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Erratum: Correction of Theorems 9 and 11 and their proofs

Recall the setting of the GMP:

val := inf
µ∈M+(K)

{∫
K
f0(x)dµ(x) :

∫
K
fi(x)dµ(x) = bi (i ∈ [m])

}
,(GMP)

where K = {x ∈ Rn : gj(x) ≥ 0 (j ∈ [k])}. We let Q(g) denote the quadratic module
generated by g = {g1, . . . , gk} and, for an integer r, Qr(g) is its truncation at degree 2r.
Then consider the parameter

val
(r)
outer := inf

µ∈(Qr(g))∗

{∫
K
f0(x)dµ(x) :

∫
K
fi(x)dµ(x) = bi (i ∈ [m])

}
.

Clearly, val
(r)
outer ≤ val

(r+1)
outer ≤ val and thus limr→∞ val

(r)
outer = supr val

(r)
outer ≤ val. Theo-

rem 9 below gives conditions ensuring the asymptotic convergence to val.
Recall the Slater-type condition

∃z0, z1, . . . , zm ∈ R such that

m∑
i=0

zifi(x) > 0 ∀x ∈ K(S)

and the dual problem

val∗ := sup
y∈Rm

{
bT y : f0(x)−

m∑
i=1

yifi(x) ≥ 0 ∀x ∈ K
}
.

By weak duality, val∗ ≤ val holds. Moreover, we have val∗ = val ∈ R if the program
defining val is feasible and Slater condition (S) holds (by Corollary 1).

Theorem 9. Assume K is compact, program (GMP) is feasible, the quadratic module
Q(g) is Archimedean, and Slater condition (S) holds. Then, we have

lim
r→∞

val
(r)
outer = val.

Proof of Theorem 9. Since limr→∞ val
(r)
outer = supr val

(r)
outer ≤ val and val∗ = val, it

suffices now to show that val∗ ≤ supr val
(r)
outer. For this, let δ > 0 and let y ∈ Rm be a

δ-optimal solution for val∗. That is, f0 −
∑m

i=1 yifi ≥ 0 on K and bT y ≥ val∗ − δ. Pick
ε > 0. Then, we have

(1) f0 −
m∑
i=1

yifi + ε
m∑
i=0

zifi > 0 on K.
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By Theorem 8, there exists r := rδ,ε ∈ N such that f0 −
∑m

i=1 yifi + ε
∑m

i=0 zifi ∈ Qr(g).

Let µ be feasible for the program defining the bound val
(r)
outer. Then, evaluating µ at the

above polynomial, we obtain∫
K

(f0 −
m∑
i=1

yifi + ε
m∑
i=0

zifi)(x)dµ(x) ≥ 0.

Using the fact that
∫
K fidµ = bi for i ∈ [m] and yT b ≥ val∗ − δ, we get

(1 + εz0)

∫
K
f0dµ ≥ yT b− ε

m∑
i=1

zibi ≥ val∗ − δ − ε
m∑
i=1

zibi.

Since this holds for any feasible µ, we obtain

(1 + εz0)val
(rδ,ε)
outer ≥ val∗ − δ − ε

m∑
i=1

zibi

and thus

(1 + εz0) sup
r
val

(r)
outer ≥ val∗ − δ − ε

m∑
i=1

zibi.

Letting ε and δ tend to 0, we obtain

sup
r
val

(r)
outer ≥ val∗,

as desired, and the proof is complete. �

Remark. The missing part in the proof of Theorem 9 in the published paper lies in the
fact that one needs to upper bound µ(K) (for any feasible µ) by an absolute constant (in
order to be able to let ε tend to 0, see the displayed equation at the bottom of page 46).

Hence, the current proof is correct, for instance, if problem (GMP) contains a constraint
of the form

∫
K dµ ≤ b (for some b ∈ R) (which gives µ(K) ≤ b).

The statement in Theorem 10 (and its proof) should be adapted in the same way as for
Theorem 9 (without the Archimedean assumption), now using Theorem 10 (by Schmüdgen)
instead of Theorem 8 (by Putinar).

Theorem 11. Assume K is compact, program (GMP) is feasible, and Slater condition (S)
holds. Then, we have

lim
r→∞

val
(r)
outer = val.


