics contained in the models should be validated auto-

matically and leveraged for the configuration of an information system, it is necessary to have

clearly defined semantics for each of the model’s elements.

This problem can be solved by asso-

ciating the elements of an EPC model

with concepts of a formal ontology,

which can be referred to as semantic

annotation. In order to make use of this

semantic annotation and to shift from

event driven process chains to semantic

event driven process chains (sEPC), a

four-layered approach has been devel-

oped by the authors (cp. figure to the

right). The different layers are ordered

according to the increasing degree of

abstraction from the underlying EPC

model to more general semantics. The

topmost layer 4 contains the business ontology comprising all relevant concepts of an enterprise

context and their interrelationships as OWL classes and properties

(cp. http://www.w3.org/2004/OWL/). This ontology might be created by merging different ontolo-

gies which conforms to the open world assumption of OWL. As a representation language, the

OWL-DL subset of OWL is used in order to gain the maximum of expressive power while retaining

computational completeness. Going from the top to the bottom, in the next layer 3, these general

concepts are used to create new, specialized concepts for the representation of the semantics of indi-

vidual business process elements, e.g. distinct functions like “order processing” or events like “order

received”. On this level, additional information can be added like semantic restrictions or details

regarding the technical implementation and execution of processes in a centralized and consistent

manner. These concepts are instantiated afterwards in the same layer; the instances of business proc-

ess concepts, produced thereby, can correspond with physically existing entities in the enterprise

(e.g. resources). In the underlying layer 2, the instances of the upper layer are used to generate a

semantic description of business processes. This is accomplished by establishing a graph based flow

Produkt ist
konstruiert

Erstelle
Dokumenation

Dokumentation
ist erstellt

Herr Maier Dokumentation

(1) XML/EPML (Data)

(2) RDF (Instances)

(3) OWL (Classes, Instances)

(4) OWL (Classes)

Produkt ist
konstruiert

Erstelle
Dokumenation

Dokumentation
ist erstellt

Herr Maier Dokumentation

(1) XML/EPML (Data)

(2) RDF (Instances)

(3) OWL (Classes, Instances)

(4) OWL (Classes)

125

between the instances of the upper layer 3 for each semantic event driven process model, thereby

using information of the bottom layer 1 for the concrete flow and the instances involved in this flow.

In order to represent a sEPC model, the expressive power of RDF is sufficient. To transform EPC

models into sEPC models, the EPC models on layer 1 have to be extended slightly with semantic

mapping information. That is, the modeler must associate instances of layer 3 to the EPC process

model on layer 1. Technically, this annotation information is added to the XML representation of an

EPC model using attributes. For the later transformation, a XSLT stylesheet has been developed

which consumes an annotated EPML/XML-model and produces the corresponding RDF/XML rep-

resentation. For storing and querying the generated sEPC models, a preliminary prototype has been

developed at the Institute of Information Systems (IWi) which uses a relational database and the

Jena framework. The prototype allows querying sEPC models using the SPARQL query language

from the W3C in conjunction with an inference engine.

The overall benefits of our approach are:

─ Process models can be queried on a semantic level. With the use of inference engines it is possi-

ble to infer new facts that are not contained in the original model. For example, if inventory is

defined to be made up of physical things which can be sold to customers, and there is a process

which consumes such things, it can be inferred that the process reduces inventory.

─ Advanced validation opportunities of process models are achieved. The validation of a sEPC

model is done against all restrictions established in the ontology layers 3 and 4. Therefore, it is

possible to impose policies for all business processes in a centralized way.

─ The execution of processes can be facilitated as the ontology easily can be extended with techni-

cal information, thereby bridging the gap between business and technical process models. For

example, a BPEL representation can be generated from a sEPC model using execution informa-

tion added to the ontology classes on layer 3. Consequently, the alignment of business process

concepts with the IT-infrastructure can be done in a centralized way without redundancy.

─ Queries are possible both on the process concepts level (level 3) and on the instance level

(level 2) hence allowing a user or potential business partner to discover available process ele-

ment types before retrieving instance data from a sEPC repository.

─ The expenditure for the internationalization of process models can be reduced as the translation

of process model element labels is required only once per process element type on level 3 in con-

trast to the translation of individual model element labels.

Further research will be done regarding suitable ontologies and tools for the annotation of process

models. Therefore, a prototype for a sEPC repository is currently under planning that will provide

interfaces or plug-ins for well-established modeling tools.

References

[1] Keller, G.; Nüttgens, M.; Scheer, A.-W.: Semantische Prozeßmodellierung auf der Grundlage "Ereignisge-

steuerter Prozeßketten (EPK)". In: Scheer, A.-W. (ed.): Veröffentlichungen des Instituts für Wirtschaftsin-

formatik, No. 89, Saarbrücken : Universität des Saarlandes, 1992 (in German)

[2] Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. In: Data & Knowledge Engineering 56

(2006), No. 1, pp. 23– 40

[3] Langner, P.; Schneider, C.; Wehler, J.: Petri Net Based Certification of Event driven Process Chains. In:

Desel, J.; Silva, M. (eds.): Application and theory of Petri nets 1998 : 19th international conference ; pro-

ceedings. Berlin : Springer, 1998, pp. 286–305

[4] Nüttgens, M.; Rump, F. J.: Syntax und Semantik Ereignisgesteuerter Prozessketten (EPK). In: Desel, J.;

Weske, M. (eds.): Prozessorientierte Methoden und Werkzeuge für die Entwicklung von Informationssys-

temen (Promise ‘2002), Universität Potsdam, 9.–11. Oktober 2002. Bonn : Köllen, 2002, pp. 64 –77 (in

German)

[5] Rosemann, M.; van der Aalst, W. M. P.: A Configurable Reference Modelling Language. In: CITI Techni-

cal Reports, No. FIT-TR–2003–05, Brisbane : Queensland University of Technology, 2003

[6] Scheer, A.-W.; Thomas, O.; Adam, O.: Process Modeling Using Event-driven Process Chains. In: Dumas,

M.; van der Aalst, W. M. P.; ter Hofstede, A. H. M. (eds.): Process-aware Information Systems : Bridging

People and Software through Process Technology. Hoboken, New Jersey : Wiley, 2005, pp. 119–145

[7] van der Aalst, W. M. P.: Formalization and verification of event-driven process chains. In: Information and

Software Technology 41 (1999), No. 10, pp. 639–650

126

	
	Content
	sbpm06_Namiri_18.pdf
	5.1 Formal method for Inconsistency Detection
	5.2 Compliance representation
	5.3 An approach for inconsistency detection / model verification

	sbpm06_titlepage.pdf
	
	Content

	sbpm06_titlepage.pdf
	
	Content

