## Probabilistic Reasoning

## Uncertainty and Bayesian networks

Peter Lucas
Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands

## Uncertainty in Daily Life

- Empirical evidence:
"If symptoms of fever, shortness of breath (dyspnoea), and coughing are present, and the patient has recently visited China, then the patient has probably SARS"
- Subjective belief:

"The Balkenende IV government is likely to resign soon"
- Temporal dimension:
"There is more than $10 \%$ chance that the Dutch economy will collaps in the next two years"


## Uncertainty Representation and Manipulation

- Methods for dealing with uncertainty are not new:
- 17th century: Fermat, Pascal, Huygens, Leibniz, Bernoulli
- 18th century: Laplace, De Moivre, Bayes
- 19th century: Gauss, Boole
$\Rightarrow$ you could have contributed too if you had been around
- Most important research question in AI:
- 1970-1987: How to incorporate uncertainty reasoning into logical deduction?
- 2000-present: How to incorporate uncertainty into logical deduction and induction?


## Early AI Methods of Uncertainty

- Rule-based uncertainty representation:
fever $\wedge$ dyspnoea $\Rightarrow$ SARS $_{\text {CF }}=0.4$
- Uncertainty calculus (certainty-factor (CF) model, subjective Bayesian method):
- CF $($ fever,$B)=0.6 ; \operatorname{CF}($ dyspnoea, $B)=1$ ( $B$ is background knowledge)
- Combination functions:

CF (SARS, $\{$ fever, dyspnoea $\} \cup B$ )
$=0.4 \cdot \max \{0, \min \{\mathrm{CF}($ fever,$B), \operatorname{CF}($ dyspnoea,$B)\}\}$
$=0.4 \cdot \max \{0, \min \{0.6,1\}\}=0.24$

## However ...

$$
\text { fever } \wedge \text { dyspnoea } \Rightarrow \text { SARS }_{\mathrm{CF}=0.4}
$$

- How likely is the occurrence of fever or dyspnoea given that the patient has SARS?
- How likely is the occurrence of fever or dyspnoea in the absence of SARS?
- How likely is the presence of SARS when just fever is present?
- How likely is no SARS when just fever is present?


## Bayesian Networks

$\operatorname{Pr}(C H, F L, R S, D Y, F E$, TEMP $)$
$\operatorname{Pr}(\mathrm{FE}=y \mid \mathrm{FL}=y, \mathrm{RS}=y)=0.95$
$\operatorname{Pr}(\mathrm{FE}=y \mid \mathrm{FL}=n, \mathrm{RS}=y)=0.80$
$\operatorname{Pr}(\mathrm{FE}=y \mid \mathrm{FL}=y, \mathrm{RS}=n)=0.88$
$\operatorname{Pr}(\mathrm{FL}=y)=0.1$
$\operatorname{Pr}(\mathrm{FE}=y \mid \mathrm{FL}=n, \mathrm{RS}=n)=0.001$


## Reasoning: Evidence Propagation

- Nothing known:

- Temperature $>37.5^{\circ} \mathrm{C}$ :



## Reasoning: Evidence Propagation

- Temperature $>37.5^{\circ} \mathrm{C}$ :

- I just returned from China:



## Bayesian Network Formally

A Bayesian network $(B N)$ is a pair $\mathcal{B}=(G, P r)$, where:

- $G=(V(G), A(G))$ is an acyclic directed graph, with
- $V(G)=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$, a set of vertices (nodes); $X \in V(G)$ corresponds to a random variable $X$
- $A(G) \subseteq V(G) \times V(G)$ a set of arcs reflecting (conditional) independences among variables
- Pr : $\wp(V(G)) \rightarrow[0,1]$ is a joint probability distribution, such that

$$
\operatorname{Pr}(V(G))=\prod_{i=1}^{n} \operatorname{Pr}\left(X_{i} \mid \pi_{G}\left(X_{i}\right)\right)
$$

where $\pi_{G}\left(X_{i}\right)$ denotes the set of immediate ancestors (parents) of vertex $X_{i}$ in $G$

## Factorisation

Conditional probability distribution:

$$
\operatorname{Pr}\left(X_{1} \mid X_{2}, X_{3}\right)=\frac{\operatorname{Pr}\left(X_{1}, X_{2}, X_{3}\right)}{\operatorname{Pr}\left(X_{2}, X_{3}\right)}
$$

$$
\Rightarrow \operatorname{Pr}\left(X_{1}, X_{2}, X_{3}\right)=\operatorname{Pr}\left(X_{1} \mid X_{2}, X_{3}\right) \operatorname{Pr}\left(X_{2} \mid X_{3}\right) \operatorname{Pr}\left(X_{3}\right)
$$

Chain rule yields a factorisation:

$$
\operatorname{Pr}\left(\bigwedge_{i=1}^{n} X_{i}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(X_{i} \mid \bigwedge_{k=i+1}^{n} X_{k}\right)
$$

## Independence Representation in Graphs

The set of variables $X$ is conditionally independent of the set $Z$ given the set $Y$, notation $X \Perp Z \mid Y$, iff

$$
\operatorname{Pr}(X \mid Y, Z)=\operatorname{Pr}(X \mid Y)
$$

Three flavours of graph-representation of (in)dependence:
Diverging: $Y$ blocks $X$ and $Z: X \Perp Z \mid Y$


Serial: $Y$ blocks $X$ and $Z: X \Perp Z \mid Y$


Converging: $Y$ connects $X$ and $Z: X \not \Perp Z \mid Y$


## Use of Independence Information

General:

$$
\operatorname{Pr}\left(X_{1}, X_{2}, X_{3}\right)=\operatorname{Pr}\left(X_{2} \mid X_{1}, X_{3}\right) \operatorname{Pr}\left(X_{3} \mid X_{1}\right) \operatorname{Pr}\left(X_{1}\right)
$$

Assume that $X_{2} \Perp X_{3} \mid X_{1}$, then:

$$
\operatorname{Pr}\left(X_{2} \mid X_{1}, X_{3}\right)=\operatorname{Pr}\left(X_{2} \mid X_{1}\right)
$$

and

$$
\operatorname{Pr}\left(X_{3} \mid X_{1}, X_{2}\right)=\operatorname{Pr}\left(X_{3} \mid X_{1}\right)
$$



Only $5=2+2+1$ probabilities needed for $\operatorname{Pr}\left(X_{1}, X_{2}, X_{3}\right)$ (instead of 7)

## Find the Independences



## Examples:

- FLU $\Perp$ VisitToChina $\mid \varnothing$
- FLU $\Perp$ SARS | $\varnothing$
- FLU ㅐ SARS \| FEVER, also FLU ㅐ SARS \| TEMP
- SARS $\Perp$ TEMP | FEVER
- VisitToChina $\Perp$ DYSPNOEA | SARS


## Probabilistic Reasoning

- Interested in marginal probability distributions:

$$
\operatorname{Pr}\left(V_{i} \mid \mathcal{E}\right)=\operatorname{Pr}^{\mathcal{E}}\left(V_{i}\right)
$$

for (possibly empty) evidence $\mathcal{E}$ (instantiated variables)

- Joint probability distribution $\operatorname{Pr}(V)$ :
- marginalisation:

$$
\begin{aligned}
\operatorname{Pr}(\mathcal{W}) & =\sum_{V \backslash \mathcal{W}} \operatorname{Pr}(V) \\
& =\sum_{V \backslash \mathcal{W}} \prod_{X \in V} \operatorname{Pr}(X \mid \pi(X))
\end{aligned}
$$

- conditional probabilities and Bayes' rule:

$$
\operatorname{Pr}(Y, Z \mid X)=\frac{\operatorname{Pr}(X \mid Y, Z) \operatorname{Pr}(Y, Z)}{\operatorname{Pr}(X)}
$$

- Many efficient Bayesian reasoning algorithms exist


## Naive Probabilistic Reasoning: Evidence

$$
\begin{aligned}
& \begin{array}{ll}
X_{1} & X_{2} \\
y / n & y / n \\
1 & \\
X_{3} & \\
y / n & \\
1 & \\
X_{4} & \\
y / n &
\end{array} \\
& \operatorname{Pr}\left(x_{4} \mid x_{3}\right)=0.4 \\
& \operatorname{Pr}\left(x_{4} \mid \neg x_{3}\right)=0.1 \\
& \operatorname{Pr}\left(x_{3} \mid x_{1}, x_{2}\right)=0.3 \\
& \operatorname{Pr}\left(x_{3} \mid \neg x_{1}, x_{2}\right)=0.5 \\
& \operatorname{Pr}\left(x_{3} \mid x_{1}, \neg x_{2}\right)=0.7 \\
& \operatorname{Pr}\left(x_{3} \mid \neg x_{1}, \neg x_{2}\right)=0.9 \\
& \operatorname{Pr}\left(x_{1}\right)=0.6 \\
& \operatorname{Pr}\left(x_{2}\right)=0.2 \\
& \operatorname{Pr}^{\mathcal{E}}\left(x_{2}\right)=\operatorname{Pr}\left(x_{2} \mid x_{4}\right)=\frac{\operatorname{Pr}\left(x_{4} \mid x_{2}\right) \operatorname{Pr}\left(x_{2}\right)}{\operatorname{Pr}\left(x_{4}\right)} \text { (Bayes' rule) } \\
& =\frac{\sum_{X_{3}} \operatorname{Pr}\left(x_{4} \mid X_{3}\right) \sum_{X_{1}} \operatorname{Pr}\left(X_{3} \mid X_{1}, x_{2}\right) \operatorname{Pr}\left(X_{1}\right) \operatorname{Pr}\left(x_{2}\right)}{\sum_{X_{3}} \operatorname{Pr}\left(x_{4} \mid X_{3}\right) \sum_{X_{1}, X_{2}} \operatorname{Pr}\left(X_{3} \mid X_{1}, X_{2}\right) \operatorname{Pr}\left(X_{1}\right) \operatorname{Pr}\left(X_{2}\right)} \\
& \approx 0.14
\end{aligned}
$$

## Judea Pearl's Algorithm



- Object-oriented approach: vertices are objects, which have local information and carry out local computations
- Updating of probability distribution by message passing: arcs are communication channels


## Data Fusion Lemma

## Data fusion:



$$
\begin{aligned}
\operatorname{Pr}^{\mathcal{E}}\left(V_{i}\right) & =\operatorname{Pr}\left(V_{i} \mid \mathcal{E}\right) \\
& =\alpha \cdot \text { causal info for } V_{i} \cdot \text { diagnostic info for } V_{i} \\
& =\alpha \cdot \pi\left(V_{i}\right) \cdot \lambda\left(V_{i}\right)
\end{aligned}
$$

where:

- $\mathcal{E}=\mathcal{E}_{V_{i}}^{+} \cup \mathcal{E}_{V_{i}}^{-}:$evidence
- $\alpha$ : normalisation constant


## Entering Observations

Observed joint probability distribution:

$$
\operatorname{Pr}^{\mathcal{E}}(V):=\operatorname{Pr}(V \mid \mathcal{E})
$$

- $\mathcal{E}$ : observed random variables
- $U=V \backslash \mathcal{E}$ : unobserved random variables

Graphical consequences of observations:

- Additional (observed ) dependences: moral lines
- Additional (observed) independences: observed and semiobserved arcs


## Observation Transformation

- Moral lines: connect non-connected parents of an observed (descendant of) a common child
- Arc-line transformation: change arcs of ancestors of the observed variables into lines
- Delete (semi)observed arcs

Example:


Moral line
Arc-line trans Deletion arcs

## Problem Solving

Bayesian networks are declarative, i.e.:

- mathematical basis
- problem to be solved determined by (1) entered evidence $\mathcal{E}$ (may include decisions); (2) given hypothesis $H$ :
$\operatorname{Pr}(H \mid \mathcal{E})$
(cf. $\mathrm{KB} \wedge H \vDash \mathcal{E}$ )


## Examples:

- Description of populations
- Classification and diagnosis: $D=\arg \max _{H} \operatorname{Pr}(H \mid \mathcal{E})$
- Temporal reasoning, prediction, what-if scenarios
- Decision-making based on decision theory

$$
\operatorname{MEU}(D \mid \mathcal{E})=\max _{d \in D} \sum_{x \in X_{\pi(U)}} u(x) \operatorname{Pr}(x \mid d, \mathcal{E})
$$

## Manual Construction of Bayesian Networks

Qualitative modelling:


People become colonised by bacteria when entering a hospital, which may give rise to infection

## Bayesian-network Modelling

## Qualitative

causal modelling
Cause $\rightarrow$ Effect


## Quantitative

interaction modelling

$$
\operatorname{Pr}\left(\operatorname{Inf} \mid \mathrm{BR}_{A}, \mathrm{BR}_{B}, \mathrm{BR}_{C}\right)
$$

| Inf | $\mathrm{BR}_{A}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t$ |  |  |  | $f$ |  |  |  |
|  | $\mathrm{BR}_{B}$ |  |  |  | $\mathrm{BR}_{B}$ |  |  |  |
|  | $t$ |  | $f$ |  | $t$ |  | $f$ |  |
|  | $\mathrm{BR}_{C}$ |  | $\mathrm{BR}_{C}$ |  | $\mathrm{BR}_{C}$ |  | $\mathrm{BR}_{C}$ |  |
|  | $t$ | $f$ | $t$ | $f$ | $t$ | $f$ | $t$ | $f$ |
| $t$ | 0.8 | 0.6 | 0.5 | 0.3 | 0.4 | 0.2 | 0.3 | 0.1 |
| $f$ | 0.2 | 0.4 | 0.5 | 0.7 | 0.6 | 0.8 | 0.7 | 0.9 |

## Causal Independence

$$
\begin{aligned}
\operatorname{Pr}\left(e \mid C_{1}, \ldots, C_{n}\right) & =\sum_{I_{1}, \ldots, I_{n}} \operatorname{Pr}\left(e \mid I_{1}, \ldots, I_{n}\right) \prod_{k=1}^{n} \operatorname{Pr}\left(I_{k} \mid C_{k}\right) \\
& =\sum_{f\left(I_{1}, \ldots, I_{n}\right)=e}^{n} \prod_{k=1}^{n} \operatorname{Pr}\left(I_{k} \mid C_{k}\right)
\end{aligned}
$$

Boolean functions: $P\left(E \mid I_{1}, \ldots, I_{n}\right) \in\{0,1\}$
Interaction function $f$, defined such that $f\left(I_{1}, \ldots, I_{n}\right)=$ $e$ if $P\left(e \mid I_{1}, \ldots, I_{n}\right)=1$

## Example: noisy OR



- Interactions among causes: logical OR
- Meaning: presence of any one of the causes $C_{i}$ with absolute certainty will cause the effect e (i.e. $E=$ true)

$$
\begin{aligned}
\operatorname{Pr}\left(e \mid C_{1}, C_{2}\right)= & \sum_{I_{1} \vee I_{2}=e} \operatorname{Pr}\left(e \mid I_{1}, I_{2}\right) \prod_{k=1,2} \operatorname{Pr}\left(I_{k} \mid C_{k}\right) \\
= & \operatorname{Pr}\left(i_{1} \mid C_{1}\right) \operatorname{Pr}\left(i_{2} \mid C_{2}\right)+\operatorname{Pr}\left(\neg i_{1} \mid C_{1}\right) \operatorname{Pr}\left(i_{2} \mid C_{2}\right) \\
& +\operatorname{Pr}\left(i_{1} \mid C_{1}\right) \operatorname{Pr}\left(\neg i_{2} \mid C_{2}\right)
\end{aligned}
$$

- Assessment of $O(n)$ instead of $O\left(2^{n}\right)$ probabilities


## Example BN: non-Hodgkin Lymphoma



## Bayesian Network Learning

Bayesian network $\mathcal{B}=(G, \operatorname{Pr})$, with

- digraph $G=(V(G), A(G))$, and
- probability distribution Pr



## Learning Bayesian Networks

## Problems:

- for many BNs too many probabilities have to be assessed
- complex BNs do not necessarily yield better classifiers
- complex BNs may yield better estimates of a probability distribution


## Solution:

- use simple probabilistic models for classification:
- naive (independent) form BN
- Tree-Augmented Bayesian Network (TAN)
- Forest-Augmented Bayesian Network (FAN)
- use background knowledge and clever heuristics


## Naive (independent) form BN



- $C$ is a class variable
- The evidence variables $E_{i}$ in the evidence $\mathcal{E} \subseteq$ $\left\{E_{1}, \ldots, E_{m}\right\}$ are conditionally independent given the class variable $C$
This yields:

$$
P(C \mid \mathcal{E})=\frac{P(\mathcal{E} \mid C) P(C)}{P(\mathcal{E})}=\frac{\prod_{E \in \mathcal{E}} P(E \mid C)}{\sum_{C} P(\mathcal{E} \mid C) P(C)}
$$

as $E_{i} \Perp E_{j} \mid C$, for $i \neq j$
Classifier: $c_{\text {max }}=\arg \max _{C} P(C \mid \mathcal{E})$

## Learning Structure from Data

Given the following dataset $D$ :

| Student | Gender | IQ | High Mark for Maths |
| :---: | :---: | :---: | :---: |
| 1 | male | Iow | no |
| 2 | female | average | yes |
| 3 | male | high | yes |
| 4 | female | high | yes |

and the following Bayesian networks:


Which one is the best?

## Quality Measure $Q$


$Q(G, D)=\log \operatorname{Pr}(G)-|D| \cdot H(G, D)-\frac{1}{2} k \cdot \log |D|$, where:

- $\operatorname{Pr}(G)$ : prior probability of $G$
- $-H(G, D)$ : negative value of match
- $-\frac{1}{2} k \cdot \log |D|$ : penalty term


## Research Issues



Qualitative modelling:

- To determine the structure of a network
- Assessment of $\operatorname{Pr}\left(V_{i} \mid \pi\left(V_{i}\right)\right)$


## Probabilistic-logic learning

- Structure learning: determine the 'best' graph topology
- Parameter learning: determine the 'best' probability distribution (discrete or continuous)
- Bayesian (probabilistic) logic and relational learning
$\Rightarrow$ you can contribute too ...

