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Segmentation Approaches

Histogram Thresholding
Clustering
Edge-based Techniques
Region Growing
Split-and-Merge
Watershed
Model-Based Approaches



Aggelos K. Katsaggelos, September 4, 2006
4

Natural Textures
Combine color composition, 
spatial characteristics
Non-uniform statistical 
characteristics                 
(lighting, perspective)
Perceptually uniform
Need spatially adaptive features
Small number of parameters
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Adaptive Perceptual Color-Texture 
Segmentation

Color Composition
Feature  Extraction

Spatial Texture
Feature Extraction Final segmentation
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Dominant Colors
– Human eye cannot simultaneously perceive a large 

number of colors
– Efficient representation
– Easier to capture invariant properties of object 

appearance
– Applied to image classification [Ma’97, Mojsilovic’00]

Current Approaches
– K-means (VQ)  [LBG’80]
– Mean-shift [Comaniciu-Meer’97]
Assumption: constant dominant colors

Spatially Adaptive Dominant Colors
– Capture spatially varying image characteristics
– Use ACA [pappas’92]

Color Composition Features
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Color Composition Features

Constant Dominant Colors:

Spatially Adaptive Dominant Colors:

ACA adapts to local characteristics.
Dominant colors relatively constant in small neighborhood; 
but change as we move across the image.
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Adaptive Clustering Algorithm (ACA)
K-means clustering (LBG)
– Based on image histogram
– No spatial constraints
– Each cluster is characterized by constant intensity

Add spatial constraints
– Region model: Markov/Gibbs random field

Make it adaptive
– Cluster centers spatially varying
– Texture model: spatially varying mean + WGN

MAP estimates of segmentation x given observation y
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ACA

K-means minimizes

Adaptive clustering maximizes

Or, minimizes
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K-means Clustering
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ACA: Model (15x15)
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Adaptive Clustering Algorithm

Original Image K-means Class Labels ACA Class Labels
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K-means vs. ACA
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ACA
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Spatial Texture Features

Grayscale image component                          
(vs. achromatic pattern map)
Multiscale frequency decomposition
– DWT (9/7 Daubechies)
– Steerable filters [Freeman-Adelson’91]
– Gabor filters [Daugman’86]

Energy of subband coefficients is sparse
– Use local median energy
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Steerable Pyramid Decomposition

Ideal spectrum

2-level decomposition

Ideal spectrum

1-level decomposition

π

ππ−
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Spatial Texture Feature Computation

At each pixel, compute
– Smax = Maximum of 4 subband responses
– Si = Index of maximum coefficients

Smooth vs. non-smooth classification
– Local median energy of Smax

– 2-level K-means
– Use threshold provided by subjective test

Non-smooth region classification
– Construct local histogram of Si

– “Complex” if no dominant orientation
– Otherwise classify according to dominant 

orientation as “horizontal,” “vertical,”
“+45,” “-45.”

Si  indices

Texture classes

Smooth vs. non-smooth
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Multi-scale Texture Classification

Apply texture classification at each scale
Combine texture classes from different 
scales based on the following rules:
– “smooth”:  “smooth” at all scales 
– “Vertical,” “Horizontal,” “+45o,” “-45o”: consistent texture 

classification across all scales. Note: “complex” or 
“smooth” is consistent with any single direction

– “complex”: none of above satisfied
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Color composition Spatial texture

Final segmentation

Segmentation

Crude segmentation
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Color composition Spatial texture

Final segmentation

Segmentation

Crude segmentation
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Iterative Border Refinement

Color features in inner window represent local features

Color features in outer window represent  region-wide characteristics

Window pairs used: {35/11, 21/9, 11/5, 11/3}

Real Boundary

Misclassified

Region1

Region 2 



Aggelos K. Katsaggelos, September 4, 2006
22

Results with steerable filters
without Perceptual Tuning

Original ACA Texture Classes Segmentation
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Results with steerable filters
with Perceptual Tuning

Original ACA Texture Classes Segmentation



Aggelos K. Katsaggelos, September 4, 2006
24

Segmentation Results



Spatiotemporal Algorithm for 
Joint Video Segmentation and

Foreground Detection
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Background Subtraction

Extracting moving (foreground) objects
Building a background model
Adaptation to changes in the scene
Robustness
Accuracy for applications like tracking
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Video Segmentation

Provides higher-level semantic representation compared to
traditional pixel-based representation
– Object-based Video coding (MPEG4)
– Content extraction for indexing, retrieval (MPEG7)

Goals
– Complete object-based representation
– Combination of video segmentation and foreground/ background

separation
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Important Issues in Background 
Subtraction

Dynamic Background (sky, leaf, branch,light,specularity)
Gradual Illumination Changes (Time of the day)
Sudden Illumination Changes (Light switch, clouds)
Sleeping person: Foreground object becomes completely 
still
Waking person: Background object starts moving
Shadows
Bootstrapping (Initialization)
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Approaches

Filtering
- MA  

-Wallflower
- Kalman

Probabilistic Methods
- Parametric 

- Nonparametric
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Basic Methods

Adjacent Frame Difference
(Running) Average of Frames 
Wallflower
Eigenbackgrounds
– Images of motionless backgrounds
– Principal Component Analysis
– Difference between the projection and current 

frame is foreground
– Exploits spatial correlation using covariance matrix

Derin Babacan Background Subtraction
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Unimodal: Pfinder

Model the background pixel intensities by one 
Gaussian
Update the Gaussian statistics with time
Low complexity, low memory 
Good for unimodal backgrounds
– Small lightning changes
– Nearly stationary background
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Mixture of Gaussians (MoG)

Stauffer & Grimson 2000: Model the pixel 
intensity values by a mixture of Gaussians
Complex time-varying multimodal backgrounds

Adaptation – AR filtering with new data
Relabeling of Gaussians
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Mixture of Gaussians (MoG)
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MoG: Relabeling of Gaussians

Order distributions (ω/σ)
Background / Foreground distribution decision

T: measure of minimum portion of data 
accounted by background
High T: multimodal background
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MoG: Adaptation

Every new pixel value is checked for a “match”
– Start with the most likely distribution (highest ω/σ)
– Pixel value within 2.5σ of a distribution

Update and normalize weights

Update matched distribution parameters 
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Parametric Methods

Advantages:
– Fast
– High adaptation to background changes 
– Fast initialization

Disadvantages:
– No spatial constraints (Post processing may be 

needed, especially in outdoor scenes)
– Vulnerable to global changes in short-time



Aggelos K. Katsaggelos, September 4, 2006
37

Kernel Density Estimation (KDE)
Elgammal et al.’00

Does not assume specific shape for density
Smoothed histogram: For high N, it converges to true 
density function
Use Gaussian for
Background pdf is estimated using N recent pixel values
Adapt by adding new samples and dropping old ones
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Nonparametric Methods

Advantages:
– Any probability distribution
– Some spatial constraints

Disadvantages:
– High memory requirement
– Slow
– Initialization phase

Derin Babacan Background Subtraction
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Spatial Information

Use spatial information to improve accuracy and 
robustness of foreground detection
– Exploit spatial correlations
– Spatiotemporal probabilistic model for pixel intensities

Related prior work: 3-D ACA (adaptive clustering 
algorithm) [Hinds & Pappas’95]

– Spatiotemporal MRF/GRF constraints
– Spatiotemporally varying region intensities
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Spatiotemporal Segmentation
(3D-ACA)

3D-ACA can be used 
to detect foreground
– New regions labeled as foreground

Computationally expensive
Temporally insensitive
– Treats foreground/background boundary                        the same as 

background boundaries
Need more sensitivity for foreground segment detection
More variation in spatial than temporal dimension 
– Still image vs. video coding
– Inter vs. intra coding
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Joint Spatiotemporal Segmentation and Background 
Subtraction

Combine background subtraction with segmentation 
– Assume single stationary camera
– Assume no foreground objects in the first few frames

Initialize (first few frames) with 3D-ACA
Use MRF constraints only in spatial dimension
– Eliminate temporal MRF constraints for increased sensitivity
– Spatial continuity

Use spatiotemporal background model for background 
intensities
– Spatiotemporally varying region intensities
– Fidelity to data
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Temporal Modeling

Pixel distribution modeled by K spatiotemporal Gaussians

All regions equally important (no weights necessary)
Compute local mean and variance for each Gaussian in base frame
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Foreground Detection

Pixel intensity compared with 
– K background distributions
– (Any existing) Foreground distribution

In case of no match, pixel is assigned to foreground
Once new foreground object is encountered, build new
foreground distribution (single Gaussian)
– Single Gaussian is sufficient in case of small lightning changes and 

small texture difference
Calculate local mean and variance (spatiotemporally, as for 
background regions)
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Adaptation

After labeling, compute the local statistics

Apply a low-pass filter with exponential 
weighting
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Properties

Insensitive to learning parameters
– Spatially smoothed data instead of raw

Increased sensitivity over 3D-ACA
High accuracy
Medium Complexity (Real-time)
Spatial MRF constraints necessary for stability



Aggelos K. Katsaggelos, September 4, 2006
46

Video Segmentation

Spatial MRF necessary for preserving continuity 
in background regions
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Example A: Algorithm
Base Frame

Original Labeling Result
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Example B: Hall Monitor
Original KDE

MoG Proposed
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Example C: Ford Webcam
Original KDE

MoG Proposed
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Example A: Hall Monitor

Original Sequence Segmentation Foreground Detection
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Example B: Ford Webcam

Original Sequence Segmentation Foreground Detection
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Example C:
Proposed vs 3D-ACA

Proposed 3D-ACA
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MoG vs. KDE vs. Proposed

Low complexity High complexity Medium complexity

Low memory High memory Low memory

Very sensitive 
learning

Insensitive learning Insensitive learning

Adaptation rate ? Fast adaptation Fast adaptation

Short initialization Very long initialization Short initialization

Low selectivity High selectivity High selectivity

High noise Low noise Low noise
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Semantic Information Extraction

Motivation
– Proliferation of image and video acquisition devices            

(digital still and video cameras, image and video phones, PDAs)
– World rich in digital visual content
– Large personal repositories (consumer market)
– Increasing processing capabilities

Goal: Intelligent content management
– Semantic labeling
– Content organization
– Efficient retrieval
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What are the important semantic categories?

How to link the low-level features to semantically 
important categories?

Challenges



Aggelos K. Katsaggelos, September 4, 2006
56

Semantic Categories
Recent perceptual experiments by Mojsilovic and Rogowitz identified 
important semantic categories that humans use for image classification

Less human-like

More human-like

Man-made

Natural

Conjecture: Semantic categories can be derived from combinations of 
low-level image features  
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Bridging the Semantic Gap

Use segment descriptors and 
statistical techniques to relate 
segments (first) and scenes (later) 
to semantic categories/labels

Primitives

SemanticsHigh level

Low level

Incorporate knowledge of human 
perception and image characteristics
into feature extraction and algorithm 
design

Perceptually 
Uniform

Segments
Medium level
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Semantic Information Extraction
(at Segment level)

Dominant Colors (ACA)

original

segment 1

segment 3

segment 2

Dominant Colors & Percentages

smooth

vertical

- 45

complex

Spatial Texture

Location
Shape
Size

Plus:

quantize

45

horizontal
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Color Naming Syntax

Hue
primary

Hue
secondary

Lightness Saturation Achromatic

red
orange
brown
yellow
green
blue

purple 
pink
beige

magenta
olive

reddish
brownish
yellowish
greenish
bluish

purplish
pinkish

grayish
moderate
medium
strong
vivid

blackish
very-dark

dark
medium

light
very-light
whitish

black
gray
white

Eleven Colors That Are Almost Never Confused (Boynton’89)

267 quantization points (NBS, Mojsilovic’02)
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Mountain

Woods/Bushes

Grass Night-sky

Day-skyFlower

Ground

Snow

Sun

Cityscape

Bridge

Building

Pavement

Boat

Car

Other Man Made

Face

Labels 
(consistent with NIST TRECVID 2003 development set)

Man Made

Vegetation Sky Landform

Natural People

Person

Crowd

Airplane
Clouds

Sunrise/Sunset

Forest

Segment

Scene
Indoor Outdoor: Street, skyline, beach, garden, night scene, day scene …

Water

[Animal]
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Database (Training, Testing)
9000 Labeled segments
2500 Images (Corel Stock Photo, Berkeley, other)
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Results
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Recall Precision     LDA using texture features and fourteen perceptually quantized colors

number of correctly classified segmentsRecall = 

total number of relevant segments

number of correctly classified segmentsPrecision = 

total number assigned to a label
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Recall Precision     LDA using texture features and first dominant color

number of correctly classified segmentsRecall = 

total number of relevant segments

number of correctly classified segmentsPrecision = 

total number assigned to a label

Results
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Statistics of Dominant Colors

L*a*b distanceL*a*b distance

Distance between 1st and 2nd

dominant color
Distance between 1st and 3rd

dominant color
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Statistics of Dominant Colors

5

3030

7

11

12

15

9

16

15

L*a*b* distances between first and second dominant color:
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Results
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Recall Precision        LDA using texture, first two dominant colors and position

number of correctly classified segmentsRecall = 

total number of relevant segments

number of correctly classified segmentsPrecision = 

total number assigned to a label
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Results
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Recall Precision        K-means followed by LDA using texture, first two dominant colors and position

number of correctly classified segmentsRecall = 

total number of relevant segments

number of correctly classified segmentsPrecision = 

total number assigned to a label



Aggelos K. Katsaggelos, September 4, 2006
69

Publications

J. Chen and T. N. Pappas, “Experimental determination of visual color and texture 
statistics for image segmentation,” Human Vision and Electronic Imaging X, Proc. SPIE 
Vol. 5666, pp. 227 - 236, Jan. 2005.
J. Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz, “Adaptive perceptual color-
texture image segmentation,” IEEE Trans. Image Processing, vol. 14, pp. 1524--1536, 
Oct. 2005.
T.N. Pappas, J. Chen, and D. Depalov, “Learning perception,” OE Magazine, vol. 5, pp. 18 
- 20, Oct. 2005.
D. Depalov, T. N. Pappas, D. Li, and B. Gandhi, “Perceptually based techniques for 
semantic image classification and retrieval,” Human Vision and Electronic Imaging XI, 
Proc. SPIE Vol. 6057, (San Jose, CA), Jan. 2006.
D. Depalov, T. N. Pappas, D. Li, and B. Gandhi, “A perceptual approach for semantic 
image retrieval,” Proc. ICASSP-06, (Toulouse, France), May 2006.  To appear.
D. Depalov, T. N. Pappas, D. Li, and B. Gandhi, “Perceptual feature selection for semantic 
image classification,” Proc. Int. Conf. Image Processing (ICIP-06), (Atlanta, GA), Oct. 
2006. Submitted.


	 Perceptual Image Segmentation, Background Subtraction, and Semantic Classification
	Problem
	Segmentation Approaches
	Natural Textures
	Adaptive Perceptual Color-Texture Segmentation
	Color Composition Features
	Color Composition Features
	Adaptive Clustering Algorithm (ACA)
	ACA
	K-means Clustering
	ACA: Model (15x15)
	Adaptive Clustering Algorithm
	K-means vs. ACA
	ACA
	Spatial Texture Features
	Steerable Pyramid Decomposition
	Spatial Texture Feature Computation
	Multi-scale Texture Classification
	Segmentation
	Segmentation
	Iterative Border Refinement
	Results with steerable filters� without Perceptual Tuning
	Results with steerable filters� with Perceptual Tuning
	Segmentation Results
	Spatiotemporal Algorithm for Joint Video Segmentation and Foreground Detection
	Background Subtraction 
	Video Segmentation
	Important Issues in Background Subtraction
	Basic Methods
	Unimodal: Pfinder
	Mixture of Gaussians (MoG)
	Mixture of Gaussians (MoG)
	MoG: Relabeling of Gaussians
	MoG: Adaptation
	Parametric Methods
	Kernel Density Estimation (KDE)
	Nonparametric Methods
	Spatial Information
	Spatiotemporal Segmentation�(3D-ACA)
	Joint Spatiotemporal Segmentation and Background Subtraction
	Temporal Modeling
	Foreground Detection
	Adaptation
	Properties
	Video Segmentation
	Example A: Algorithm
	Example B: Hall Monitor
	Example C: Ford Webcam
	Example A: Hall Monitor
	Example B: Ford Webcam
	Example C:�Proposed vs 3D-ACA
	MoG vs. KDE vs. Proposed
	Semantic Information Extraction
	Challenges
	Semantic Categories
	Bridging the Semantic Gap
	Semantic Information Extraction� (at Segment level)
	Color Naming Syntax
	Labels �(consistent with NIST TRECVID 2003 development set) 
	Database (Training, Testing)
	Results
	Statistics of Dominant Colors
	Statistics of Dominant Colors
	Statistics of Dominant Colors
	Results
	Results
	Publications

