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Introduction and Motivation

O Human-computer interaction (HCI):
Today: Part of everyday life, but far from natural!

Future: Pervasive and ubiquitous computing.
@Q@

Desktop

Telephony

Today



Introduction and Motivation — cont.

O Next generation of HCI will require perceptual intelligence:
What is the environment?
Who is in the environment?
Who is speaking?
What is being said?
What is the state of the speaker?
How can the computer speak back? k
How can the activity be summarized, indexed, and retrieved?

O Operation on basis of traditional audio-only information:
Lacks robustness to noise.

Lags human performance significantly, even in ideal environments.

O Joint audio + visual processing can help bridge the usability gap!



Introduction and Motivation — cont.

O Vision of the HCI of the future?

2 A famous exchange (HAL's “premature”
audio-visual speech processing capability):

HAL: | knew that you and David were planning
to disconnect me, and I'm afraid that's
something | cannot allow to happen.

Dave: Where the hell did you get that idea,
HAL?

HAL: Dave — although you took very thorough
precautions in the pod against my hearing you,
| could see your lips move.

(From HAL 5 Legacy, David G. Stork, ed., MIT Press:
Cambridge, MA, 1997).



Why audio-visual speech?

O Human speech production is bimodal: MOSE

Mouth cavity is part of vocal tract. NASAL 1)) )
Lips, teeth, tongue, chin, and lower l

face muscles play part in speech 4 aephing MOUTH 1))
production and are visible. 4 (| et | e
Various parts of the vocal tract play voca g2 “TueE’

different role in the production of the ipinh i

basic speech units. E.g., lips for

bilabial phone set B=/p/,/b/,/ml/. —
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Schematic representation of speech production
(J.L. Flanagan, Speech Analysis, Synthesis, and
Perception, 2" ed., Springer-Verlag, New York, 1972.)




Why audio-visual speech?

O Human speech perception is bimodal:

We lip-read in noisy environments to
improve intelligibility.

» E.g., human speech perception
experiment by Summerfield (1979):
Noisy word recognition at low SNR.

We integrate audio and visual stimuli,
as demonstrated by the McGurk effect
(McGurk and McDonald, 1976).

» Audio /ba/ + Visual /ga/ -> AV /da/

» Visual speech cues can dominate
conflicting audio.
Audio: My bab pope me pu brive.

[

Word regognition

Visual/AV: My dad taught me to drive. =gt

Hearing impaired people lip-read.

H Audio only (A)

B A+4 mouth points
B A+lip region

O A+full face




McGurk Effect

MA (audio) + KA (video)= NA



Why audio-visual speech? -Cont.

o Although the visual speech information content is less than audio ...
Phonemes: Distinct speech units that convey linguistic information; about 47 in English.
Visemes: Visually distinguishable classes of phonemes: 6-20.

o ... the visual channel provides important complementary information to audio:

Consonant confusions in audio are due to same manner of articulation, in visual due to same place
of articulation.

Thus, e.g., /t/,/p/ confusions drop by 76%, /n/,/m/ by 66%, compared to audio (Potamianos et al., ‘01).

Place of articulation Manner of articulation
G : Glottal 'h/ AP : Approximant /r,w,y/
V :Velar g k/ LA: Lateral 1/
P : Palatal ¥/ N : Nasal /mym/
|| PA : Palatoalveolar /r, d3, [, t[,3/ || PL: Plosive Ibyd g kpt/
A Alveolar fd Ln,s, t,z/ F : Fricative frahgss"azpﬂsarj—!i-’l
D :Dental 6/ AF: Affricate ftf, dg /
L. : Labiodental v/
|| LV : Labial Velar /w/
B : Bilabial /by p/




Why audio-visual speech? _cCont.

Visemes:

o Commonly agreed viseme categories:

O Confusion sets in the auditory modality
are usually distinguishable in the visual
modality (i.e., /P/, It/, and /k/).

L]
L]
Y,0Y, YU, W IH, EY, EH, Ei

AA, AO
UH, ER,R  AH, AY, AW,
» ER, AE,AN, H_ OW, UW, AX,

S, Z




Why audio-visual speech-cCont.

1.0

O Audio and visual speech observations are

correlated: Thus, for example, one can recover

part of the one channel from using information from

the other.

AUDIO-VISUAL SPEECH
FEATURE CORRELATION -

Correlation between audio and visual
features (Goecke et al., 2002).
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Why audio-visual speech?-Cont.

O Traditional audio only systems not satisfactory in unconstrained environments:
Lack of robustness to noise (far-field microphones, multiple subjects, etc.).
Purely acoustic compensation techniques are inadequate.
Performance not comparable to human capabilities (recognition, synthesis, etc.).

O Visual capture of information is very feasible and widespread:
Cameras are inexpensive, miniature, etc.
Cameras in PDAs, cell-phones, toys, etc.
Video data storage is becoming cheaper.
Large amounts of audio-visual content are available (broadcast video, etc.).

O Increasing computing power allows real-time capture and processing of video.



Audio-visual speech used in HCI

o Audio-visual automatic speech recognition (AV-ASR):
Utilizes both audio and visual signal inputs from the video of a speaker’s face to
obtain the transcript of the spoken utterance.
AV-ASR system performance should be better than traditional audio-only ASR.

Issues: Audio, visual feature extraction, audio-visual integration.

Audio input Acoustic features

— Audio-Only
- T ASR

= L N

Audio-visual SPOKEN TEXT

) |

integration
=1 Audio-Visual

— ASR

Visual features

Visual input



Audio-visual speech used in HCI

Visual output

O Audio-visual speech synthesis (AV-TTS):
Given text, create a talking head (audio + visual TTS).
Should be more natural and intelligible
than audio-only TTS.

Audio output

O Audio-visual speaker recognition (identification/verification):

Authenticate
or recognize
speaker

Audio Visual (labial)
O Audio-visual speaker localization:

Who is

O Etc... :
talking?




Acoustic signal analysis and ASR

O Two components are of interest in automatic speech recognition
(ASR) i.e., the speech-to-text process:

Speech signal analysis.
Speech signal statistical modeling and recognition.

Speech signal

Vocal tract Acoustic features

T +TEXT
' R

: _ ecognition
Production Analysis

/ (acoustic front end)
High information , ,
Low information

Low Information rate (30-50 Kbps)
rate (50-2000 bps) rate (50-200 bps)
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-
)
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Speech signal analysis, feature
extraction

O Various approaches exist. Most prevalent ones are low-level, signal based
(LPC, MFCC, PLP, etc.). Here, we discuss two popular techniques, based on:
The linear predictive coding (LPC) model of speech.
Filter-bank analysis, in particular mel-frequency cepstral coefficients (MFCC).
O We also discuss:
Signal pre-processing.

Feature post-processing.



Signal Pre-processing.

O Processing is applied in short-duration
“frames”, typically of a 25 msec length, 25 msec

with some overlap (typically 10 ms).
Signal in frame is {s , n=1,...,N}. ' |

Analysis frames

10 N|
O The following are applied on frame: | L0 N |
DC signal removal. ' ’
Signal pre-emphasis:
r Frame
Sn _Sn _097 Sn—l k Frame

k+1

A

Hamming windowing:

s = {0.54—0.46 cos( 27 _1))}“”

Hamming Window
1+

\4



Linear prediction (LP) speech analysis

O Vocal tract is modeled as an all-pole filter, driven by
an excitation term;

p
s = Z as, . +Gu,
=1

O LP analysis aims to minimize the prediction error:
and thus is a MSE problem.

O Efficiently solved using Durbin’s algorithm for
inverting the pxp autocorrelation equation system.
Results in LPC (linear prediction coefficients).a,, a,,....,a

O Superior ASR performance is achieved using the
LPCC (LP cepstral coefficients):

c, =a, +Z;ckam_k; m=1...M<p
k=1

I’z

o Typically, M =12, p =14.



O

Filter-bank speech analysis

Computes speech energy in a number of bands, after suitable band-pass filtering.

Due to human perception, bands are non-uniform. Typically, triangular filters are
used, with uniform spacing along the mel frequency scale:

mel (f) = 2595 log,, (1+%

Mel-frequency cepstral coefficients (MFCC) are obtained by a discrete cosine
transform of the log filterbank amplitudes m; .

0= 2 S Z-0n]
P =2

a 1 I": 1 1 1 1 1 1
Q 0. 004 0.05 aga ai a1z Q.14 a.1g Q.18 a.z
Marmalized fequengy

N AN

m; m, mp

Ml 4= 1-12
T




Feature post-processing

O

Weighting of the LPC coefficients (also known as “cep-liftering”):

L . mn
¢ =|1+—=sin— |xc e.q., L =22).

Augmentation of the feature vector (LPCC or MFCC) by log of signal
energy: N
E=log) s:
n=1

Normalization by subtracting E,..-1 for energy, mean for other features.

Inclusion of “dynamic” information, by augmenting features with first and
second derivatives, or “learning” dynamic features as a dimensionality-
reduction projection of a concatenation of features from consecutive,
neighboring frames.

Feature transformations (rotation) to other spaces for better statistical
modeling (de-correlation).



Automatic Speech Recognition (ASR)

A Produced
® =arg max Prfm | O] speech signal
(0]

Statistical approach to ASR uses maximum a-  jttered word . O 0,
posteriori (MAP) estimation to obtain optimal sequence 1 2 3
word sequence: “” ”'H | I'“ ” ml“
“Hidden” words are partially observed
through sequence of acoustic features. Acoustic observation
Two models are needed: (feature) sequence O

Prior probability of word sequences

(Ianguage model). _ Recognized word A A
Generative model of acoustic features from sequence ) )
word sequence (acoustic model). 1 2

Prlm| O] o« Pr{O | o] Pr[om]
N




a

O

Hidden Markov models (HMMSs)

HMMs are popular generative models for
time series of observations. They are
characterized by following:

States:C={1,2,...,N}. Denote q, state at t.
Initial state distribution:

n={r, =Pr[g, =i], i=1..., N}
State transition probabilities:

a={a, =Prlg.. = jlq, =il i,j=1... N}

State conditional observation probability:
b = parametric representation of

1;(0,)=Prlo, |q, = jl, j=1..., N}

Thus, HMM parameters are: 0 =[m,a,b]

Hidden
states

bfo,)

Observed
features

O_Z
q1 :LQZ :LQS :21Q4 :41QS :41QB :4lQ7 :4

> time

Os

0;




HMMS - Cont.

The class-conditional observation probabilities b can be:

0 Discrete, in case that the observation vectors are drawn from a finite set. This can be
achieved by vector quantization of the feature space (codebook of size K):

b={b,(k)=Prlo, ~v, |q, = j], j=L...N.k=1..,K}

0  Continuous, typically (:A?nsidered as a mixture of multi-dimensional Gaussians:
b.(0,)= chmN(ot;ujm,Ujm) , j=1..,N
m=1

where the d-dimensional Gaussians are

1 i
N,(o;p,U) = - eXp{——(o—u)TUl(O—u)}
(27) ‘U‘ 2
M,
and the mixture weights satisfy: Y _c,, =1, ¢,, 20, j=1..,N, m=1..,M,
m=1

Parameters are then:  b={c,,.n,,,U,,, j=L..N, m=1..,M}



HMMS - Cont.

O The three basic HMM problems. Recall:
Observation sequence of duration T: O=[0, 0,,...,04].
State sequence: g=[d;,dy,---,07]-
Model parameters: 0 =[m,a,b]
O Problem 1: Given O and model parameters, how do we compute Pr(O|0)?
“Evaluation” of model fit to the data.
Solved by the “forward” or “backward” procedure.
O Problem 2: Given O & model parameters, what is the optimal state seq. q?
Uncovers the “hidden” states — used in recognition!
Solved by the Viterbi algorithm.
O Problem 3: What are the model parameters that optimize Pr(O|0)?
This is the maximume-likelihood parameter estimation problem.

Solved by the forward-backward algorithm (or Baum-Welch), an instance of the
expectation-maximization (EM) procedure.




HMMS - Cont.

Brute force solution to these problems is exponential on T , i.e., O(TN T).
Luckily, dynamic programming solutions exist!

They utilize partial computations on the 2-D lattice of TxN states in time.
Complexity of resulting algorithms is O(N 2T).

©C ©0 0O O
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AN\ \'lh AN\ \'lh

W Ve e
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Acoustic modeling using HMMSs

O Phonemes: Basic units that describe how speech conveys linguistic information.
O In statistical based ASR (especially large-vocabulary), they constitute the basic HMM units.
O Basic grouping of the phonemes used in American English (ARPAbet upper case version).

PHONEMES
VOWELS — / . CONSONANTS
‘/ \’\‘ HH (hat)

AY (buy)
1Y (beat) ER (bird) UW (boot) | OY (boy) M (met) JH (judge)
EH (bet) AH (but) OW (boat) | EY (bait) NX (SI g)

AE (bat) AA (Bab)
AO (bought)*> SEMIVOWELS

B (bet) P (pet)

- D (debt) T (tan) V (vase) F (fat)

G (get) K (kid) DH (that) TH (thing)
Z (zo0) S (sin)
ZH (azure) SH (shore)

L (let) W (wit)
R (rent) Y (you)



Acoustic modeling using HMMs — Cont.

Words are modeled as phone THE = /DH IY/;/DH AX/;
sequences (phonetic dictionary). THEME= /TH 1Y M/; IN

Phones are typically modeled as 3-
state left-2-right HMMs.

To improve performance, states have

context-dependent observation pdfs. HMM for phone DH
Contexts are clusters of left and right z IH R ow
phonetic sequences (1-5 in length), L aa g2 222 2
obtained by a decision tree.

ow

Training and recognition is then Sentence A % H O End-Of-
performed utilizing the HMM Start Sentence
algorithms discussed previously AR N ] ©
(problems 2 and 3), on a network of
HMM states, composed by words,
phones, and sub-phonetic units.

Example of 0-1 connected recognition
using context-independent units.

OouT

DH 1 DH 2 DH 3

A




Language modeling (LM)

Aims to provide prior probability for ch.l P T T cpe. e 3
word sequences, thus reducing the e * bR ‘

“uncertainty” (perplexity) in ASR.
Assumes causal model:

Prioy]1=] ] ,Prlo, | 0]
Approximation using finite “history”:

Priw, | @]~ Pro, | ®(o_,,...0_.,)]
=Pr[ve Voc|h_].

Pr. [olh.] @ (1-7.)

Two problems:
History classification: n-grams.

Probability estimation: ML with
parameter “smoothing” on held-out
data (deleted interpolation, back-off).




ASR robustness / adaptation

o Typically, ASR performance degrades in noisy
environments, and mismatched conditions and
unseen speakers in training (lack of robustness).

_ Performance can be improved by noise
Signal Feature  Model compensation, or in case available sample of
space space space the new condition / subject, by adaptation.

O Three categories of techniques:

E:I'IrZ?: W_' —>.6.6-¢ Signal space, feature space, model based.
' E.g.: Spectral subtraction, Wiener filtering, vocal
tract length normalization (VTLN), noise
W—» — 0 8O adaptive prototypes, parallel model combination
(PMC), maximum-a-posteriori adaptation
(MAP), maximum likelihood linear regression
(MLLR), speaker-adaptive training (SAT),
feature-space MLLR (FMLLR), etc.
= These technigues are moderately only successful.

Lack of robustness remains an issue and motivates
the use of the visual modality in ASR!

Noisy
Test



Visual signal analysis of human speech

O  Main questions:
Where is the talking face in the video?

How to extract the speech informative section of it?
What visual features to extract?

How valuable are they for recognizing human speech?
How do video degradations affect them?

Region-of
-interest

> ASR

Face and facial
feature tracking

Visual
features




Face and facial feature tracking.

O Main question: Is there a face present
in the video, and if so, where? Need:

Face detection.
Head pose estimation.

Facial feature localization (mouth
corners). See for example MPEG-4
facial activity parameters (FAPS).

Lip/face shape (contour).

O Successful face and facial feature tracking
IS a prerequisite for incorporating audio-
visual speech in HCI.

O In this section, we discuss:
Appearance based face detection.
Shape face estimation.
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Appearance-based face detection

TWO APPROACHES:

O Non-statistical:

Use image processing techniques to
detect presence of typical face
characteristics (mouth edges, nostrils,
eyes, nose), e.g.: Low-pass filtering,
edge detection, morphological filtering,
etc. Obtain candidate regions of such
features.

Score candidate regions based on their
relative location and orientation.

Improve robustness by using additional
information based on skin-tone and o :
motion in color videos. From: Graf, Cosatto, and Potamianos, 1998




Appearance-based face detection — Cont.

O Standard statistical approach — steps:

View face detection as a 2-class end * ﬂ g%
classification problem (into faces/ A -;, ¥ N
non-faces). v / 4
Decide on a “face template” (e.g., ratio *- __ i F

11x11 pixel rectangle).
Devise a trainable scheme to “score”/classify
candidates into the 2 classes.

Search image using a pyramidal scheme (over locations, scales, orientations) to
obtain set of face candidates and score them to detect any faces.

Can speed-up search by eliminating face candidates in terms of skin-tone
(based on color information on the R,G,B or transformed space), or location/scale
(in the case of a video sequence). Use thresholds or statistics.




Appearance-based face detection — Cont.

Statistical face models (for face “vector” x).

O Fisher discriminant detector (Senior, 1999).
Also known as linear discriminant analysis — LDA

One-dimensional projection of 121-dimensional vector x: Y =P;, 151 X

Achieves best discrimination (separation) between the two classes of interest in the
projected space; P is trainable on basis of annotated (face/non-face) data vectors.

O Distance from face space (DFFS).
Obtain a principal components analysis (PCA) of the training set.

Resulting projection matrix P, ,,; achieves best information “compression”.
Projected vectorsy = P ,,; X have a

DFFS score: DFFS=|x-y PTH
O Combination of two can score a face

. >
candidate vector: y,__ DFFS< T th

Example PCA eigenvectors



Appearance-based face detection — Cont.

Additional statistical face models:
O Gaussian mixture classifier (GMM):

Vector y is obtained by a dimensionality reduction projection of x (PCA, or other
image compression transform), y=Px.

Two GMMs are used to model:  Pr(y|c) = ZkKilwk'CN(y,mkyc,skic) , ce{f, f}
GMM means/variances/weights are estimated by the EM algorithm.
Vector x is scored by likelihood ratio: Pr(y | f)/Pr(y| f)
O Artificial neural network classifier
(ANN — Rowley et al., 1998).

= Support vector machine X ory
classifier (SVM — Osuna et al., 1997). —




Appearance-based face detection

Face detection experiments:

O Results on 4 in-house IBM databases, recorded in:
STUDIO: Uniform background, lighting, pose.
OFFICE: Varying background and lighting.

AUTOMOBILES: Extreme lighting and head pose
change.

BROADCAST NEWS: Digitized broadcast videos,
varying head-pose, background, lighting.

O Face detection accuracy:

H SI: Speaker-indep.
B MS:Multi-speaker
B SA: Speaker-adapted

B LDA/PCA
B DCT/GMM

STUDIO  OFFICE AUTO BN STUDIO OFFICE AUTO



Appearance-based face detection — Cont.

|

From faces to facial features:
O Facial features are required for visual speech applications!

O Feature detection is similar to face detection:

Create individual facial feature templates. Feature vectors
can be scored using trained Fisher, DFFS, GMMs, ANN, etc.

Limited search, due to prior feature location information.

O Examples of detected facial features: Remains challenging
under varying lighting and head pose variations. STUDIO

AUTOMOBILE



Face shape & lip contour extraction

Four popular methods for lip contour extraction:

O Snakes (Kass, Witkin, Terzopoulos, 1988):

A snake is an open or closed elastic curve defined by control points.

An energy function of the control points and the image / or edge map values is
iteratively optimized.

Correct snake initialization is crucial.

O Deformable templates (Yuille, Cohen, Hallinan, 1989):
A template is a geometric model, described by few parameters.

Minimizing a cost function (which is the sum of curve and surface integrals) matches
the template to the lips.

Typically two or more parabolas are used as the template.




Face shape & lip contour extraction - cont.

O Active shape models (Cootes, Taylor, Cooper, Graham, 1995):
A point distribution model of the lip shape is built.
First, a set of images with annotated (marked) lip contours is given.
A PCA based model of the vector of the lip contour point coordinates is obtained.

Lip tracking is based on minimizing a distance between the lip model and the given
Image Mode: 1

From: Luettin, Thacker, and Beet, 1996.



Face shape & lip contour extraction - cont.

O Active appearance models (AAMs- Cootes, Walker, Taylor, 2000):

In addition to shape, it also considers a model of face texture (appearance).
A PCA based model of the R,G,B pixel values of normalized face regions is obtained.

Thus, a face is encoded by means of its mean shape, appearance, and the PCA
coefficients of both.

Facial shape (and face!) detection becomes an optimization problem where the joint
shape/appearance parameters are iteratively obtained, by minimizing a residual error.

.

Mode: 1 Step: 0.4

AAM tracking on IBM “studio” data (credit: I. Matthews) ~ AAM modes trained on IBM data



Region-of-interest for visual speech

O Region-of-interest (ROI):
Assumed to contain “all” visual speech information.
Key to appearance based visual features, described in III.C.
Can be used to limit search of “expensive” shape tracking.
Typically is a rectangle containing the mouth, but could be
circle, lip profiles, etc.

O ROl extraction:
Smooth mouth center, size, orientation estimates
using median or Kalman filter.
Extract size and intensity normalized (e.g., by histogram
eqgualization) mouth ROI.
Including parts of “beard region” is beneficial to ASR.
ROI “quality” is function of the face tracking accuracy.

B4 x B4 80 x BO 96 x 96 112=x 112
| B — |
Best for ASR




Visual speech features

© 0

What are the right visual features to extract from the ROI7?

Three types of / approaches to feature -

Lip- and face-contour (shape) based:
Height, width, area of mouth.
Moments, Fourier descriptors.
Mouth template parameters.

FEATLRES [T
8 5 H 8

Video pixel (appearance) based features:
Lip contours do not capture oral cavity information!
Use compressed representation of mouth ROI instead

E.g.: DCT, PCA, DWT, whole ROI.

Active shape models. . SHAPE INFG
: EE !.q-_». | I
! __:x ’:f I‘ I- ’

Joint shape and appearance features:
Active appearance models.




Shape based visual features

o 0 o0 O

Geometric lip contour features: Assume that lip contour

(points) are available and are properly normalized using an affine
transform (to compensate for head pose and speaker specifics).

Feature extraction:
Contour is denoted by’ ={(x, y)}

Lip-interior membership function: { 1, if (x,y)e CUC,

interior
Some “sensible” lip-features are theh(X, ) = :
0, otherwise

Height:

Width: h:maxxzyf(x,y)

Area: W maxyzxf (x,»)
Perimeter?zzx ny (x, ) |
p:Zid[Cz” +] ., .

FEATLFES [1 | CMALTT |
I B B ]
H i o o =




Shape based visual features - Cont.

O Lip contour Fourier descriptorse = {(x(¢), y(¢)): ¢ [0, 7]}
Contour parametrization (encoding):

Obtain Fourier series expansion of {x(¢)} and {y(¢)}:

% 2 .2
x(1)=4,+),  A4,cos AL B, sin nTm
» 2nmt . 2nrt
y(t)=Co+ ), C,c0s=——+D,sin

Use as visual features: FDn — \/AZZ +B;2 4+ C;Z +D;2 , n>2 .




Shape based visual features - Cont.

O Lip image moments:
Create 2D image f from contours:

Moment functions: _ _
mpq :Zx’y (X_x)p(y_y)qf(‘x’y) 1 Where

x:ﬂ’ y:ﬂ’ /’lpq: xyxprf(x’y).
Hoo Hoo '

Note: Appropriate normalization of moment functions
makes them invariant to affine image transforms.



Shape based visual features - Cont.

O Lip model based features: Various lip models can be used for lip
contour tracking. The resulting lip contour points can be used to derive
geometric features, or alternatively, in the case of:

a Snakes :
Use distances or other function of snake control points as features.

0 Deformable templates :
Use the parabola parameters.

0 Active shape models :
Use the PCA coefficients corresponding to the lip shape as features.




Appearance based visual features

O Main idea: Lip contours fail to capture speech information from the oral
cavity (tongue, teeth visibility, etc.). Instead, use a compressed representation

of the mouth region-of-interest (ROI) as features.
O 2D or 3D ROl vector consists of d=MNK pixels, lexicographically ordered in:
X, « {V.(m,n,k):m —|MI[2|<m<m +|M/2],
n—|NI2|<n<n +|N/I2],
k—|KI12|<k<k +[K/I2]}.
O Seek dimensionality 1
reduction transform: f JR

y,=P with

t?

PcR”?, D<<d




Appearance based visual features - Cont.

O Image compression transforms can be used for feature extraction:
0 Discrete cosine transform (DCT).
0 Discrete wavelet transform (DWT); e.g., Daubechies wavelet of order 3.

" In both cases, place a small number of transform coefficients into the feature
vector y, .These can be located on predefined lattices (see Fig.), or estimated
on basis of largest training data energy.

= Both DCT & DWT are separable and fast when M,N,K are powers of 2!
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Appearance based visual features - Cont.

O Principal component analysis (PCA) is also a good candidate for feature
selection. Achieves optimal compression, but requires expensive training,
and does not allow fast implementation.

O STEPS:

Compute training data covariance / correlation matrix R (of d X d size).

_ , R=AAA"
Diagonalize R:

Select D<<d largest eigenvalues, of A located in j,,...,j, positions.

Then, P, = [ajl,..., ajD] , where @, are the eigenvectors of R.

Final features are: y, = PPCA X,




Appearance based visual features - Cont.

O Note: Image transforms provide a simple feature extraction mechanism. However, they aim
at compression, not classification of the resulting vectors among competing (speech)
classes!

O Linear discriminant analysis (LDA) is more appropriate for the latter!

Assumes a set of classes C chosen a-priori. Training data X, are labeled: c()eC

Seeks matrix P, ,, so that projected training data are well-separated into C.

Formally, it maximizes: det(PS ,P")/ det(PS,, P Jurt P, where the data within/ between
class scatter is: S, = Z Pr(c)Z(c), S, = Z Pr(c)(m' —m)(m' —m)’

ceC ceC
Then, it solves the generalized eigen-value/vector problem: S,F=S,FA

Features are: Y, = PLDA X, where PLDA = [fjl,---,ij] contains D e-vecs of F.



Appearance based visual features - Cont.

O Note: Typical statistical modeling of speech feature vectors assumes that

their elements are uncorrelated (per-class). In practice, this does not hold!

O A data rotation based on the maximum likelihood linear transform

(MLLT) can remedy this (Gopinath, 1998).

2 MLLT maximizes the observation data likelihood in the original feature space,
under the assumption of diagonal data covariance in the transformed space.

0 Desired rotation matrix is obtained by solving:

P, =argmax,{det(P)" [ | (det(diag(P=“'PT))) "}

ceC



Joint shape and appearance features

O Main idea: Combine the “best” of the two types of features.
O Two approaches for doing so:

Concatenate shape + appearance features into new vectors, e.g.:

e Active shape models + PCA of image intensity values along stripes perpendicular to lip
contour (Dupont and Luettin, 2000).

e Snake parameters combined with PCA of color image ROI (Chiou and Hwang, 1997).

Or, build a joint model of shape and appearance by PCA on the
concatenated vector of shape and appearance features (Matthews, 1998).
AFFEARANCE INFC

= Active appearance models I

(AAMs — Matthews, 1998):
Use two stages of PCA. e SHAFE INFO
| S | e

Three steps (next). i. I




Joint shape and appearance features —
AAMS - Cont.

O STEP 1: Shape modeling.
Shape vector of landmark point coordinates. _u';:[:;i';..

x) =[x1,y1,x2,y2,...,xK,yK]

—(S)
Shape PCA (68 to 11 dims): x*) =x  +P®y®

O STEP 2: Appearance modeling.

Normalized color appearance vector.

X =[1, 80,01 Ty s G by

Appearance PCA (6k to 186): x) = x"* + Py
O STEP 3: Joint modeling.
Concatenated features. X% =[yTw, y® T

PCA on joint vector (197 to 86 dims):

—(4,9)
x“45) =Y | puas)y(s)

= [Feature extraction: AAM tracking + 3 PCAs give y“.9),




Visual feature post-processing

O Visual feature post-processing is desirable before presenting vectors for ASR:
Normalization (e.g., cepstral mean subtraction-CMS): Reduces variability due to illumination.
Incorporation of dynamic information (e.g., LDA on concatenation of neighboring features).

Up-sampling to the audio stream feature rate (30 or 60 to 100 Hz).
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Visual feature post-processing - Cont.

O Static to dynamic features:
LDA/MLLT on concatenation of neighboring features.
Augmenting of visual features by their first and second time-derivatives.

O Visual feature up-sampling to 100 Hz by linear interpolation. Simplifies
visual only model training for ASR and audio-visual fusion.
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Audio-Visual Fusion

FUSION METHOD

PRE-MAPPING MIDST-MAPPING POST-MAPPING
(EARLY INTEGRATION) (INTERMEDIATE INTEGRATION) (LATE INTEGRATION)

MULTI-STREAM HMMs

OPINION (SCORE-LEVEL)

SENSOR DATA LEVEL FEATURE LEVEL DECISION FUSION FUSION
WEIGHTED MOSAIC WEIGHTED CONCATENATION MAJORITY COMBINATION AND OR  WEIGHTED WEIGHTED CLAPSSSILER
SUMMATION CONSTRUCTION  SUMMATION VOTING OF RANKED SUMMATION  PRODUCT

LISTS



The IBM system visual front end

O Face tracking: 2-level statistical detection of faces and facial features; mouth
location estimates are smoothed over time.

O ROl extraction: Enlarged ROI contains “beard region”; normalized for head pose
and illumination variations. ROI size is 64 x 64 pixels.

O

Static features: 100-dimensional compressed representation of ROl using DCT.

O Post-processing: Intra-frame + inter frame LDA/MLLT for better within and across
frame discrimination and statistical modeling; CMS and up-sampling.

O Final features: 41-dimensional at 100 Hz.
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Visual feature comparisons

= Let's now address these issues:
How much (if any?) visual speech information is captured by the above features?
How do these features compare to each other?
= Visual-only ASR performance provides answers to these questions.
Single-subject, connected-digit ASR experiments.
Modeling: Whole-word HMMs, unknown string length.
= [Feature comparisons (Potamianos et al., 1998):

Outer lip | %, Word Lip contour | %, Word Feature %, Word
features | accuracy features accuracy type accuracy
h,w 55.8 Outer-only 73.4 Lip-contour based 83.9
+a 61.9 Inner-only 64.0 Appearance (LDA) 97.0

+p 64.7 2 contours 83.9
+FD, 73.4

Thus, appearance based modeling is preferable!




Visual feature comparisons - Cont.

O Performance of various
appearance based
features (LDA, DWT, PCA)
vS. static feature size
(Potamianos et al, 1998).
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Visual feature comparisons - Cont.

O Appearance (DCT) vs. joint (AAM) features:

Speaker-independent, LVCSR corpus.

Word error rate, after “rescoring” of lattices, that have been generated
based on noisy audio features (Neti et al., 2000).

Vi-feats + Derivs + LDA/MLLT
DCT 61.80 58.14
DWT n/a 58.79
PCA n/a 58.86
AAM 65.90 64.00

O Thus, using the particular implementation, DCT features were the best.




Video degradation effects

O Frame rate decimation:

Limit of acceptable video rate for
automatic speechreading is 15 Hz.

100
100
90+ 90+
80+ 8ol
T 70r )
> § 70+
: 2
8 500 8 60+
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g 40+ E 50
e g
= 30t 40+
20t
1 30t
10+
0 20

10 20 30 40 50 60
FIELD RATE [Hz]

O Video noise:

Robustness to noise only in a

matched training/testing scenario.

MATCHED i
TRAINING-TESTING

MISMATCHED |
TRAINING-TESTING

/ X— . — - —x

10 20 30 40 50 60 70 80 90 100
SNR [dB]

Both cases: DWT visual features — connected digits recognition (Potamianos et al., 1998).




Video degradation effects - Cont.

Face detection accuracy decreases: so{Word error r

100-
80-
60-
40-
20-

0,

Unconstrained visual environments remain challenging, as they pose
difficulties to robust visual feature extraction.

EXAMPLE: Recall our three “increasingly-difficult” domains: Studio, office, and
automobile environments (multiple-speakers, connected digits).

Increases:

70+
60+
50+
40+

B SI: Speaker-indep. "
B MS:Multi-speaker 201
B SA: Speaker-adapted]|Q
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A Visual Front End Example

Video
Sequence

Nose Viou VF Snake a
Tracking xtractio Parabola Fitti

AF ‘ FAPs

Bernstein audio-visual database

474 sentences (average length ~ 4 seconds)

vocabulary size around 1000 words

video (320x240 - frame size) time-synchronized with speech

MPEG-4 decoder



Outer Lip Modeling
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Outer Lip FAP Extraction

Original image frames, and MPEG-4 facial animations driven by the extracted FAPS



PCA FAP Analysis

u

Mean lip shape: the middle
Images; lip shapes obtained by
‘ L 1 l varying the projection weights

# of principal Percentage of
components variance

6 99.7%

2 93%

1 81%

corresponding to the first
eigenvector (upper) and second
eigenvector (bottom) by +2
standard deviations (left) and -2

: ‘ L % ‘ L ' J standard deviations (right)

Distribution of the variance among eigenvectors



Eigen-Lips

O Ensemble contained 1460 images of dim 80x45 (3600 pixels)
e 20 Eigen-lips - 90.92% Statistical variance
e 40 Eigen-lips - 95.52% Statistical variance
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Compression Examples

o What do all these marks mean? (f0046) -

Compressed 20: - I
- ical Spatial li
35,0648 using 20 Coel.

Compressed 40: -

37.56dB using 40 Coef.
O Do you like the length of this skirt? (f0338) -
Compressed 20: -
Worse Spatial Quality
28.42dB using 20 Coef.

30.69dB using 40 Coef.
Compressed 40: -




Segmentation Example

O He’s not the same as he used to be (f0386)




Summary of AV-ASR experiments

Acoustic Feature
Extraction (MFCCs)

Aleksic and Katsaggelos, 2002

SNR

90 Hz 0,

Video (30 fps
ideo (30 fps)

Visual Feature
Extraction (FAPs)

Dimensionality

> Reduction (PCA)

Word
sequence

30Hz | Visual Feature | 90Hz ]

51555

t

t

PCA - Principal Component Analysis
MFCC - Mel-frequency Cepstral Coefficients

0" - acoustic observation vector at time t

0’ - visual observation vector at time ¢

HMM - Hidden Markov Models

Interpolation

Bernstein audio-visual database
474 sentences (average length ~ 4 seconds)
vocabulary size around 1000 words
video (320x240 - frame size) time-synchronized

with speech




Summary of AV-ASR experiments - Cont.

Single-stream HMMs

Recognition results for audio-only and audio-visual single-stream system
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Summary of AV-ASR experiments - Cont.

Multi-stream HMMSs

Recognition results for audio-only and audio-visual multi-stream system

6
2
1

—f— AV multi-stream K
—+— AV multi-stream K
—— AV multi-stream K

—©- Audio-only

(%) 93aIM

SNR (dB)



Summary of AV-ASR experiments - Cont.

Audio-only and WER Audio-stream
audio-visual systems [l Weight
performance in clean audio conditions
Audio-only system 22.19
Audio-visual K=1 21.48
system
(Single-stream K=2 21 34
HMM method)
K=6 24.47
Audio-visual K=1 18.21 0.75
system
(Multi-stream K=2 18.07 0.7

HMM method) K=6 18.16 0.85




Summary of AV-ASR experiments (IBM)

oL O 0O O

Summary of AV-ASR results
for connected-digit recog.

Multi-speaker training/testing.
50 subjects, 10 hrs of data.
Additive noise at various SNRs.
Two training/testing scenarios:

Matched (same noise in
training and testing).

Mismatched (trained in
clean, tested in noisy).

10 dB effective SNR gain for
both, using product HMM.

WORD ERROR RATE (WER), %

~
o

(©)]
o

a1
o

N
o

w
o

CONNECTED DIGITS TASK
Matched and Mismatched
Training/Testing

AU-mismatched

VISUAL-ONLY

V-mrismatcrhed

=4

10 dB GAIN

AV-matched 10 dB

G\f\e.\e\r‘A

0 5 10 1I5
SIGNAL-TO-NOISE RATIO (SNR), dB
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Summary of AV-ASR experiments - Cont.

Summary of AV-ASR
results for large-vocabulary
continuous speech(LVCSR).

Speaker-independent
training (239 subj.) testing
(25 subj.).

40 hrs of data.
10,400-word vocabulary.
3-gram LM.

Additive noise at various
SNRs.

Matched training/testing.

8 dB effective SNR gain
using hybrid fusion.

Product HMM did not help.

T
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LVCSR TASK
Matched Training

AUDIO-ONLY

AV-MS (AU+AV-HILDA)
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Audio-Visual Person Verification
and ldentification

O Biometrics-Automated methods for recognizing a person based
on a physiological or behavioral characteristic

O Measured Features
e Face, fingerprints, handwriting, hand geometry
e lIris, retina, voice
e Ear, vein (unique vein patterns on the back of one’s hand)

O High security person recognition technologies for many
applications

e Network security, secure electronic banking, financial
transactions

e Local, state, federal government, law enforcement

O Considerably more accurate than current methods like
passwords, PINs (can be used by somebody else)

O Biometrics approaches link to a particular individual, nothing to
carry or remember

O Itis becoming inexpensive and socially acceptable



Audio-Visual Speaker Recognition

Using FAPs as Visual Features

14 14
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Speaker Recognition

O Two important problems are speaker verification (authentication) and
identification

O Speaker verification:
o Verify claimed identity based on observations O

e Atwo-class problem; True claimant vs. impostor (general population).
e Based on:

Threshold-a priori determined
Pr (Cclaim |0) > Accept thresh C,, — World model
Pr(cy |0) < Ree C ..y — Claimed client model
e More important problem in practice, most applications require identity claim
verification

O Speaker identification:

e Obtain speaker identity within a closed set of known subjects C based on
observations O

¢=argmax,_. Pr(c|O) Pr(c|O), ceC

O Text-dependent (TD) vs. text-independent (TI) approaches
e TD — speech used for testing and training is constrained to be the same
e Tl —speech used for testing is unconstrained



Verification Performance Measures

o Two error measures are False Acceptance (FA) and False Rejection (FR)
e FA —an impostor, claiming the identity of a client, is accepted

e FR —a client, claiming his true identity, is rejected
I - impostor claims

I C 1, - impostors accepted
FA =4 x100% FR =—2x100% C - client claims
1 C : :
Ck - clients rejected

Trade-off between the two errors is controlled by the threshold
e Threshold chosen a-priori on an evaluation set to meet certain FA and FR
requirements
e Minimum FA, minimum FR, or FA=FR
o Equal Error Rate (EER)
Obtained after a full authentication experiment by choosing the threshold for
which FA=FR
e Is an unrealistic measure

O Receiver Operator Curve (ROC)
Plots either FA or FR against the other or against the verification threshold



Sample Audio-Visual Person
Recognition Systems

Features Non-ideal . . Recognition
System Acoustic Vienal Database Conditions Expert AV Fusion Method Mode™
shape- and
) appearance-
Luettin et al : HMMs :
[135] none :Eze]%im Tulipsl none GMMe none TD+TLID
(concatenation)
Chibelushi ef al. MECCs E];?:F:_EE_Zd 15] speakers inh.tte noise at | e opigiuu fusion . IDID
[2] e e nian] [Z] different SNE= (weighted summation)
Brunelli and . ", ) 89 speakers . opinion fusion ;
Falavigna [6] MFCCs+A +AA|appearance-based 3 sessions | MO vQ (weighted product) 1D
post classifier using
Ben-Yacoub af HMMs, binary classifiers
al. [7] LPCs appearance-based [ XM2VTS  |[none sphericity (SVM, Bayesian TD+TI'VER
measure [7]  |classifier, FLD,
decizion tree and MLP)
weighted summation,
white and - : =
Sanderson and appearance-based operations- concatenation, adaptive
) MFCCs+A VidTIMIT | . GMMs weighted summation, |TI'VER
Paliwal [§] (PCA) room noise at B .
. SWVM. Bavesian
different SWNE= S C
classifier
35 speakers data recorded opinion fusion
Hazen ef al. [9] |MFCCs appearance-based pes on a handheld |5V F_ . i . TD/ID
[4] (weighted summation)
device
appearance- and nion fusi
Jouslin ef al. [10]|LPCs+A+~AA  |shape-based M2VTS  |nome HMMs cpiiton fusion TD/VER
featares (weighted summation)
Wark et al. . shape-based T white noise at opinion fusion T
[11-13] . (PCAand1DA) |MZVTS | giffrent SNRs |CMMs (weighted summation) | VD VER
*TD: text-dependent; TI: text-mdependent ** A — first derivative

VER: venfication: ID: identification AA — second denvative



Sample Audio-Visual Person
Recognition Systems

Features Non-ideal Recognition
Syst Datab Expert AV Fusion Method F
yoem Acoustic Visual AT Conditions Pl sto et Maode
. shape-based . .
Aleksic and : : : - white noise at feature-level ; ;
Katsaggelos [14] MFCCs+A+AA | (PCA applied on | AMP/CMU different SNRs HMMs concatenation TDIDAVER
lip-contours)
— appearance-based feature-level
E};“dh‘“l eral IMFCCs (DCT applied on |IBM none GMMs concatenation, TIID+VER
ROD) opinion fusion
Bengio er al. —_— shape-based and |, .., white nose at  |asynchronous | . . 7
[32.33] MFCCs+A appearance-based M2ZVTS different SNRs | VM midst-mapping fusion |TD/VER
feature-level
Fox et al. o appearance-based e | White noise at concatenation, /
[3435] MECCs+A |\ D) XMIVTS | fifforent SNRs | FIVIMs opinion fixsion DD
weighted sunmimation
(weighted 1on)
appearance-based : . Coupled midst-mapping fusion,
) _ e |white noise at | HMMs - - ;
Nefian et al. [30]| MECCs+A+AA |(PCA+LDA) XM2VTS | opinion fusion TD/ID
different SNRs |embedded (weighted tion)
MM weighted summation
. 1 - concatenation,
Kanak e al. [38] [MFCCs+A+AA | PPearance-based | 38 speakers \white noise at 7, pr opinion fusion TDID
(PCA) [38] different SNEs (Bayesian fusion)
* TD: text-dependent; TL: text-independent *#* A — first derivative -

VER: vertfication: ID: identification AA — second derivative



Audio-Visual Database

o Carnegie Melon Audio-Visual Database
e 10 speakers (7 male, 3 female) uttering the digit sequence
“234567” ten times
O In AV experiments audio (Mel Frequency Cepstral Coefficients-
MFCC) and video (FAPs) features were appended to form joint
AV feature vectors

O The AV feature vectors were used in all AV experiments



Person Identification Error [%]

SNR [dB] Audio only Audio-visual
clean 5.13 5.13
20 19.51 7.69
10 38.03 10.26
53.10 12.82

0

Audio-Visual Speaker Recognition
Using FAPs as Visual Features

Audio-visual [%]

SNR [dB] Audio only [%]
FA FR EER FA FR EER
clean 2.85 25.64 2.56 0 12.82 1.71
20 2.85 41.03 3.99 2.85 20.51 2.28
10 0 53.85 4.99 0 23.08 271
0 5.7 61.54 8.26 2.85 28.21 3.13

Person Verification Results

O Tests performed under different acoustic noise conditions (SNRs 0-20
dB), and for clean speech




Automatic Facial Expression
Recognition

= Track visual features

= Extract outer lip and eyebrow FAPS

Train HMMSs for each of six basic expressions
= Spatio-temporal approach

= Takes temporal evolution of facial expressions into account
= Provides improved recognition results
= Recognize expressions using HMMSs
= Use extracted FAPs (outer lip, eyebrow) for HMM training
= Use multi-stream HMMs with stream weights for outer lip
and eyebrow FAPs to improve recognition performance



Audio-visual emotion estimation

© O

© O O O

Automatic detection of human emotional state is important in HCI.
Emotional state reflects in both facial expression and voice.

Facial expressions are universal and represent happiness, anger, sadness, fear,
surprise, and disgust/dislike.

Facial action coding system (FACS) codes facial expressions as sets of action units (AU).
Various features can be used for facial emotion recognition, such as optical flow, ASMs.
Audio features can be pitch contour statistics, energy, etc.
Example accuracies (Chen et al., 1998):
Audio-only: 77.8%
Visual-only: 69.4%
Audio-visual: 97.2%

Two examples of facial expressions
(left-2-right): Anger, dislike, fear
(from Cohen et al., 2003).




Six Basic Facial Expressions




Expression Recognition Results

FAPS| Eyebrow | OuterLip | EandOL [I;)?r(ﬂﬁtl; OL stream
EXP (E) [%] (OL) [%] [%6] stream) weight
Anger 52.9 64.7 64.7 70.6 0.7
Disgust 75.7 91.9 97.3 97.3 0.7
Fear 5.9 82.4 76.5 88.2 0.8
Joy 84.1 95.2 98.4 98.4 0.6
Sadness 17.0 81.1 81.1 96.2 0.7
Surprise 90.6 96.9 100 100 0.6
Total 62.68 87.32 88.73 93.66
Anger|Disgust|Fear|Joy|Sadness|Surprise (f;)r]r
Confusion matrix Anger 24 4 0|0 6 0 70.6
for Multi-stream system Disgust 0 36 110 0 0 97.3
Fear 0 0 30 | 2 1 1 88.2
Joy 0 0 0 |61 0 1 98.4
Sadness 2 0 0|0 51 0 96.2
Surprise 0 0 010 0 64 100




Bimodal enhancement of audio

Main idea:
Recall that the audio and visual features iy visuar seercE o 3.
are correlated. E.g., for 60-dim audio AR R ™ 5
features (0,;) and 41-dim visual (0\,): el

Thus, one can hope to exploit visual input GB |
to restore acoustic information from the
video and the corrupted audio signal.

Enhancement can occur in the:
Signal space (based on LPC audio feats.).
Audio feature space (discussed here) 1007
Main technigues:
Linear (min. mean square error est.).
Non-linear (neural nets., CDCN).

Result: Better than audio-only methods.

0.
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Linear bimodal audio enhancement.

1
1
O Paradigm: m_\-b

0 Training on noisy AV features ATDIO
0,,=[0,,0,,] andclean AUo!{), teT.

VIDEO
=/
0 Seek linear transform P, s.t: .,l]
41

(E)
OA,t

=Po,,, zofft), teT.

Can estimate P by minimizing the mean square error (MSE) between Of,),offt)-

0 Problem separates per audio feature dimension (i=1,...,d):

_ (€) 2 .
p;, =argmax, ZteT[ 04ri~<Ps0,y, >]%, i=1,....d,

0 Solved by d, systems of Yule-Walker equatiions:

d
Z[z 04y 1iOavail Pi; = ZO,(EZ-OAVJ,,C, k=1,..d

j=1 teT teT




Linear bimodal audio enhancement - Cont.

O Examples of audio feature estimation using bimodal enhancement (additive speech
babble noise at 4 dB SNR): Not perfect, but better than noisy features, and helps ASR!

60 T T T T . 60 T T T T .
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Linear bimodal audio enhancement - Cont..

O Linear enhancement and ASR (digits task — automobile noise):
Audio-based enhancement is inferior to bimodal one.
For mismatched HMMs at low SNR, AV-enhanced features outperform AV-HILDA feature fusion.
After HMM retraining, HILDA becomes superior.
Linear enhancement creates within-class feature correlation - MLLT can help.
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Audio-visual speaker detection

Applications/problems:

O Audio-visual speaker tracking in 3D-space (e.g., meeting
rooms). Signals are available from microphone arrays and video
cameras. Three approaches:

Audio-guided active camera (Wang and Brandstein, 1999).
Vision-guided microphone arrays (Bub, Hunke, and Waibel, 1995).
Joint audio-visual tracking (Zotkin, Duraiswami, and Davis, 2002).

Audio-visual synchrony in video: Which (if any) face in the video
corresponds to the audio track? Useful in broadcast video.

Joint audio-visual speech activity can be quantified by mutual
information of the audio and visual observations (Nock, lyengar, and
Neti, 2000):

I(4V) = ZP(a v) Iogpf(;‘];z)) _ %,0 Islasllsrl

O Speech intent detection: User pose, proximity, and visual speech
activity indicate speaker intent for HCI. Visual channel improves
robustness compared to audio-only system (De Cuetos and Neti,
2000).

O L0 0QD0

U

Audio-visual synchrony and tracking
(Nock, lyengar, and Neti, 2000).



Audio-visual mining of multimedia data.

O Main idea: Utilize both audio and visual channels to represent, search, and retrieve
content from video corpora (news, etc.).

o Example from Adams et al., 2003: Retrieve videos with rocket launch content using
audio, visual, or bimodal cues.
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Audio-Visual Speech Synthesis

O Deals with

e the automatic generation of voice and facial animation from
arbitrary text, or

e the automatic generation of facial animation from arbitrary speech

O Applications include human communication and perception,
tools for the hearing impaired, spoken and multimodal agent-
based user interfaces (newscasters, helpers on desktops,

messenger with emails, personal friends), aid in education, and
synthetic actors in entertainment

O A view of the face can improve intelligibility of both natural and

synthetic speech significantly, especially under degraded
acoustic conditions

O Moreover, facial expressions can signal emotion, add emphasis
to the speech and support the interaction in a dialogue situation



Direct Parameterization

Parke’s Descendants

= Baldi (Cohen and
Massaro, 1993, UCSC)

= Finnish talking head
(Olives et al 1999)

= Kattis, Holger, August
(Beskow, KTH 1995)

= Eisert (2000)




Muscular and Physiological Models

Water’s descendants

Pseudo-muscular models: direct
parameterization models that use the
human facial muscle structure for
modeling deformations

The study of the natural anatomical
limitations of the human face reduces
the space of allowable configurations

Muscles are modeled (as, e.qg., linear
contractors) with one end affixed to the
bone structure of the skull and the other
end attached to the skin

More detailed physiological models have
also been developed by modeling the
skin with three spring-mass layers




GRETA (S. Pasquariello, C. Pelachaud, 2001)

Realization of a Simple Facial Animation
Engine

core of an MPEG-4 decoder and
compliant with the “Simple Facial
Animation Object Profile” of the standard

A 3D facial model consisting of 15,000
polygons

Able to generate the structure of a 3D
model, animate it, and render it in real
time

O Uses a pseudo-muscular approach to
emulate the behavior of the face

O Includes particular features, such as
wrinkles and furrow, to enhance realism

Internal anatomic components




GRETA: Able to express emotions




Data sources for talking heads

O How Is the initial 3D mesh obtained

O Static methods
e 3D photogrammetry
e Laser-based scanning
e Internal static methods

O Dynamic methods
e Video-based methods
e Systems for optical tracking

e Non-optical internal dynamic methods (ultrasound,
EPG, x-ray micro-beam, MRI, cineradiography)



Examples

Four camera measufemént setup and subject  EMA colls glued to the tongue of the
with reflexive markers (Beskow 2003) Subject (Beskow 2003)

Gathering fleshpoint positions
Using a photogrammetric method
(Ballly 2001)




Modeling of Internal Articulators

Transparent talking head

e visual speech synthesis should be
driven by detailed studies of how humans
produce speech

e highly realistic palate, teeth, and tongue
models using 3D ultrasound data and
electropalatography (EPG)

e describe correct articulation for
pedagogical purposes (e.qg., provide
visible speech targets for the hearing
Impaired)

e should speech production be
multimodal, as Is speech perception?

e use of MRI and uptrasound data for
modeling the tongue

M. Cohen, J Beskow, D. Massaro, “Recent Developments in
Facial animation: An Inside View”, Proc. Int. Conf. Auditory-Visual 100 electrodes detect contact between

Speech Proc., AVSP98, pp. 201-206, Terrigal, Australia, 1998. .
P PP J Tongue and palate at 100 times per sec



Building internal shape models

O Speaker-specific tongue model
e Constrained by a generic model (adaptive grid)
O Generic model of the jaw and teeth...

G. Ballly
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