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Uncertainty in Daily Life

e Empirical evidence:

5
SLACHTOFFER

“If symptoms of fever, shortness of breath ——

OVERVAL !

(dyspnoea), and coughing are present, and
the patient has recently visited China, then
the patient has probably SARS"

e Subjective belief:

“The Balkenende IV government is /ikely to resign
soon”

e Temporal dimension:

“There is more than 10% chance that the Dutch
economy will collaps in the next two years”




Uncertainty Representation and
Manipulation

e Methods for dealing with uncertainty are not new:

— 17th century: Fermat, Pascal, Huygens, Leibniz,
Bernoulli

— 18th century: Laplace, De Moivre, Bayes

— 19th century: Gauss, Boole
= you could have contributed too if you had been around

e Most important research question in Al:

— 1970—-1987: How to incorporate uncertainty reasoning
into logical deduction?

— 2000—present: How to incorporate uncertainty into
logical deduction and induction?




Early Al Methods of Uncertainty

e Rule-based uncertainty representation:

fever N dyspnoea = SARScg—=0u4

e Uncertainty calculus (certainty-factor (CF) model,
subjective Bayesian method):

— CF(fever,B) = 0.6; CF(dyspnoea,B) =1
(B is background knowledge)

— Combination functions:
CF(SARS, {fever, dyspnoea} U B)
= 0.4 - max{0, min{CF(fever, B), CF(dyspnoea, B)}}
= 0.4 - max{0, min{0.6,1}} = 0.24




However - ..

fever \ dyspnoea = SARScE—0 4

How likely is the occurrence of fever or dyspnoea given
that the patient has SARS?

How likely is the occurrence of fever or dyspnoea in the
absence of SARS?

How likely is the presence of SARS when just fever is
present?

How likely is no SARS when just fever is present?




Bayesian Networks

Pr(CH,FL,RS,DY,FE, TEMP)

Pr(FE=y|FL=y,RS =y) =0.95
Pr(FE = y | FL = n,RS = y) = 0.80
Pr(FE=y|FL=y,RS=n)=0.88

PI’(FL:y) —0.1 PF(FEZy | FL = n, RS:TL) = 0.001
flu (FL) fever (FE) [ TEMP
(ves/no) (ves/no) (< 37.5/>37.5)

Pr(TEMP < 37.5 | FE=1y) = 0.1
Pr(TEMP < 37.5 | FE = n) = 0.99

Pr(RS=y|CH=1y)=0.3

Pr(RS=y|CH=n)=0.01

SARS (RS)
(yes/no)

/

VisitToChina (CH)
(yes/no)

Pr(DY =y | RS =y) = 0.9
Pr(DY =y | RS =n) = 0.05

dyspnoea (DY)

Pr(CH=y)=0.1 (yes/no)
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Reasoning: Evidence Propagation

e Nothing known:
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Reasoning: Evidence Propagation

e Temperature >37.5 °C:
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e I just returned from China:
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Bayesian Network Formally

A Bayesian network (BN) is a pair B = (G, Pr), where:
e G =(V(G),A(@)) is an acyclic directed graph, with

- V(@) = {X1,Xo,...,Xn}, a set of vertices (nodes);
X € V(@) corresponds to a random variable X

— A(G) C V(G) x V(@) a set of arcs reflecting (condi-
tional) independences among variables

e Pr: o(V(G)) — [0,1] is a joint probability distribution,
such that

Pr(V(G)) = |] Pr(X; | ma(X;))

i=1
where mwo(X;) denotes the set of immediate ancestors
(parents) of vertex X; in G




Factorisation

Conditional probability distribution:

PI’(X]_,XQ,X:-})
Pr(Xi | Xo,X3) =

Pr(Xs, X3)

X1 X5

= Pr(X1, X, X3) = Pr(X7 | X0, X3) Pr(Xs | X3) Pr(X3)

Chain rule vields a factorisation:

PrCA\ X)) =1l PrXs| A Xp)
i=1 '

1=1 k=1+1




Independence Representation in Graphs

The set of variables X is conditionally independent of the
set Z given the set Y, notation X 1l 7 |Y, iff

Pr(X|Y,Z)=Pr(X|Y)

Three flavours of graph-representation of (in)dependence:

Diverging: Y blocks X and Z: X Il Z|Y

----- Cr— OO




Use of Independence Information

General:
Pr(Xi,Xo,X3) =Pr(Xs | X1,X3)Pr(Xs3 | X1) Pr(Xy)

Assume that X, 1l X3 | X, then:
Pr(Xs | X1,X3) =Pr(Xo | X1)
and
Pr(Xs | X1,X2) =Pr(X3| X1)

X1 X2 X1 @

Only 5 =24 2 4+ 1 probabilities needed for Pr(X1, X», X3)
(instead of 7)




Find the Independences

FLU

NO _j
YES
\ FEVER TEMP
no NN | =37.5 _j
ves | > >37.5 Il
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Examples:

e FLU 1l VisitToChina | @

e FLU Il SARS | @

e FLU [ SARS | FEVER, also FLU /4 SARS | TEMP
e SARS 1l TEMP | FEVER

e VisitToChina 1L DYSPNOEA | SARS




Probabilistic Reasoning
e Interested in marginal probability distributions:
Pr(Vvi| €) = Pré(Vj)
for (possibly empty) evidence £ (instantiated variables)
e Joint probability distribution Pr(V):

— marginalisation:
Pr(w) = > Pr(V)
VAW
= Z H Pr(X | (X))
VAW XeV
— conditional probabilities and Bayes’ rule:
Pr(X |Y,Z)Pr(Y, Z)
Pr(X)
e Many efficient Bayesian reasoning algorithms exist

Pr(Y,Z | X) =

o




Naive Probabilistic Reasoning: Evidence

@ @ Pr(zg | xz3) = 0.4
PI’(CC4 —|CU3) = 0.1
PI’(CC3 £C1,CC2) = 0.3
PI’(:U3 —Iml,xg) = 0.5
@ PI’(:U3 X1, —IQUQ) = 0.7
PI’(CC3 -1, —|CU2) = 0.9
PI’(CCl) = 0.6
@ PI’(:UQ) = 0.2
Pr(z4 | z2) Pr(zz)

Pr(zs)
> x5 Pr(zalX3) X x, Pr(X3|X1,z2) Pr(Xy1) Pr(z2)

PI’S(.CCQ) = PF(CCQ | £C4) — (Bayes’ rule)

> x5 Pr(za | X3) X x, x, Pr(Xsz | X1, X5) Pr(Xy) Pr(X>3)

~ 0.14

/




Judea Pearl’s Algorithim

e Object-oriented approach: vertices are objects, which
have local information and carry out local computations

e Updating of probability distribution by message passing:
\_ arcs are communication channels




Data Fusion Lemma

: causal
Evidence . .
information
_|_
A
- ~,_ diagnostic
Vi information

Data fusion:

Pré(Vi) = Pr(V; | €)

« - causal info for V; - diagnostic info for V;
o - m(V;) - A(V})

where:
o £ = 8{/'; US‘Z: evidence

e . normalisation constant




Entering Observations
Observed joint probability distribution:

Pré(vV) :=Pr(V | &)
e £: observed random variables

e U=V \E&: unobserved random variables

Graphical consequences of observations:
e Additional (observed ) dependences: moral lines

e Additional (observed) independences: observed and semi-
observed arcs




Observation Transformation

e Moral lines: connect non-connected parents of an ob-
served (descendant of) a common child

e Arc—line transformation: change arcs of ancestors of the
observed variables into lines

e Delete (semi)observed arcs

Example:

©) ©) ©) ©)

S—5) SI—5) S—5 3
KR R e e

4 4 4 @

Start Moral line Arc—line trans Deletion arcs

G




Problem Solving

Bayesian networks are declarative, i.e.:
e mathematical basis

e problem to be solved determined by (1) entered evidence
£ (may include decisions); (2) given hypothesis H:

Pr(H | &) (cf. KBAHEE)

Examples:

e Description of populations

e Classification and diagnosis: D = argmaxg Pr(H | £)
e [emporal reasoning, prediction, what-if scenarios

e Decision-making based on decision theory

MEU(D | €) =max > u(z)Pr(z|d,&)
deD
TEX (V)




Manual Construction of Bayesian Networks

Qualitative modelling:

Colonisation by Colonisation by Colonisation by
bacterium A bacterium B bacterium C

Body response ody response Body response
to A to B to C
Infection

Eeved WBO  (ESR>

People become colonised by bacteria when entering a hos-
pital, which may give rise to infection




Bayesian-network Modelling

Qualitative
causal modelling

Cause — Effect

Quantitative

interaction modelling

Pr(Inf | BR4,BRpg,BR¢)

BRA
: : : t f
D @D G
BRc BRc BR¢ BR¢o
@ Inftf| ¢t | f |t | f |t | f |t ]| f
: t 0.8 |06 |05|03]|04|02]|03]0.1
v f 02]04]05|07]|06]|08]|07]0.9




o

\
Causal Independence
conditional
independence
interaction function
n
Pr(e| Cq,...,Cpn) = Z Prie|I1,...,In) | Pr(dx| Ck)
I,....In k=1
= > H Pr(Iy | Ck)
f(1,.In)=e k=1
Boolean functions: P(E | I1,...,1In) € {0,1}
Interaction function f, defined such that f(Iq,...,Iy) =
e if Ple|I1,...,In) =1 )




-

Example: noisy OR

1) 1)
OR

e Interactions among causes: logical OR

e Meaning: presence of any one of the causes C; with ab-
solute certainty will cause the effect e (i.e. E = true)

Pr(e|C1,C2) = ), Prlell1,I2) ] Pr(x|Cy)
Vo= k=12

= Pr(i1|C1) Pr(is|C2) 4 Pr(=i1|C1) Pr(iz|C>)
+ Pr(i1|Cy) Pr(—ip|C2)

e Assessment of O(n) instead of O(2™) probabilities )




Example BN: non-Hodgkin Lymphoma

Hodetype to add: Hone Jor Solver: Jemsen Clustexing g I
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Bayesian Network Learning

Bayesian network B = (G, Pr), with

e digraph G = (V(G), A(G)), and

e probability distribution Pr

23
LA My

=S

general Bayesian
networks

Learning

@)
o O
@)
Spectrum
naive Bayesian tree—augmented
network Bayesian network

(TAN)

A~

Unrestricted Restricted Structure Learning
Structure




Learning Bayesian Networks
Problems:

e for many BNs too many probabilities have to be assessed
e complex BNs do not necessarily vield better classifiers

e complex BNs may vield better estimates of a probability
distribution

Solution:

e uUse simple probabilistic models for classification:
— naive (independent) form BN
— Tree-Augmented Bayesian Network (TAN)
— Forest-Augmented Bayesian Network (FAN)

e Use background knowledge and clever heuristics




Naive (independent) form BN

e The evidence variables FE; in the evidence & C

e (' is a class variable

{F1, ..., En} are conditionally independent given the class
variable C
T his vields:
p(c | )= PEIOPQ©) _ Tpee P(E|C)

P(E)  YcPE|C)P(C)
as EZ-J_LE]-|C, for i % j

Classifier: cmax = argmaxg P(C | &)




Learning Structure from Data
Given the following dataset D:

Student | Gender IQ High Mark for Maths
1 male low no
2 female average yes
3 male high yes
4 female high yes

and the following Bayesian networks:

Gy
G2 s
Gs
Ga

Which one is the best?




4 Quality Measure ()

Match —-H(G,D) —— _
Penalty —1/2k*log IDI —— .

Combined

Quality Q(G,D)

Density of G

Q(G,D) =log Pr(G) — |D| - H(G, D) — 3k - log | D|, where:

e Pr(G): prior probability of G
e —H(G, D): negative value of match

L —3k-1og|D|: penalty term




Research Issues

5 5 ﬂ Qualitative modelling:

e 1O determine the structure of a
network

e Assessment of Pr(V; | «(V;))

v
Probabilistic-logic learning

e Structure learning: determine the ‘best’ graph topology

e Parameter learning: determine the ‘best’ probability dis-
tribution (discrete or continuous)

e Bayesian (probabilistic) logic and relational learning

= yOou can contribute too ---




