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Image and Video Recovery

Image Restoration 
deterministic approaches
stochastic approaches

Recovery of Compressed Images    
and Video
Concealment of Compressed 

Images and Video 
Video Resolution Enhancement 

Part I:

Part II:
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Introduction

Recovery vs. Restoration vs. Enhancement
History of the Field
Classification of Approaches
“Classical” Applications
“New” Applications



Image and Video Recovery
© A.K. Katsaggelos,  Northwestern University

4

The Image Restoration Problem
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The Image Restoration Problem
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The Image Restoration Problem

original degraded restored
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Degradation / Restoration System
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Degradation/ Restoration System
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Hf y

Known Problem Type

H, y                      restoration -- an inverse problem
f, y                        system identification
f, H                       system implementation
y                           blind restoration
y, H partially         semi-blind restoration

Motion estimation
Disparity estimation
Boundary detection through differentiation

Inverse
problems
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Applications
space exploration, HST
medicine (diagnostic x-rays, sinograms)
nondestructive testing
commercial, digital photography
(video) printing
resolution enhancement
multi-channel/spectral recovery
error concealment
restoration of compressed images
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Types of Degradation

motion
atmospheric turbulence
out-of-focus lens
finite resolution of instruments
quantization
transmission errors
noise
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Steps in Restoration

Choose appropriate degradation model
(non)-linear, space (in)variant
noise additive, signal (in)dependent

Regularize the problem
Choose appropriate solution approach

direct, iterative, recursive, spatial domain, 
frequency domain
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Classification of Restoration Techniques
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Regularization Principle

Prior
knowledge

Fidelity
to

data
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Degradation Model

[ ] ),(),(),( jinjifHjiy +=
noisy-blurred
observed image

source or 
original image

noise componentdegradation 
operator

In many applications H[ ] can be well approximated 
by an Linear Space-Invariant (LSI) system
and the noise by an additive and signal independent process
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Representative Degradations
1-D Motion:

Atmospheric turbulence:

Out of focus:

Pill-box:   
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Objective degradation/restoration metrics

Blurred Signal-to-Noise Ratio (BSNR)

Improvement in Signal-to-Noise Ratio (ISNR)
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Matrix-vector notation
By  stacking (lexicographically) the observed image 
into a vector

LSI degradation model

is a block circulant matrix 
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⇒+=⇒+=⇒+= −− nWfDWyWnfWDWynHfy 11-1-1

),,(),(),(, vuNvuFvuHv)Y(u += 1,,1,0, −= Mvu K

HWWDWDWH -1-1 =⇒=
diagonal with elements the 
stacked values of the 2D DFT
of ),( jihstacked 2D DFT of the 

image ),( jif

Spectral Properties of Block Circulant Matrices

Discrete Frequency Domain Representation
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minimize
22)()( Hfyfnf −==J

Inverse Filter

circulant:
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Thresholded inverse filter, 1D blur over 8 pixels, BSNR=20 dB.
T=10-16
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Thresholded inverse filter, 1D blur over 8 pixels, BSNR=20 dB.
T=.05
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Thresholded inverse filter, 1D blur over 8 pixels, BSNR=20 dB.
T=.125
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Constrained Least-Squares Filter

is a high-pass filter, such as the 2D Laplacian

for      and     circulant: H

minimize
22)()( Hfyfnf −==J

subject to

ε<2Cf
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Set Theoretic Approach
Find a solution belonging to both sets

}|{ 22 EQ ≤−= Hfyfy|f

}|{ 22 ε≤= CfffQ

( ) yH CCHHf TTT +
+= α 2)/( Eεα =

One Solution Approach: Center of ellipsoid bounding the intersection

( ) )(1
111 HfyHHHIff TT −++=

−λλP

( ) fCCCCIIf TT ][ 1
222

−
+−= λλP

k1k ff 21PP=+

Another Solution Approach: Alternate projections onto convex sets 
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Set Theoretic Recovery Principle

Fidelity to data

Solution set

Smoothness

Bounding ellipsoid

}|{ 22 EQ ≤−= Hfyfy|f

}|{ 22 ε≤= CfffQ

.

Center of bounding 
ellipsoid
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POCS Algorithm

C2

C1

x0

x1 = P1x0

x2 = P2x1

C0

For  Ci ,  i = 1, 2, … , m, convex and closed
fk = Pm … P2P1 fk-1 ,    f0 arbitrary,
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Iterative Restoration Algorithms
There is no need to explicitly implement the inverse of an operator.
The restoration process is monitored as it progresses. 
The number of iterations can be used as a means of regularization
The effects of noise can be controlled in each iteration.
They can be applied in cases of spatially varying or nonlinear degradations 
or in cases where the type of degradation is completely unknown (blind 
restoration).

Successive Approximations Iteration

Basic Approach
Find the root of )(fΦ

0f 0 =

)(      
)(

k

kk

f
fff

Ψ=
Φ+=+ β1k
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Successive Approximations Iteration
Find root(s) of )(f
Basic Approach

Φ

0f 0 =

)(      
)(

k

kk

f
fff

Ψ=
Φ+=+ β1k

Convergence

2121 ffff −≤Ψ−Ψ η)()(

The successive approximations iteration converges 
to the unique fixed point      , i.e.,              , if        
is a contraction

*f ∗∗ =Ψ ff )( f)(Ψ

for 1≤η and any norm ⋅
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Successive Approximations Iteration with Constraints

Basic Approach
Find root(s) of )(fΦ

Convergence
The successive approximations iteration converges 
to the unique fixed point if the concatenation of operators     

is a contractionCΨ

0f 0 =

)( )(
~~

kkkk ffff CΨ=Φ+=+ β1

kk ff  C=
~

Constraint or
projection operator
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Basic Iteration

Hfyf −=Φ )(

kkkk fHIyHfyff )()( βββ −+=−+=+1

Frequency Domain Iteration (H block circulant)

( ) ( ) ( )( ) ( )vuFvuHvuYvuF kk ,,1,,1 ββ −+=+
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Least Squares (LS) Iteration
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Figure 1: Residual error versus number of iterations for the iterative 
LS algorithm; 1D motion blur over 8 pixels, no noise.

convergence
threshold
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Fig. 2(a): (l) 1D motion blur over 8 pixels; (r) iterative LS 
restoration, k=20, ISNR=4.03 dB.
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Fig. 2(b): iterative LS restorations: (l) k=50, ISNR=6.22 dB; 
(r) k=465, ISNR=11.58 dB.
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Fig. 2(c): iterative LS restorations: (l) k=465, ISNR=11.58 dB; 
(r) direct inverse, ISNR=15.50 dB.
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Ringing Artifacts

),(*),(),( jirjihjisall =

),(*),(),( jifjisjif all=
∧

impulse response
of restoration filter

Ideally

),(),( jijisall δ=

original
image

restored 
image

discrete
impulse

Or

),(,1),( vuvuSall ∀=
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a b
dc

Fig. 3:  1D motion blur over 8 pixels; (a), (b):                and                for  the direct 
inverse filter; (c) and (d):                and                for the iterative LS restoration 
algorithm.

)0,(uSall )0,(is all
)0,(uSall )0,(is all
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Fig. 4: (a) 1D motion blur over 8 pixels, BSNR=20dB; (b)-(d) iterative LS 
restorations: (b) k=20, ISNR=1.83 dB; (c) k=50, ISNR=-0.30 dB; (d) k=1376, 

ISNR=-9.06 dB;  (e) direct inverse, ISNR=-12.09 dB.

a b
d

c
e
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Constrained Least Squares (CLS) Iteration
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Convergence

sufficient condition for convergence
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Fig. 5: Restorations of a noisy-blurred image (1D motion blur over 8 pixels, 
BSNR=20dB) and corresponding              ;  (a)-(b) iterative CLS restorations, with C 
a 2D Laplacian and     =0.01: (a) k=20, ISNR=2.12 dB; (b) k=50, ISNR=0.98 dB.α

|)0,(| uH

a b
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Fig. 5: Restorations of a noisy-blurred image (1D motion blur over 8 pixels, 
BSNR=20dB) and corresponding              ;  (b) iterative CLS restoration 
with C a 2D Laplacian,     =0.01, k=330, ISNR=-1.01 dB;  (d) direct CLS 

restoration, ISNR=-1.64 dB.

dc

|)0,(| uH
α
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Fig. 6: Direct CLS restorations of a noisy-blurred image (1D motion blur 
over 8 pixels, BSNR=20dB) with      equal to (a) 1, (b) 01., (c) 0.01; (d)-(f) 

corresponding |original-restored| linearly mapped to the [32,255] range.

a
d
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e f
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Spatially Adaptive Constrained Least Squares Iteration
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Fig. 7: Restorations of a noisy-blurred image (1D motion blur over 8 pixels, 
BSNR=20dB); (a) iterative adaptive CLS; (b) iterative CLS; (c)  entries of 
visibility matrix linearly mapped to the [32-255] range; (d)  |fig. a - fig. b| 

linearly mapped to the [32,255] range.

a b
dc
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Fig. 7: (a) original signal; (b) blurred signal by 1D motion blur over 8 
samples; (c)  iterative LS with positivity constraint;  (d) iterative LS 
without positivity constraint.

a b
dc
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Wiener Filter
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Power spectral density of original image                  and noise ),( vuSff ),( vuSnn
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(l) Stabilizing term                                 and  (r) magnitude of the frequency 
response of the Wiener filter 

),(/),( vuSvuS ffnn
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Noisy-blurred image; 
1D motion blur over 8 pixels;
BSNR=20dB.
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Iterative CLS restoration 
with C a 2D Laplacian, 

=0.01, k=330, ISNR=-1.01 dB.

|)0,(| uH

Wiener filter



Image and Video Recovery
© A.K. Katsaggelos,  Northwestern University

59

( ) yCHfCHCH 1
nn

T1
ff

1
nn

T −−− =+ MAP

( ) ( ) ( )
( )y

ffyyf
p

ppp || =

( )
( ) eN

p fCf 1
ff

T

fC
f

−
−

= 2
1

2/12/2

1

π

( )
( ) eN

pp )()(2
1

2/12/2

1|)( HfyCHfy 1
nn

T

nnC
fyn −− −

−
==

π

Bayesian Framework:

)/(maxarg yff
f

pMAP =

image model

noise model

For Gaussian Image and Noise Models

( ) ( ){ }fCfHfyCHfyf 1
ff

T1
nn

T

f

−− +−−= minargMAP



Image and Video Recovery
© A.K. Katsaggelos,  Northwestern University

60

Relationship between Wiener and MAP estimates for Gaussian case

Relationship between Wiener and CLS
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Topics not Covered

Use of robust statistics
Kalman filters
Iteration adaptive algorithms
Use of wavelets
Multi-channel restoration
Partially-known degradations (TLS approach)
Signal-dependent noise models
Non-linear degradation model
Blind image restoration
Video restoration
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Recovery of Compressed 
Images and Video

Removal of Blocking Artifacts 
enhancement techniques
restoration techniques

Removal of Additional Quantization 
Artifacts in Compressed Video



Image and Video Recovery
© A.K. Katsaggelos,  Northwestern University

63

Transform Based Coder

Block
Transform

Entropy
CodingQuantization

original
image data

f F=B f F'=Q B f

• “Conventional” decoder:

f ' = Bt F'

f '
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Proposed Decoding Approach
• Image Decoding ⇔ Image Recovery

Forward
Transform Quantizerf

Recovery
Algorithm

F'

F'f*

Prior knowledge
• Set Theoretic Recovery

Principle

Received data

No coding artifacts Other properties
e.g. positivity

Solution set
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Projection onto Data Set Cd
Cd ≡ {f: QB f = F'}
or
Cd ≡ {f: Fn

min ≤ (B f)n ≤ Fn
max}

- Fn
min, Fn

max determined by quantizer

Easily verified that   F' ∈ Cd

Pdf = B-1F
- where ( )

( )
( ) ( )⎪
⎩

⎪
⎨

⎧

≤≤
<
<

=
max
nn

min
nn

max
nn

max
n

min
nn

min
n

n

B ifB
Bif
B if

FfFf
FfF
FfF

F
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Spatial Smoothness
Cs ≡ { f: f is smooth in the block boundaries }

Between Block Discontinuity 

Constraint Set
Cs ≡ { f: || WQf || ≤ E }, with

f1 f8 f9 f16f17

⎥
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Ps:Projection onto Cs

f={f1, f2, …, fN},
define

then

λ satisfies
||W(I + 2λW tW)-1Q f || = E
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Estimating W

Principle: ωi should be proportional to
- sensitivity of HVS to coding artifacts
- local correlation

Visibility of blocking artifact
- less visible in very bright or very dark areas
- less visible in intensity transition area, such as texture

An example:

⎪
⎩

⎪
⎨

⎧ <μ
=ω

σ+
μ−

σ+
μ

otherwise

 if

i

i

i

i
i

i

1
255
1 128
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POCS-Based Decoding 
Algorithm

Constraint sets:
- Cd : data consistency
- Cs  : horizontal blocking
- Cs

’ : vertical blocking
- Cr  : pixel-intensity range

Algorithm: fk = PrPs
’PsPdfk-1

- terminate when  || fk - fk-1|| ≤ ε
- typically 3~5 iterations
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Compressed at .29bpp Reconstructed POCS Reconstructed alg.1

Reconstructed WLS Reconstructed  alg. 2 + P Reconstructed  alg. 3
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Experimental Results
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Video Recovery
Current video 
encoders introduce 
a variety of artifacts

Blocking artifacts 
dominate lower 
bitrate applications
Ringing artifacts 
appear as the bitrate
increases
Visual quality 
increased by pre-
and post-processing

MPEG-2 Encoded at 3.5Mbps
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Post-processing
Post-processing 
exploits traits of 
“good” images to 
reduce coding 
artifacts

Images are generally 
smooth
There are “good” and 
“bad” edges in the 
image

Edge
Locations

Post-processing
Algorithm

Spatial 
SmoothnessC

onstraints
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Post-processing
Video post-
processing also 
incorporates 
properties of a 
“good” video 
sequence

Motion compensated 
frames should be 
similar

Edge
Locations

Post-processing
Algorithm

Spatial 
SmoothnessC

onstraints
Temporal 

Smoothness
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Problem Formulation

Find a recovered image as the minimizer of

Iterative solution

J(fk)  =   ||fk - gk||2 +  λ1||Q1fk||2

+  λ2  ||Q2 · fk||2 + λ3 ||fk - fmc||2

Measure of Smoothness 
Between Block

Measure of 
Temporal 
Continuity

Measure of 
Smoothness 
within Blocks

Fidelity to 
Decoded 
Image

fk can be replaced
by a multi-channel
vector f

( )( )
mc

kTTkk fffQQQQIgff −+++−+=+
3222111

1 2)( λλλα
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Experimental Results
C

om
pressed

(3.5M
bps)

R
estored 

λ
1 = 0.2, λ

2 = 0.2, λ
3 = 1



Image and Video Recovery
© A.K. Katsaggelos,  Northwestern University

77

Use Information from Encoder
Post-processing 
algorithm can 
incorporate all
information available 
in the compressed 
bitstream

Quantizer step size
Encoder Mode 
Selection
Motion Vectors

Edge
Locations

Post-processing
Algorithm

Spatial 
Smoothness

C
onstraints Temporal 

Smoothness

10001010
Quantizer

Motion
Vectors

Encoder 
Mode
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Constrained Optimization
We are now considering the post-
processing algorithm as a minimization 
of

J(fk)  = ||Q1 ·fk||2  + λ1||Q2 ·fk||2

+ λ2||fk - fmc||2

s.t. DCT(fk)      SQ

Measure of Temporal 
Continuity -- Motion 
Vectors are Known

Measure of 
Smoothness 
within Block

Fidelity to 
Decoded 
Image

Measure of 
Smoothness 
between Blocks

∈
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Experimental Results

P-Frame
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Experimental Results

P-Frame
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Weighted Minimization
Adding weight matrices to the cost 
function allows further smoothing 
adaptation

J(fk)  = || W1·Q1 ·fk||2  

+ λ1|| W2· Q2 ·fk||2

+ λ2|| W3· (fk - fmc)||2

s.t. DCT(fk)     SQ

Measure of Temporal 
Continuity -- Motion 
Vectors are Known

Measure of 
Smoothness 
within Block

Fidelity to 
Decoded 
Image

Measure of 
Smoothness 
between Blocks

∈
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Experimental Results

P-Frame
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Experimental Results

P-Frame
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Experimental Results

B-Frame
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Experimental Results

B-Frame
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Experimental Results
Compressed frame by H.261
at 30kbps (10 fps)

Recovered frame by gradient 
projection algorithm
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Empirical Performance Bound
Algorithm Performance 
on foreman sequence 
compressed at 30 kbps:
Case 1:  using  pixel-basis 
motion vectors computed 
from the uncompressed 
frames
Case 2: using 4×4 pixel 
basis motion vectors 
computed from the 
uncompressed frames
Case 3: using 4×4 pixel 
basis motion vectors 
computed from the 
decompressed frames
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Experimental Results

Compressed frame by H.261
at 30kbps

Recovered frame; estimated 
regularization parameters; motion
field estimated from uncompressed
frame
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Error Concealment Problem Formulation

Block Transformed Image

Quantized Version of Transform Coefficients

Representation at Decoder

FBfBfF T== and

[ ]FQF =
^

∑∑
∈∈

+=
Ln

n
Rn

n FFF
^^^

( )
^^
FIIF lr +=

^^
FIBff l

T
r −=

Received
coefficients

Lost
coefficients



Image and Video Recovery
© A.K. Katsaggelos,  Northwestern University

90

Problem Formulation (cont’d)
Find      belonging to

and
22

^
|||| ε≤−ffr

22
^

|||| E≤fC

f
^

Minimize
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2
^^
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Regularized Iterative Solution
Transform Domain

Spatial Domain

( )[ ] ( )[ ] kr
T

l1k FIFCBCIBF
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Oriented 
High Pass 
Operator

R8 R1 R2

R3

R4R5R6

R7

Cell Burst
• All Information in a Block is Lost
Considerable Discontinuity between 

• Burst and Neighboring Blocks
• Replacement of DC Value from 
Neighboring Blocks (α trim mean)
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Compressed at .8 bpp 8% error, DC only preserved

Restored 2D Laplacian
Restored oriented smoothness
operator
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Burst errors Modified initial image (a=7) Restored image
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Intra Concealment

Described algorithm Algorithm by Schwab
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Intra Concealment

Described algorithm Algorithm by Schwab



Image and Video Recovery
© A.K. Katsaggelos,  Northwestern University

97

Inter Concealment

average median new vector
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Discussion
prior knowledge: critical 
blind restoration: still a formidable 
problem
adaptivity (spatial, temporal, frequency, 
iteration) important
New applications are driving progress in 
the field
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