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Uncertainty in Daily Life

• Empirical evidence:

“If symptoms of fever, shortness of breath

(dyspnoea), and coughing are present, and

the patient has recently visited China, then

the patient has probably SARS”

• Subjective belief:

“The Balkenende IV government is likely to resign

soon”

• Temporal dimension:

“There is more than 10% chance that the Dutch

economy will collaps in the next two years”
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Uncertainty Representation and
Manipulation

• Methods for dealing with uncertainty are not new:

– 17th century: Fermat, Pascal, Huygens, Leibniz,

Bernoulli

– 18th century: Laplace, De Moivre, Bayes

– 19th century: Gauss, Boole

⇒ you could have contributed too if you had been around

• Most important research question in AI:

– 1970–1987: How to incorporate uncertainty reasoning

into logical deduction?

– 2000–present: How to incorporate uncertainty into

logical deduction and induction?
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Early AI Methods of Uncertainty

• Rule-based uncertainty representation:

fever ∧ dyspnoea ⇒ SARSCF=0.4

• Uncertainty calculus (certainty-factor (CF) model,

subjective Bayesian method):

– CF(fever, B) = 0.6; CF(dyspnoea, B) = 1

(B is background knowledge)

– Combination functions:

CF(SARS, {fever,dyspnoea} ∪ B)

= 0.4 · max{0,min{CF(fever, B),CF(dyspnoea, B)}}

= 0.4 · max{0,min{0.6,1}} = 0.24
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However · · ·

fever ∧ dyspnoea ⇒ SARSCF=0.4

• How likely is the occurrence of fever or dyspnoea given

that the patient has SARS?

• How likely is the occurrence of fever or dyspnoea in the

absence of SARS?

• How likely is the presence of SARS when just fever is

present?

• How likely is no SARS when just fever is present?
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Bayesian Networks

flu (FL)

(yes/no)

SARS (RS)

(yes/no)

fever (FE)

(yes/no)

dyspnoea (DY)

(yes/no)

TEMP

(≤ 37.5/> 37.5)

VisitToChina (CH)

(yes/no)

Pr(CH, FL, RS, DY, FE, TEMP)

Pr(FL = y) = 0.1

Pr(CH = y) = 0.1

Pr(RS = y | CH = y) = 0.3

Pr(RS = y | CH = n) = 0.01

Pr(FE = y | FL = y,RS = y) = 0.95

Pr(FE = y | FL = n,RS = y) = 0.80

Pr(FE = y | FL = y,RS = n) = 0.88

Pr(FE = y | FL = n,RS = n) = 0.001

Pr(DY = y | RS = y) = 0.9

Pr(DY = y | RS = n) = 0.05

Pr(TEMP ≤ 37.5 | FE = y) = 0.1

Pr(TEMP ≤ 37.5 | FE = n) = 0.99
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Reasoning: Evidence Propagation

• Nothing known:

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

• Temperature >37.5 ◦C:

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP
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Reasoning: Evidence Propagation

• Temperature >37.5 ◦C:

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

• I just returned from China:

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP
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Bayesian Network Formally

A Bayesian network (BN) is a pair B = (G,Pr), where:

• G = (V (G), A(G)) is an acyclic directed graph, with

– V (G) = {X1, X2, . . . , Xn}, a set of vertices (nodes);

X ∈ V (G) corresponds to a random variable X

– A(G) ⊆ V (G) × V (G) a set of arcs reflecting (condi-

tional) independences among variables

• Pr : ℘(V (G)) → [0,1] is a joint probability distribution,

such that

Pr(V (G)) =
n∏

i=1

Pr(Xi | πG(Xi))

where πG(Xi) denotes the set of immediate ancestors

(parents) of vertex Xi in G
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Factorisation

X1 X2

X3
Conditional probability distribution:

Pr(X1 | X2, X3) =
Pr(X1, X2, X3)

Pr(X2, X3)

⇒ Pr(X1, X2, X3) = Pr(X1 | X2, X3)Pr(X2 | X3)Pr(X3)

Chain rule yields a factorisation:

Pr(
n∧

i=1

Xi) =
n∏

i=1

Pr(Xi |
n∧

k=i+1

Xk)
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Independence Representation in Graphs

The set of variables X is conditionally independent of the

set Z given the set Y , notation X ⊥⊥ Z | Y , iff

Pr(X | Y, Z) = Pr(X | Y )

Three flavours of graph-representation of (in)dependence:

X Y Z

Diverging: Y blocks X and Z: X ⊥⊥ Z | Y

X Y Z

Serial: Y blocks X and Z: X ⊥⊥ Z | Y

X Y Z

Converging: Y connects X and Z: X 6⊥⊥ Z | Y
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Use of Independence Information

General:

Pr(X1, X2, X3) = Pr(X2 | X1, X3)Pr(X3 | X1)Pr(X1)

Assume that X2 ⊥⊥ X3 | X1, then:

Pr(X2 | X1, X3) = Pr(X2 | X1)

and

Pr(X3 | X1, X2) = Pr(X3 | X1)

X1 X2

X3

X1 X2

X3

Only 5 = 2 + 2 + 1 probabilities needed for Pr(X1, X2, X3)

(instead of 7)
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Find the Independences

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

Examples:

• FLU ⊥⊥ VisitToChina | ∅

• FLU ⊥⊥ SARS | ∅

• FLU 6⊥⊥ SARS | FEVER, also FLU 6⊥⊥ SARS | TEMP

• SARS ⊥⊥ TEMP | FEVER

• VisitToChina ⊥⊥ DYSPNOEA | SARS
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Probabilistic Reasoning

• Interested in marginal probability distributions:

Pr(Vi | E) = PrE(Vi)

for (possibly empty) evidence E (instantiated variables)

• Joint probability distribution Pr(V ):

– marginalisation:

Pr(W) =
∑

V \W

Pr(V )

=
∑

V \W

∏

X∈V

Pr(X | π(X))

– conditional probabilities and Bayes’ rule:

Pr(Y, Z | X) =
Pr(X | Y, Z)Pr(Y, Z)

Pr(X)

• Many efficient Bayesian reasoning algorithms exist
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Naive Probabilistic Reasoning: Evidence

X3

y/n

X1

y/n

X2

y/n

X4

y/n

Pr(x4 | x3) = 0.4

Pr(x4 | ¬x3) = 0.1

Pr(x3 | x1, x2) = 0.3

Pr(x3 | ¬x1, x2) = 0.5

Pr(x3 | x1,¬x2) = 0.7

Pr(x3 | ¬x1,¬x2) = 0.9

Pr(x1) = 0.6

Pr(x2) = 0.2

PrE(x2) = Pr(x2 | x4) =
Pr(x4 | x2)Pr(x2)

Pr(x4)
(Bayes’ rule)

=

∑
X3

Pr(x4|X3)
∑

X1
Pr(X3|X1, x2)Pr(X1)Pr(x2)

∑
X3

Pr(x4 | X3)
∑

X1,X2
Pr(X3 | X1, X2)Pr(X1)Pr(X2)

≈ 0.14
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Judea Pearl’s Algorithm

V1G1
π(V1)

V3G3

λ(V0)

V2 G2
π(V2)

V4 G4

λ(V0)

V0π(V0) π(V0)

λ(V1) λ(V2)

• Object-oriented approach: vertices are objects, which

have local information and carry out local computations

• Updating of probability distribution by message passing:

arcs are communication channels
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Data Fusion Lemma

VjEvidence

Vi

. . .

. . .. . .

E−
Vi

E+
Vi

causal

information

diagnostic

information
Data fusion:

PrE(Vi) = Pr(Vi | E)

= α · causal info for Vi · diagnostic info for Vi

= α · π(Vi) · λ(Vi)

where:

• E = E+
Vi

∪ E−
Vi
: evidence

• α: normalisation constant
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Entering Observations

Observed joint probability distribution:

PrE(V ) := Pr(V | E)

• E: observed random variables

• U = V \ E: unobserved random variables

Graphical consequences of observations:

• Additional (observed ) dependences: moral lines

• Additional (observed) independences: observed and semi-

observed arcs
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Observation Transformation

• Moral lines: connect non-connected parents of an ob-

served (descendant of) a common child

• Arc–line transformation: change arcs of ancestors of the

observed variables into lines

• Delete (semi)observed arcs

Example:

1 2

3

4

5

6

Start

1 2

3

4

5

6

Moral line

1 2

3

4

5

6

Arc–line trans

1 2

3

4

5

6

Deletion arcs
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Problem Solving

Bayesian networks are declarative, i.e.:

• mathematical basis

• problem to be solved determined by (1) entered evidence

E (may include decisions); (2) given hypothesis H:

Pr(H | E) (cf. KB ∧ H � E)

Examples:

• Description of populations

• Classification and diagnosis: D = argmaxH Pr(H | E)

• Temporal reasoning, prediction, what-if scenarios

• Decision-making based on decision theory

MEU(D | E) = max
d∈D

∑

x∈Xπ(U)

u(x)Pr(x | d, E)
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Manual Construction of Bayesian Networks

Qualitative modelling:

Infection

Body response

to A

Body response

to B

Body response

to C

Colonisation by

bacterium A

Colonisation by

bacterium B

Colonisation by

bacterium C

Fever WBC ESR

People become colonised by bacteria when entering a hos-

pital, which may give rise to infection
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Bayesian-network Modelling

Qualitative

causal modelling

Cause → Effect

Inf

BRA BRB BRC

Quantitative

interaction modelling

Pr(Inf | BRA,BRB,BRC)

BRA

t f

BRB BRB

t f t f

BRC BRC BRC BRC

Inf t f t f t f t f

t 0.8 0.6 0.5 0.3 0.4 0.2 0.3 0.1

f 0.2 0.4 0.5 0.7 0.6 0.8 0.7 0.9
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Causal Independence

C1 C2 . . . Cn

I1 I2 . . . In

Ef

conditional
independence

interaction function

Pr(e | C1, . . . , Cn) =
∑

I1,...,In

Pr(e | I1, . . . , In)
n∏

k=1

Pr(Ik | Ck)

=
∑

f(I1,...,In)=e

n∏

k=1

Pr(Ik | Ck)

Boolean functions: P (E | I1, . . . , In) ∈ {0,1}

Interaction function f , defined such that f(I1, . . . , In) =

e if P (e | I1, . . . , In) = 1



'

&

$

%

Example: noisy OR

C1 C2

I1 I2

EOR

• Interactions among causes: logical OR

• Meaning: presence of any one of the causes Ci with ab-

solute certainty will cause the effect e (i.e. E = true)

Pr(e|C1, C2) =
∑

I1∨I2=e

Pr(e|I1, I2)
∏

k=1,2

Pr(Ik | Ck)

= Pr(i1|C1)Pr(i2|C2) + Pr(¬i1|C1)Pr(i2|C2)

+Pr(i1|C1)Pr(¬i2|C2)

• Assessment of O(n) instead of O(2n) probabilities
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Example BN: non-Hodgkin Lymphoma
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Bayesian Network Learning

Bayesian network B = (G,Pr), with

• digraph G = (V (G), A(G)), and

• probability distribution Pr

tree−augmented
Bayesian network

(TAN)

Spectrum

naive Bayesian
network

general Bayesian

restricted

Structure
Learning

networks

Restricted Structure LearningUn
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Learning Bayesian Networks

Problems:

• for many BNs too many probabilities have to be assessed

• complex BNs do not necessarily yield better classifiers

• complex BNs may yield better estimates of a probability

distribution

Solution:

• use simple probabilistic models for classification:

– naive (independent) form BN

– T ree-Augmented Bayesian Network (TAN)

– Forest-Augmented Bayesian Network (FAN)

• use background knowledge and clever heuristics
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Naive (independent) form BN

C

E1

· · ·E2

Em

• C is a class variable

• The evidence variables Ei in the evidence E ⊆

{E1, . . . , Em} are conditionally independent given the class

variable C

This yields:

P (C | E) =
P (E | C)P (C)

P (E)
=

∏
E∈E P (E | C)

∑
C P (E | C)P (C)

as Ei ⊥⊥ Ej | C, for i 6= j

Classifier: cmax = argmaxC P (C | E)
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Learning Structure from Data

Given the following dataset D:
Student Gender IQ High Mark for Maths

1 male low no
2 female average yes
3 male high yes
4 female high yes

and the following Bayesian networks:

G I AG1:

G I AG2:

G I AG3:

G I AG4:

G

I

AG5: ...

Which one is the best?
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Quality Measure Q

Combined

Density of G

Q
u

al
it

y 
Q

(G
,D

)

0
Match −H(G,D)

Penalty −1/2k*log |D|

Q(G, D) = logPr(G) − |D| · H(G, D) − 1
2k · log |D|, where:

• Pr(G): prior probability of G

• −H(G, D): negative value of match

• −1
2k · log |D|: penalty term
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Research Issues

Inf

BRA BRB BRC

Qualitative modelling:

• To determine the structure of a

network

• Assessment of Pr(Vi | π(Vi))

Probabilistic-logic learning

• Structure learning: determine the ‘best’ graph topology

• Parameter learning: determine the ‘best’ probability dis-

tribution (discrete or continuous)

• Bayesian (probabilistic) logic and relational learning

⇒ you can contribute too · · ·


