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Basic Premise for Superresolution
...scene scene scene

scene

scene

subpixel
shift

integer pixel
shift

If there exist subpixel shifts between
LR images,  SR reconstruction is possible

: reference LR image

camera

camera camera camera

video sequence

- Aliasing
- Subpixel information
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Need for Resolution Enhancement 

Preprocessor

OTA

CCD sensor

Common Imaging System

Environment
Original scene

Optical
Distortion

Aliasing Motion Blur Noise

Blurred, noisy,
aliased LR image



SR: How/Why does it work?

Frame fk Frame fk+1

Uncovered 
background
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Super-Resolution: Why Does It Work?

Super-Resolution
– Recover Frequency Information that Exceeds the Frequency 

Range of the Channel (determined by bit rate)
– How?

Aliasing embeds high-frequency information in the low-frequency 
coefficients
“Undoing” the aliasing recovers the high-frequencies

– Multiple Observations are Assumed
Closely spaced cameras
Small perturbations in time
Inherent motion in the scene
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Super resolution from video 
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One More Example

1 image 2 images

16 images

8 images4 imagesbilinear

Cortijo, Villena, Molina, Katsaggelos, “Bayesian superresolution of text image sequences from low-resolution observations”, 
Proc. IEEE 7th International Symposium on Signal Processing and Its Applications (ISSPA 2003), vol. I, pp. 421–424, 2003.
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Super resolution from still low resolution images 
(http://www.robots.ox.ac.uk/~improofs)

A sequence of 20 images of a laser-printed test pattern with  random motion 
captured using a monochrome CCD video camera. 
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Bicubic interpolationThe best of the 20 images

Super resolution 
image

When the images are registered into a 
common frame the pixel variations 

due to aliasing (under-sampling) are 
clearly visible. 
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Experimental Results

Bi-cubic interpolation
PNR=23.50 dB

Proposed algorithm
PSNR=25.75 dB
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Experimental Results

Bi-cubic interpolation
PSNR=30.05 dB

Proposed
PSNR=31.41dB
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HR and blurred LR observations
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Using
(a) 1
(b) 2
(c) 4
(d) 16
observations
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Learning based SR
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Demosaicking
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Landsat ETM+
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Four digital 
cameras (lowres)

Zooming in is not 
good enough

The equation looks ….

Math Eq. to
“extrapolate information”

Let’s say we can’t really 
appreciate it

You don’t really care about 
the equation



SR of Compressed Video System 

1. C.A. Segall, A.K. Katsaggelos, R. Molina, and J. Mateos, “Super-Resolution from Compressed Video,”
in Super-Resolution Imaging, S. Chaudhuri, editor, Kluwer Academic Publishers: Boston, MA, p. 211-242, 2001.

2. C. A. Segall, R. Molina, and A. K. Katsaggelos, " High Resolution Images from a Low-Resolution Compressed Video," 
IEEE Signal Processing Magazine, vol. 20, no. 3, pp.37-48, May 2003. 

3. C.A. Segall, A.K. Katsaggelos, R. Molina, and J. Mateos, “Bayesian Resolution Enhancement of Compressed Video,”
IEEE Trans. on Image Processing, vol. 13, no. 7, pp. 898-911, July 2004.
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Problem Goal

Recover High-Resolution 
Image from Sequence of 
Low-Resolution and 
Compressed 
Observations
Exploit Information in the 
Compressed Bit-Stream

– Transform Coefficients
– Motion Vectors
– Compression Modes

Attenuate Compression 
Artifacts

Original Image Sequence

Down-SampleDown-Sample

Encoder

Decoder

V
ideo 

C
odec

Observed Image Sequence
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System Model

Original Image Sequence
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Encoder
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Input-Output Relations
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Solution Approach

Formulation
– Joint Estimate of Sub-

Pixel Shifts and High 
Resolution Image

– Given
Knowledge of Encoder 
Structure (Block-based)
Decoded Image
Motion Vectors
Mode (e.g., inter, intra, 
skip)
Quantization Intervals
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Modeling the Observations

Bayes Rule
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Independence between decoded intensities and motion vectors
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bitstream
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Quantization Noise Models 

Fidelity Constraint
– Compression Assumed 

Primary Noise Process
– Quantization Noise

Introduced in DCT 
Domain
Independent/Scalar 
Procedure

– Spatial Representation

Inverse DCT: Linear
Noise: Independent
Tends to Gaussian 
distribution in spatial 
domain

Fidelity to 
Decoded Image

Covariance 
Matrix for 

Quantization 
Noise in 
Frame l

Sub-sampling 
Matrix

Shift Between 
Frame k and l 
(Represented 
as a Matrix)

Decoded 
Image( )
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Example Covariance 

T
DCTDCTDCTQ TKTK =

Quantizer in DCT Domain
Covariance Matrix in Spatial Domain
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Example Covariance 

Quantizer in DCT Domain
Covariance Matrix in Spatial Domain

T
DCTDCTDCTQ TKTK =
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Compression Motion Vector Models

LR motion vectors (used for compression)
“similar” to HR motion!
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Fidelity Constraint
– Motion Vectors

Noisy observation of 
actual displacements
Compression Low ⇒
Motion Vectors and 
Actual Shifts are 
Similar
Significant Image 
Features ⇒ Motion 
Vectors and Actual 
Shifts are Similar

Compression Motion Vector Models

TF and TB: Previous and future frames in the reconstruction

Fidelity to Transmitted 
Motion Vectors
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Intensity Prior Models

Images Generally Smooth
Model Encoder Structure

– Ignores Correlations Across 
Block Boundaries

– Leads to Well Known 
“Blocking Artifact”

– Blocking Errors Rarely 
Present in Original Data

A Priori Intensity 
Information

High Pass 
Operator (to 

Penalize High 
Frequency 

Information)

Difference 
Operator Across 
Block Boundaries 
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Uncorrelated 

Boundary Pixels)
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Motion Prior Models

A Priori Information
– Model of Displacements 

in Original Image Frame
Displacements are 
generally correlated

– Other Examples
Displacements are 
usually continuous 
across block boundaries
Displacements are 
usually correlated 
between Frames

A Priori Motion 
Information
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TF and TB: Previous and future frames in the reconstruction

Optimization Problem 

Taking logarithms, the maximization 
becomes the minimization

( )( ) ( )( )

( )( ) ( )( )

}2
,33

2
22

2
11

,
Pred1

,,
Pred

,
1
,,,

minarg

ˆ,ˆ

klkk

kklllMV

TFk

TBkl

T
kkll

kklllQ

TFk

TBkl

T
kkll

k

CC

CC
k

dQAHfQfQ

fdAHyKfdAHy

fdAHyKfdAHy

Df

Df

λλλ +++

−−+

−
⎩
⎨
⎧

−

=

−
+

−=

−
+

−=

∑

∑



35

)D ,f |V )p(Y,D ,p(f max arg

f
q

k
q

kf

1q
k

k

ˆˆ

ˆ =+

 ,f Given q
k̂

D) ,f |V D)p(Y, ,fp( max argD q
k

q
kD

q ˆˆˆ =

1. Estimate Sub-Pixel Shifts
1. Assume Hi-Res Image 

Known
2. Gradient Descent 

Algorithm
2. Estimate Hi-Res Image

1. Utilize Computed Sub-
Pixel Shifts

2. Gradient Descent 
Algorithm

3. Refine Sub-Pixel Estimate
1. Use Recent Hi-Res 

Estimate
4. Goto 2 until Termination

One Solution Approach

Cyclic-Coordinate Descent

 ,D Given q
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Solution Approach

Sub-pixel shifts are found by

α: relaxation parameter, chosen
to ensure convergence
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Solution Approach

High-resolution estimates are found by
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Simulations

Original Image Sequence

Sub-sample 
by Factor of 2 
Sub-sample 

by Factor of 2 

Decimated Compress
MPEG-4
1Mbps

TM5 RC

Compress
MPEG-4
1Mbps

TM5 RC

Decoded
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Simulations

Compress
MPEG-4
1Mbps

TM5 RC

Compress
MPEG-4
1Mbps

TM5 RC

Decoded

Bi-Linear Interpolation
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Simulations

Compress
MPEG-4
1Mbps

TM5 RC

Compress
MPEG-4
1Mbps

TM5 RC

Decoded

Proposed Algorithm
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Simulations

Bi-Linear Interpolation Proposed Algorithm
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Experimantal Results



Examples
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Bilinear Interpolation One SR frame from the sequence 

Simulations

L. Alvarez, R. Molina and A.K. Katsaggelos  “Multichannel reconstruction of video sequences from low-resolution and compressed observations”,
Proc.  8th Iberoamerican Congress on Pattern Recognition (CIARP’2003), 2003.
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SR for Compression

Simulation conditions
– Post-processor 

implements upsampling
operation

Super-resolution 
method

-- or --
Adaptive filter

– Pre-processor 
transforms original 
image data

Account for linear filter
Account for encoder 
structure
Full knowledge of post-
processor

Original Image Sequence

Linear FilterLinear Filter

Encoder

Decoder

V
ideo 

C
odec

Pre-ProcessorPre-Processor

Upsampling/SRUpsampling/SR
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Simulations

Simulations
– Rolling tomatoes 

sequence
– Code at lower resolution 

and upsample at the 
decoder

– Upsample procedure is 
fixed

– Results
Original sequence 
encoded at native 1080p

– PSNR 38dB
– Bitrate 2.5Mbps

Sequence encoded at 
720p and upsampled at 
the decoder

– PSNR 38dB
– Bitrate 1.7Mbps

Rate savings of ~30%.
Segall, A., M. Elad, P. Milanfar, R. Webb and C. Fogg, “Improved High-Definition Video by Encoding at an 

Intermediate Resolution," Proc SPIE Conf on VCIP, Jan. 18-22, 2004, San Jose, CA 
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Simulations

Portion of one frame from the rolling tomatoes sequence.  Notice the 
severity of the blocking errors.

Sequence coded at native 1080p Sequence coded at intermediate resolution
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RD Performance

A. K. Katsaggelos, R. Molina, and J. Mateos, SR for Images and Video, Claypool, 2006 (forthcoming)
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SR for Compression
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Closed Loop System

Simulation conditions
– Post-processor 

implements upsampling
operation

Super-resolution 
method

-- or --
Adaptive filter

– Pre-processor 
transforms original 
image data

Account for linear filter
Account for encoder 
structure
Full knowledge of post-
processor
Transmits filter 
parameters in the bit-
stream

Original Image Sequence

Linear FilterLinear Filter

Encoder

Decoder

V
ideo 

C
odec

Pre-ProcessorPre-Processor

Upsampling/SRUpsampling/SR

Bitstream
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Pre-for-Post: Simulations

Comparison of the open-loop and closed-loop system for the rolling 
tomatoes sequence.  A closed-loop system allows the pre-processor to 
signal information to the post-processor. 
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Summary / Conclusions

A plethora of traditional applications
A paradigm was introduced that intimately 
couples SR and compression
Offers a plethora of new possibilities
Might represent a new direction in developing a 
new video compression standard!
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