

IPTC Document: NAR0503.2

Architecture choices – answers to the consultants

Document history [Document URN: urn:iptc:workdoc:nar:0503:2]
Revision Issue Date Pages Author (revised by) Remark
unrevised 2005-03-05 7 Laurent Le Meur -
2 2005-03-10 8 Laurent Le Meur Adds inputs from Johan and Jay

The following summarizes the answers of the NAR WP to the questions raised at the end of
the document DRAFT-NAR_1.0-doc-ArchitectureDiscussionDocument_10.pdf (from Jay
Cousins /Ulf Wingstedt, coded ADD in this document) and exposed at the end of the
presentation made by the consultants during the IPTC 2005 Spring meeting at San Diego.

It uses SWOT diagrams (S= Strength, W = Weakness, O = opportunity, T = threats) for
clarity.

Extensibility of content

 Policy for when to use generic or explicit schema type approach for validation of
controlled vocabularies?

Note: the question can be understood has: what should be the mechanism to validate a values
against a list of allowed values (in a controlled vocabulary), especially when several
controlled vocabularies can be used at the same place (e.g. an IPTC recommended list and a
provider created list).

The NMDF works on the handling of metadata, and envisages the use of {scheme,code} pairs
to identify metadata values in a flexible manner. The “scheme” (or codeList) would indicate
which vocabulary the property value belongs to (vocabulary controlled by the IPTC or an
individual provider). The exact syntax of scheme-code pairs and its extension as a resource
URI are out of scope of this discussion, and will be addressed by the NMDF.

The schema based validation of values is useful in some occasions: for the qualification of a
feed (by a provider or a recipient), on a test channel (provider) or before processing specific
metadata where bad values could break the processing of items (e.g. management metadata).

The consultants propose (see ADD 3.7.1) two approaches:

Generic approach
Sample:
<ProductCode codeList=”company.se:ProdCodes” value=”SPIK”/>
<ProductCode codeList=”company.com:ProdCodes” value=”NAIL”/>

 1

S
- Simplicity of the design
- Benefits of a fixed data model

coupled with the provision of a
common processing model

- No ‘hard-wiring’ of semantics in
to element structures

- Resilient to change in the ctrld
values (-> independent of the
schema)

W
- No schema based validation
- Need of a specific processing for

validation

O
- Good when the number of values

is large, when they change often,
when IPTC has no control on the
ctrl.voc

- Adopted in Atom 0.5 for the
Category element

T
- Some implementers will not

implement validation processing.

Explicit schema based approach:
Sample:
<ProductCode xsi:type=”SwedishProductCodes”>SPIK</ProductCode>
<ProductCode xsi:type=”EnglishProductCodes”>NAIL</ProductCode>

An enumerated type is created in the schema. A metadata element may then be given that type
in the schema, by the IPTC or by a provider extending the schema (if allowed). Alternatively
a provider can use the specific xml schema instance attribute (xsi:type) to force the type of a
metadata element (a method called type substitution).

S
- The provider of the item can tweak

the validation constraints “on the
fly”

W
- Need for another namespace

declaration (xsi) at the top of each
item

- Weird notation if no schema
validation is needed

- If the recipient doesn’t have the type
definition in his version of the
schema, validation will fail

- Works with xml schema, not with
dtd

- Impacted by schema updates
O

- Good for set of values that are
critical for the processing of items

- Validation of values integrated in
the xml schema world

- Can be implemented as an
extension schema created by users

T
- Newscomers and basic users will be

afraid of this weird notation

Decision:

 2

The generic approach will be used in most cases (e.g. descriptive metadata).
For some metadata elements, where a schema based validation is needed, the model will use
“Plug-in schemas” (controlled vocabularies defined by providers, also called user defined
extensions) as it is the case for SportsML. But it will not use the added flexibility of the
xsi:type notation.
The members ask the consultants to detail the recommendation for the implementation of
plug-in schemas, detail what they call the ‘fixed-generic’ approach (ADD 3.7.2), and add
somewhere a recommendation for the resolution of schemes-codes pairs as references for
topic items (i.e. a URI identifying the chunk of xml, managed as other items, that carries
information about a concept like a person or event).

Extensibility of the data model

 Location of structural extensions?
 Allow wild card attribute and elements across components - wherever a user

organization would like, or,
 Allow only in specific contexts – an extension element of xs:any?

Wild card attribute and elements

S
- Total flexibility for the providers

W
- Loads the XSD schema with a lot of

wild cards
O

T
- Lowers the perception of this work

as a “standardization” work

Extension element

S
- Extensibility with good control by

IPTC

W
- Location of extension may evolve as

IPTC members show have new
needs

- The extended information may not
be managed like the components
derived from AnyComponent (e.g
extensions may have no local id etc.)

O
- Atom allows this kind of extension

by the addition of new elements to
an entry, in a different namespace
than the core.

T
- May be already giving too much

flexibility for the basic level
- May be dangerous for management

metadata (for the sake of total
interoperability of processing).

Decision:
Extension will be supported by aggregate components only.
The COCO WG will choose which aggregate components can be extended.
Note: an alternative is to give to the “specialized” WGs (e.g. EventML WG) the responsibility
to choose which constructs can be extended. But users of multiple item classes would be
surprised to see that what can be extended in a given item cannot in another.
The NMAN WG will choose if the Management component can be extended this way.

 3

These components will get a “#other” extension point at their end (extension with elements
from another namespace).
Note: the consultants are asked to provide some information on the “cost” of allowing the
addition of attributes from #other namespace to existing components, i.e. the possible
drawbacks/problems that would have to be managed in order to get the benefits from such an
approach.
Maybe this extension will be allowed only at the power conformance level (keeping the basic
level straightforward to implement); this will be reviewed later by the NSTR WG.
There will be no possibility for a provider to modify the model of an existing component
(basic or aggregate), e.g. to modify the type of an element (from date to string for example).
If information has been added to a construct, the recipient processor – e.g. the xml schema
processor – will apply a mustIgnore rule (“if you don’t know, just ignore”).
The added information will not be managed like native IPTC information (no update, no
assignment, no value control).
The extensibility of the items themselves will be reviewed later by the NSTR WG. A possible
solution is to allow providers to create their own components and include them inside items of
any kinds. This would true for all standards, maybe at the power level only. Being IPTC
components, they would be managed like other components (update, assignment, value
control)

Conformance

 Conformance
 Is there a need for schema enforced conformance rules or not?

From the ADD: “A single schema can reflect requirements from different conformance levels
by providing alternative content models as choice, substitution groups or type substitution
(xsi:type). This approach is best implemented when it is possible to clearly modularize the
content model for different conformance levels.” (ADD 3.10.8).

About a single schema:
S

- Maintenance is simplified for the
IPTC

- A provider manages only one
schema.

W
- Basic users see a complex schema
- Conformance levels are applied at

the level of the application, not
enforced via schema

O

T

Alternative: a “basic” schema is used stand-alone, or included in a “power” schema that
extends the features of the elements classes.

About a model based on the inclusion of a basic schema in a power schema:
S

- Basic users see a simple schema
W

- IPTC has to maintain 2 schemas for
each standard = burden

- Could be complicated at the instance
level

O T

 4

Decision
Conformance levels should be schema enforced (i.e. different data structures that support
different conformance levels should be clearly distinguished in the schema).
The preference would be: the power conformance level should have a schema that is an
extension of the basic conformance level schema. This would be transparent for the users, as
the declared namespaces would be the same for all conformance levels. Doing so,
implementers of the basic conformance level (the core) would not have to bother about extra
features.
The consultants are asked to check if this preferred approach is manageable (e.g. if, because
of this model, the elements of the basic and power profiles are declared in a different
namespace, this model does not fly).

Note: The specification of the power level is an extension of the core specification: it should
be reflected in the specification documents (-> two sections = ‘core’ and ‘power extensions’).

Versioning policy
 Does the proposed policy fulfill business requirements?

Summary of the proposed model:
A major version is associated with a specific namespace. The same namespace is kept for
minor revisions (backward compatible).
The major/minor version is indicated in instances of documents via a schemaVersion
attribute, and schemaLocation may be given also if recipient validation is an option.
Major/minor version is also indicated in the schemas, as a xs:schema/@version attribute.

S
- No need to modify the recipient

processing model because one
element has been added (or other
bkw compatible change)

- The recipient processor knows
what version it is without relying
on the schema.

W
- Schema version has to be added

in each instance

O
- This model is followed by several

initiatives, and has been
recommended in different articles
on the web

T
- This model is disputed by some

experts
- The IPTC has previously adopted a

namespace change for minor
versions also.

Decision:
We follow the recommendations of the consultants.
The consultants are asked to modify the samples in order to use the usual notation of IPTC
(major version as one number, minor version as one number) e.g. 1.0.3 becomes 1.3. The
IPTC policy is that editorial versioning is treated separately (usually as letters).

 5

Common Components - namespaces
 Should there be separate namespaces for the individual types of common components?

 For common component layers – data type, property, construct?
 For the different types of construct created?

If there is one namespace only (per major version) for all common components:

S
- Management of CC remains

simple.

W
- If one element of the library is

strongly modified (non bckw
compatible transformation), the
whole library must be given a new
major version

O
-

T
-

Note: An alternative approach would be one namespace per major common constructs
(management, description, rights, publication, signature), and the use of a ‘common’
namespace for embedded constructs and properties. But it would introduce another
namespace level with the result that instead of having a single namespace for all common
components, we would have a namespace for common components and namespace(s) for
some specific major construct common components..

Decision:
There will be one namespace for the whole CC library.

Note: the IPTC shall have a “patch day” policy for individual items included in standards to
be upgraded with the latest version of the CC library.

Common Components - naming
 Is the proposed structure, definition and naming of the common components

appropriate?
 Data type, basic component and aggregate component

Decision:
As no consensus is currently achieved amongst the COCO WG members, the consultants can
keep the current names. The COCO WG will provide agreed names to the NSTR and NMAN
WG for proper inclusion in the conceptual and processing model, and these names will be
also used in the names of common components

Common Components - specialization
 Should specialization of common components be allowed in items (standards) or not?

Use case:
1/ The COCO WG creates a PersonComponent. Can the Event WG derive from it a
ParticipantComponent with added properties?
2/ A specialized WG (e.g. SportsML WG) takes a component that has fixed enumerated
values (e.g Management/Status). If Status values are not sufficient for the WG: can the WG
add values in its standard?

 6

If specialization is allowed:

S
- Specialized WG can adapt

components to specialized needs.

W

O T
- Specialized WG could end up

specializing all components. Then
there would be no more common
library.

Decision:
Specialization by specialized WGs is allowed in the general case. The NMAN WG will be
able to constraint specialization of the Management Component. But a good policy is to ask
first to the COCO WG an adaptation of the component, with optional elements. If the
additional elements can be used by other classes of items, the extension of the library is
preferable. Before specializing a common component, WGs will also have to think about
creating an ‘accompanying component’, that is creating a separate construct that complements
the information found in the former construct. And if a WG has specialized a component by
adding elements, and if at a later stage the common component is updated with the same
elements, the WG will be faced to a deprecation of its specialization when upgrading to the
latest version of the common library.

Item construction
 Can an item be made up of only aggregate components or a combination of

aggregate and basic components?

From Johan: “I think we should allow items to use both properties/basics and
aggregates/constructs. If not we might only force constructions of dummy
aggregates/constructs to hold the property/basic needed.”

If both are allowed:

S
- .

W

O T
.

If only aggregate components are allowed:

S
- .

W
- There might be dummy aggregates

only created to hold one basic
property.

O T
.

CC Description Template
 Is the provided template approach a good base for further work?

 7

From Johan: “I think it looks as a good base. But if the Common Components
group will handle it specifically as an excel form in that format is
another question. But the list of information is a good base to start
with.”

Validation of the NewsMessage
 Enforce validation of NewsMessage with payload, or only the NewsMessage

level?

Still to be discussed by the NSTR WG.

 8

	Architecture choices – answers to the consultants

