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Image and Video Recovery

Part I ¢ Image Restoration
¢ deterministic approaches
¢ stochastic approaches

part 1 ® Recovery of Compressed Images
and Video

¢ Concealment of Compressed
Images and Video

¢ Video Resolution Enhancement
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Introduction

¢ Recovery vs. Restoration vs. Enhancement
¢ History of the Field

¢ Classification of Approaches

¢ “Classical” Applications

¢ “New” Applications
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The Image Restoration Problem
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The Image Restoration Problem

Image and Video Recovery
© A K. Katsaggelos, Northwestern University




The Image Restoration Problem

v

original degraded restored
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Degradation / Restoration System
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Degradation/ Restoration System
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Blur Identification
Noise Estimation
Restoration




y, H partially

Motion estimation
Disparity estimation

Boundary detection through differentiation_
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Problem Type

restoration -- an inverse problem
system identification

system implementation

blind restoration

semi-blind restoration

~

Inverse
problems

~




Applications

space exploration, HST

medicine (diagnostic x-rays, sinograms)
nondestructive testing

commercial, digital photography

(video) printing

resolution enhancement
multi-channel/spectral recovery

error concealment

restoration of compressed images
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Types of Degradation

¢ motion

¢ atmospheric turbulence

¢ out-of-focus lens

¢ finite resolution of instruments
¢ guantization

¢ transmission errors

¢ noise
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Steps in Restoration

¢ Choose appropriate degradation model
¢ (non)-linear, space (in)variant
+ noise additive, signal (in)dependent
¢ Regularize the problem
¢ Choose appropriate solution approach

¢ direct, iterative, recursive, spatial domain,
frequency domain
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Classification of Restoration Technigues

DETERMINISTIC STOCHASTIC
nonadaptive X1
iterative v NCeursive
n linear nonrecursive sonary X\
I iterative nonstationary
Vv v Y
linear
Vi I X .
recursive
Xl X [[h:4
nonlinear
Xil nonrecursive
adaptive nonlinear
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Regularization Principle

Fidelity
to
data

Prior

knowledge
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Degradation Model

y(i, j) = Hf(l 7]

noisy-blurred / /

observed Image
g degradatlon source or

operator original image

n(i, j)

|

noise component

In many applications HJ[ ] can be well approximated

by an Linear Space-Invariant (LSI) system

and the noise by an additive and signal independent process
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Representative Degradations

(

. 1 L . L
¢ 1-D Motion: hi)=17 for _ESZSE
0 otherwise

) .2
¢ Atmospheric turbulence: h(i,j)=KeXp£—l +£ ]

(1
—  for\i®+j° <R

¢ Out of focus: 70, j)=1 xR

0 otherwise
| 1 ; L<. .<L
¢ Pill-box: Wi, =172 O Toh/ES
0 otherwise
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Objective degradation/restoration metrics

¢ Blurred Signal-to-Noise Ratio (BSNR)

(1 N
BSNR =10log,, | >

2
Gn

g(i, )=y, j)—n(,)) o’ noise variance
g(i,j)=E{g(i j)}
¢ Improvement in Signal-to-Noise Ratio (ISNR)
> 2@ -y pf

> > - 76

ISNR =10log,,+

C
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Matrix-vector notation

¢ By stacking (lexicographically) the observed image
Into a vector

y =Hf +n
¢ LSI degradation model
M-AM-1
y (@j)= ZEi (m,m)h (i—m, j—n)+n (G, j)=f(@ j)*h(i j)+n, j)
m=0 n=0
: : : (Hy, Hy.g ... H{|
o H is ablock circulant matrix AT
s Huo o Hol
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Spectral Properties of Block Circulant Matrices

H=WDW'=D=W'HW
\ diagonal with elements the
tacked 2D DET of th stacked values of the 2D DFT
stacke of the v
image (i, /) of (i, J)

Discrete Frequency Domain Representation

Y(uv)=H(u,v)F(u,v)+Nu,v), u,v=0]1...M-1
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Inverse Filter

¢

minimize

J(6) =|n(t)* =|y - Hf"

oJ(f)

= =0= H'Hf=H'y= f=(H'H)'Hy

+ H circulant:

H* (u,v)Y(1,v)

F(u, V) = ‘H(u, V)‘Z

0

Image and Video Recovery
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H(u,v)

H(u,v)

=0 (=7)
=0 (<7)
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Thresholded inverse filter, 1D blur over 8 pixels, BSNR=20 dB.
T=.01

90 , . ; : : 90 , , , . .
80 80 .
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10 1 10 i
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Thresholded inverse filter,

90 T

1D blur over 8 pixels, BSNR=20 dB.
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Thresholded inverse filter, 1D blur over 8 pixels, BSNR=20 dB.
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Constrained Least-Squares Filter

¢ minimize
J(f) = n()|* =y - Hf[*

subject to

Icf|* <&

omin (ly-Hf | +afcf |’ )= f=(H"H+aC"C) H"y

¢ C is a high-pass filter, such as the 2D Laplacian C 2D Laplacian
¢ for H and C circulant: 000 025 000
C=/025 -100 025

H *(u V) 1000 025 000

Fu,v) = Y(u,v)

|H(u,v)|2 +05|C(u,v)|2
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H (u,v)|” of horizontal motion blur over 8 pixels

25
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Magnitude squared of thezfrequency response
of a 2D Laplacian |Cu, )




H™*(u,v) ‘
|H(u,v)|2 +.1-|C(u,v)|2 ‘

‘H(u,v)‘2 +.1-‘C(u,v)‘2
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‘H(u,V)‘Z +.01.‘C(u,v)‘2
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Set Theoretic Approach

¢ Find a solution belonging to both sets

Opy ={f | ‘y_HfHZ < EZ}

O, ={f||Cf | <&}

¢ One Solution Approach: Center of ellipsoid bounding the intersection

f=(H"H+aC"C) H"Y  a=(c/E)

¢ Another Solution Approach: Alternate projections onto convex sets
f,., = 0D,

Bf =f+),(1+HH) H" (y - Hf)

Pf =[1-4,(1+1,C"C) CTCt
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Set Theoretic Recovery Principle

_ Bounding ellipsoid
Center of bounding

ellipsoid

Oy =1f | Hy_HfHZ <E’}

Fidelity to data

0, ={fl|lcf| <%}

Smoothness

Solution set
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POCS Algorithm

For C

1)

i=1, 2, ..., m convex and closed
f.=P, ... PP f ., f, arbitrary,

then N
f >f eC, EﬂCl..

i=1
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lterative Restoration Algorithms

There is no need to explicitly implement the inverse of an operator.
The restoration process is monitored as it progresses.

The number of iterations can be used as a means of regularization
The effects of noise can be controlled in each iteration.

They can be applied in cases of spatially varying or nonlinear degradations
or in cases where the type of degradation is completely unknown (blind
restoration).

® 6 O 0 o

Basic Approach
Find the root of ®(f)
Successive Approximations Iteration

f, =0
fk+1 — fk +IBCD(fk)
. :\P(fk) o
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Basic Approach
Find root(s) of @(f)
Successive Approximations Iteration

f, =0
fi o1 =i + SO,
:\P(fk)

Convergence

The successive approximatjons iteration converges
to the unique fixed point ', i.e., Y(f")=f" if P(f)
IS a contraction

| (f,) - ¥ (f,)| <n|f; -f2| for 7 <1 and any norm ]

Image and Video Recovery
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Basic Approach
Find root(s) of @(f)

Successive Approximations lteration with Constraints

f, =0 Constraint or

~ /projection operator
fk = Cf,

fiy =it BO(F1) = P(CHi)

Convergence

The successive approximations iteration converges
to the unique fixed point if the concatenation of operators
Y(C is a contraction

Image and Video Recovery
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Basic Iteration

O(f) =y—-Hf
fy =1 + B(y—Hf,)=By+{I- SH),

Frequency Domain Iteration (H block circulant)

Falu,v)= BY(u,v)+{1= BH(u,v)) F; (u,v)

Image and Video Recovery
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Convergence Restoration

filter

F(u,v) = Rk(u’V)Y(“’V)
R, (u,v)= ,BZ(l—,BH(”’V))Z

ReH(u,v)

it |1-gH(u,v)|<1 m
2 % ImvH(u,v)
1

or 0<p< ’
Hmax(”"’)

Im R, (u,v)=lim 1_(1_'BH(M’V))k
Jim Rele)= B A )

I
o

=

<
~
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Least Squares (LS) Iteration

1
D(f) == Vy ly - Hf||

f,,.,=f +pSH" (y-Hf,)
= SH y+(I1- SH H)f,

~requency Domain Iteration (H block circulant)

Feaa(u,v)= BH ()Y (u,v)+ (1= Bl H(u,v)? )F (u,v)

Image and Video Recovery
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Convergence

k-1 , !
R, (u,v) = ﬂZ(l—ﬂ‘H(u, V) ‘ ) H (u,v)
1=0

1-(1- Uu,v 2yk .
_ g0 AH( )\2>H(
1-(1- AH(u,v)|")

sufficient condition for convergence

2

1—,8H(u,v)2 <1, or 0<pB<

max,, | H(u.v)

| 2

k
lim R, (u,v)= lim ,81_(1_'8|H(”’V) )

> H*(u
k—> o0 k—> o0 1—(1—,B|H(M,V)| )
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Figure 1: Residual error versus number of iterations for the iterative
LS algorithm; 1D motion blur over 8 pixels, no noise.

residual
—
=

convergence .
threshold = 10
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Fig. 2(a): (I) 1D motion blur over 8 pixels; (r) iterative LS
restoration, k=20, ISNR=4.03 dB.

1
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0

i 50 100

Image and Video Recovery
© A.K. Katsaggelos, Northwestern University

40



Fig. 2(b): iterative LS restorations: (I) k=50, ISNR=6.22 dB;
(r) k=465, ISNR=11.58 dB.
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Fig. 2(c): iterative LS restorations: () k=465, ISNR=11.58 dB;
(r) direct inverse, ISNR=15.50 dB.

Image and Video Recovery
© A.K. Katsaggelos, Northwestern University

42



Ringing Artifacts

impulse response impulse response
r of overall system f of restoration filter

San iy j) = h(i, j)*r(i, j)
restored original

flmage fimage
f @ J) = s J)*f(E )
Ideally " impuiss
s, j) = 0(i, j)
Or

S,w,v)=1 V (u,v)

Image and Video Recovery
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Fig. 3: 1D motion blur over 8 pixels; (a), (b):S,;(«,0) ands_, (i,0) for the direct
inverse filter; (c) and (d): S ., (u,0) and s (i,0) for the iterative LS restoration

algorithm.

0.ag

oa
H H : 0.4
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Fig. 4: (a) 1D motion blur over 8 pixels, BSNR=20dB; (b)-(d) iterative LS
restorations: (b) k=20, ISNR=1.83 dB; (c) k=50, ISNR=-0.30 dB; (d) k=1376,

ISNR=-9.06 dB; (e) direct inverse, ISNR=-12.09 dB.
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Constrained Least Squares (CLS) Iteration

1
(f) == Vi (v~ Hi| *+a|cf]?)

f,,=fH"'y+(-B(H H+aC'C))f,

Frequency Domain Iteration (H, C block circulant)

Fra(u,v)=BH (u,v)Y (u,v)
+ (1—,8(\H(u,v)\2 +a C(u,v)\z))Fk(u,v)

Image and Video Recovery
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Convergence

[

,Bk 1(1 ,B(‘Hu % ‘ +05‘C(u v)‘z)) H*(u,v)

[=0

sufficient condition for convergence

‘1—,8(\H(u,v)\2 +a\C(u,v)\2)‘<l

H*(u,v) ’
kIImR ( )=<|H(u,v)|2 +0¢|C(u,v)|2 lH( |
o 0 | H (u,

Image and Video Recovery
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v)|I° +a | Cu,v) =0

V)| +a | C(u,v)|*=0
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Fig. 5: Restorations of a noisy-blurred image (1D motion blur over 8 pixels,

BSNR=20dB) and corresponding |H(u,0)|; (a)-(b) iterative CLS restorations, with C

Image and Video Recovery
© A.K. Katsaggelos, Northwestern University
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Fig. 5: Restorations of a noisy-blurred image (1D motion blur over 8 pixels,
BSNR=20dB) and corresponding | Hx,0)| ; (b) iterative CLS restoration
with C a 2D Laplacian, & =0.01, k=330, ISNR=-1.01 dB; (d) direct CLS

Image and Video Recovery
© A.K. Katsaggelos, Northwestern University

49



Effect of Regularization Parameter in CLS

Algorithm

Elf@-flP = -
Bias (f(a)) + Var (f(a)) ~

i
A i log 10 (B = (o))

g 10 (MSE [ (=0

-

lkog1Oar (=il

oL X ‘H(u v)‘2
Var(a) =o,
e Z:ZOQH(M v)‘ +a‘C(u v)‘)Z

R A )

" 1=0 =0 QH(u,v)‘2 +04C(u,v)‘2)2

Image and Video Recovery
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Fig. 6: Direct CLS restorations of a noisy-blurred image (1D motion blur
over 8 pixels, BSNR=20dB) with & equal to (a) 1, (b) 01., (c) 0.01; (d)-(f)

corresponding |original-restored| linearly mapped to the [32,255] range.

Image and Video Recovery
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Spatially Adaptive Constrained Least Squares lteration

1
() = 2V (fy B, + o [cr,)

f,.,=AH W'Wy+(I-(H"W, WH+aC"W, W,0))f,

Choice of weights

W, =1-W,, W, =V  (the visibility matrix)

V ~1/(c?)  (measure of the local activity)

Image and Video Recovery
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Fig. 7. Restorations of a noisy-blurred image (1D motion blur over 8 pixels,
BSNR=20dB); (a) iterative adaptive CLS; (b) iterative CLS; (c) entries of
visibility matrix linearly mapped to the [32-255] range; (d) |fig. a - fig. b|

O|T

Image and Video Recovery
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Fig. 7: (a) original signal; (b) blurred signal by 1D motion blur over 8
samples; (c) iterative LS with positivity constraint; (d) iterative LS
without positivity constraint.
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Wiener Filter

f=arg{min{E{(F —£)T (f —F)}}
f
f=R,H" (HR\ffHT + R{n)‘ly

yd

f and n uncorrelated
and zero mean

Frequency Domain (all matrices block circulant)

Image Noise
autocorrelation autocorrelation

H (u,v)

F (u,v) = >
‘H (u, V)‘ +S8,, @) S 5 (u,v)

Y(u,v)

Image and Video Recovery
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Power spectral density of original image fF (u, and noise Snn (u,\)

Tt >
AR = S R
5 Ao s T et T
150 e e e g
R T e R on =
= T e TERL
A e
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() Stabilizing term (LLV)/S (u\) and (r) magnitude of the frequency
response of the Wlener filter

s S

an Wl

ol .

ag . |

0.

250

.
1’ i

- 240
i ‘---ﬂ"

] =

)k h‘ \!ﬂ

N '*f*f;
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10+

Wiener filter

Noisy-blurred image; Wiener restoration; s
1D motion blur over 8 pixels; S_ff from original image, . |
BSNR=20dB. S nnideal, ISNR=3.93 dB 50 00 250

Iterative CLS restoration
with C a 2D Laplacian,

=0.01, k=330, ISNR=-1.01 dB.

Image and Video Recovery
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noise model

- (v (1))
Bayesian Framework: p(f|y)= p\yI1)p

p(y) image model
f,p =arg max p(f/y)
f
For Gaussian Image and Noise Models
! f'CLt
f)= 2 ff

p() (272')N/2|Cf|1/26

p(n) = p(y If)- ! 5(y-Hf )'c.(y-Hf )

(Zﬂ)N/2|C |1/2 e

nn

frup = arg mfin {(y—Hf)TC;; (y—Hf)+fTCtTf1f} —— >

(HTC;I}H +c;f1)fMAP -HTC 'y

Image and Video Recovery 59
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Relationship between Wiener and MAP estimates for Gaussian case

since

CH'HGH" +C ]—1 [HTC1H+ C, | 'H'C.}
—> fiener =fmap
Relationship between Wiener and CLS
if [HTC‘1H+Cff‘1] TH'C ! [HTH+a c'cH"
or Cyg=0’ (aCTC)_l for C,, =01

—> fWiener :fCLS

Image and Video Recovery
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Topics not Covered

Use of robust statistics

Kalman filters

Iteration adaptive algorithms

Use of wavelets

Multi-channel restoration

Partially-known degradations (TLS approach)
Signal-dependent noise models

Non-linear degradation model

Blind image restoration

¢ Video restoration

® ¢ 6 6 6 ¢ O ¢ o
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Recovery of Compressed
Images and Video

¢ Removal of Blocking Artifacts
¢ enhancement techniques
o restoration techniques

¢ Removal of Additional Quantization
Artifacts in Compressed Video
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Transform Based Coder

original
image | Block ‘ o | Entropy data
Transform Quantization Coding
t F=Bf F=0Bf f'
e “Conventional” decoder:
f'=B'F
Image and Video Recovery 63
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Proposed Decoding Approach

* Image Decoding < Image Recovery

———————————————————————————————————————————————

Forward :
f = Transform | Quantizer F
-
Recovery '
* < <
t Algorithm K

Prior knowledge
« Set Theoretic Recovery

Principle

Other properties

No coding artifacts e
e.g. positivity

Received data Solution set

Image and Video Recovery
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Projection onto Data Set C,

o Cy={f: OBf=F}
or
Cy={f F n<(Bf),<F "~}
- F min F max determined by quantizer

¢ Easily verified that F' € C,

¢ P,f=BIF o |
- where FM if (Bf), <FM™
F,=1<F'™ if (Bf), <F/™
(Bf), if Fy'" <(Bf), <F™
Image and Video Recovery 65
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Spatial Smoothness

¢ C,={f fissmooth in the block boundaries }

¢ Between Block Discontinuity

. f8_f9
¢ Constraint Set S
Co={f || WOf || <E}, with Qf =| "¢ V7

f24 — f25

Image and Video Recovery
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P.:Projection onto C,

o t={f, T, .., G}, F=Pf={L,5, T, |

¢ define f, ] £, ] _;i;_ ‘fg‘
x=fe| y=|f;| x=|f| y=|1;

¢ then - - L L
< _1 1 |
X—E(x+y)+7(l+27»W W) (x—y)
Si:% x+y)—%(l +2kWtWT1(x—y)
f,=1"F,, for i=8-k or 8k+1, k=1.2,...

¢ ) satisfies
W+ 2 'W) 0 || = E

Image and Video Recovery
© A K. Katsaggelos, Northwestern University
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Estimating W

¢ Principle: @, should be proportional to
- sensitivity of HVS to coding artifacts
- local correlation

¢ Visibility of blocking artifact
- less visible in very bright or very dark areas
- less visible in intensity transition area, such as texture

¢ An example:

(Di :4 O
Vzlsfg_” _ otherwise

Image and Video Recovery
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POCS-Based Decoding
Algorithm

¢ Constraint sets:
- C,4: data consistency
- C, : horizontal blocking
- C, : vertical blocking
- C, : pixel-intensity range

¢ Algorithm: f, = PP PP f, ;
- terminate when || f, -f4| <e
- typically 3~5 iterations

Image and Video Recovery
© A K. Katsaggelos, Northwestern University
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Compressed at .29bpp Reconstructed POCS Reconstructed alg.1

e’ R
I|l -
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Experimental Results

Image and Video Recovery
© A.K. Katsaggelos, Northwestern University

71



Video Recovery

¢ Current video
encoders introduce
a variety of artifacts

+ Blocking artifacts
dominate lower
bitrate applications

¢ Ringing artifacts
appear as the bitrate
Increases

¢ Visual quality
Increased by pre-
and post-processing

12

Image and Video Recovery
© A K. Katsaggelos, Northwestern University MPEG-2 Encoded at 3.5Mbps




Post-processing

¢ Post-processing Spatial

exploits traits of g| Smeothness
“good” images to % Edge
reduce coding 5| Locations
artifacts

¢ Images are generally

smooth Post-processing
+ There are “good” and Algorithm

“bad” edges Iin the
Image
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Post-processing

¢ Video post- Temporal Spatial
) Smoothness Smoothness
processing also O
incorporates 2 Edge
I =3 Locati
propertle_s of a 2| HOCAons
“good” video
seguence
+ Motion compensated Post-processing
frames should be Algorithm

similar
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Problem Formulation

¢ Find a recovered image as the minimizer of
Fidelity to

_ '/X
J() = [Ife- gl + A01Q,F° Decoded

/ Image
. f. 1|2 - 2
+ 0 [1Q, Fill2 + A5 [If, - Frnel Measure of
Smoothness
f.can be _replaced within Blocks
by a multi-channel Measure of Smoothness Measure of

vector f Between Block Temporal
Continuity

¢ Iterative solution

JTART "o (REYe (e REXe (S VAREIN V|
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Experimental Results
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Use Information from Encoder

_ | Encoder Edge
¢ Post-processing \')flottlon Mode Locations
. eclors
glgorlthm can Quantizer = § Spatial
Incorporate all N § % Smoothness
information available ° = 2|
_ emporal
In the compressed J_L Smoothness
bitstream
+ Quantizer step size Post-processing
¢ Encoder Mode Algorithm
Selection

¢ Motion Vectors
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Constrained Optimization

¢ We are now considering the post-

processing algorithm as a minimization
of Measure of

Smoothness
/ within Block
) = 1QuAE +2IQ flP eesureo!

between Blocks

Fidelity to _ 2

Decodyed + 7\‘2”fk 1:mc”

Image Measure of Temporal
\—» S.t. DCT(fk) e Continuity -- Motion

Q Vectors are Known,8

Image and Video Recovery
© A K. Katsaggelos, Northwestern University




Experimental Results

P-Frame
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Experimental Results
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P-Frame
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Weighted Minimization

¢ Adding weight matrices to the cost
function allows further smoothing

Image and Video Recovery

adaptation Measure of
Smoothness
J(T) =W Q, 'MIOCK
Measure of
+ || W, Q, 'fk”2 “ Smoothness
between Blocks
Fidelity to
IDecoded + }‘“2” W3' (fk ) fm(:)”2
mage Measure of Temporal
\ \ Continuity -- Motion
St DCT(fk)E SQ Vectors are Knowng,
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Experimental Results
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P-Frame
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Experimental Results

P-Frame
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Experimental Results

B-Frame
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Experimental Results

B-Frame
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Experimental Results

Compressed frame by H.261 Recovered frame by gradient
projection algorithm

at 30kbps (10 fps)

Al w

o] o -\—-

Image and Video Recovery
© A.K. Katsaggelos, Northwestern University

86



Empirical Performance Bound

Algorithm Performance
on foreman sequence
compressed at 30 kbps:

Case 1: using pixel-basis
motion vectors computed
from the uncompressed
frames

Case 2: using 4x4 pixel
basis motion vectors
computed from the
uncompressed frames

Case 3: using 4x4 pixel
basis motion vectors
computed from the
decompressed frames

Image and Video Recovery
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Foreman Seq. 30Kbps

10 15 20
frame no.

25
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Experimental Results

Recovered frame; estimated
regularization parameters; motion
field estimated from uncompressed

frame

Image and Video Recovery
© A.K. Katsaggelos, Northwestern University

Compressed frame by H.261
at 30kbps

f

F
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Error Concealment Problem Formulation

¢ Block Transformed Image

F=Bf and f=B'F

¢ Quantized Version of Transform Coefficients

F=Q[F]
¢ Representation at Decoder
F=YFus Y Fy
Received ~ ,neR neL o Lost
coefficients coefficients

N

F=(I,+I,)F —> f =f-B'I,F
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Problem Formulation (cont’d)

N

Find f belonging to

If, —f]]°<é&’
and A
ICf|*<E?
——>  Minimize

M(a.f) |, —f | +a|| Cf |

2
with o = (8)
E
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Regularized Iterative Solution

¢ Transform Domain

N

Fin = ,B[K(a)B—aIlBCTC]Fr +[1- K ()] F

¢ Spatial Domain

fi = SBT [K(a)B—aIlBCTC]fr +[1— ,BBTK(a)B];‘k

with  K(a)=1+aI,BC'CB'I,

Image and Video Recovery 91
© A K. Katsaggelos, Northwestern University




Oriented

High Pass
Operator

Cell Burst

 All Information in a Block is Lost
Considerable Discontinuity between

 Burst and Neighboring Blocks

* Replacement of DC Value from
Neighboring Blocks (o trim mean)

Image and Video Recovery
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Compressed at .8 bpp 8% error, DC only preserved

Restored oriented smoothness
operator
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Burst errors
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Modified initial image (a=7)

Restored image
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Intra Concealment

o \J
Described algorithm
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o \J
Algorithm by Schwab
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Intra Concealment

R\ N\ N\

Fr

Described algorithm Algorithm by Schwab
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Inter Concealment

Z2E\\
a0

PPN

=

/
%

&

=

W

average median new vector
d Video Recovery
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Discussion

¢ prior knowledge: critical

¢ blind restoration: still a formidable

oroblem

¢ adaptivity (spatial, temporal, frequency,
iteration) important

¢ New applications are driving progress in
the field
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