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Introduction and Motivation

Human-computer interaction (HCI):
Today: Part of everyday life, but far from natural!

Future: Pervasive and ubiquitous computing.

Today

Desktop Telephony Pervasive

Future
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Introduction and Motivation – Cont.

Next generation of HCI will require perceptual intelligence:
What is the environment?
Who is in the environment?
Who is speaking?
What is being said?
What is the state of the speaker?
How can the computer speak back?
How can the activity be summarized, indexed, and retrieved?

Operation on basis of traditional audio-only information:
Lacks robustness to noise.
Lags human performance significantly, even in ideal environments.

Joint audio + visual processing can help bridge the usability gap!



4 4

Introduction and Motivation – Cont.

Vision of the HCI of the future?

A famous exchange (HAL’s “premature”
audio-visual speech processing capability):

HAL: I knew that you and David were planning 
to disconnect me, and I’m afraid that’s 
something I cannot allow to happen.
Dave: Where the hell did you get that idea, 
HAL?
HAL: Dave – although you took very thorough 
precautions in the pod against my hearing you, 
I could see your lips move.

(From HAL’s Legacy, David G. Stork, ed., MIT Press: 
Cambridge, MA, 1997).
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Why audio-visual speech?
Human speech production is bimodal:

Mouth cavity is part of vocal tract. 
Lips, teeth, tongue, chin, and lower 
face muscles play part in speech 
production and are visible.
Various parts of the vocal tract play 
different role in the production of the 
basic speech units. E.g., lips for 
bilabial phone set  B=/p/,/b/,/m/.

Schematic representation of speech production
(J.L. Flanagan, Speech Analysis, Synthesis, and 
Perception, 2nd ed., Springer-Verlag, New York, 1972.)
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Why audio-visual speech?

Human speech perception is bimodal:

We lip-read in noisy environments to 
improve intelligibility.

E.g., human speech perception 
experiment by Summerfield (1979): 
Noisy word recognition at low SNR.

We integrate audio and visual stimuli, 
as demonstrated by the McGurk effect
(McGurk and McDonald, 1976).

Audio /ba/ + Visual /ga/ -> AV /da/
Visual speech cues can dominate 
conflicting audio.

Audio: My bab pope me pu brive.
Visual/AV: My dad taught me to drive.

Hearing impaired people lip-read.
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McGurk Effect

MA KA MA (audio) + KA (video)= NA
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Why audio-visual speech? – Cont.

Although the visual speech information content is less than audio …
Phonemes: Distinct speech units that convey linguistic information; about 47 in English.
Visemes: Visually distinguishable classes of phonemes: 6-20.

… the visual channel provides important complementary information to audio:
Consonant confusions in audio are due to same manner of articulation, in visual due to same place
of articulation. 
Thus, e.g., /t/,/p/ confusions drop by 76%, /n/,/m/ by 66%, compared to audio (Potamianos et al., ‘01).
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Why audio-visual speech? – Cont.

Visemes:

Commonly agreed viseme categories:

Confusion sets in the auditory modality 
are usually distinguishable in the visual 
modality (i.e., /P/, /t/, and /k/).
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Why audio-visual speech – Cont.

Audio and visual speech observations are 
correlated: Thus, for example, one can recover 
part of the one channel from using information from 
the other.

Correlation between original and 
estimated features; upper: visual from 
audio; lower: audio from visual (Jiang 
et al.,2003).
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Correlation between audio and visual                
features (Goecke et al., 2002).
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Why audio-visual speech? – Cont.

Traditional audio only systems not satisfactory in unconstrained environments:
Lack of robustness to noise (far-field microphones, multiple subjects, etc.).
Purely acoustic compensation techniques are inadequate.
Performance not comparable to human capabilities (recognition, synthesis, etc.).

Visual capture of information is very feasible and widespread:
Cameras are inexpensive, miniature, etc.
Cameras in PDAs, cell-phones, toys, etc.
Video data storage is becoming cheaper.
Large amounts of audio-visual content are available (broadcast video, etc.).

Increasing computing power allows real-time capture and processing of video.
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Audio-visual speech used in HCI

Audio-visual automatic speech recognition (AV-ASR):
Utilizes both audio and visual signal inputs from the video of a speaker’s face to 
obtain the transcript of the spoken utterance. 
AV-ASR system performance should be better than traditional audio-only ASR.
Issues: Audio, visual feature extraction, audio-visual integration.

Audio-Visual
ASR

Audio input

Visual input

Acoustic features

Visual features

Audio-visual 
integration SPOKEN TEXT

Audio-Only
ASR
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Audio-visual speech used in HCI

Audio-visual speech synthesis (AV-TTS):
Given text, create a talking head (audio + visual TTS).
Should be more natural and intelligible 
than audio-only TTS.

Audio-visual speaker recognition (identification/verification):

Audio-visual speaker localization:
Etc…

Audio output

Visual output

TEXT +

Audio

Authenticate 
or  recognize        
speaker

+ +

Visual (labial) Face

Who is
talking?



14 14

Acoustic signal analysis and ASR

Two components are of interest in automatic speech recognition 
(ASR) i.e., the speech-to-text process:

A. Speech signal analysis.
B. Speech signal statistical modeling and recognition.

Speech signal

Acoustic features

TEXT

Recognition

Vocal tract

Analysis
(acoustic front end)

Production

Low information
rate (50-2000 bps)

High information
rate (30-50 Kbps) Low information

rate (50-200 bps)
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Speech signal analysis, feature 
extraction

Various approaches exist. Most prevalent ones are low-level, signal based 

(LPC, MFCC, PLP, etc.). Here, we discuss two popular techniques, based on:

The linear predictive coding (LPC) model of speech.

Filter-bank analysis, in particular mel-frequency cepstral coefficients (MFCC).

We also discuss:

Signal pre-processing.

Feature post-processing.
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Signal Pre-processing.

Processing is applied in short-duration 
“frames”, typically of a 25 msec length, 
with some overlap (typically 10 ms). 
Signal in frame is {sn, n=1,…,N}.

The following are applied on frame:
DC signal removal.
Signal pre-emphasis:

Hamming windowing:
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Linear prediction (LP) speech analysis

Vocal tract is modeled as an all-pole filter, driven by 
an excitation term:

LP analysis aims to minimize the prediction error: 
and thus is a MSE problem. 
Efficiently solved using Durbin’s algorithm for 
inverting the pxp autocorrelation equation system. 
Results in LPC (linear prediction coefficients):
Superior ASR performance is achieved using the 
LPCC (LP cepstral coefficients):

Typically, M =12, p =14. 
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Filter-bank speech analysis

Computes speech energy in a number of bands, after suitable band-pass filtering. 
Due to human perception, bands are non-uniform. Typically, triangular filters are 
used, with uniform spacing along the mel frequency scale:

Mel-frequency cepstral coefficients (MFCC) are obtained by a discrete cosine 
transform of the log filterbank amplitudes mj .
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Feature post-processing

Weighting of the LPC coefficients (also known as “cep-liftering”):

Augmentation of the feature vector (LPCC or MFCC) by log of signal 
energy:

Normalization by subtracting Emax-1 for energy, mean for other features.
Inclusion of “dynamic” information, by augmenting features with first and 
second derivatives, or “learning” dynamic features as a dimensionality-
reduction projection of a concatenation of features from consecutive, 
neighboring frames.
Feature transformations (rotation) to other spaces for better statistical 
modeling (de-correlation).
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Automatic Speech Recognition (ASR)

Statistical approach to ASR uses maximum a-
posteriori (MAP) estimation to obtain optimal 
word sequence:

“Hidden” words are partially observed
through sequence of acoustic features.

Two models are needed:
Prior probability of word sequences 
(language model).
Generative model of acoustic features from 
word sequence (acoustic model).

321        ωωωUttered word 
sequence

Produced 
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sequence 21 ˆ           ˆ ωω

O

]|Pr[maxargˆ Oωω
ω

=

]Pr[]|Pr[]|Pr[ ωωOOω ∝

AM LM



21 21

Hidden Markov models (HMMs)

HMMs are popular generative models for 
time series of observations. They are 
characterized by following:
States:C={1,2,…,N}. Denote qt state at t.
Initial state distribution:

State transition probabilities:

State conditional observation probability:

Thus, HMM parameters are: b]a,π,θ [=

1π
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HMMs - Cont.

The class-conditional observation probabilities b can be:
Discrete, in case that the observation vectors are drawn from a finite set. This can be 
achieved by vector quantization of the feature space (codebook of size K):

Continuous, typically considered as a mixture of multi-dimensional Gaussians:

where the d-dimensional Gaussians are

and the mixture weights satisfy:

Parameters are then:

},...,1,,...,1  , ]|Pr[)({ KkNjjqkb tktj ===≈== vob

NjNcb jmjmt

M

m
jmtj

j

,...,1    , ),;()(
1

==∑
=

Uμoo

⎥⎦
⎤

⎢⎣
⎡ −−−= )()(

2
1exp

)2(
1),;( 1-T μoUμo

U
Uμo

ddN
π

jjm

M

m
jm MmNjcc

j

,...,1   ,,...,1   ,0   , 1
1

==≥=∑
=

},...,1  ,,...,1  ,,,{ jjmjmjm MmNjc === Uμb



23 23

HMMs - Cont.

The three basic HMM problems. Recall:
Observation sequence of duration T: O=[o1,o2,…,oT].
State sequence: q=[q1,q2,…,qT].
Model parameters: 

Problem 1: Given O and model parameters, how do we compute             ?
“Evaluation” of model fit to the data.
Solved by the “forward” or “backward” procedure.

Problem 2: Given O & model parameters, what is the optimal state seq. q?
Uncovers the “hidden” states – used in recognition!
Solved by the Viterbi algorithm.

Problem 3: What are the model parameters that optimize             ?
This is the maximum-likelihood parameter estimation problem.
Solved by the forward-backward algorithm (or Baum-Welch), an instance of the 
expectation-maximization (EM) procedure.

)|Pr( θO
b]a,π,θ [=

)|Pr( θO
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HMMs - Cont.

Brute force solution to these problems is exponential on T , i.e., O(TN T).
Luckily, dynamic programming solutions exist!
They utilize partial computations on the 2-D lattice of TxN states in time.
Complexity of resulting algorithms is O(N 2T).
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Acoustic modeling using HMMs

Phonemes: Basic units that describe how speech conveys linguistic information.
In statistical based ASR (especially large-vocabulary), they constitute the basic HMM units.
Basic grouping of the phonemes used in American English (ARPAbet upper case version).

JH (judge)
CH (church)

L  (let)
R (rent)

PHONEMES
VOWELS CONSONANTS

FRONT MID BACK
IY (beat)
IH (bit)
EH (bet)
AE (bat)

ER (bird)
AX (about)
AH (but)

UW (boot)
UH (book)
OW (boat)
AA (Bob) 
AO (bought)

DIPHTHONGS
AY (buy)
OY  (boy)
AW (down)
EY (bait)

SEMIVOWELS

LIQUIDS GLIDES

NASALS

STOPS

VOICED UNVOICED

W (wit)
Y  (you)

M (met)
N   (net)
NX (sing)

B (bet)
D (debt)
G (get)

P (pet)
T (tan)
K (kid)

WISHPER

AFFRICATES
HH (hat)

VOICED UNVOICED

FRICATIVES

V (vase)
DH (that)
Z (zoo)
ZH (azure)

F (fat)
TH (thing)
S (sin)
SH (shore)
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Acoustic modeling using HMMs – Cont.

Words are modeled as phone 
sequences (phonetic dictionary).
Phones are typically modeled as 3-
state left-2-right HMMs.
To improve performance, states have 
context-dependent observation pdfs. 
Contexts are clusters of left and right 
phonetic sequences (1-5 in length), 
obtained by a decision tree.
Training and recognition is then 
performed utilizing the HMM 
algorithms discussed previously 
(problems 2 and 3), on a network of 
HMM states, composed by words, 
phones, and sub-phonetic units.

Example of 0-1 connected recognition 
using context-independent units.

THE =  /DH IY/;/DH AX/;
THEME= /TH IY M/;

1 2 3
IN OUT

DH_1 DH_2 DH_3

HMM for phone DH

Z IH R OW

OW

W AH N

SIL

0
1

End-Of-
Sentence

Sentence
Start
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Language modeling (LM)

Aims to provide prior probability for 
word sequences, thus reducing the 
“uncertainty” (perplexity) in ASR.
Assumes causal model:

Approximation using finite “history”:

Two problems:
History classification: n-grams.
Probability estimation: ML with 
parameter “smoothing” on held-out 
data (deleted interpolation, back-off).
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ASR robustness / adaptation

Typically, ASR performance degrades in noisy 
environments, and mismatched conditions and 
unseen speakers in training (lack of robustness).

Performance can be improved by noise 
compensation, or in case available sample of 
the new condition / subject, by adaptation.

Three categories of techniques:
Signal space, feature space, model based.
E.g.: Spectral subtraction, Wiener filtering, vocal 
tract length normalization (VTLN), noise 
adaptive prototypes, parallel model combination 
(PMC), maximum-a-posteriori adaptation 
(MAP), maximum likelihood linear regression 
(MLLR), speaker-adaptive training (SAT), 
feature-space MLLR (FMLLR), etc.

These techniques are moderately only successful. 
Lack of robustness remains an issue and motivates 
the use of the visual modality in ASR!

Signal
space

Feature
space

Model
space

Clean
Train

Noisy
Test
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Visual signal analysis of human speech

Main questions:
A. Where is the talking face in the video?
B. How to extract the speech informative section of it?
C. What visual features to extract?
D. How valuable are they for recognizing human speech?
E. How do video degradations affect them?

Visual 
features

Region-of
-interest

Face and facial
feature tracking

ASR
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Face and facial feature tracking.

Main question: Is there a face present 
in the video, and if so, where? Need:

Face detection.
Head pose estimation.
Facial feature localization (mouth 
corners). See for example MPEG-4
facial activity parameters (FAPs).
Lip/face shape (contour).

Successful face and facial feature tracking 
is a prerequisite for incorporating audio-
visual speech in HCI.
In this section, we discuss:

Appearance based face detection.
Shape face estimation.
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Appearance-based face detection

TWO APPROACHES:

Non-statistical:
Use image processing techniques to 
detect presence of typical face 
characteristics (mouth edges, nostrils, 
eyes, nose), e.g.: Low-pass filtering, 
edge detection, morphological filtering, 
etc. Obtain candidate regions of such 
features.
Score candidate regions based on their 
relative location and orientation.
Improve robustness by using additional 
information based on skin-tone and 
motion in color videos. From: Graf, Cosatto, and Potamianos, 1998
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Appearance-based face detection – Cont.

Standard statistical approach – steps:

View face detection as a 2-class
classification problem (into faces/
non-faces).
Decide on a “face template” (e.g., 

11x11 pixel rectangle).
Devise a trainable scheme to “score”/classify
candidates into the 2 classes.
Search image using a pyramidal scheme (over locations, scales, orientations) to 
obtain set of face candidates and score them to detect any faces.
Can speed-up search by eliminating face candidates in terms of skin-tone
(based on color information on the R,G,B or transformed space), or location/scale 
(in the case of a video sequence). Use thresholds or statistics.

end

start

ratio
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Appearance-based face detection – Cont.

Statistical face models (for face “vector” x).
Fisher discriminant detector (Senior, 1999).

Also known as linear discriminant analysis – LDA
One-dimensional projection of 121-dimensional vector x:  yF = P1 x 121 x
Achieves best discrimination (separation) between the two classes of interest in the 
projected space; P is trainable on basis of annotated (face/non-face) data vectors.

Distance from face space (DFFS).
Obtain a principal components analysis (PCA) of the training set.
Resulting projection matrix Pdx121 achieves best information “compression”.
Projected vectors y = Pdx121 x have a

DFFS score: 

Combination of two can score a face 

candidate vector:
Example PCA eigenvectors

thDFFS    
F FaceNon

Facey −<
>

−

TDFFS P y x  −=
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Appearance-based face detection – Cont.

Additional statistical face models:
Gaussian mixture classifier (GMM):

Vector y is obtained by a dimensionality reduction projection of x (PCA, or other 
image compression transform), y = P x .

Two GMMs are used to model:

GMM means/variances/weights are estimated by the EM algorithm.

Vector x is scored by likelihood ratio:

Artificial neural network classifier 
(ANN – Rowley et al., 1998).

Support vector machine
classifier (SVM – Osuna et al., 1997).
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Appearance-based face detection

Face detection experiments:
Results on 4 in-house IBM databases, recorded in:

STUDIO: Uniform background, lighting, pose.
OFFICE: Varying background and lighting.
AUTOMOBILES: Extreme lighting and head pose 
change.
BROADCAST NEWS: Digitized broadcast videos, 
varying head-pose, background, lighting.

Face detection accuracy:
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LDA/PCA
DCT/GMM
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SI: Speaker-indep.
MS:Multi-speaker
SA: Speaker-adapted
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Appearance-based face detection – Cont.

From faces to facial features:
Facial features are required for visual speech applications!
Feature detection is similar to face detection:

Create individual facial feature templates. Feature vectors 
can be scored using trained Fisher, DFFS, GMMs, ANN, etc.
Limited search, due to prior  feature location information.

Examples of detected facial features: Remains challenging 
under varying lighting and head pose variations. STUDIO

AUTOMOBILE
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Face shape & lip contour extraction

Four popular methods for lip contour extraction:

Snakes (Kass, Witkin, Terzopoulos, 1988):
A snake is an open or closed elastic curve defined by control points.
An energy function of the control points and the image / or edge map values is 
iteratively optimized.
Correct snake initialization is crucial.

Deformable templates (Yuille, Cohen, Hallinan, 1989):
A template is a geometric model, described by few parameters.
Minimizing a cost function (which is the sum of curve and surface integrals) matches 
the template to the lips.
Typically two or more parabolas are used as the template.
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Face shape & lip contour extraction – Cont.

Active shape models (Cootes, Taylor, Cooper, Graham, 1995):

A point distribution model of the lip shape is built.
First, a set of images with annotated (marked) lip contours is given.
A PCA based model of the vector of the lip contour point coordinates is obtained.
Lip tracking is based on minimizing a distance between the lip model and the given 
image.

From: Luettin, Thacker, and Beet, 1996.
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Face shape & lip contour extraction – Cont.

Active appearance models (AAMs- Cootes, Walker, Taylor, 2000):
In addition to shape, it also considers a model of face texture (appearance).
A PCA based model of the R,G,B pixel values of normalized face regions is obtained.
Thus, a face is encoded by means of its mean shape, appearance, and the PCA 
coefficients of both.
Facial shape (and face!) detection becomes an optimization problem where the joint 
shape/appearance parameters are iteratively obtained, by minimizing a residual error.

AAM  tracking on IBM “studio” data (credit: I. Matthews) AAM  modes trained on IBM data
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Region-of-interest for visual speech

Region-of-interest (ROI):
Assumed to contain “all” visual speech information.
Key to appearance based visual features, described in III.C.
Can be used to limit search of “expensive” shape tracking.
Typically is a rectangle containing the mouth, but could be
circle, lip profiles, etc.

ROI extraction:
Smooth mouth center, size, orientation estimates 
using median or Kalman filter.
Extract size and intensity normalized (e.g., by histogram 
equalization) mouth ROI.
Including parts of “beard region” is beneficial to ASR.
ROI “quality” is function of the face tracking accuracy.

Best for ASR



41 41

Visual speech features

What are the right visual features to extract from the ROI?
Three types of / approaches to feature extraction:
Lip- and face-contour (shape) based:

Height, width, area of mouth. 
Moments, Fourier descriptors. 
Mouth template parameters.

Video pixel (appearance) based features:
Lip contours do not capture oral cavity information!
Use compressed representation of mouth ROI instead.
E.g.: DCT, PCA,  DWT, whole ROI.

Joint shape and appearance features:
Active appearance models.
Active shape models.
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Shape based visual features

Geometric lip contour features: Assume that lip contour 
(points) are available  and are properly normalized using an affine 
transform (to compensate for head pose and speaker specifics). 
Feature extraction:
Contour is denoted by
Lip-interior membership function:
Some “sensible” lip-features are then:

Height:

Width:

Area:

Perimeter:
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Shape based visual features – Cont.

Lip contour Fourier descriptors: 
Contour parametrization (encoding):

Obtain Fourier series expansion of {x(t)} and {y(t)}:

Use as visual features:
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Shape based visual features – Cont.

Lip image moments:
Create 2D image f from contours:  

Moment functions:

Note: Appropriate normalization of moment functions 
makes them invariant to affine image transforms.
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Shape based visual features – Cont.

Lip model based features: Various lip models can be used for lip 
contour tracking. The resulting lip contour points can be used to derive 
geometric features, or alternatively, in the case of:
Snakes :

Use distances or other function of snake control points as features.
Deformable templates :

Use the parabola parameters.
Active shape models :

Use the PCA coefficients corresponding to the lip shape as features.
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Appearance based visual features

Main idea: Lip contours fail to capture speech information from the oral 
cavity (tongue, teeth visibility, etc.). Instead, use a compressed representation
of the mouth region-of-interest (ROI) as features.
2D or 3D ROI vector consists of d=MNK pixels, lexicographically ordered in:

Seek dimensionality
reduction transform:
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Appearance based visual features – Cont.

Image compression transforms can be used for feature extraction:
Discrete cosine transform (DCT).
Discrete wavelet transform (DWT); e.g., Daubechies wavelet of order 3.
In both cases, place a small number of transform coefficients into the feature 
vector yt .These can be located on predefined lattices (see Fig.), or estimated 
on basis of largest training data energy.
Both DCT & DWT are separable and fast when M,N,K are powers of 2!

x

y

S0 S1 S2 S3 S4 x

y

T0 T1 T2 T3 T4 T5 x

y

C0 C1 C2 C3 C4 C5 x

y

H0 H1 H2 H3 H4 H5
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Appearance based visual features – Cont.

Principal component analysis (PCA) is also a good candidate for feature 
selection. Achieves optimal compression, but requires expensive training, 
and does not allow fast implementation.

STEPS: 

Compute training data covariance / correlation matrix R (of d x d size).

Diagonalize R:

Select  D<<d largest eigenvalues, of Λ located in  j1 ,…,jD positions.

Then,                                    ,  where aj are the eigenvectors of R.

Final features are:  

TAAR Λ=

],...,[ 1 DjjPCA aaP =

tPCAt xP  y  =
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Appearance based visual features – Cont.

Note: Image transforms provide a simple feature extraction mechanism. However, they aim 
at compression, not classification of the resulting vectors among competing (speech) 
classes!

Linear discriminant analysis (LDA) is more appropriate for the latter!

Assumes a set of classes C chosen a-priori. Training data xl are labeled:

Seeks matrix PLDA so that projected training data are well-separated into C. 

Formally, it maximizes:                                         wrt P, where the data within/ between

class scatter is:

Then, it solves the generalized eigen-value/vector problem: 

Features are:                      where   contains D e-vecs of F.tLDAt xP  y  =

)det(det( TT PPS)/PPS WB

Clc ∈)(

T)()()( ))()(Pr(   ,)Pr( mmmmcc
Cc

cc
B

c

Cc
W −−=Σ= ∑∑

∈∈

SS 

Λ=  FSFS WB

],...,[ 1 DjjLDA ffP =
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Appearance based visual features – Cont.

Note: Typical statistical modeling of speech feature vectors assumes that 

their elements are uncorrelated (per-class).  In practice, this does not hold!

A data rotation based on the maximum likelihood linear transform
(MLLT) can remedy this (Gopinath, 1998).

MLLT maximizes the observation data likelihood in the original feature space, 

under the assumption of diagonal data covariance in the transformed space.

Desired rotation matrix is obtained by solving:

})))(diag(det()det({maxarg 2/T)( cL

Cc

cL
MLLT

−

∈
∏ Σ= PPPP P
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Joint shape and appearance features

Main idea: Combine the “best” of the two types of features.
Two approaches for doing so:

Concatenate shape + appearance features into new vectors, e.g.:
Active shape models + PCA of image intensity values along stripes perpendicular to lip 
contour (Dupont and Luettin, 2000).
Snake parameters combined with PCA of color image ROI (Chiou and Hwang, 1997).

Or, build a joint model of shape and appearance by PCA on the 
concatenated vector of shape and appearance features (Matthews, 1998).

Active appearance models
(AAMs – Matthews, 1998): 

Use two stages of PCA.
Three steps (next).
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Joint shape and appearance features –
AAMs - Cont.

STEP 1: Shape modeling.
Shape vector of landmark point coordinates.

Shape PCA (68 to 11 dims): 
STEP 2: Appearance modeling.

Normalized color appearance vector.

Appearance PCA (6k to 186):
STEP 3: Joint modeling.

Concatenated features.
PCA on joint vector (197 to 86 dims):

Feature extraction: AAM tracking + 3 PCAs give y(A,S).

T
2211

)( ],,...,,,,[ KK
S yxyxyx=x

T
111

)( ],,,...,,,[ MNMNMN
A bgrbgr=x

)()()( SS(S)S yPxx +=

)()()( AA(A)A yPxx +=

TT)(T)(),( ],[ SASA yWyx =

),(),(,),( SASAS)(ASA yPxx +=
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Visual feature post-processing

Visual feature post-processing is desirable before presenting vectors for ASR:
Normalization (e.g., cepstral mean subtraction-CMS): Reduces variability due to illumination.
Incorporation of dynamic information (e.g., LDA on concatenation of neighboring features).
Up-sampling to the audio stream feature rate (30 or 60 to 100 Hz).



54 54

Visual feature post-processing - Cont.

Static to dynamic features:
LDA/MLLT on concatenation of neighboring features.
Augmenting of visual features by their first and second time-derivatives.

Visual feature up-sampling to 100 Hz by linear interpolation. Simplifies 
visual only model training for ASR and audio-visual fusion.
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Audio-Visual Fusion

 FUSION METHOD

PRE-MAPPING 
(EARLY INTEGRATION)

MIDST-MAPPING  
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(LATE INTEGRATION)
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The IBM system visual front end

Face tracking: 2-level statistical detection of faces and facial features; mouth 
location estimates are smoothed over time.
ROI extraction: Enlarged ROI contains “beard region”; normalized for head pose 
and illumination variations. ROI size is 64 x 64 pixels.
Static features: 100-dimensional compressed representation of ROI using DCT.
Post-processing: Intra-frame + inter frame LDA/MLLT for better within and across 
frame discrimination and statistical modeling; CMS and up-sampling.
Final features: 41-dimensional at 100 Hz.
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Visual feature comparisons

Let’s now address these issues:
How much (if any?) visual speech information is captured by the above features?
How do these features compare to each other?

Visual-only ASR performance provides answers to these questions.
Single-subject, connected-digit ASR experiments.
Modeling: Whole-word HMMs, unknown string length.

Feature comparisons (Potamianos et al., 1998):

Outer lip
features

%, Word 
accuracy

h , w 55.8

+ a 61.9
+ p 64.7

+ FD2-5 73.4

Lip contour
features

%, Word
accuracy

Outer-only 73.4
Inner-only 64.0

2 contours 83.9

Feature
type

%, Word
accuracy

Lip-contour based 83.9
Appearance (LDA) 97.0

• Thus, appearance based modeling is preferable!



58 58

Visual feature comparisons – Cont.

Performance of various 
appearance based 
features (LDA, DWT, PCA) 
vs. static feature size 
(Potamianos et al, 1998).
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Visual feature comparisons – Cont.

Appearance (DCT) vs. joint (AAM) features:
Speaker-independent, LVCSR corpus.
Word error rate, after “rescoring” of lattices, that have been generated 
based on noisy audio features (Neti et al., 2000).

Thus, using the particular implementation, DCT features were the best.

VI-feats + Derivs + LDA/MLLT

DCT 61.80 58.14
DWT n/a 58.79

PCA n/a 58.86

AAM 65.90 64.00
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Video degradation effects

Frame rate decimation:
Limit of acceptable video rate for 
automatic speechreading is 15 Hz.

Video noise:
Robustness to noise only in a 
matched training/testing scenario.

10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

FIELD RATE [Hz]

W
O

R
D

 A
C

C
U

R
A

C
Y

 [%
]

10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

SNR [dB]

W
O

R
D

 A
C

C
U

R
A

C
Y

 [%
]

            

            

            

SNR = 10 dB

SNR = 30 dB

SNR = 60 dB

MATCHED
TRAINING-TESTING

MISMATCHED
TRAINING-TESTING

Both cases: DWT visual features – connected digits recognition (Potamianos et al., 1998).
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Video degradation effects – Cont.

Unconstrained visual environments remain challenging, as they pose 
difficulties to robust visual feature extraction.
EXAMPLE: Recall our three “increasingly-difficult” domains: Studio, office, and 
automobile environments (multiple-speakers, connected digits).

Face detection accuracy decreases:                     Word error rate increases:
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A Visual Front End Example

Nose
Tracking

Mouth 
Extraction

GVF Snake and
Parabola Fitting

Video
Sequence FAPsFAP

Extraction

FAPs

MPEG-4 decoder

Bernstein audio-visual database 

474 sentences (average length ~ 4 seconds)

vocabulary size around 1000 words

video (320x240 - frame size) time-synchronized with speech
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Outer Lip Modeling

Original mouth images

GVFs

Fitted parabolas

Final results
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Outer Lip FAP Extraction

Original image frames, and MPEG-4 facial animations driven by the extracted FAPs
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PCA FAP Analysis

# of principal 
components

Percentage of 
variance

6 99.7%
2 93%
1 81%

Mean lip shape: the middle 
images; lip shapes obtained by 
varying the projection weights 
corresponding to the first  
eigenvector (upper) and second 
eigenvector (bottom) by +2 
standard deviations (left) and –2 
standard deviations (right)

Distribution of the variance among eigenvectors
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Eigen-Lips

Ensemble contained 1460 images of dim 80x45 (3600 pixels)
20 Eigen-lips - 90.92% Statistical variance
40 Eigen-lips - 95.52% Statistical variance
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Compression Examples

What do all these marks mean? (f0046)

Do you like the length of this skirt? (f0338)

Compressed 20:

Compressed 40:

Typical Spatial Quality
35.08dB using 20 Coef.
37.56dB using 40 Coef.

Compressed 20:

Compressed 40:

Worse Spatial Quality
28.42dB using 20 Coef.
30.69dB using 40 Coef.
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Segmentation Example
He’s not the same as he used to be (f0386)
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Summary of AV-ASR experiments

Acoustic Feature 
Extraction (MFCCs)

Single -stream
(Multi-stream)

HMMs

90 Hz
SNR

Video (30 fps)

Audio (16kHz)

90 Hz30 Hz

Word
sequence

Dimensionality
Reduction (PCA)

Visual Feature
Interpolation

a
to

v
to

Visual Feature
Extraction (FAPs)

- acoustic observation vector at time t

- visual observation vector at time t

PCA - Principal Component Analysis
MFCC - Mel-frequency Cepstral Coefficients
HMM - Hidden Markov Models

a
to
v
to

Aleksic and Katsaggelos, 2002

Bernstein audio-visual database 

474 sentences (average length ~ 4 seconds)

vocabulary size around 1000 words

video (320x240 - frame size) time-synchronized 

with speech
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Summary of AV-ASR experiments - Cont.
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Aleksic and Katsaggelos, 2002

Single-stream HMMs
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Summary of AV-ASR experiments - Cont.
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Recognition results for audio-only and audio-visual multi-stream system

Audio-only         
AV multi-stream K=6
AV multi-stream K=2
AV multi-stream K=1

Multi-stream HMMs
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Summary of AV-ASR experiments - Cont.

Audio-only and
audio-visual systems

performance in clean audio conditions

WER
[%]

Audio-stream
Weight

Audio-only system 22.19

K=1 21.48

K=2 21.34

K=6 24.47

K=1 18.21 0.75

K=2 18.07 0.7

K=6 18.16 0.85

Audio-visual 
system

(Multi-stream 
HMM method)

Audio-visual 
system

(Single-stream 
HMM method)
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Summary of AV-ASR experiments (IBM)

Summary of AV-ASR results 
for connected-digit recog.

Multi-speaker training/testing.
50 subjects, 10 hrs of data.
Additive noise at various SNRs.
Two training/testing scenarios: 

Matched (same noise in 
training and testing).
Mismatched (trained in 
clean, tested in noisy).

10 dB effective SNR gain for 
both, using product HMM.
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Summary of AV-ASR experiments - Cont.

Summary of AV-ASR 
results for large-vocabulary 
continuous speech(LVCSR).
Speaker-independent 
training (239 subj.) testing 
(25 subj.).
40 hrs of data.
10,400-word vocabulary.
3-gram LM.
Additive noise at various 
SNRs.
Matched training/testing.
8 dB effective SNR gain
using hybrid fusion.
Product HMM did not help. 0 5 10 15 20
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Audio-Visual Person Verification 
and Identification

Biometrics-Automated methods for recognizing a person based 
on a physiological or behavioral characteristic
Measured Features

Face, fingerprints, handwriting, hand geometry
Iris, retina, voice
Ear, vein (unique vein patterns on the back of one’s hand)

High security person recognition technologies for many 
applications

Network security, secure electronic banking, financial 
transactions
Local, state, federal government, law enforcement

Considerably more accurate than current methods like 
passwords, PINs (can be used by somebody else)
Biometrics approaches link to a particular individual, nothing to 
carry or remember
It is becoming inexpensive and socially acceptable



76 76

Audio-Visual Speaker Recognition 
Using FAPs as Visual Features

FAPs 
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Speaker Recognition
Two important problems are speaker verification (authentication) and 
identification
Speaker verification:

Verify claimed identity based on observations O
A two-class problem; True claimant vs. impostor (general population).
Based on:

More important problem in practice, most applications require identity claim 
verification

Speaker identification:
Obtain speaker identity within a closed set of known subjects C based on 
observations O

Text-dependent (TD) vs. text-independent (TI) approaches
TD – speech used for testing and training is constrained to be the same
TI – speech used for testing is unconstrained

thresh
 

 
Reject   
Accept   

all

claim

<

>

)|(Pr
)|(Pr

O
O

c
c

)|(Prmaxargˆ Occ Cc  ∈=

Threshold-a priori determined
Call – world model 
Cclaim – claimed client model

ĉ

.   ),|( Pr Ccc ∈O
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Verification Performance Measures
Two error measures are False Acceptance (FA) and False Rejection (FR)

FA – an impostor, claiming the identity of a client, is accepted
FR – a client, claiming his true identity, is rejected

Trade-off between the two errors is controlled by the threshold
Threshold chosen a-priori on an evaluation set to meet certain FA and FR 
requirements
Minimum FA, minimum FR, or FA=FR  

Equal Error Rate (EER)
Obtained after a full authentication experiment  by choosing the threshold for 
which FA=FR
Is an unrealistic measure

Receiver Operator Curve (ROC) 
Plots either FA or FR against the other or against the verification threshold

%100%100 ×=×=
C

C
I

I RA FRFA

I - impostor claims
IA - impostors accepted
C - client claims 
CR - clients rejected
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Sample Audio-Visual Person 
Recognition Systems
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Sample Audio-Visual Person 
Recognition Systems
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Audio-Visual Database

Carnegie Melon Audio-Visual Database
10 speakers (7 male, 3 female) uttering the digit sequence 
“234567” ten times

In AV experiments audio (Mel Frequency Cepstral Coefficients-
MFCC) and video (FAPs) features were appended to form joint 
AV feature vectors
The AV feature vectors were used in all AV experiments
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Tests performed under different acoustic noise conditions (SNRs 0-20 
dB), and for clean speech

Audio-Visual Speaker Recognition 
Using FAPs as Visual Features

Person Identification Error [%]
SNR [dB] Audio only Audio-visual

clean 5.13 5.13

20 19.51 7.69

10 38.03 10.26

0 53.10 12.82

SNR [dB] Audio only [%] Audio-visual [%]

FA FR EER FA FR EER
clean 2.85 25.64 2.56 0 12.82 1.71

20 2.85 41.03 3.99 2.85 20.51 2.28
10 0 53.85 4.99 0 23.08 2.71
0 5.7 61.54 8.26 2.85 28.21 3.13

Person Verification Results
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Automatic Facial Expression 
Recognition

Track visual features
Extract outer lip and eyebrow FAPs
Train HMMs for each of six basic expressions

Spatio-temporal approach 
Takes temporal evolution of facial expressions into account 
Provides improved recognition results

Recognize expressions using HMMs
Use extracted FAPs (outer lip, eyebrow) for HMM training
Use multi-stream HMMs with stream weights for outer lip 
and eyebrow FAPs to improve recognition performance
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Audio-visual emotion estimation

Automatic detection of human emotional state is important in HCI.
Emotional state reflects in both facial expression and voice.
Facial expressions are universal and represent happiness, anger, sadness, fear, 
surprise, and disgust/dislike.
Facial action coding system (FACS) codes facial expressions as sets of action units (AU).
Various features can be used for facial emotion recognition, such as optical flow, ASMs.
Audio features can be pitch contour statistics, energy, etc.
Example accuracies (Chen et al., 1998):

Audio-only:   77.8%
Visual-only:   69.4%
Audio-visual: 97.2%

Two examples of facial expressions
(left-2-right): Anger, dislike, fear 
(from Cohen et al., 2003).
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Six Basic Facial Expressions

Anger                              Disgust                      Fear

Joy                               Sadness                       Surprise
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Expression Recognition Results
FAPS

EXP
Eyebrow 
(E) [%]

Outer Lip 
(OL) [%]

E and OL 
[%]

E and OL 
[%] (Multi-

stream)

OL stream 
weight

Anger 52.9 64.7 64.7 70.6

97.3

88.2

98.4

96.2

100

93.66

0.7

Disgust 75.7 91.9 97.3 0.7

Fear 5.9 82.4 76.5 0.8

Joy 84.1 95.2 98.4 0.6

Sadness 17.0 81.1 81.1 0.7

Surprise 90.6 96.9 100 0.6

Total 62.68 87.32 88.73

Anger Disgust Fear Joy Sadness Surprise Corr
[%]

Anger 24 4 0 0 6 0 70.6
Disgust 0 36 1 0 0 0 97.3

Fear 0 0 30 2 1 1 88.2
Joy 0 0 0 61 0 1 98.4

Sadness 2 0 0 0 51 0 96.2
Surprise 0 0 0 0 0 64 100

Confusion matrix
for Multi-stream system
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Bimodal enhancement of audio

Main idea:
Recall that the audio and visual features 
are correlated. E.g., for 60-dim audio 
features (oAt) and 41-dim visual (oVt):
Thus, one can hope to exploit visual input 
to restore acoustic information from the 
video and the corrupted audio signal.

Enhancement can occur in the:
Signal space (based on LPC audio feats.).
Audio feature space (discussed here) 

Main techniques:
Linear (min. mean square error est.).
Non-linear (neural nets., CDCN).

Result: Better than audio-only methods.
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Linear bimodal audio enhancement.

Paradigm:
Training on noisy AV features

Seek linear transform P, s.t:

Can estimate P by minimizing the mean square error (MSE) between
Problem separates per audio feature dimension (i=1,…,dA):

Solved by dA systems of Yule-Walker equatiions:
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Linear bimodal audio enhancement – Cont.

Examples of audio feature estimation using bimodal enhancement (additive speech 
babble noise at 4 dB SNR): Not perfect, but better than noisy features, and helps ASR!
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Linear bimodal audio enhancement – Cont..

Linear enhancement and ASR (digits task – automobile noise):
Audio-based enhancement is inferior to bimodal one.
For mismatched HMMs at low SNR, AV-enhanced features outperform AV-HiLDA feature fusion.
After HMM retraining, HiLDA becomes superior.
Linear enhancement creates within-class feature correlation - MLLT can help.
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Audio-visual speaker detection

Applications/problems:
Audio-visual speaker tracking in 3D-space (e.g., meeting 
rooms). Signals are available from microphone arrays and video 
cameras. Three approaches:
Audio-guided active camera (Wang and Brandstein, 1999).
Vision-guided microphone arrays (Bub, Hunke, and Waibel, 1995).
Joint audio-visual tracking (Zotkin, Duraiswami, and Davis, 2002).
Audio-visual synchrony in video: Which (if any) face in the video 
corresponds to the audio track? Useful in broadcast video.
Joint audio-visual speech activity can be quantified by mutual 
information of the audio and visual observations (Nock, Iyengar, and 
Neti, 2000):

Speech intent detection: User pose, proximity, and visual speech 
activity indicate speaker intent for HCI. Visual channel improves 
robustness compared to audio-only system (De Cuetos and Neti, 
2000).
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(Nock, Iyengar, and Neti, 2000).
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Audio-visual mining of multimedia data.

Main idea: Utilize both audio and visual channels to represent, search, and retrieve 
content from video corpora (news, etc.). 
Example from Adams et al., 2003: Retrieve videos with rocket launch content using 
audio, visual, or bimodal cues.

-Rocket Launch (AV)
-Explosion (A)
-Rocket Object (V)
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Audio-Visual Speech Synthesis
Deals with 

the automatic generation of voice and facial animation from 
arbitrary text, or
the automatic generation of facial animation from arbitrary speech

Applications include human communication and perception, 
tools for the hearing impaired, spoken and multimodal agent-
based user interfaces (newscasters, helpers on desktops, 
messenger with emails, personal friends), aid in education, and 
synthetic actors in entertainment
A view of the face can improve intelligibility of both natural and 
synthetic speech significantly, especially under degraded 
acoustic conditions
Moreover, facial expressions can signal emotion, add emphasis 
to the speech and support the interaction in a dialogue situation 
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Direct Parameterization

Parke’s Descendants
Baldi (Cohen and 

Massaro, 1993, UCSC)
Finnish talking head 

(Olives et al 1999)
Kattis, Holger, August 

(Beskow, KTH 1995)
Eisert (2000)

Candide
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Muscular and Physiological Models

Pseudo-muscular models: direct 
parameterization models that use the 
human facial muscle structure for 
modeling deformations  
The study of the natural anatomical 
limitations of the human face reduces 
the space of allowable configurations
Muscles are modeled (as, e.g., linear 
contractors) with one end affixed to the 
bone structure of the skull and the other 
end attached to the skin
More detailed physiological models have 
also been developed by modeling the 
skin with three spring-mass layers

Water’s descendants
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GRETA (S. Pasquariello, C. Pelachaud, 2001)

Realization of a Simple Facial Animation 
Engine
core of an MPEG-4 decoder and 
compliant with the “Simple Facial 
Animation Object Profile” of the standard
A 3D facial model consisting of 15,000 
polygons 
Able to generate the structure of a 3D 
model, animate it, and render it in real 
time
Uses a pseudo-muscular approach to 
emulate the behavior of the face 
Includes particular features, such as 
wrinkles and furrow, to enhance realism

Internal anatomic components
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GRETA: Able to express emotions
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Data sources for talking heads

How is the initial 3D mesh obtained
Static methods

3D photogrammetry
Laser-based scanning
Internal static methods

Dynamic methods
Video-based methods
Systems for optical tracking
Non-optical internal dynamic methods (ultrasound, 
EPG, x-ray micro-beam, MRI, cineradiography)
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Examples 

Four camera measurement setup and subject 
with reflexive markers (Beskow 2003)

EMA coils glued to the tongue of the 
Subject (Beskow 2003)

Gathering fleshpoint positions
Using a photogrammetric method
(Bailly 2001)
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Modeling of Internal Articulators

M. Cohen, J Beskow, D. Massaro, “Recent Developments in
Facial animation: An Inside View”, Proc. Int. Conf. Auditory-Visual 
Speech Proc., AVSP’98, pp. 201-206, Terrigal, Australia, 1998.

• visual speech synthesis should be 
driven by detailed studies of how humans 
produce speech
• highly realistic palate, teeth, and tongue 
models using 3D ultrasound data and 
electropalatography (EPG)
• describe correct articulation for 
pedagogical  purposes (e.g., provide 
visible speech targets for the hearing 
impaired)
• should speech production be 
multimodal, as is speech perception?
• use of MRI and uptrasound data for 
modeling the tongue

Transparent talking head

100 electrodes detect contact between
Tongue and palate at 100 times per sec
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Building internal shape models

Speaker-specific tongue model
Constrained by a generic model (adaptive grid)

Generic model of the jaw and teeth…

G. Bailly
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