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Basic Premise for Superresolution
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Need for Resolution Enhancement

Common Imaging System

= Blurred, noisy,
Environment aliased LR image

Original scene

Optical Aliasing Motion Blur
Distortion



SR: How/Why does it work?

B Uncovered
background




Super-Resolution: Why Does It Work?
S

e Super-Resolution

- Recover Frequency Information that Exceeds the Frequency
Range of the Channel (determined by bit rate)
- How?
e Aliasing embeds high-frequency information in the low-frequency
coefficients
e “Undoing” the aliasing recovers the high-frequencies
— Multiple Observations are Assumed
e Closely spaced cameras
e Small perturbations in time
e Inherent motion in the scene



Super resolution from video

ns

observ

Interpolation
SR method




One More Example

bilinear 1 image 2 images 4 images
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Cortijo, Villena, Molina, Katsaggelos, “Bayesian superresolution of text image sequences from low-resolution observations”,
Proc. IEEE 7th International Symposium on Signal Processing and Its Applications (ISSPA 2003), vol. I, pp. 421-424, 2003.

16 images




till low resolution images
r[Iwww.robots.ox.ac.uk/~improofs)

sequence of 20 images of a laser-printed test pattern with random motion
captured using a monochrome CCD video camera.



e best of the 20 images Bicubic interpolation

the images are registered into a Super resolution
mon frame the pixel variations image
to aliasing (under-sampling) are
clearly visible.
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Experimental Results

Bi-cubic interpolation
PNR=23.50 dB

Proposed algorithm
PSNR=25.75 dB



Experimental Results

Bi-cubic interpolation Proposed
PSNR=30.05 dB PSNR=31.41dB




HR and blurred LR observations




Using
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d) 16
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Learning based SR
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Demosaicking

Filter layer

FLL

Sensor drray




Landsat ETM+
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Four digital
- Cameras (loyres)
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Zooming in s not
good enough

equation

Math Eqr_td 's say we can't really
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SR of Compressed Video

System
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Problem Goal
«_ 0

e Recover High-Resolution Original Image Sequence
Image from Sequence of
Low-Resolution and

Compressed
Observations IS gl

e Exploit Information in the v

Compressed Bit-Stream v

— Transform Coefficients Encoder Q=

— Motion Vectors ! =)
Decoder | © ©

— Compression Modes

e Attenuate Compression
Artifacts

Observed Image Sequence

20



System Model

21

Original Image Sequence
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Mapping Frame k to |
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Input-Output Relations
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COMPRESSION
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CLR, € HR,
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Solution Approach
-

¢ Formulatlon High-Resolution

— Joint Estimate of Sub- Estinate  pigh. Decoded Low-

. : . / ~ Resolution
Pixel Shifts and High Resolution Observations
Resolution Image f,Digre = Image

- Given arg maxpfk’DTBTF |YBTF’ TBTF

e Knowledge of Encoder

Structure (Block-based)
e Decoded Image .
_ Estimate of

e Motion Vectors _Pi
| | S‘g’h!?t'xel Transmitted
° I\/Ikc_)de (e.g., inter, intra, "™ Sub-Pixel  Motion Vectors
skip) Shifts

e Quantization Intervals
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Modeling the Observations
-

Bayes Rule

p(Y,V[f,.D)p(f,.D)

f.,D|IY,V)=
p(k | ) o(Y V)

Independence between decoded intensities and motion vectors

p(Y’Vlfk7D): p(Ylfk’D)p(VlY’fk’D)

=1 p(y, If,.D)p(v,|Y,f,,D)
| T T Provided by

bitstream
Independence between original intensities and motion vectors

p(f,.D) = p(f, )n(D)

Quantization noise
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Quantization Noise Models
e

Normal

p(y, I, d;, ) e eXp{

Zig HY| - AHC(dI,k)kaZ

Uniform

const  if \T[(AHC(d,,k)fk-Mc,(yr,vl)](i)\s@ Vi

0 otherwise

ch(Y| |fk’ dl,k) —{
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Quantization Noise Models
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p(YTB,TF | fk J DTB,TF )OC

Fidelity to
Decoded Image
Decoded

Image

H eXp{_ % (Y| - AHC(dI,k )fk )T

K AHC
Covariance / K
Matrix for Sub-sampling ghitt Between
Quantization Matrix Frame k and |
Noise in (Represented
Frame | as a Matrix)

e Fidelity Constraint

— Compression Assumed
Primary Noise Process
Quantization Noise

e Introduced in DCT
Domain

e Independent/Scalar
Procedure

— Spatial Representation
T
Nopatial = TDCTnDCT

e Inverse DCT: Linear
e Noise: Independent

e Tends to Gaussian
distribution in spatial
domain



Example Covariance
-

K

_ T
_ TDCT K DCT TDCT

Q

Covariance Matrix in Spatial Domain
28 Quantizer in DCT Domain



Example Covariance

KQ = TDCT K DCT TI;CT

o _ Covariance Matrix in Spatial Domain
Quantizer in DCT Domain
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Compression Motion Vector Models
S

LR motion vectors (used for compression)
“similar” to HR motion!

const if [v, (4)-[Axd, ]G] <A

o dir Y= i
P (Vi [T des ¥1) { 0 otherwise

2 2
p (Vl,k | e dl,kl y)) o« eXp{'% Auvl,k —d|,|<H }
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Compression Motion Vector Models
-

Fidelity to Transmitted e Fidelity Constraint
Motion Vectors ]
— Motion Vectors
e Noisy observation of
p(VTB,TF | YTB,TF ’fk , DTB,TF )OC actual displacements
1 ( e ( )f )T e Compression Low =
HeXp{__ —AHC(d Motion Vectors and
Actual Shifts are
|v|v | ylpre“I —AHC Similar
e Significant Image
Features = Motion
Vectors and Actual
Covariance Matrix  sub-sampling Shift Between Shifts are Similar
for Displaced Frame Matrix Frame k and |
Difference+ in (Represented
Frame | as a Matrix)
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TF and TB: Previous and future frames in the reconstruction



Intensity Prior Models
-

e Images Generally Smooth

e Model Encoder Structure

— Ignores Correlations Across
Block Boundaries

— Leads to Well Known
“Blocking Artifact”

— Blocking Errors Rarely
Present in Original Data

T . " c S

A Priori Intensity

Information High-
/ Resolution
Image

p(fk)oC
oxp| (40, + 2 QuAHL )}

High Pass

Difference
Operator (to Operator Across
Penalize High Block Boundaries
Frequency (to Penalize
Information) Uncorrelated

Boundary Pixels)
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Motion Prior Models
«_ 7

e A Priori Information
— Model of Displacements
In Original Image Frame
e Displacements are
generally correlated
— Other Examples

e Displacements are
usually continuous
across block boundaries

e Displacements are
usually correlated
between Frames

p(d, ) = const

A Priori Motion
Information

High Pass
Operator (to
Penalize High
Frequency
Information)




Optimization Problem
S

Taking logarithms, the maximization
becomes the minimization

f, D=
k+TF
rginl S0, ~AHO(, A Kl - AHC(a )
. _TB
b Sy - AHC(, )T Ko (v - AHC(d,, ), )

I=k-TB

v AJQU + B|QAHE + Qs |
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TF and TB: Previous and future frames in the reconstruction



One Solution Approach
-

Cyclic-Coordinate Descent
Given ﬁf,
D? = arg max , p(f¢, D)p(Y, V|f¢, D)

Given DY,
£q+1 _
f " =

arg max, p(f,, D*)p(Y,V|f,, D%
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1. Estimate Sub-Pixel Shifts

1. Assume Hi-Res Image
Known

2. Gradient Descent
Algorithm

Estimate Hi-Res Image

1. Utilize Computed Sub-
Pixel Shifts

2. Gradient Descent
Algorithm

Refine Sub-Pixel Estimate

1. Use Recent Hi-Res
Estimate

Goto 2 until Termination

w

>



Solution Approach
-

e Sub-pixel shifts are found by

ars = gn _aék{ac(d,mk I, (AH)T{KQ{, (y, - AHc(ar ), )

od}',
Cmm - AHc(dr, i, )l 4QiQ.dr, }
Numerically

a. relaxation parameter, chosen
36 toensure convergence



Solution Approach
.- ]

e High-resolution estimates are found by

k+TF

f_kn+1 :fkn —af{ Z o (dl’k)(AH)T{KQl’I (y, —AHC(d,,k)fk”)

I=k-TB

PR (y::’red _ AHC(d.,k )fkn )} AQI Q! + 4,(Q,AH) (Q,AH)f }
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Simulations
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Original Image Sequence

Compress
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1Mbps
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Simulations
« 0007

Compress

MPEG-4
1Mbps

TM5 RC

Bi-Linear Interpolation
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Simulations
« 0007

Compress
MPEG-4
1Mbps
TM5 RC

Proposed Algorithm
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Simulations
« 0007

Bi-Linear Interpolation Proposed Algorithm
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Experimantal Results
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Examples




Simulations

Bilinear Interpolation One SR frame from the sequence

44 L. Alvarez, R. Molina and A.K. Katsaggelos “Multichannel reconstruction of video sequences from low-resolution and compressed observations”,
Proc. 8th Iberoamerican Congress on Pattern Recognition (CIARP2003), 2003.



SR for Compression
-

e Simulation conditions

— Post-processor
Implements upsampling
operation

e Super-resolution
method
- of -

e Adaptive filter
— Pre-processor
transforms original
Image data
e Account for linear filter

e Account for encoder
structure

e Full knowledge of post-
45 processor

Original Image Sequence

l—,

Linear Filter
Pre-Processor I
p—
Encoder | 0O <
! 8 2
D
Decoder| © ©

Upsampling/SR .....................




Simulations

e Simulations

Rolling tomatoes
sequence

Code at lower resolution
and upsample at the
decoder

Upsample procedure is
fixed

Results
e Original sequence
encoded at native 1080p
- PSNR 38dB
- Bitrate 2.5Mbps
e Sequence encoded at
720p and upsampled at
the decoder
- PSNR 38dB
- Bitrate 1.7Mbps

e Rate savings of ~30%.

46 Segall, A., M. Elad, P. Milanfar, R. Webb and C. Fogg, “Improved High-Definition Video by Encoding at an
Intermediate Resolution," Proc SPIE Conf on VCIP, Jan. 18-22, 2004, San Jose, CA



Simulations
« 0007

Sequence coded at native 1080p Sequence coded at intermediate resolution

Portion of one frame from the rolling tomatoes sequence. Notice the
47 severity of the blocking errors.




RD Performance
«__ 7
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48 A. K. Katsaggelos, R. Molina, and J. Mateos, SR for Images and Video, Claypool, 2006 (forthcoming)



SR for Compression
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Closed Loop System
S

e Simulation conditions

— Post-processor
implements upsampling
operation

e Super-resolution
method
- Or -

e Adaptive filter

— Pre-processor
transforms original
Image data

e Account for linear filter

e Account for encoder
structure

e Full knowledge of post-
processor

e Transmits filter _
50 parameters in the bit-
stream

Original Image Sequence

l—,

Linear Filter
Pre-Processor I
— :
Encoder | 0 <
! 8 2 ! it
® = Bitstream
Decoder | © © :

Upsampling/SR .....................




Pre-for-Post: Simulations
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Comparison of the open-loop and closed-loop system for the rolling
tomatoes sequence. A closed-loop system allows the pre-processor to
signal information to the post-processor.
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Summary / Conclusions

52

e A plethora of traditional applications

e A paradigm was introduced that intimately
couples SR and compression

e Offers a plethora of new possibilities

e Might represent a new direction in developing a
new video compression standard!
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