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Abstract In this paper we study optimization problems related to bipartite quantum
correlations using techniques from tracial noncommutative polynomial optimization.
First we consider the problem of finding the minimal entanglement dimension of such
correlations. We construct a hierarchy of semidefinite programming lower bounds and
show convergence to a new parameter: the minimal average entanglement dimension,
which measures the amount of entanglement needed to reproduce a quantum correla-
tion when access to shared randomness is free. Then we study optimization problems
over synchronous quantum correlations arising from quantum graph parameters. We
introduce semidefinite programming hierarchies and unify existing bounds on quan-
tum chromatic and quantum stability numbers by placing them in the framework of
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6 S. Gribling et al.

1 Introduction

1.1 Bipartite quantum correlations

One of the distinguishing features of quantum mechanics is quantum entanglement,
which allows for nonclassical correlations between spatially separated parties. In this
paper we consider the problems of quantifying the advantage entanglement can bring
(first investigated through Bell inequalities in the seminal work [3]) and quantifying
the minimal amount of entanglement necessary for generating a given correlation
(initiated in [5] and continued, e.g., in [43,53,60]).

Quantum entanglement has been widely studied in the bipartite correlation setting
(for a survey, see, e.g., [44]). Here we have two parties, Alice and Bob, where Alice
receives a question s taken from a finite set S and Bob receives a question t taken from
a finite set T . The parties do not know each other’s questions, and after receiving the
questions they do not communicate. Then, according to some predetermined protocol,
Alice returns an answer a from a finite set A and Bob returns an answer b from
a finite set B. The probability that the parties answer (a, b) to questions (s, t) is
given by a bipartite correlation P(a, b|s, t), which satisfies P(a, b|s, t) ≥ 0 for all
(a, b, s, t) ∈ Γ and

∑
a,b P(a, b|s, t) = 1 for all (s, t) ∈ S × T . We set Γ =

A × B × S × T throughout. Which bipartite correlations P = (P(a, b|s, t)) ∈ R
Γ

are possible depends on the additional resources available to the two parties Alice and
Bob.

When the parties do not have access to additional resources the correlation P is
deterministic, which means it is of the form P(a, b|s, t) = PA(a|s) PB(b|t) for all
(a, b, s, t) ∈ Γ , where PA = (PA(a|s)) and PB = (PB(b|t)) take their values in {0, 1}
and satisfy

∑

a

PA(a|s) =
∑

b

PB(b|t) = 1 for all (s, t) ∈ S × T . (1)

When the parties use local randomness the above functions PA and PB are convex
combinations of 0/1-valued ones, that is, PA and PB take their values in [0, 1] and
satisfy (1).

When the parties have access to shared randomness the resulting correlation P is
a convex combination of deterministic correlations and P is said to be a classical
correlation. The classical correlations form a polytope, denoted Cloc(Γ ), whose valid
inequalities are known as Bell inequalities [3].

We are interested in the quantum setting, where the parties have access to a shared
quantum state upon which they can perform measurements. The quantum setting can
be modeled in different ways, leading to the so-called tensor model and commuting
model; see the discussion, e.g., in [12,36,58].

In the tensor model, Alice and Bob each have access to “one half” of a finite
dimensional quantum state, which is modeled by a unit vector ψ ∈ C

d ⊗ C
d (for

some d ∈ N). Alice and Bob determine their answers by performing a measurement
on their part of the state. Such ameasurement is modeled by a positive operator valued
measure (POVM), which consists of a set of d × d Hermitian positive semidefinite
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Bounds on entanglement dimensions and quantum graph... 7

matrices labeled by the possible answers and summing to the identity matrix. If Alice
uses the POVM {Ea

s }a∈A when she gets question s ∈ S and Bob uses the POVM
{Fb

t }b∈B when he gets question t ∈ T , then the probability of obtaining the answers
(a, b) is given by

P(a, b|s, t) = Tr((Ea
s ⊗ Fb

t )ψψ∗) = ψ∗(Ea
s ⊗ Fb

t )ψ. (2)

If the stateψ can be written asψ = ψA ⊗ψB , then P(a, b|s, t) = (ψ∗
AE

a
s ψA)(ψ∗

B F
b
t

ψB) for all (a, b, s, t), and thus P is a classical correlation. Otherwise, ψ is said to be
entangled and can be used to produce a nonclassical correlation P .

A correlation of the above form (2) is called a quantum correlation; it is said to
be realizable in the tensor model in local dimension d (or in dimension d2) when
ψ ∈ C

d ⊗ C
d and Ea

s , Fb
t ∈ C

d×d . Let Cd
q (Γ ) be the set of such correlations and

define

Cq(Γ ) =
⋃

d∈N
Cd
q (Γ ).

Denote the smallest dimension needed to realize P ∈ Cq(Γ ) in the tensor model by

Dq(P) = min
{
d2 : d ∈ N, P ∈ Cd

q (Γ )
}
. (3)

The set C1
q (Γ ) contains the deterministic correlations.1 Hence, by Carathéodory’s

theorem, Cloc(Γ ) ⊆ Cc
q(Γ ) holds for c = |Γ | + 1 − |S||T |; that is, quantum entan-

glement can be used as an alternative to shared randomness. If A, B, S, and T all
contain at least two elements, then Bell [3] shows the inclusion Cloc(Γ ) ⊆ Cq(Γ ) is
strict; that is, quantum entanglement can be used to obtain nonclassical correlations.

The second commonly usedmodel to define quantum correlations is the commuting
model (or relativistic field theory model). Here a correlation P ∈ R

Γ is called a
commuting quantum correlation if it is of the form

P(a, b|s, t) = Tr(Xa
s Y

b
t ψψ∗) = ψ∗(Xa

s Y
b
t )ψ, (4)

where {Xa
s }a and {Yb

t }b are POVMs consisting of bounded operators on a separable
Hilbert space H , satisfying [Xa

s ,Y
b
t ] = Xa

s Y
b
t − Yb

t X
a
s = 0 for all (a, b, s, t) ∈ Γ ,

and where ψ is a unit vector in H . Such a correlation is said to be realizable in
dimension d = dim(H) in the commuting model. Denote the set of such correlations
by Cd

qc(Γ ) and set Cqc(Γ ) = C∞
qc (Γ ). The smallest dimension needed to realize a

quantum correlation P ∈ Cqc(Γ ) is given by

Dqc(P) = min
{
d ∈ N ∪ {∞} : P ∈ Cd

qc(Γ )
}
. (5)

If P ∈ Cd
q (Γ ) has a decomposition (2) with d × d matrices Ea

s , Fb
t , then P has a

decomposition (4) with d2 ×d2 matrices Xa
s = Ea

s ⊗ I and Yb
t = I ⊗ Fb

t . This shows
the inclusion Cd

q (Γ ) ⊆ Cd2
qc (Γ ), and thus

1 In fact, C1
q (Γ ) consists of the correlations obtained using only local randomness.
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8 S. Gribling et al.

Dqc(P) ≤ Dq(P) for all P ∈ Cq(Γ ). (6)

The minimum Hilbert space dimension in which a given quantum correlation P
can be realized quantifies the minimal amount of entanglement needed to represent P .
Computing Dq(P) is NP-hard [55], so a natural question is to find good lower bounds
for the parameters Dq(P) and Dqc(P). A main contribution of this paper is proposing
a hierarchy of semidefinite programming lower bounds for these parameters.

As said above we have Cd
q (Γ ) ⊆ Cd2

qc (Γ ). Conversely, each finite dimensional
commuting quantum correlation can be realized in the tensor model, although not
necessarily in the same dimension [58] (see, e.g., [12] for a proof). This shows

Cq(Γ ) =
⋃

d∈N
Cd
qc(Γ ) ⊆ Cqc(Γ ). (7)

Using a direct sum construction one can show the sets Cq(Γ ) and Cqc(Γ ) are convex.
Whether the two sets Cq(Γ ) and Cqc(Γ ) coincide is known as Tsirelson’s problem.

In a recent breakthrough Slofstra [54] showed that the set Cq(Γ ) is not closed
for |A| ≥ 8, |B| ≥ 2, |S| ≥ 184, |T | ≥ 235. More recently it was shown in [14]
that the same holds for |A| ≥ 2, |B| ≥ 2, |S| ≥ 5, |T | ≥ 5. Using a compactness
argument one sees that the setCd

q (Γ ) is closed for all d. So, whenCq(Γ ) is not closed,
the inclusions Cd

q (Γ ) ⊂ Cq(Γ ) are all strict and there is a sequence {Pi } ⊆ Cq(Γ )

with Dq(Pi ) → ∞. Moreover, since Cqc(Γ ) is closed [15, Prop. 3.4], the inclusion
Cq(Γ ) ⊆ Cqc(Γ ) is strict, thus settling Tsirelson’s problem. Whether the closure of
Cq(Γ ) equals Cqc(Γ ) for all Γ has been shown to be equivalent to having a positive
answer to Connes’ embedding conjecture in operator theory [21,42]. This conjecture
has been shown to have equivalent reformulations in many different fields; we refer
to [23] for an algebraic reformulation in terms of trace positivity of noncommutative
polynomials.

Further variations on the above definitions are possible. For instance, we can con-
sider a mixed state ρ (a Hermitian positive semidefinite matrix ρ with Tr(ρ) = 1)
instead of a pure state ψ , where we replace the rank 1 matrix ψψ∗ by ρ in the above
definitions. By convexity this does not change the setsCq(Γ ) andCqc(Γ ). It is shown
in [53] that this also does not change the parameter Dq(P), but it is unclear whether or
not Dqc(P)might decrease. Another variation would be to use projection valued mea-
sures (PVMs) instead of POVMs,where the operators are projectors instead of positive
semidefinite matrices. This again does not change the sets Cq(Γ ) and Cqc(Γ ) [40],
but the dimension parameters can be larger when restricting to PVMs.

When the two parties have the same question sets (S = T ) and the same answer
sets (A = B), a bipartite correlation P ∈ R

Γ is called synchronous if it satisfies

P(a, b|s, s) = 0 for all s ∈ S and distinct a, b ∈ A.

The sets of synchronous (commuting) quantum correlations are denoted Cq,s(Γ ) and
Cqc,s(Γ ), respectively. We have Cq,s(Γ ) ⊆ Cqc,s(Γ ) and the set Cqc,s(Γ ) is closed.
The synchronous correlation sets are already rich enough in the sense that it is still the
case that Connes’ embedding conjecture holds if and only if cl(Cq,s(Γ )) = Cqc,s(Γ )
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Bounds on entanglement dimensions and quantum graph... 9

for all Γ [13, Thm. 3.7]. The quantum graph parameters discussed in Sect. 1.3 will be
defined through optimization problems over synchronous quantum correlations.

For a synchronous quantumcorrelation P it turns out that its local dimension Dq(P)

is given by the factorization rank of an associated completely positive semidefinite
matrixMP . Recall that amatrixM ∈ R

n×n is called completely positive semidefinite if
there exist d ∈ N and d×d Hermitian positive semidefinite matrices X1, . . . , Xn with
M = (Tr(Xi X j )). The minimal such d is its completely positive semidefinite rank,
denoted cpsd-rank(M). Completely positive semidefinite matrices are used in [28] to
model quantum graph parameters and the cpsd-rank is investigated in [16,17,49,50].
In Sect. 2 we show the following link between synchronous quantum correlations and
cpsd-rank.

Proposition 1 The smallest local dimension inwhich a synchronous quantum correla-
tion P can be realized is given by the completely positive semidefinite rank of thematrix
MP indexed by S × A with entries (MP )(s,a),(t,b) = P(a, b|s, t) for (a, b, s, t) ∈ Γ .
That is, Dq(P) = cpsd-rank(MP ).

In [16]weused techniques from tracial polynomial optimization to define a semidef-
inite programming hierarchy {ξ cpsdr (M)}r∈N of lower bounds on cpsd-rank(M). By
the above result this hierarchy gives lower bounds on the smallest local dimension
in which a synchronous correlation can be realized in the tensor model. However, as
shown in [16], this hierarchy typically does not converge to cpsd-rank(M) but instead
(under a certain flatness condition) to a parameter ξ

cpsd∗ (M), which can be seen as
a block-diagonal version of the completely positive semidefinite rank. This flatness
condition is a rank stabilization condition on the optimal solution of the semidefinite
program defining ξ

cpsd
r (M); for a formal definition see (21) in Sect. 3.3.

Hereweuse similar techniques, nowexploiting the special structure of quantumcor-
relations, to construct a hierarchy {ξqr (P)} of lower bounds on the minimal dimension
Dq(P) of any—not necessarily synchronous—quantum correlation P . The hierarchy
converges (under flatness) to a parameter ξ

q∗ (P), and using the additional structure
we can show that ξ

q
∗ (P) is equal to an interesting parameter Aq(P) ≤ Dq(P). This

parameter describes the minimal average entanglement dimension of a correlation
when the parties have free access to shared randomness; see Sect. 1.2.

In the rest of the introduction we give a road map through the contents of the paper
and state the main results. We will introduce the necessary background along the way.

1.2 A hierarchy for the average entanglement dimension

We give here an overview of the results in Sect. 3 about bounding the entanglement
dimension of general (non synchronous) correlations.We are interested in theminimal
entanglement dimension needed to realize a given correlation P ∈ Cq(Γ ). If P is
deterministic or only uses local randomness, then Dq(P) = Dqc(P) = 1. But other
classical correlations (which use shared randomness) have Dq(P) ≥ Dqc(P) > 1,
which means the shared quantum state is used as a shared randomness resource. In [5]
the concept of dimension witness is introduced, where a d-dimensional witness is
defined as a halfspace containing conv(Cd

q (Γ )), but not the full set Cq(Γ ). As a
measure of entanglement this suggests the parameter
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10 S. Gribling et al.

inf
{
maxi∈[I ] Dq(Pi ) : I ∈ N, λ ∈ R

I+,

I∑

i=1

λi = 1, P =
I∑

i=1

λi Pi , Pi ∈ Cq(Γ )
}
.

(8)
Observe that, for a bipartite correlation P , this parameter is equal to 1 if and only if
P is classical. Hence, it more closely measures the minimal entanglement dimension
when the parties have free access to shared randomness. From an operational point
of view, (8) can be interpreted as follows. Before the game starts the parties select a
finite number of pure states ψi (i ∈ I ) (instead of a single one), in possibly different
dimensions di , and POVMs {Ea

s (i)}a , {Fb
t (i)}b for each i ∈ I and (s, t) ∈ S × T . As

before, we assume that the parties cannot communicate after receiving their questions
(s, t), but now they do have access to shared randomness, which they use to decide on
which stateψi to use. The parties proceed to measure stateψi using POVMs {Ea

s (i)}a ,
{Fb

t (i)}b, so that the probability of answers (a, b) is given by the quantum correlation
Pi . Equation (8) then asks for the largest dimension needed in order to generate P
when access to shared randomness is free.

It is not clear how to compute (8). Here we propose a variation of (8), and we
provide a hierarchy of semidefinite programs that converges to it under flatness. Instead
of considering the largest dimension needed to generate P , we consider the average
dimension. That is, we minimize

∑
i∈I λi Dq(Pi ) over all convex combinations P =∑

i∈I λi Pi . Hence, the minimal average entanglement dimension is defined by

Aq(P) = inf
{ I∑

i=1

λi Dq(Pi ) : I ∈ N, λ ∈ R
I+,

I∑

i=1

λi = 1,

P =
I∑

i=1

λi Pi , Pi ∈ Cq(Γ )
}

(9)

in the tensor model. In the commuting model, the parameter Aqc(P) is defined by
the same expression with Dq(Pi ) being replaced by Dqc(Pi ). Observe that we need
not replace Cq(Γ ) by Cqc(Γ ) since Dqc(P) = ∞ for any P ∈ Cqc(Γ )\Cq(Γ ).
Moreover, in view of (6), we have the inequality

Aqc(P) ≤ Aq(P) for all P ∈ Cq(Γ ). (10)

It follows by convexity that for the above definitions it does not matter whether we use
pure or mixed states. We show that for the average minimal entanglement dimension
it also does not matter whether we use the tensor or commuting model.

Proposition 2 For any P ∈ Cq(Γ ) we have Aq(P) = Aqc(P).

We have Aq(P) ≤ Dq(P) and Aqc(P) ≤ Dqc(P) for P ∈ Cq(Γ ), with equality if
P is an extreme point of Cq(Γ ). Hence, we have Dq(P) = Dqc(P) if P is an extreme
point ofCq(Γ ).We show that the parameter Aq(P) can be used to distinguish between
classical and nonclassical correlations.

Proposition 3 For P ∈ Cq(Γ ) we have Aq(P) = 1 if and only if P ∈ Cloc(Γ ).
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Bounds on entanglement dimensions and quantum graph... 11

As mentioned before, there exist sets Γ for which Cq(Γ ) is not closed [14,54],
which implies the existence of a sequence {Pi } ⊆ Cq(Γ ) such that Dq(P) → ∞. We
show this also implies the existence of such a sequence with Aq(Pi ) → ∞.

Proposition 4 If Cq(Γ ) is not closed, then there exists a sequence {Pi } ⊆ Cq(Γ )

with Aq(Pi ) → ∞.

Using tracial polynomial optimization we construct a hierarchy {ξqr (P)} of lower
bounds on Aqc(P). For each r ∈ N this is a semidefinite program, and for r = ∞
it is an infinite dimensional semidefinite program. We further define a (hyperfinite)
variation ξ

q∗ (P) of ξ
q∞(P) by adding a finite rank constraint on the matrix variable, so

that

ξ
q
1 (P) ≤ ξ

q
2 (P) ≤ · · · ≤ ξ

q∞(P) ≤ ξ
q∗ (P) ≤ Aqc(P).

Wedonot knowwhether ξq∞(P) = ξ
q∗ (P) always holds. Firstwe show thatwe imposed

enough constraints in the bounds ξ
q
r (P) so that ξq∗ (P) = Aqc(P).

Proposition 5 For any P ∈ Cq(Γ ) we have ξ
q∗ (P) = Aqc(P).

Thenwe show that the infinite dimensional semidefinite program ξ
q∞(P) is the limit

of the finite dimensional semidefinite programs.

Proposition 6 For any P ∈ Cq(Γ ) we have ξ
q
r (P) → ξ

q∞(P) as r → ∞.

Finally we give a flatness criterion under which finite convergence ξ
q
r (P) = ξ

q∗ (P)

holds. The definition of flatness follows later in the paper [see (21)]; here we only note
that it is a rank stabilization property which is easy to check given a solution to ξ

q
r (P).

Proposition 7 If ξ
q
r (P) admits a (�r/3
 + 1)-flat optimal solution, then we have

ξ
q
r (P) = ξ

q∗ (P).

1.3 Quantum graph parameters

Nonlocal games have been introduced in quantum information theory as abstract mod-
els to quantify the power of entanglement, in particular, in how much the sets Cq(Γ )

and Cqc(Γ ) differ from Cloc(Γ ). A nonlocal game is defined by a probability distri-
bution π : S×T → [0, 1] and a predicate f : A× B× S×T → {0, 1}. Alice and Bob
receive a question pair (s, t) ∈ S × T with probability π(s, t). They know the game
parameters π and f , but they do not know each other’s questions, and they cannot
communicate after they receive their questions. Their answers (a, b) are determined
according to some correlation P ∈ R

Γ , called their strategy, on which they may agree
before the start of the game, and which can be classical or quantum depending on
whether P belongs to Cloc(Γ ), Cq(Γ ), or Cqc(Γ ). Then their corresponding winning
probability is given by

∑

(s,t)∈S×T

π(s, t)
∑

(a,b)∈A×B

P(a, b|s, t) f (a, b, s, t). (11)

A strategy P is called perfect if the above winning probability is equal to one, that is,
if for all (a, b, s, t) ∈ Γ we have
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12 S. Gribling et al.

(
π(s, t) > 0 and f (a, b, s, t) = 0

) �⇒ P(a, b|s, t) = 0. (12)

Computing the maximum winning probability of a nonlocal game is an instance of
linear optimization [of the function (11)] over Cloc(Γ ) in the classical setting, and
over Cq(Γ ) or Cqc(Γ ) in the quantum setting. Since the inclusion Cloc(Γ ) ⊆ Cq(Γ )

can be strict, the maximum winning probability can be higher when the parties have
access to entanglement; see the CHSH game [10]. In fact there are nonlocal games
that can be won with probability 1 by using entanglement, but with probability strictly
less than 1 in the classical setting; see the Mermin-Peres magic square game [34,47].

The quantum graph parameters are analogues of the classical parameters defined
through the coloring and stability number games as described below. These nonlocal
games use the set [k] (whose elements are denoted as a, b) and the set V of vertices
of a graph G (whose elements are denoted as i, j) as question and answer sets.

In the quantumcoloring game, introduced in [1,9],we have a graphG = (V, E) and
an integer k. Here we have question sets S = T = V and answer sets A = B = [k],
and the distribution π is strictly positive on V × V . The predicate f is such that
the players’ answers have to be consistent with having a k-coloring of G; that is,
f (a, b, i, j) = 0 precisely when (i = j and a �= b) or ({i, j} ∈ E and a = b).
This expresses the fact that if Alice and Bob receive the same vertex, they should
return the same color and if they receive adjacent vertices, they should return distinct
colors. A perfect classical strategy exists if and only if a perfect deterministic strategy
exists, and a perfect deterministic strategy corresponds to a k-coloring of G. Hence
the smallest number k of colors for which there exists a perfect classical strategy is
equal to the classical chromatic number χ(G). It is therefore natural to define the
quantum chromatic number as the smallest k for which there exists a perfect quantum
strategy. Observe that such a strategy is necessarily synchronous since, in view of (12),
f (a, b, i, i) = 0 when a �= b implies P(a, b|i, i) = 0 when a �= b.

Definition 1 The (commuting) quantum chromatic number χq(G) (resp., χqc(G)) is
the smallest k ∈ N for which there exists a synchronous correlation P = (P(a, b|i, j))
in Cq,s([k]2 × V 2) (resp., Cqc,s([k]2 × V 2)) such that

P(a, a|i, j) = 0 for all a ∈ [k], {i, j} ∈ E .

In the quantum stability number game, introduced in [32,51], we again have a graph
G = (V, E) and k ∈ N, but now we use the question set [k] × [k] and the answer
set V × V . The distribution π is again strictly positive on the question set and now
the predicate f of the game is such that the players’ answers have to be consistent
with having a stable set of size k, that is, f (i, j, a, b) = 0 precisely when (a = b
and i �= j) or [a �= b and (i = j or {i, j} ∈ E)]. This expresses the fact that when
Alice and Bob receive the same index a = b ∈ [k], they should answer with the same
vertex i = j of G, and if they receive distinct indices a �= b from [k], they should
answer with distinct nonadjacent vertices i and j of G. There is a perfect classical
strategy precisely when there exists a stable set of size k, so that the largest integer k
for which there exists a perfect classical strategy is equal to the stability number α(G).
Again, such a strategy is necessarily synchronous, so we get the following definition.
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Bounds on entanglement dimensions and quantum graph... 13

Definition 2 The (commuting) stability number αq(G) (resp., αqc(G)) is the largest
integer k ∈ N for which there exists a synchronous correlation P = (P(i, j |a, b)) in
Cq,s(V 2 × [k]2) (resp., Cqc,s(V 2 × [k]2)) such that

P(i, j |a, b) = 0 whenever (i = j or {i, j} ∈ E) and a �= b ∈ [k].

The classical parameters χ(G) and α(G) are NP-hard. The same holds for the
quantum coloring number χq(G) [20], and also for the quantum stability number
αq(G) in view of the following reduction to coloring shown in [32]:

χq(G) = min
{
k ∈ N : αq(G�Kk) = |V |} . (13)

HereG�Kk is the Cartesian product of the graph G = (V, E) and the complete graph
Kk . By construction we have

χqc(G) ≤ χq(G) ≤ χ(G) and α(G) ≤ αq(G) ≤ αqc(G).

The separations between χq(G) and χ(G), and between αq(G) and α(G), can be
exponentially large in the number of vertices. This is the case for the graphs with
vertex set {±1}n for n a multiple of 4, where two vertices are adjacent if they are
orthogonal [1,32,33]. It is well known that the chromatic number of a graph increases
by 1 if we add a new vertex that is adjacent to all other vertices. Surprisingly, this is not
true in general for the quantum chromatic number [31]. While it was recently shown
that the sets Cq,s(Γ ) and Cqc,s(Γ ) can be different [14], it is not known whether there
is a separation between the parameters χq(G) and χqc(G), and between αq(G) and
αqc(G).

We now give an overview of the results of Sect. 4 and refer to that section for
formal definitions. In Sect. 4.1 we first reformulate the quantum graph parameters
in terms of C∗-algebras, which allows us to use techniques from tracial polynomial
optimization to formulate bounds on the quantum graph parameters. We define a
hierarchy {γ col

r (G)} of lower bounds on the commuting quantum chromatic number
and a hierarchy {γ stab

r (G)} of upper bounds on the commuting quantum stability
number. We show the following convergence results for these hierarchies.

Proposition 8 There is an r0 ∈ N such that γ col
r (G) = χqc(G) and γ stab

r (G) =
αqc(G) for all r ≥ r0. Moreover, if γ col

r (G) admits a flat optimal solution, then
γ col
r (G) = χq(G), and if γ stab

r (G) admits a flat optimal solution, then γ stab
r (G) =

αq(G).

Then in Sect. 4.2 we define tracial analogues {ξ stabr (G)} and {ξ colr (G)} of Lasserre
type bounds on α(G) and χ(G) that provide hierarchies of bounds for their quantum
analogues. These bounds are more economical than the bounds γ col

r (G) and γ stab
r (G)

(since they use less variables) and they also permit to recover some known bounds
for the quantum parameters. We show that ξ stab∗ (G), which is the parameter ξ stab∞ (G)

with an additional rank constraint on the matrix variable, coincides with the projective
packing number αp(G) from [51] and that ξ stab∞ (G) upper bounds αqc(G).
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14 S. Gribling et al.

Proposition 9 We have ξ stab∗ (G) = αp(G) ≥ αq(G) and ξ stab∞ (G) ≥ αqc(G).

Next,we consider the chromatic number. The tracial hierarchy {ξ colr (G)} unifies two
known bounds: the projective rank ξ f (G), a lower bound on the quantum chromatic
number from [32], and the tracial rank ξtr (G), a lower bound on the commuting
quantum chromatic number from [46]. In [13, Cor. 3.10] it is shown that the projective
rank and the tracial rank coincide if Connes’ embedding conjecture is true.

Proposition 11 We have ξ col∗ (G) = ξ f (G) ≤ χq(G) and ξ col∞ (G) = ξtr (G) ≤
χqc(G).

We compare the hierarchies ξ colr (G) and γ col
r (G), and the hierarchies ξ stabr (G) and

γ stab
r (G). For the coloring parameters, we show the analogue of reduction (13).

Proposition 12 For r ∈ N ∪ {∞} we have γ col
r (G) = min{k : ξ stabr (G�Kk) = |V |}.

We show an analogous statement for the stability parameters, when using the homo-
morphic graph product of Kk with the complement of G, denoted here as Kk �G, and
the following reduction shown in [32]:

αq(G) = max{k ∈ N : αq(Kk � G) = k}.

Proposition 13 For r ∈ N ∪ {∞} we have γ stab
r (G) = max{k : ξ stabr (Kk � G) = k}.

Finally, we show that the hierarchies {γ col
r (G)} and {γ stab

r (G)} refine the hierarchies
{ξ colr (G)} and {ξ stabr (G)}.
Proposition 14 For r ∈ N ∪ {∞, ∗}, ξ colr (G) ≤ γ col

r (G) and ξ stabr (G) ≥ γ stab
r (G).

1.4 Techniques from noncommutative polynomial optimization

In a (commutative) polynomial optimization problem we minimize a multivariate
polynomial f (x1, . . . , xn) over a feasible region defined by polynomial inequalities.
Such a problem has the form

inf
{
f (x1, . . . , xn) : x ∈ R

n, g(x1, . . . , xn) ≥ 0 for g ∈ G
}

for some finite set G of multivariate polynomials. Lasserre [24] and Parrilo [45] intro-
duced the moment/sum-of-squares method to solve such problems (see, e.g., [25,27]
for details). Themomentmethod is based on the observation that the above polynomial
optimization problem is equivalent to minimizing

∫
f (x)dμ(x) over all probability

measures μ supported on the set D(G ) = {x ∈ R
n : g(x) ≥ 0 for g ∈ G }. In

turn, this is equivalent to minimizing L( f ) over all linear functionals L on the space
of polynomials satisfying L(p) ≥ 0 for all polynomials p that are nonnegative on
D(G ). To get a tractable relaxation we then consider the linear functionals L on the
space of polynomials up to degree 2r and require that L is nonnegative on all squares
s2 and weighted squares s2g (for g ∈ G ) of degree at most 2r . This condition can
be expressed with a polynomially sized semidefinite program for any fixed r . These
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Bounds on entanglement dimensions and quantum graph... 15

relaxations are good in the sense that, under a mild assumption,2 they converge to the
optimal value of the polynomial optimization problem as r goes to infinity.

In [37,48] this approach has been extended to the general eigenvalue optimization
problem, which is a problem of the form

inf
{
ψ∗ f (X1, . . . , Xn)ψ : d ∈ N, ψ ∈ C

d unit vector, X1, . . . , Xn ∈ C
d×d ,

g(X1, . . . , Xn) � 0 for g ∈ G
}
.

Here, the matrix variables Xi are allowed to have any dimension d ∈ N and { f } ∪ G
is a set of symmetric polynomials in noncommutative variables. In a tracial optimiza-
tion problem, instead of minimizing the smallest eigenvalue of f (X1, . . . , Xn), we
minimize its normalized trace Tr( f (X1, . . . , Xn))/d (so that the identity matrix has
trace one) [6–8,22]. Such a problem has the form

inf
{
Tr( f (X1, . . . , Xn))/d : d ∈ N, X1, . . . , Xn ∈ C

d×d ,

g(X1, . . . , Xn) � 0 for g ∈ G
}
,

where the matrix variables Xi may again have any dimension d and { f } ∪ G is a set
of symmetric polynomials in noncommutative variables. The moment approach for
these two problems again relies on minimizing L( f ), where L is a linear functional
on the space of noncommutative polynomials that either models ψ∗ f (X1, . . . , Xn)ψ

or models the normalized trace evaluation Tr( f (X1, . . . , Xn))/d.
Let us focus on the tracial setting which is the setting used in this paper. As in

the commutative case, one obtains tractable (semidefinite programming) relaxations
by requiring L to “behave like a trace evaluation on noncommutative polynomials
of degree at most 2r”. Specifically, we ask L to be nonnegative on all Hermitian
squares s∗s and weighted Hermitian squares s∗gs (for g ∈ G ) of degree at most
2r , and we require the new tracial condition L(pq) = L(qp), which indeed holds
for trace evaluations; see Sect. 3.3 for details. Under an analogous mild assumption,
the asymptotic limit of these relaxations is well understood: we obtain a solution
(X1, . . . , Xn) living in a C∗-algebra A equipped with a tracial state τ . The question
thus becomes: when can such a solution be converted into a solution to the original
tracial optimization problem, i.e., to a solution living in a usual matrix algebra?

For our purposes, a C∗-algebra A can be defined as a norm closed ∗-subalgebra
of the space B(H) of bounded operators on a complex Hilbert space H . Here, the
involution ∗ onB(H) is the usual adjoint operation, and a ∗-subalgebra is an algebra
that is closed under taking adjoints. When H has finite dimension d this meansA is a
matrix ∗-algebra, i.e.,A is a subalgebra of C

d×d that is closed under taking complex
conjugates. Examples of matrix ∗-algebras include the full matrix algebraC

d×d or the
∗-algebra generated by given matrices X1, . . . , Xn ∈ C

d×d , denoted C〈X1, . . . , Xn〉.
An algebra is called finite dimensional if it is finite dimensional as a vector space.

2 To be precise, it suffices that there exists a constant R > 0 such that R−∑
i x

2
i can be written as a sum of

weighted squares s2g with g ∈ G ∪ {1}. This is called the Archimedean condition of the quadratic module
associated to G , see Sect. 3.3.
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16 S. Gribling et al.

Essential for understanding the asymptotic limit of the above relaxations for tracial
polynomial optimization are the following results due to Artin and Wedderburn (see
[2,59]): Any finite dimensional C∗-algebra is (∗-isomorphic to) a matrix ∗-algebra
containing the identity, and in turn any such matrix ∗-algebra is isomorphic to a direct
sum of full matrix algebras. We record the latter result for future reference:

Theorem 1 ([2,59]) Let A be a complex matrix ∗-subalgebra of C
d×d containing

the identity. Then there exists a unitary matrix U and integers K ,mk, nk for k ∈ [K ]
such that

UAU∗ =
K⊕

k=1

(Cnk×nk ⊗ Imk ) and d =
K∑

k=1

mknk .

Going back to the question above about the asymptotic limit of the relaxations to
the tracial optimization problem: when the obtained solution (X1, . . . , Xn) lives in a
finite dimensional C∗-algebra it can be converted into an optimal matrix solution to the
original tracial optimization problem. As we will later see (Theorem 3) this happens
when the limit linear functional L satisfies some finite rank condition since then L is
a convex combination of trace evaluations at matrix tuples (X1, . . . , Xn) satisfying
g(X1, . . . , Xn) � 0 for all g ∈ G . In addition note that this may happen at a relaxation
of finite order r when the optimal solution L satisfies the so-called flatness condition
(see Theorems 3 and 4).

An important feature in noncommutative polynomial optimization is the dimen-
sion independence: the optimization is over all possible matrix sizes d ∈ N. In fact,
this was the original motivation in the works [36] and [12], where noncommutative
polynomial optimization was first used for approximating the set Cqc(Γ ) of commut-
ing quantum correlations and the maximum winning probability of nonlocal games
over Cqc(Γ ) (and, more generally, for computing Bell inequality violations). In some
applications onemaywant to restrict to optimizing overmatrices with restricted size d.
In [35,38] techniques are developed that allow to incorporate this dimension restric-
tion by suitably selecting the linear functionals L in a specified space; this is used
to give bounds on the maximum violation of a Bell inequality in a fixed dimension.
A related natural problem is to decide what is the minimum dimension d needed to
realize a given algebraically defined object, such as a (commuting) quantum corre-
lation P . Here we propose an approach based on tracial polynomial optimization:
starting from the observation that the trace of the d × d identity matrix gives its
size d, we consider the problem of minimizing L(1) where L is a linear functional
now modeling the non-normalized matrix trace. This approach has been used in sev-
eral recent works [16,39,57] for lower bounding factorization ranks of matrices and
tensors.

2 Entanglement dimension of synchronous quantum correlations

By combining the proofs from [52] (see also [32]) and [46] one can show the following
link between the minimum local dimension of a synchronous correlation and the
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Bounds on entanglement dimensions and quantum graph... 17

completely positive semidefinite rankof an associated completely positive semidefinite
matrix.

Proposition 1 The smallest local dimension inwhich a synchronous quantum correla-
tion P can be realized is given by the completely positive semidefinite rank of thematrix
MP indexed by S × A with entries (MP )(s,a),(t,b) = P(a, b|s, t) for (a, b, s, t) ∈ Γ .
That is, Dq(P) = cpsd-rank(MP ).

Proof Suppose first that (ψ, Ea
s , Fb

t ) is a realization of P in local dimension d as in
(2). We will show MP is completely positive semidefinite with cpsd-rankC(MP ) ≤ d.

Taking the Schmidt decomposition of ψ , there exist nonnegative scalars {λi } and
orthonormal bases {ui } and {vi } ofC

d such thatψ = ∑d
i=1

√
λi ui ⊗vi .3 If we replace

ψ by
∑d

i=1
√

λi vi ⊗ vi and Ea
s by UEa

s U
∗, where U is the unitary matrix for which

ui = Uvi for all i , then (
∑d

i=1
√

λi ui ⊗vi , Ea
s , Fb

t ) still realizes P and is of the same
dimension d.

Given such a realization (
∑d

i=1
√

λi vi ⊗ vi , Ea
s , Fb

t ) of P , we define the matrices

K =
d∑

i=1

√
λi viv

∗
i , Xa

s = K 1/2Ea
s K

1/2, Yb
t = K 1/2Fb

t K
1/2.

By using the identities vec(K ) = ψ and

vec(K )∗(Ea
s ⊗ Fb

t )vec(K ) = Tr(K Ea
s K Fb

t ) = Tr(K 1/2Ea
s K

1/2K 1/2Fb
t K

1/2),

(14)
and substituting Xa

s = K 1/2Ea
s K

1/2 and Yb
t = K 1/2Fb

t K
1/2, we see that

P(a, b|s, t) = 〈Xa
s ,Y

b
t 〉 for all a, b, s, t, (15)

and
〈K , K 〉 = 1,

∑

a

Xa
s =

∑

b

Y b
t = K for all s, t. (16)

For any s ∈ S, as P is synchronouswehave1 = ∑
a,b P(a, b|s, s) = ∑

a P(a, a|s, s).
Then the Cauchy–Schwarz inequality gives

1 =
∑

a

P(a, a|s, s) =
∑

a

〈Xa
s ,Y

a
s 〉 ≤

∑

a

〈Xa
s , X

a
s 〉1/2〈Ya

s ,Ya
s 〉1/2

≤
(∑

a

〈Xa
s , X

a
s 〉

)1/2(∑

a

〈Ya
s ,Ya

s 〉
)1/2

≤
〈∑

a

Xa
s ,

∑

a

Xa
s

〉1/2〈∑

a

Y a
s ,

∑

a

Y a
s

〉1/2 = 〈K , K 〉 = 1.

3 The Schmidt decompositionψ = ∑d
i=1

√
λi ui ⊗vi ofψ ∈ C

d ⊗C
d can be viewed as the singular value

decomposition
∑d

i=1
√

λi uiv
∗
i of the matrix vec−1(ψ), where vec : C

d×d → C
d ⊗ C

d is the operation
that sends uv∗ to u ⊗ v.
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18 S. Gribling et al.

Thus all inequalities above are equalities. The first inequality being an equality shows
that there exist αs,a ≥ 0 such that Xa

s = αs,aY a
s for all a, s. The second inequality

being an equality shows that there exist βs such that ‖Xa
s ‖ = βs‖Ya

s ‖ for all a, s.
Hence,

βs‖Ya
s ‖ = ‖Xa

s ‖ = ‖αs,aY
a
s ‖ = αs,a‖Ya

s ‖ = αs,a‖Ya
s ‖ for all a, s,

which shows Xa
s = βsY a

s for all a, s. Since
∑

a X
a
s = K = ∑

a Y
a
s , we have βs = 1

for all s. Thus Xa
s = Ya

s for all a, s. Therefore,

(MP )(s,a),(t,b) =
〈
Xa
s , X

b
t

〉
for all a, b, s, t,

which shows MP is completely positive semidefinite with cpsd-rankC(MP ) ≤ d.
For the other direction we suppose {Xa

s } are smallest possible Hermitian positive
semidefinite matrices such that (MP )(s,a),(t,b) = 〈Xa

s , X
b
t 〉 for all a, s, t, b. Then,

1 =
∑

a,b

P(a, b|s, t) =
∑

a,b

〈
Xa
s , X

b
t

〉
=

〈∑

a

Xa
s ,

∑

b

Xb
t

〉
for all s, t,

which shows the existence of a matrix K such that K = ∑
a X

a
s for all s. We have

〈K , K 〉 = 1 and thus vec(K ) is a unit vector.Moreover, since the factorization ofMP is
chosen of smallest possible size, the matrix K is invertible. Set Ea

s = K−1/2Xa
s K

−1/2

for all s, a, so that
∑

a E
a
s = I for all s. Then, using again (14) we obtain

P(a, b|s, t) = (MP )(s,a),(t,b) = 〈Xa
s , X

b
t 〉 = vec(K )∗(Ea

s ⊗ Eb
t )vec(K ),

which shows P has a realization of local dimension cpsd-rankC(MP ). ��

3 A hierarchy for the minimal entanglement dimension

3.1 The minimal average entanglement dimension

Here we investigate some properties of the average entanglement dimension Aq(·),
which was introduced in Sect. 1.2 in (9). We start by showing that it does not matter
whether we use the tensor model or the commuting model.

Proposition 2 For any P ∈ Cq(Γ ) we have Aq(P) = Aqc(P).

Proof The inequality Aqc(P) ≤ Aq(P)was observed in (10). For the reverse inequal-
ity assume we have a decomposition P = ∑I

i=1λi Pi , which is feasible for Aqc(P).
This means we have POVMs {Xa

s (i)}a and {Yb
t (i)}b inC

di×di with [Xa
s (i),Y

b
t (i)] = 0

and unit vectors ψi ∈ C
di such that Pi (a, b|s, t) = ψ∗

i X
a
s (i)Y

b
t (i)ψi for all

(a, b, s, t) ∈ Γ and i ∈ [I ]. We will construct another decomposition of P which will
provide a feasible solution to Aq(P) with value at most

∑
i λi di .
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Bounds on entanglement dimensions and quantum graph... 19

Fix some index i ∈ [I ]. Applying Theorem 1 to the matrix ∗-algebraC〈{Xa
s (i)}a,s〉

generated by the matrices Xa
s (i) for (a, s) ∈ A × S shows that there exist a unitary

matrix Ui and integers4 Ki ,mk, nk such that

UiC〈{Xa
s (i)}a,s〉U∗

i =
Ki⊕

k=1

(Cnk×nk ⊗ Imk ) and di =
Ki∑

k=1

mknk .

By assumption each matrix Yb
t (i) commutes with all the matrices in C〈{Xa

s (i)}a,s〉,
and thus UiY b

t (i)U∗
i lies in the algebra

⊕
k(Ink ⊗ C

mk×mk ). Hence, we may assume

Xa
s (i) =

Ki⊕

k=1

Ea
s (i, k) ⊗ Imk , Yb

t (i) =
Ki⊕

k=1

Ink ⊗ Fb
t (i, k), ψi =

Ki⊕

k=1

ψi,k,

with Ea
s (i, k) ∈ C

nk×nk , Fb
t (i, k) ∈ C

mk×mk , and ψi,k ∈ C
nk ⊗ C

mk . Then we have

Pi (a, b|s, t) = Tr(Xa
s (i)Y

b
t (i)ψiψ

∗
i )

=
Ki∑

k=1

‖ψi,k‖2 Tr

(

Ea
s (i, k) ⊗ Fb

t (i, k)
ψi,kψ

∗
i,k

‖ψi,k‖2
)

︸ ︷︷ ︸
Qi,k (a,b|s,t)

,

where Qi,k ∈ Cq(Γ ). As
∑

k ‖ψi,k‖2 = ‖ψi‖2 = 1, we have that Pi =∑
k ‖ψi,k‖2Qi,k is a convex combination of the Qi,k’s.

We now show that Qi,k ∈ Cmin{mk ,nk }
q (Γ ). Consider the Schmidt decomposition

ψi,k/‖ψi,k‖ = ∑min{mk ,nk }
l=1 λi,k,l vi,k,l ⊗wi,k,l ,where λi,k,l ≥ 0 and {vi,k,l}nkl=1 ⊆ C

nk

and {wi,k,l}mk
l=1 ⊆ C

mk are orthonormal bases. Define unitary matrices Vk ∈ C
nk×nk

and Wk ∈ C
mk×mk such that Vkvi,k,l is the lth unit vector in R

nk for 1 ≤ l ≤ nk and
Wkwi,k,l is the lth unit vector in R

mk for 1 ≤ l ≤ mk . Let Ea
s (i, k)′ (resp., Fb

t (i, k)′)
be the leading principal submatrices of Vk Ea

s (i, k)V ∗
k (resp., WkFb

t (i, k)W ∗
k ) of size

min{mk, nk}. Moreover, set φi,k = ∑min{mk ,nk }
l=1 λi,k,l el ⊗ el , where el is the lth unit

vector in R
min{mk ,nk }. Then we have

Qi,k(a, b|s, t) = Tr

(

Ea
s (i, k) ⊗ Fb

t (i, k)
ψi,kψ

∗
i,k

‖ψi,k‖2
)

=
min{mk ,nk }∑

l,l ′=1

λi,k,lλi,k,l ′(v
∗
i,k,l E

a
s (i, k)vi,k,l ′)(w

∗
i,k,l F

b
t (i, k)wi,k,l ′)

4 We omit the explicit dependence on i in the integers mk , nk to simplify the notation.

123



20 S. Gribling et al.

=
min{mk ,nk }∑

l,l ′=1

λi,k,lλi,k,l ′(e
∗
l E

a
s (i, k)′el ′)(e∗

l F
b
t (i, k)′el ′)

= Tr((Ea
s (i, k)′ ⊗ Fb

t (i, k)′)φi,kφ
∗
i,k),

which shows Qi,k ∈ Cmin{mk ,nk }
q (Γ ).

Combining the convex decompositions P = ∑
i λi Pi and Pi = ∑

k ‖ψi,k‖2Qi,k ,
we get the following convex decomposition P = ∑

i,k λi‖ψi,k‖2Qi,k , from which we
obtain

Aq(P) ≤
∑

i,k

λi‖ψi,k‖2 min{mk, nk}2 ≤
∑

i,k

λi min{mk, nk}2

≤
∑

i,k

λimknk =
∑

i

λi di . ��

Wenow show that the parameter Aq(·) permits to characterize classical correlations.

Proposition 3 For P ∈ Cq(Γ ) we have Aq(P) = 1 if and only if P ∈ Cloc(Γ ).

Proof If P ∈ Cloc(Γ ), then P can be written as a convex combination of deterministic
correlations (which belong to C1

q (Γ )), and thus Aq(P) = 1.
For the reverse implication, assume Aq(P) = 1. Then there exist a sequence of

convex decompositions P = ∑
i∈I l λli P

l
i indexed by l ∈ N, with {Pl

i } ⊆ Cq(Γ ) and
liml→∞

∑
i∈I l λl Dq(Pl

i ) = 1. Decompose the set I l as the disjoint union I l− ∪ I l+,
where Dq(Pl

i ) = 1 for i ∈ I l− and Dq(Pl
i ) > 1 for i ∈ I l+. Let ε > 0. Then, for all l

sufficiently large we have

1 +
∑

i∈I l+
λi =

⎛

⎜
⎝1 −

∑

i∈I l+
λli

⎞

⎟
⎠ + 2

∑

i∈I l+
λli ≤

∑

i∈I l−
λli +

∑

i∈I l+
λli Dq(P

l
i )

=
∑

i∈I l
λl Dq(P

l
i ) ≤ 1 + ε,

implying
∑

i∈I l+λli ≤ ε. This shows that the sequenceμl := ∑
i∈I l− λi tends to 1 as l →

∞. The correlation Pl := ∑
i∈I l− λli P

l
i /μ

l is a convex combination of deterministic
correlations and thus it belongs to Cloc(Γ ). Moreover, Pl → P as l → ∞, which
implies P ∈ Cloc(Γ ). ��

As we already observed earlier, when the set Cq(Γ ) is not closed, the inclusion
Cd
q (Γ ) ⊆ Cq(Γ ) is strict for all d (because with a compactness argument one can

show that Cd
q (Γ ) is closed), and thus there exists a sequence {Pi } ⊆ Cq(Γ ) with

Dq(Pi ) → ∞ as i → ∞. We show the analogous unboundedness property for the
average entanglement dimension Aq(·). For the proof we will use the fact that also the
sets Cd

qc(Γ ) are closed for all d ∈ N.
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Proposition 4 If Cq(Γ ) is not closed, then there exists a sequence {Pi } ⊆ Cq(Γ )

with Aq(Pi ) → ∞.

Proof Assume for contradiction there exists an integer K such that Aq(P) ≤ K for all
P ∈ Cq(Γ ).Wewill show this results in a uniform upper bound K ′ on Dqc(P), which,
in view of (7), implies that Cq(Γ ) is equal to the closed set CK ′

qc (Γ ), contradicting the
assumption that Cq(Γ ) is not closed. For this, we will first show that any P ∈ Cq(Γ )

belongs to conv(CK
qc(Γ )).

In a first step observe that any P ∈ Cq(Γ )\conv(CK
qc(Γ )) can be decomposed as

P = μ1R1 + (1 − μ1)Q1, (17)

where R1 ∈ Cq(Γ ), Q1 ∈ conv(CK
qc(Γ )), and 0 < μ1 ≤ K/(K + 1). Indeed, by

assumption and using Proposition 2, Aqc(P) = Aq(P) ≤ K , so P can be written as
a convex combination P = ∑

i∈I λi Pi with {Pi } ⊆ Cq(Γ ) and
∑

i∈I λi Dqc(Pi ) ≤
K . As P /∈ conv(CK

qc(Γ )), the set J of indices i ∈ I with Dqc(Pi ) ≥ K + 1 is
non empty. Then (K + 1)

∑
i∈J λi ≤ ∑

i∈J λi Dqc(Pi ) ≤ K , and thus 0 < μ1 :=∑
i∈J λi ≤ K/(K + 1). Hence (17) holds after setting R1 = (

∑
i∈J λi Pi )/μ1 and

Q1 = (
∑

i∈I\J λi Pi )/(1 − μ1).

As R1 ∈ Cq(Γ ) \ conv(CK
qc(Γ )), we may repeat the same argument for R1. By

iterating we obtain for each integer k ∈ N a decomposition

P = μ1μ2 . . . μk Rk

+ (1 − μ1)Q1 + μ1(1 − μ2)Q2 + · · · + μ1μ2 . . . μk−1(1 − μk)Qk︸ ︷︷ ︸
=(1−μ1μ2...μk )Q̂k

,

where Rk ∈ Cq(Γ ), Q̂k ∈ conv(CK
qc(Γ )) and μ1μ2 . . . μk ≤ (K/(K + 1))k . Then

the sequence μ1μ2 . . . μk tends to 0 as k → ∞. As the entries of Rk lie in [0, 1] we
can conclude that μ1μ2 . . . μk Rk tends to 0 as k → ∞. Hence the sequence (Q̂k)k
has a limit Q̂ and P = Q̂ holds. As all Q̂k lie in the compact set conv(CK

qc(Γ )), we
also have P ∈ conv(CK

qc(Γ )). So we reach a contradiction, which shows Cq(Γ ) ⊆
conv(CK

qc(Γ )).
The extreme points of the compact convex set conv(CK

qc(Γ )) lie in CK
qc(Γ ), so,

by the Carathéodory theorem, any P ∈ conv(CK
qc(Γ )) is a convex combination of c

elements fromCK
qc(Γ ), where c = |Γ |+1−|S||T |. By using a direct sum construction

one can obtain Dqc(P) ≤ cK , which shows K ′ := cK is a uniform upper bound on
Dqc(P) for all P ∈ Cq(Γ ). ��

3.2 Setup of the hierarchy

We will now construct a hierarchy of lower bounds on the minimal entanglement
dimension, using its formulation via Aqc(·). Our approach is based on noncommutative
polynomial optimization, thus similar to the approach we used in [16] for bounding
matrix factorization ranks.
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We first need some notation. Set x = {
xas : (a, s) ∈ A× S

}
and y = {

ybt : (b, t) ∈
B × T

}
, and let 〈x, y, z〉r be the set of all words in the n = |S||A| + |T ||B| + 1

symbols xas , y
b
t , and z, having length at most r . Moreover, set 〈x, y, z〉 = 〈x, y, z〉∞.

We equip 〈x, y, z〉r with an involution w �→ w∗ that reverses the order of the symbols
in the words and leaves the symbols xas , ybt , z invariant; e.g., (xas z)

∗ = zxas . Let
R〈x, y, z〉r be the vector space of all real linear combinations of the words of length
(aka degree) at most r . The space R〈x, y, z〉 = R〈x, y, z〉∞ is the ∗-algebra with
Hermitian generators {xas }, {ybt }, and z, and the elements in this algebra are called
noncommutative polynomials in the variables {xas }, {ybt }, z.

The hierarchy of bounds on Aqc(P) is based on the following idea: For any feasible
solution to Aqc(P), its objective value can be modeled as L(1) for a certain tracial
linear form L on the space of noncommutative polynomials (truncated to degree 2r ).

Indeed, assume {(Pi , λi )i } is a feasible solution to the program defining Aqc(P)

(introduced in Sect. 1.2). That is, P = ∑
i λi Pi with λi ≥ 0,

∑
i λi = 1 and

Pi ∈ Cq(Γ ). Assume Pi (a, b|s, t) = Tr
(
Xa
s (i)Y

b
t (i)ψiψ

∗
i

)
where ψ ∈ C

di and
the POVM’s {Xa

s (i)}, {Yb
t (i)} ⊂ C

di×di are as in (4), that is, for all (s, t, a, b) ∈ Γ the
matrices Xa

s (i) and Y
b
t (i) commute: [Xa

s (i),Y
b
t (i)] = Xa

s (i)Y
b
t (i)−Yb

t (i)Xa
s (i) = 0.

For r ∈ N ∪ {∞}, consider the linear functional L ∈ R〈x, y, z〉∗2r defined by

L(p) =
∑

i

λi Re(Tr(p(X(i),Y(i), ψiψ
∗
i ))) for p ∈ R〈x, y, z〉2r .

Here, for each index i , we set

X(i) = (Xa
s (i) : (a, s) ∈ A × S), Y(i) = (Yb

t (i) : (b, t) ∈ B × T ),

and we replace the variables xas , y
b
t , z by Xa

s (i), Y
b
t (i), and ψiψ

∗
i , respectively. First

note that we have L(1) = ∑
i λi di . That is, L(1) is equal to the objective value of

the feasible solution {(Pi , λi )i } to Aqc(P). Secondly, for all (s, t, a, b) ∈ Γ we have
L(xas y

b
t z) = P(a, b|s, t).

We will now identify several computationally tractable properties that this linear
functional L satisfies. The hierarchy of lower bounds on Aqc(P) then consists of
optimization problems where we minimize L(1) over the set of linear functionals that
satisfy these properties.

First note that L is symmetric, that is, L(w) = L(w∗) for all w ∈ 〈x, y, z〉2r , and
tracial, that is, L(ww′) = L(w′w) for all w,w′ ∈ 〈x, y, z〉 with deg(ww′) ≤ 2r .

Next, for all p ∈ R〈x, y, z〉r−1 we have

L(p∗xas p) =
∑

i

λi Re(Tr(C(i)∗Xa
s (i)C(i)) ≥ 0,

where C(i) = p(X(i),Y(i), ψiψ
∗
i ), as C(i)∗Xa

s (i)C(i) is positive semidefinite since
Xa
s (i) is positive semidefinite. In the same way one can check that L(p∗ybt p) ≥ 0 and

L(p∗zp) ≥ 0. That is, if we set

G = {
xas : s ∈ S, a ∈ A

} ∪ {
ybt : t ∈ T, b ∈ B

} ∪ {z},

123



Bounds on entanglement dimensions and quantum graph... 23

then L is nonnegative (denoted as L ≥ 0) on the truncated quadratic module

M2r (G ) = cone
{
p∗gp : p ∈ R〈x, y, z〉, g ∈ G ∪ {1}, deg(p∗gp) ≤ 2r

}
. (18)

Similarly, setting

H = {
z − z2

} ∪ {
1 −

∑

a∈A

xas : s ∈ S
}

∪{
1 −

∑

b∈B
ybt : t ∈ T

} ∪ {[xas , ybt ] : (s, t, a, b) ∈ Γ
}
,

we have L = 0 on the truncated ideal

I2r (H ) =
{
ph : p ∈ R〈x, y, z〉, h ∈ H , deg(ph) ≤ 2r

}
. (19)

Moreover, we have L(z) = ∑
i λiRe(Tr(ψiψ

∗
i )) = 1. In addition, for any matrices

U, V ∈ C
di×di we have

ψiψ
∗
i Uψiψ

∗
i Vψiψ

∗
i = ψiψ

∗
i Vψiψ

∗
i Uψiψ

∗
i ,

and therefore, in particular,

L(wzuzvz) = L(wzvzuz) for all u, v, w ∈ 〈x, y, z〉 with deg(wzuzvz) ≤ 2r.

That is, we have L = 0 on I2r (Rr ), where

Rr = {
zuzvz − zvzuz : u, v ∈ u, v ∈ 〈x, y, z〉 with deg(zuzvz) ≤ 2r

}
.

We get the idea of adding these last constraints from [37], where this is used to study
the mutually unbiased bases problem.

We call M (G ) = M∞(G ) the quadratic module generated by G , and we call
I (H ∪ R∞) = I∞(H ∪ R∞) the ideal generated by H ∪ R∞.

For r ∈ N ∪ {∞} we can now define the parameter:

ξ
q
r (P) = min

{
L(1) : L ∈ R〈x, y, z〉∗2r tracial and symmetric,

L(z) = 1, L(xas y
b
t z) = P(a, b|s, t) for all (a, b, s, t) ∈ Γ,

L ≥ 0 on M2r (G ), L = 0 on I2r (H ∪ Rr )
}
.

Note that for order r = 1 we get the trivial bound ξ
q
1 (P) = 1.

For each finite r ∈ N the parameter ξ
q
r (P) can be computed by semidefinite pro-

gramming. Indeed, the condition L ≥ 0 on M2r (G ) means that L(p∗gp) ≥ 0 for all
g ∈ G ∪ {1} and all polynomials p ∈ R〈x, y, z〉 with degree at most r − �deg(g)/2
.
This is equivalent to requiring that the matrices (L(w∗gw′)), indexed by all words
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w,w′ with degree at most r − �deg(g)/2
, are positive semidefinite. To see this, write
p = ∑

w pww and let p̂ = (pw) denote the vector of coefficients, then L(p∗gp) ≥ 0
is equivalent to p̂T(L(w∗gw′)) p̂ ≥ 0. When g = 1, the matrix (L(w∗w′)) is indexed
by the words of degree at most r , it is called the moment matrix of L and denoted by
Mr (L) (or M(L) when r = ∞). The entries of the matrices (L(w∗gw′)) are linear
combinations of the entries of Mr (L), and the constraint L = 0 on I2r (H ∪ Rr )

can be written as a set of linear constraints on the entries of Mr (L). It follows that for
finite r ∈ N, the parameter ξ

q
r (P) is indeed computable by a semidefinite program.

Additionally, we define the parameter ξ
q∗ (P) by adding to the definition of ξ

q∞(P)

the constraint rank(M(L)) < ∞. By construction this gives a hierarchy of lower
bounds for Aqc(P):

ξ
q
1 (P) ≤ . . . ≤ ξ

q
r (P) ≤ ξ

q
∞(P) ≤ ξ

q
∗ (P) ≤ Aqc(P).

Indeed, if L ∈ R〈x, y, z〉∗2r is feasible for ξ
q
r (P) then its restriction to R〈x, y, z〉∗2r−2

is feasible for ξ
q
r−1(P), which implies ξ

q
r−1(P) ≤ L(1) and thus ξ

q
r−1(P) ≤ ξ

q
r (P).

3.3 Background on positive tracial linear forms

Before we show the convergence results for the hierarchy {ξqr (P)} we give some
background on positive tracial linear forms, which we will use again in Sect. 4. We
state these results using the variables x1, . . . , xn , where we use the notation 〈x〉 =
〈x1, . . . , xn〉. The results stated below do not always appear in this way in the sources
cited; we follow the presentation of [16], where full proofs for all these results are also
provided.

First we need a few more definitions. A polynomial p ∈ R〈x〉 is called symmetric
if p∗ = p, and we denote the set of symmetric polynomials by SymR〈x〉. Given
G ⊆ SymR〈x〉 and H ⊆ R〈x〉, the set M (G ) + I (H ) is called Archimedean if it
contains the polynomial R − ∑n

i=1 x
2
i for some R > 0.

Recall that for our purposes a C∗-algebra A can be defined as a norm closed ∗-
subalgebra of the space B(H) of bounded operators on a complex Hilbert space H .
We say that a C∗-algebra A is unital if it contains the identity operator (denoted 1).
An element a ∈ A is called positive if a = b∗b for some b ∈ A . A linear form τ on a
unitalC∗-algebraA is said to be a state if τ(1) = 1 and τ is positive; that is, τ(a) ≥ 0
for all positive elements a ∈ A . We say that a state τ is tracial if τ(ab) = τ(ba) for
all a, b ∈ A . See, for example, [4] for more information on C∗-algebras.

The first result relates positive tracial linear forms to C∗-algebras; see [37] for the
noncommutative (eigenvalue) setting and [8] for the tracial setting.

Theorem 2 Let G ⊆ SymR〈x〉 and H ⊆ R〈x〉 and assume that M (G ) + I (H )

is Archimedean. For a linear form L ∈ R〈x〉∗, the following are equivalent:

(1) L is symmetric, tracial, nonnegative on M (G ), zero on I (H ), and L(1) = 1;
(2) there is a unital C∗-algebra A with tracial state τ and X ∈ A n such that g(X)

is positive in A for all g ∈ G , and h(X) = 0 for all h ∈ H , with

L(p) = τ(p(X)) for all p ∈ R〈x〉. (20)
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The following can be seen as the finite dimensional analogue of the above result. The
proof of the unconstrained case (G = H = ∅) can be found in [7], and for the
constrained case in [8].

Given a linear form L ∈ R〈x〉∗, recall that its moment matrix M(L) is given by
M(L)u,v = L(u∗v) for u, v ∈ 〈x〉. Recall also that L is called a normalized trace
evaluation if there exists a tuple (X1, . . . , Xn) of d × d Hermitian matrices (for some
d ∈ N) such that L(p) = Tr(p(X1, . . . , Xn))/d for all p ∈ R〈x〉.
Theorem 3 Let G ⊆ SymR〈x〉 and H ⊆ R〈x〉. For L ∈ R〈x〉∗, the following are
equivalent:

(1) L is a symmetric, tracial, linear formwith L(1) = 1 that is nonnegative onM (G ),
zero on I (H ), and has rank(M(L)) < ∞;

(2) there is a finite dimensional C∗-algebra A with a tracial state τ and X ∈ A n

satisfying (20), with g(X) positive in A for all g ∈ G and h(X) = 0 for all
h ∈ H ;

(3) L is a convex combination of normalized trace evaluations at tuplesX ofHermitian
matrices that satisfy g(X) � 0 for all g ∈ G and h(X) = 0 for all h ∈ H .

Given an integer r ∈ N a (truncated) linear functional L ∈ R〈x〉2r is called δ-flat if
the principal submatrix Mr−δ(L) of Mr (L) indexed by monomials up to degree r − δ

has the same rank as Mr (L), i.e.,

rank(Mr (L)) = rank(Mr−δ(L)). (21)

One says L is flat if it is δ-flat for some δ ≥ 1. The following result claims that
any flat linear functional on a truncated polynomial space can be extended to a linear
functional L on the full algebra of polynomials. It is due to Curto and Fialkow [11] in
the commutative case and extensions to the noncommutative case can be found in [48]
(for eigenvalue optimization) and [7,22] (for trace optimization).

Theorem 4 Let 1 ≤ δ ≤ r < ∞, G ⊆ SymR〈x〉2δ , andH ⊆ R〈x〉2δ . If L ∈ R〈x〉∗2r
is symmetric, tracial, δ-flat, nonnegative on M2r (G ), and zero on I2r (H ), then L
extends to a symmetric, tracial, linear form on R〈x〉 that is nonnegative on M (G ),
zero on I (H ), and whose moment matrix M(L) has finite rank.

The following technical lemma, based on the Banach-Alaoglu theorem, is a well-
known tool to show asymptotic convergence results in polynomial optimization.

Lemma 1 Let G ⊆ SymR〈x〉,H ⊆ R〈x〉, and assume that for some d ∈ N and R >

0we have R−(x21 +· · ·+ x2n ) ∈ M2d(G )+I2d(H ). For r ∈ N assume Lr ∈ R〈x〉∗2r
is tracial, nonnegative onM2r (G ) and zero onI2r (H ). Then |Lr (w)| ≤ R|w|/2Lr (1)
for all w ∈ 〈x〉2r−2d+2. In addition, if supr Lr (1) < ∞, then {Lr }r has a pointwise
converging subsequence in R〈x〉∗.

3.4 Convergence results

We first show that the parameter ξ
q∗ (P) coincides with the average entanglement

dimension Aq(P) and then we consider convergence properties of the bounds ξ
q
r (P)

to the parameters ξ
q∞(P) and ξ

q∗ (P).
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Proposition 5 For any P ∈ Cq(Γ ) we have ξ
q
∗ (P) = Aqc(P).

Proof We already know ξ
q
∗ (P) ≤ Aqc(P). To show ξ

q
∗ (P) ≥ Aqc(P) we let L

be feasible for ξ
q∗ (P), so that L ≥ 0 on M (G ), L = 0 on I (H ∪ R∞) and

rank(M(L)) < ∞. We apply Theorem 3 to the scaled linear form L/L(1) (note that
L(1) > 0 since L(z) = 1): there exist finitelymany scalars λi ≥ 0with

∑
i λi = L(1),

Hermitian matrix tuples X(i) = (Xa
s (i))a,s and Y(i) = (Yb

t (i))b,t , and Hermitian
matrices Zi , so that

g(X(i),Y(i), Zi ) � 0 for all g ∈ G , h(X(i),Y(i), Zi ) = 0 for all h ∈ H ∪ R∞,

(22)
and

L(p) =
∑

i

λi Tr(p(X(i),Y(i), Zi )) for all p ∈ R〈x, y, z〉. (23)

By Artin–Wedderburn theory (Theorem 1) we know that for each i there is a unitary
matrix Vi such that ViC〈X(i),Y(i), Zi 〉V ∗

i = ⊕
k C

dk×dk ⊗ Imk . Hence, after applying
this further block diagonalization we may assume that in the decomposition (23), for
each i , C〈X(i),Y(i), Zi 〉 is a full matrix algebra C

di×di .
Since h(X(i),Y(i), Zi ) = 0 for all h ∈ R∞ ∪ {z − z2}, Zi is a projector and the

commutator
[
ZiuZi , ZivZi

]
vanishes for all u, v ∈ 〈X(i),Y(i), Zi 〉 and hence for

all u, v ∈ C〈X(i),Y(i), Zi 〉. This means that [Zi T1Zi , Zi T2Zi ] = 0 for all T1, T2 ∈
C
di×di . As Zi is a projector, there exists a unitary matrix Ui such that Ui ZiU∗

i =
Diag(1, . . . , 1, 0, . . . , 0). The above then implies that for all T1 and T2, the leading
principal submatrices of size rank(Zi ) ofUiT1U∗

i andUiT2U∗
i commute. This implies

rank(Zi ) ≤ 1 and thus Tr(Zi ) ∈ {0, 1}. Let I be the set of indices with Tr(Zi ) = 1.
Then we have

∑
i∈I λi = ∑

i λi Tr(Zi ) = L(z) = 1.
For each i ∈ I define Pi = (Tr(Xa

s (i)Y
b
t (i)Zi )), which is a quantum cor-

relation in Cdi
qc(Γ ) because Tr(Zi ) = 1, and Xa

s ,Y
b
t � 0 with

∑
a X

a
s (i) =∑

b Y
b
t (i) = I and [Xa

s (i),Y
b
t (i)] = 0 in view of (22). Using (23) we obtain

P = ∑
i∈I λi Pi . Hence, (Pi , λi )i∈I forms a feasible solution to Aqc(P)with objective

value
∑

i∈I λi Dqc(Pi ) ≤ ∑
i∈I λi di ≤ ∑

i λi di = L(1). ��
The problem ξ

q
r (P) differs in two ways from a standard tracial optimization prob-

lem. First it does not have the normalization L(1) = 1 (and instead it minimizes
L(1)), and second it has ideal constraints L = 0 on I2r (Rr ) where Rr depends on
the relaxation order r . Nevertheless we can show that asymptotic convergence still
holds.

Proposition 6 For any P ∈ Cq(Γ ) we have ξ
q
r (P) → ξ

q∞(P) as r → ∞.

Proof First observe that 1 − z2, 1 − (xas )2, 1 − (ybt )
2 ∈ M4(G ∪ H0), where H0

contains the symmetric polynomials in H ; i.e., omitting the commutators [xas , ybt ].
Indeed, we have 1 − z2 = (1 − z)2 + 2(z − z2) and

1 − (xas )2 = (1 − xas )2 + 2(1 − xas )xas (1 − xas ) + 2xas

⎛

⎝

(

1 −
∑

a′
xa

′
s

)

+
∑

a′ �=a

xa
′

s

⎞

⎠ xas ,
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and the same for ybt . Hence R − z2 − ∑
a,s(x

a
s )2 − ∑

b,t (y
b
t )

2 ∈ M4(G ∪ H0) for
some R > 0. Fix ε > 0 and for each r ∈ N let Lr be feasible for ξ

q
r (P) with value

Lr (1) ≤ ξ
q
r (P)+ε. As Lr is tracial and zero onI2r (H0), it follows (using the identity

p∗gp = pp∗g+[p∗g, p]) that L = 0 onM2r (H0). Hence, Lr ≥ 0 onM2r (G ∪H0).
Since supr Lr (1) ≤ Aq(P) + ε, we can apply Lemma 1 and conclude that {Lr }r has
a converging subsequence; denote its limit by Lε ∈ R〈x〉∗. One can verify that Lε is
feasible for ξq∞(P), and ξ

q∞(P) ≤ Lε(1) ≤ limr→∞ ξ
q
r (P)+ε ≤ ξ

q∞(P)+ε. Letting
ε → 0 we obtain that ξq∞(P) = limr→∞ ξ

q
r (P). ��

Next we show that finite convergence holds under a certain flatness condition: if
ξ
q
r (P) admits a δ-flat optimal solution with δ = �r/3
+1, then ξ

q
r (P) = ξ

q∗ (P). This
result is a variation of the flat extension result from Theorem 4, where δ now depends
on the order r because the ideal constraints in ξ

q
r (P) depend on r .

Proposition 7 If ξ
q
r (P) admits a (�r/3
 + 1)-flat optimal solution, then we have

ξ
q
r (P) = ξ

q
∗ (P).

Proof Let δ = �r/3
+1 and let L be a δ-flat optimal solution to ξ
q
r (P), i.e., such that

rank(Mr (L)) = rank(Mr−δ(L)). We have to show ξ
q
r (P) ≥ ξ

q∗ (P), which we do by
constructing a feasible solution L̂ to ξ

q∗ (P)with the same objective value L̂(1) = L(1).
In the proof of Theorem 4 (see [16, Thm. 2.3], and also [22, Prop. 6.1] for the original
proof of this theorem), the linear form L is extended to a tracial symmetric linear form
L̂ onR〈x, y, z〉 that is nonnegative onM (G ), zero onI (H ), with rank(M(L̂)) < ∞.
To do this a subsetW of 〈x, y, z〉r−δ is found such that we have the vector space direct
sum R〈x, y, z〉 = span(W ) ⊕ I (Nr (L)), where Nr (L) is the vector space

Nr (L) = {
p ∈ R〈x, y, z〉r : L(qp) = 0 for all q ∈ R〈x, y, z〉r

}
.

It is moreover shown that I (Nr (L)) ⊆ N (L̂). For p ∈ R〈x, y, z〉 we denote by rp
the unique element in span(W ) such that p − rp ∈ I (Nr (L)).

We show that L̂ is zero on I (R∞). Fix u, v, w ∈ R〈x, y, z〉. Then we have

L̂(w(zuzvz − zvzuz)) = L̂(wzuzvz) − L̂(wzvzuz).

Since L̂ is tracial and u − ru, v − rv, w − rw ∈ I (Nr (L)) ⊆ N (L̂), we have

L̂(wzuzvz) = L̂(rwzruzrvz) and L̂(wzvzuz) = L̂(rwzrvzruz).

Since deg(ruzrvzrwz) = deg(rvzruzrwz) ≤ 3 + 3(r − δ) ≤ 2r we have

L̂(rwzruzrvz) = L(rwzruzrvz) and L̂(rwzrvzruz) = L(rwzrvzruz).

So L = 0 on I2r (Rr ) implies L̂ = 0 on I (R∞).
Since L̂ extends L we have L̂(z) = L(z) = 1 and L̂(xas y

b
t z) = L(xas y

b
t z) =

P(a, b|s, t) for all a, b, s, t . So, L̂ is feasible for ξ
q∗ (P) and has the same objective

value L̂(1) = L(1). ��
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4 Bounding quantum graph parameters

We investigate the quantum graph parameters αq(G), γq(G), αqc(G), and χqc(G),
which are quantum analogues of the classical graph parameters α(G) and χ(G). They
were introduced earlier in Sect. 1.3 in terms of nonlocal games and synchronous
quantum correlations (in the tensor and commuting models). As we will see below,
they can be reformulated in terms of the existence of positive semidefinite matrices
with arbitrary size (or operators) satisfying a system of equations corresponding to
the natural integer linear programming formulation of α(G) and χ(G). This opens the
way to using techniques from noncommutative polynomial optimization for designing
hierarchies of bounds for the quantum graph parameters. We present these approaches
and compare them with known hierarchies for the classical graph parameters.

4.1 Hierarchies γ col
r (G) and γ stab

r (G) based on synchronous correlations

In Sect. 1.3 we introduced quantum chromatic numbers (Definition 1) and quantum
stability numbers (Definition 2) in terms of synchronous quantum correlations sat-
isfying certain linear constraints. We first give (known) reformulations in terms of
C∗-algebras, and then we reformulate those in terms of tracial optimization, which
leads to the hierarchies γ col

r (G) and γ stab
r (G).

The following result from [46] allows us towrite a synchronous quantumcorrelation
in terms of C∗-algebras admitting a tracial state.

Theorem 5 ([46]) Let Γ = A2 × S2 and P ∈ R
Γ . We have P ∈ Cqc,s(Γ ) (resp.,

P ∈ Cq,s(Γ )) if and only if there exists a unital (resp., finite dimensional) C∗-algebra
A with a faithful tracial state τ and a set of projectors {Xa

s : s ∈ S, a ∈ A} inA
satisfying

∑
a∈A Xa

s = 1 for all s ∈ S and P(a, b|s, t) = τ(Xa
s X

b
t ) for all

s, t ∈ S and a, b ∈ A.

Here we add the condition that τ is faithful, that is, τ(X∗X) = 0 implies X = 0, since
it follows from the GNS construction in the proof of [46]. This means that

0 = P(a, b|s, t) = τ(Xa
s X

b
t ) = τ

((
Xa
s

)2 (
Xb
t

)2
)

= τ
((

Xa
s X

b
t

)∗
Xa
s X

b
t

)

implies Xa
s X

b
t = 0. It follows from Definition 1 and the above that χqc(G) is equal to

the smallest k ∈ N for which there exists a C∗-algebraA , a tracial state τ onA , and
a family of projectors {Xc

i : i ∈ V, c ∈ [k]} ⊆ A satisfying

∑
c∈[k] Xc

i − 1 = 0 for all i ∈ V, (24)

Xc
i X

c′
j = 0 if (c �= c′ and i = j) or (c = c′ and {i, j} ∈ E). (25)

The quantum chromatic number χq(G) is equal to the smallest k ∈ N for which there
exists a finite dimensional C∗-algebra A with the above properties.
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Analogously, αqc(G) is equal to the largest k ∈ N for which there is a C∗-algebra
A , a tracial state τ onA , and a set of projectors {Xi

c : c ∈ [k], i ∈ V } ⊆ A satisfying

∑
i∈V Xi

c − 1 = 0 for all c ∈ [k], (26)

Xi
cX

j
c′ = 0 if (i �= j and c = c′) or ((i = j or {i, j} ∈ E) and c �= c′),

(27)

and αq(G) is equal to the largest k ∈ N for which A can be taken finite dimensional.
These reformulations of χq(G), χqc(G), αq(G) and αqc(G) also follow from [41,

Thm. 4.7], where general quantum graph homomorphisms are considered; the formu-
lations of χq(G) and χqc(G) are also made explicit in [41, Thm. 4.12].

Remark 1 The above definition for the parameters αq(G) and χq(G) (tensor model)
can be simplified. Indeed, instead of asking for projectors {Xc

i } living in a finite dimen-
sionalC∗-algebra equipped with a tracial state and satisfying the constraints (24)–(25)
or (26)–(27), one may ask for such projectors that are matrices of unspecified (but
finite) size (as in [9,32,52]). This can be seen in the following two ways.

A first possibility is to apply Artin–Wedderburn theory, which tells us that any finite
dimensional C∗-algebra is isomorphic to a matrix algebra.

An alternative, more elementary way is to use the link presented in Sect. 2
between synchronous quantum correlations and completely positive semidefinite
matrices. Indeed, as we have seen there, having a synchronous quantum correlation
P = (P(c, c′|i, j)) ∈ R

V 2×[k]2 certifying χq(G) ≤ k is equivalent to having a set of
positive semidefinite matrices {Xc

i } satisfying the constraints (24)–(25). Here we use

the basic fact that since Xc
i , X

c′
j � 0, we have P(c, c′|i, j) = Tr(Xc

i X
c′
j ) = 0 if and

only if Xc
i X

c′
j = 0. Next, observe that the constraints (24)–(25) imply that the matrices

Xc
i are projectors. Indeed, for every i, c

′, by multiplying (24) by Xc′
i and using (25) we

obtain (Xc′
i )2 = Xc′

i . The analogous result holds of course for the quantum stability
number αq(G).

Finally, note that restricting to scalar solutions (1× 1 matrices) in these feasibility
problems recovers the classical graph parameters χ(G) and α(G).

We now reinterpret the above formulations in terms of tracial optimization. Given
a graph G = (V, E), let i � j denote {i, j} ∈ E or i = j . For k ∈ N, let H col

G,k and

H stab
G,k denote the sets of polynomials corresponding to equations (24)–(25) and (26)–

(27):

H col
G,k =

⎧
⎨

⎩
1 −

∑

c∈[k]
xci : i ∈ V

⎫
⎬

⎭

∪
{
xci x

c′
j : (c �= c′ and i = j) or (c = c′ and {i, j} ∈ E)

}
,

H stab
G,k =

{

1−
∑

i∈V
xic : c ∈ [k]

}

∪
{
xicx

j
c′ : (i �= j and c=c′) or (i � j and c �=c′)

}
.
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We have

1 − (
xci

)2 ∈ M2(∅) + I2

(
H col

G,k

)
,

since 1 − (xci )
2 = (

1 − xci
)2 + 2

(
xci − (xci )

2
)
, and

xci − (
xci

)2 = xci

(

1 −
∑

c′
xc

′
i

)

+
∑

c′:c′ �=c

xci x
c′
i ∈ I2

(
H col

G,k

)
, (28)

and the analogous statements hold for H stab
G,k . Hence, both M (∅) + I

(
H col

k

)
and

M (∅)+I
(
H stab

k

)
are Archimedean and we can apply Theorems 2 and 3 to express

the quantum graph parameters in terms of positive tracial linear functionals. Namely,

χqc(G) = min
{
k ∈ N : L ∈ R〈{xci : i ∈ V, c ∈ [k]}〉∗ symmetric, tracial, positive,

L(1) = 1, L = 0 on I (H col
G,k)

}
,

and χq(G) is obtained by adding the constraint rank(M(L)) < ∞. Likewise,

αqc(G) = max
{
k ∈ N : L ∈ R〈{xic : c ∈ [k], i ∈ V }〉∗ symmetric, tracial, positive,

L(1) = 1, L = 0 on I (H stab
G,k )

}
,

and αq(G) is given by this program with the additional constraint rank(M(L)) < ∞.
Starting from these formulations it is natural to define a hierarchy {γ col

r (G)} of lower
bounds on χqc(G) and a hierarchy {γ stab

r (G)} of upper bounds on αqc(G), where the
bounds of order r ∈ N are obtained by truncating L to polynomials of degree at most
2r and truncating the ideal to degree 2r :

γ col
r (G) = min

{
k∈N : L ∈ R〈{xci : i ∈ V, c ∈ [k]}〉∗2r symmetric, tracial, positive,

L(1) = 1, L = 0 on I2r

(
H col

G,k

)}
,

γ stab
r (G) = max

{
k∈N : L ∈ R〈{xic : c ∈ [k], i ∈ V }〉∗2r symmetric, tracial, positive,

L(1) = 1, L = 0 on I2r (H
stab
G,k )

}
.

Then, by defining γ col∗ (G) and γ stab∗ (G) by adding the constraint rank(M(L)) < ∞
to γ col∞ (G) and γ stab∞ (G), we have

γ col∞ (G) = χqc(G), γ stab∞ (G) = αqc(G), and

γ col∗ (G) = χq(G), γ stab∗ (G) = αq(G).

The optimization problems γ col
r (G), for r ∈ N, can be computed by semidefi-

nite programming and binary search on k, since the positivity condition on L can
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be expressed by requiring that its truncated moment matrix Mr (L) = (L(w∗w′))
(indexed by words with degree at most r ) is positive semidefinite. If there is an
optimal solution (k, L) to γ col

r (G) with L flat, then, by Theorem 4, we have equal-
ity γ col

r (G) = χq(G). Since {γ col
r (G)}r∈N is a monotone nondecreasing sequence

of lower bounds on χq(G), there exists an r0 such that for all r ≥ r0 we have
γ col
r (G) = γ col

r0 (G), which is equal to γ col∞ (G) = χqc(G) by Lemma 1. The analo-
gous statements hold for the parameters γ stab

r (G). Hence, we have shown the following
result.

Proposition 8 There is an r0 ∈ N such that γ col
r (G) = χqc(G) and γ stab

r (G) =
αqc(G) for all r ≥ r0. Moreover, if γ col

r (G) admits a flat optimal solution, then
γ col
r (G) = χq(G), and if γ stab

r (G) admits a flat optimal solution, then γ stab
r (G) =

αq(G).

Remark 2 A hierarchy {Qr (Γ )} of semidefinite outer approximations for the set
Cqc(Γ ) of commuting quantum correlations was constructed in [46] (revisiting the
approach in [36,48]). This hierarchy converges, that is,

Cqc(Γ ) = Q∞(Γ ) =
⋂

r∈N
Qr (Γ ).

These approximations Qr (Γ ) are based on the eigenvalue optimization approach,
applied to the formulation (4) of commuting quantum correlations. So they use lin-
ear functionals on polynomials involving the two sets of variables xas and ybt for
(a, b, s, t) ∈ Γ . Paulsen et al. [46] use these outer approximations to define a hierar-
chy of lower bounds converging to χqc(G), where the bounds are defined in terms of
feasibility problems over the setsQr (Γ ).

For synchronous correlations we can use the result of Theorem 5 and the tracial
optimization approach used here to define directly a converging hierarchy {Qr,s(Γ )}
of outer semidefinite approximations for the set Cqc,s(Γ ) of synchronous commuting
quantum correlations. These approximations now use linear functionals on polynomi-
als involving only one set of variables xas for (a, s) ∈ A× S. Namely, for r ∈ N∪{∞}
define Qr,s(Γ ) as the set of P ∈ R

Γ for which there exists a symmetric, tracial,
positive linear functional L ∈ R〈{xas : (a, s) ∈ A × S}〉∗2r such that L(1) = 1 and
L = 0 on the ideal generated by the polynomials xas − (xas )2 ((a, s) ∈ A × S) and
1 − ∑

a∈A xas (s ∈ S), truncated at degree 2r . Then we have

Cqc,s(Γ ) = Q∞,s(Γ ) =
⋂

r∈N
Qr,s(Γ ).

The synchronous value of a nonlocal game is defined in [13] as the maximum value
of the objective function (11) over the set Cqc,s(Γ ). By maximizing the objective (11)
over the relaxations Qr,s(Γ ) we get a hierarchy of semidefinite programming upper
bounds that converges to the synchronous value of the game. Finally note that one
can also view the parameters γ col

r (G) as solving feasibility problems over the sets
Qr,s(Γ ).
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4.2 Hierarchies ξ colr (G) and ξ stabr (G) based on Lasserre type bounds

Herewe revisit some knownLasserre type hierarchies for the classical stability number
α(G) and chromatic number χ(G) and we show that their tracial noncommutative
analogues can be used to recover known parameters such as the projective packing
number αp(G), the projective rank ξ f (G), and the tracial rank ξtr(G). Compared to
the hierarchies defined in the previous section, these Lasserre type hierarchies use less
variables (they only use variables indexed by the vertices of the graph G), but they
also do not converge to the (commuting) quantum chromatic or stability number.

Given a graph G = (V, E), define the set of polynomials

HG = {
xi − x2i : i ∈ V

} ∪ {
xi x j : {i, j} ∈ E

}

in the variables x = (xi : i ∈ V ) (which are commutative or noncommutative depend-
ing on the context). Note that 1 − x2i ∈ M2(∅) + I2(HG) for all i ∈ V , so that
M (∅) + I (HG) is Archimedean.

4.2.1 Semidefinite programming bounds on the projective packing number

Wefirst recall the Lasserre hierarchy of bounds for the classical stability numberα(G).
Starting from the formulation of α(G) via the optimization problem

α(G) = sup

{
∑

i∈V
xi : x ∈ R

n, h(x) = 0 for h ∈ HG

}

, (29)

the r -th level of the Lasserre hierarchy for α(G) (introduced in [24,26]) is defined by

lasstabr (G) = sup

{

L

(
∑

i∈V
xi

)

: L ∈ R[x]∗2r positive, L(1) = 1, L = 0 on I2r (HG)

}

.

Then we have lasstabr+1(G) ≤ lasstabr (G) and the first bound is Lovász’ theta number:
lasstab1 (G) = ϑ(G). Finite convergence to α(G) is shown in [26]:

lasstabα(G)(G) = α(G).

Roberson [51] introduces the projective packing number

αp(G) = sup

{
1

d

∑

i∈V
rank Xi : d ∈ N, X ∈ (S d)n projectors,

Xi X j = 0 for {i, j} ∈ E

}

= sup
{ 1

d
Tr

(∑

i∈V
Xi

)
: d ∈ N, X ∈ (S d)n, h(X) = 0 for h ∈ HG

}
(30)
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as an upper bound for the quantum stability number αq(G). Here S d denotes the
set of real symmetric d × d matrices. Note that the inequality αq(G) ≤ αp(G) also
follows from Proposition 9 below. Comparing (29) and (30) we see that the parameter
αp(G) can be viewed as a noncommutative analogue of α(G).

For r ∈ N ∪ {∞} we define the noncommutative analogue of lasstabr (G) by

ξ stabr (G) = sup
{
L
(∑

i∈V
xi

)
: L ∈ R〈x〉∗2r tracial, symmetric, and positive,

L(1) = 1, L = 0 on I2r (HG)
}
,

and ξ stab∗ (G) by adding the constraint rank(M(L)) < ∞ to the definition of ξ stab∞ (G).
In view of Theorems 2 and 3, both ξ stab∞ (G) and ξ stab∗ (G) can be reformulated in

terms of C∗-algebras: ξ stab∞ (G) (resp., ξ stab∗ (G)) is the largest value of τ(
∑

i∈V Xi ),
where A is a (resp., finite-dimensional) C∗-algebra with tracial state τ and Xi ∈ A
(i ∈ [n]) are projectors satisfying Xi X j = 0 for all {i, j} ∈ E . Moreover, as we
now see, the parameter ξ stab∗ (G) coincides with the projective packing number and the
parameters ξ stab∗ (G) and ξ stab∞ (G) upper bound the quantum stability numbers.

Proposition 9 We have ξ stab∗ (G) = αp(G) ≥ αq(G) and ξ stab∞ (G) ≥ αqc(G).

Proof By (30), αp(G) is the largest value of L(
∑

i∈V xi ) taken over all linear func-
tionals L that are normalized trace evaluations at projectors X ∈ (§d)n (for some
d ∈ N) with Xi X j = 0 for {i, j} ∈ E . By convexity the optimum remains unchanged
when considering a convex combination of such trace evaluations. In view of Theo-
rem 3 [the equivalence between (1) and (3)], we can conclude that this optimum value
is precisely the parameter ξ stab∗ (G). This shows equality αp(G) = ξ stab∗ (G).

Consider a C∗-algebra A with tracial state τ and a set of projectors Xi
c ∈ A (for

i ∈ V, c ∈ [k]) satisfying (26)–(27). Then, setting Xi = ∑
c∈[k] Xi

c for i ∈ V , we
obtain projectors Xi ∈ A that satisfy Xi X j = 0 if {i, j} ∈ E .Moreover, the following
holds: τ(

∑
i∈V Xi ) = ∑

c∈[k] τ(
∑

i∈V Xi
c) = k. This shows ξ stab∞ (G) ≥ αqc(G) and,

when restricting A to be finite dimensional, ξ stab∗ (G) ≥ αq(G). ��
Using Lemma 1 one can verify that ξ stabr (G) converges to ξ stab∞ (G) as r → ∞,

and for r ∈ N ∪ {∞} the infimum in ξ stabr (G) is attained. Moreover, by Theorem 4, if
ξ stabr (G) admits a flat optimal solution, then equality ξ stabr = ξ stab∗ (G) holds. The first
bound ξ stab1 (G) coincides with the theta number, since ξ stab1 (G) = lasstab1 (G) = ϑ(G).
Summarizing we have αqc(G) ≤ ξ stab∞ (G) and the following chain of inequalities

αq(G) ≤ αp(G) = ξ stab∗ (G) ≤ ξ stab∞ (G) ≤ ξ stabr (G) ≤ ξ stab1 (G) = ϑ(G).

4.2.2 Semidefinite programming bounds on the projective rank and tracial rank

We now turn to the (quantum) chromatic numbers. First recall the definition of the
fractional chromatic number:

χ f (G) := min
{ ∑

S∈SG

λS : λ ∈ R
SG+ ,

∑

S∈SG :i∈S
λS = 1 for all i ∈ V

}
,
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where SG is the set of stable sets of G. Clearly, χ f (G) ≤ χ(G). The following
Lasserre type lower bounds for the classical chromatic number χ(G) are defined
in [19]:

lascolr (G) = inf
{
L(1) : L ∈ R[x]∗2r positive, L(xi ) = 1 (i ∈ V ),

L = 0 on I2r (HG)} .

Note that we may view χ f (G) as minimizing L(1) over all linear functionals L ∈
R[x]∗ that are conic combinations of evaluations at characteristic vectors of stable
sets. From this we see that lascolr (G) ≤ χ f (G) for all r ≥ 1. In [19] it is shown that
finite convergence to χ f (G) holds:

lascolα(G)(G) = χ f (G).

The bound of order r = 1 coincides with the theta number: lascol1 (G) = ϑ(G).
The following parameter ξ f (G), called the projective rank of G, was introduced

in [32] as a lower bound on the quantum chromatic number χq(G):

ξ f (G) := inf

{
d

r
: d, r ∈ N, X1, . . . , Xn ∈ S d , Tr(Xi ) = r (i ∈ V ),

X2
i = Xi (i ∈ V ), Xi X j = 0 ({i, j} ∈ E)

}
.

Proposition 10 ([32]) For any graph G we have ξ f (G) ≤ χq(G).

Proof Set k = χq(G). It is shown in [9] that in the definition of χq(G) from (24)–
(25), one may assume w.l.o.g. that Xc

i are projectors that all have the same rank, say, r .
Then, for any given color c ∈ [k], the matrices Xc

i (i ∈ V ) provide a feasible solution
to ξ f (G) with value d/r . This shows ξ f (G) ≤ d/r . Finally, d/r = k holds since
by (24)–(25) we have d = rank(I ) = ∑k

c=1 rank(X
c
i ) = kr . ��

In [46, Prop. 5.11] it is shown that the projective rank can equivalently be defined as

ξ f (G) = inf
{
λ : A is a finite dimensional C∗-algebra with tracial state τ,

Xi ∈ A projector with τ(Xi ) = 1/λ (i ∈ V ),

Xi X j = 0 ({i, j} ∈ E)
}
.

Paulsen et al. [46] also define the tracial rank ξtr (G) of G as the parameter obtained
by omitting in the above definition of ξ f (G) the restriction that A has to be finite
dimensional. The motivation for the parameter ξtr (G) is that it lower bounds the
commuting quantum chromatic number [46, Thm. 5.11]:

ξtr (G) ≤ χqc(G).

Using Theorems 2 and 3 (which we apply to L/L(1) when L is not normalized),
we obtain the following reformulations:
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ξ f (G) = inf
{
L(1) : L ∈ R〈x〉∗ tracial, symmetric, positive, rank(M(L)) < ∞,

L(xi ) = 1 (i ∈ V ), L = 0 on I (HG)
}
,

and ξtr (G) is obtained by the same program without the restriction rank(M(L)) <

∞. In addition, we obtain that in this formulation of ξ f (G) we can equivalently
optimize over all L that are conic combinations of trace evaluations at projectors
Xi ∈ §d (for some d ∈ N) satisfying Xi X j = 0 for all {i, j} ∈ E . If we restrict
the optimization to conic combinations of scalar evaluations (d = 1) we obtain the
fractional chromatic number. This shows that the projective rank can be seen as the
noncommutative analogue of the fractional chromatic number, aswas already observed
in [32,46].

The above formulations of the parameters ξtr (G) and ξ f (G) in terms of linear
functionals also show that they fit within the following hierarchy {ξ colr (G)}r∈N∪{∞},
defined as the noncommutative tracial analogue of the hierarchy {lascolr (G)}r :

ξ colr (G) = inf
{
L(1) : L ∈ R〈x〉∗2r tracial, symmetric, and positive,

L(xi ) = 1 (i ∈ V ), L = 0 on I2r (HG)
}
.

Again, ξ col∗ (G) is the parameter obtained by adding the constraint rank(M(L)) < ∞
to the program defining ξ col∞ (G). By the above discussion the following holds.

Proposition 11 We have ξ col∗ (G) = ξ f (G) ≤ χq(G) and ξ col∞ (G) = ξtr (G) ≤
χqc(G).

Using Lemma 1 one can verify that the parameters ξ colr (G) converge to ξ col∞ (G).
Moreover, by Theorem 4, if ξ colr (G) admits a flat optimal solution, thenwe have ξ colr =
ξ col∗ (G). Also, the parameter ξ col1 (G) coincides with lascol1 (G) = ϑ(G). Summarizing
we have ξ col∞ (G) = ξtr (G) ≤ χqc(G) and the following chain of inequalities

ϑ(G) = ξ col1 (G) ≤ ξ colr (G) ≤ ξ col∞ (G) = ξtr (G) ≤ ξ col∗ (G) = ξ f (G) ≤ χq(G).

Observe that the bounds lascolr (G) and ξ colr (G) remain below the fractional chro-
matic number χ f (G), since ξ f (G) = ξ col∗ (G) ≤ lascol∗ (G) = χ f (G). Hence, these
bounds are weak if χ f (G) is close to ϑ(G) and far from χ(G) or χq(G). In the clas-
sical setting this is the case, e.g., for the class of Kneser graphs G = K (n, r), with
vertex set the set of all r -subsets of [n] and having an edge between any two disjoint
r -subsets. By results of Lovász [29,30], the fractional chromatic number is n/r , which
is known to be equal to ϑ(K (n, r)), while the chromatic number is n−2r +2. In [19]
this was used as a motivation to define a new hierarchy of lower bounds {Λr (G)} on
the chromatic number that can go beyond the fractional chromatic number. In Sect. 4.3
we recall this approach and show that its extension to the tracial setting recovers the
hierarchy {γ col

r (G)} introduced in Sect. 4.1. We also show how a similar technique
can be used to recover the hierarchy {γ stab

r (G)}.

123



36 S. Gribling et al.

4.2.3 A link between ξ stabr (G) and ξ colr (G)

In [19, Thm. 3.1] it is shown that the bounds lasstabr (G) and lascolr (G) satisfy

lasstabr (G)lascolr (G) ≥ |V | for any r ≥ 1,

with equality if G is vertex-transitive. This extends a well-known property of the
theta number (i.e., the case r = 1). The same property holds for the noncommutative
analogues ξ stabr (G) and ξ colr (G).

Lemma 2 For a graph G = (V, E) and r ∈ N ∪ {∞, ∗} we have ξ stabr (G)ξ colr (G) ≥
|V |, with equality if G is vertex-transitive.

Proof Let L be feasible for ξ colr (G). Then L̃ = L/L(1) provides a solution to ξ stabr (G)

with value L̃
(∑

i∈V xi
) = |V |/L(1), implying that ξ stabr (G) ≥ |V |/L(1) and there-

fore ξ stabr (G)ξ colr (G) ≥ |V |.
Assume G is vertex-transitive. Let L be a feasible solution for ξ stabr (G). As G is

vertex-transitive we may assume (after symmetrization) that L(xi ) takes a constant
value. Set L(xi ) =: 1/λ for all i ∈ V , so that the objective value of L for ξ stabr (G) is
|V |/λ. Then L̃ = λL provides a feasible solution for ξ colr (G) with value λ, implying
ξ colr (G) ≤ λ. This shows ξ colr (G)ξ stabr (G) ≤ |V |. ��
For a vertex-transitive graph G, the inequality ξ f (G)αq(G) ≤ |V | is shown in [32,
Lem. 6.5]; it can be recovered from the r = ∗ case of Lemma 2 and αq(G) ≤ αp(G).

4.2.4 Comparison to existing semidefinite programming bounds

By adding the constraints L(xi x j ) ≥ 0, for all i, j ∈ V , to the program defining
ξ col1 (G), we obtain the strengthened theta number ϑ+(G) (from [56]). Moreover, if
we add the constraints

L(xi x j ) ≥ 0 for i �= j ∈ V, (31)
∑

j∈C
L(xi x j ) ≤ 1 for i ∈ V, (32)

L(1) +
∑

i∈C, j∈C ′
L(xi x j ) ≥ |C | + |C ′| for C,C ′ distinct cliques in G (33)

to the program defining the parameter ξ col1 (G), then we obtain the parameter ξSDP(G),
which is introduced in [46, Thm. 7.3] as a lower bound on ξtr(G). We will now show
that the inequalities (31)–(33) are in fact valid for ξ col2 (G), which implies

ξ col2 (G) ≥ ξSDP(G) ≥ ϑ+(G).

For this, given a clique C in G, we define the polynomial

gC := 1 −
∑

i∈C
xi ∈ R〈x〉.
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Then (32) and (33) can be reformulated as L(xi gC ) ≥ 0 and L(gCgC ′) ≥ 0, respec-
tively, using the fact that L(xi ) = L(x2i ) = 1 for all i ∈ V . Hence, to show that any
feasible L for ξ col2 (G) satisfies (31)–(33), it suffices to show Lemma 3 below. Recall
that a commutator is a polynomial of the form [p, q] = pq−qpwith p, q ∈ R〈x〉. We
denote by Θr the set of linear combinations of commutators [p, q] with deg(pq) ≤ r .

Lemma 3 Let C and C ′ be cliques in a graph G and let i, j ∈ V . Then we have

gC ∈ M2(∅) + I2(HG), and xi x j , xi gC , gCgC ′ ∈ M4(∅) + I4(HG) + Θ4.

Proof The claim gC ∈ M2(∅) + I2(HG) follows from the identity

gC =
(
1 −

∑

i∈C
xi

︸ ︷︷ ︸
gC

)2 +
∑

i∈C
(xi − x2i ) +

∑

i �= j∈C
xi x j

︸ ︷︷ ︸
h

= g2C + h, (34)

where h ∈ I2(HG). We also have

xi x j = xi x
2
j xi + x j (xi − x2i ) + x2i (x j − x2j ) + [xi , xi x2j ] + [xi − x2i , x j ],

xi gC = xi g
2
Cxi + g2C (xi − x2i ) + [xi − x2i , g

2
C ] + [xi , xi g2C ],

and, writing analogously gC ′ = g2C ′ + h′ with h′ ∈ I2(HG), we have

gCgC ′ = gCg
2
C ′gC + [gC , gCg

2
C ′ ] + [h, g2C ′ ] + g2Ch

′ + hh′ + g2C ′h. ��

Using the bound ξSDP(G) it is shown in [46, Thm. 7.4] that the tracial rank of the
cycle C2n+1 satisfies ξ col∞ (C2n+1) = (2n+1)/n. Combining this with Lemma 2 gives
n = ξ stab∞ (C2n+1) ≥ αqc(C2n+1), and equality holds since αqc(C2n+1) ≥ α(C2n+1) =
n.

4.3 Links between the bounds γ col
r (G), ξ colr (G), γ stab

r (G), and ξ stabr (G)

In this last section, we make the link between the two hierarchies {ξ stabr (G)} (resp.
{ξ colr (G)}) and {γ stab

r (G)} (resp. {γ col
r (G)}). The key tool is the interpretation of the

coloring and stability numbers in terms of certain graph products.
We start with the (quantum) coloring number. For an integer k, recall that the

Cartesian product G�Kk of G and the complete graph Kk is the graph with vertex set
V × [k], where two vertices (i, c) and ( j, c′) are adjacent if ({i, j} ∈ E and c = c′) or
(i = j and c �= c′). The following is a well-known reduction of the chromatic number
χ(G) to the stability number of the Cartesian product G�Kk :

χ(G) = min
{
k ∈ N : α(G�Kk) = |V |}.
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It was used in [19] to define the following lower bounds on the chromatic number:

Λr (G) = min
{
k ∈ N : lasstabr (G�Kk) = |V |},

where it was also shown that lascolr (G) ≤ Λr (G) ≤ χ(G) for all r ≥ 1, with equality
Λ|V |(G) = χ(G). Hence the bounds Λr (G) may go beyond the fractional chromatic
number. This is the case for the above mentioned Kneser graphs; see [18] for other
graph instances.

The above reduction from coloring to stability number has been extended to the
quantum setting in [32], where it is shown that

χq(G) = min{k ∈ N : αq(G�Kk) = |V |}.

It is therefore natural to use the upper bounds ξ stabr (G�Kk) on αq(G�Kk) in order to
get the following lower bounds on the quantum coloring number:

min{k : ξ stabr (G�Kk) = |V |}, (35)

which are thus the noncommutative analogues of the bounds Λr (G).
Observe that, for any k ∈ N and r ∈ N ∪ {∞, ∗}, we have ξ stabr (G�Kk) ≤ |V |,

which follows from Lemma 3 and the fact that the cliques Ci = {(i, c) : c ∈ [k]}, for
i ∈ V , cover all vertices in G�Kk . Let

CG�Kk = {
gCi : i ∈ V

}
, where gCi = 1 −

∑

c∈[k]
xci ,

denote the set of polynomials corresponding to these cliques. We now show that the
parameter (35) in fact coincides with the parameter γ col

r (G) for all r ∈ N ∪ {∞}.
For this observe first that the quadratic polynomials in the set H col

G,k correspond
precisely to the edges of G�Kk , and that the projector constraints are included in
I2(H

col
G,k) [see (28)]. Hence we have

I2r (H
col
G,k) = I2r

(
HG�Kk ∪ CG�Kk

)
. (36)

We will also use the following result.

Lemma 4 Let r ∈ N ∪ {∞, ∗} and assume L is feasible for ξ stabr (G�Kk). Then, we
have L(

∑
i∈V,c∈[k] xci ) = |V | if and only if L = 0 on I2r (CG�Kk ).

Proof Assume L = 0 onI2r (CG�Kk ). Then 0 = ∑
i∈V L(gCi ) = |V |− L(

∑
i,c x

c
i ).

Conversely assume that 0 = L
(∑

i∈V,c∈[k] xci
) − |V | = ∑

i∈V L(gCi ). We will
show L = 0onI2r (CG�Kk ). For thiswefirst observe that gCi −(gCi )

2 ∈ I2(HG�Kk )

by (34). Hence L(gCi ) = L(g2Ci
) ≥ 0, which, combined with

∑
i L(gCi ) = 0, implies

L(gCi ) = 0 for all i ∈ V . Next we show L(wgCi ) = 0 for all words w with degree
at most 2r − 1, using induction on deg(w). The base case w = 1 holds by the above.
Assume now w = uv, where deg(v) < deg(u) ≤ r . Using the positivity of L , the
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Cauchy-Schwarz inequality gives |L(uvgCi )| ≤ L(u∗u)1/2L(v∗g2Ci
v)

1/2
. Note that it

suffices to show L(v∗gCi v) = 0 since, using again (34), this implies L(v∗g2Ci
v) = 0

and thus L(uvgCi ) = 0. Using the tracial property of L and the induction assumption,
we see that L(v∗gCi v) = L(vv∗gCi ) = 0 since deg(vv∗) < deg(w). ��
Proposition 12 For r ∈ N ∪ {∞} we have γ col

r (G) = min{k : ξ stabr (G�Kk) = |V |}.
Proof Let L be a linear functional certifying γ col

r (G) ≤ k. Then, using (36) we see
that L is feasible for ξ stabr (G�Kk) and Lemma 4 shows that L(

∑
i,c x

c
i ) = |V |. This

shows ξ stabr (G�Kk) ≥ |V | and thus equality holds (since the reverse inequality always
holds). Therefore, min{k : ξ stabr (G�Kk) = |V |} ≤ k.

Conversely, assume ξ stabr (G�Kk) = |V |. Since the optimum is attained, there
exists a linear functional L feasible for ξ stabr (G�Kk) with L(

∑
i,c x

c
i ) = |V |. Using

Lemma 4 we can conclude that L is zero on I2r (CG�Kk ). Hence, in view of (36), L
is zero on I2r (H

col
G,k). This shows γ col

r (G) ≤ k. ��
Note that the proof of Proposition 12 also works in the commutative setting; this shows
that the sequence Λr (G) corresponds to the usual Lasserre hierarchy for the feasibil-
ity problem defined by the equations (24)–(25), which is another way of showing
Λ∞(G) = χ(G).

We now turn to the (quantum) stability number. For k ∈ N, consider the graph
product Kk � G, with vertex set [k] × G, and with an edge between two vertices
(c, i) and (c′, j) when (c �= c′, i = j) or (c = c′, i �= j) or (c �= c′, {i, j} ∈ E).
The product Kk � G coincides with the homomorphic product Kk � G used in [32,
Sec. 4.2], where it is shown that

αq(G) = max
{
k ∈ N : αq(Kk � G) = k

}
.

This suggests using the upper bounds ξ stabr (Kk � G) on αq(Kk � G) to define the
following upper bounds on αq(G):

max
{
k ∈ N : ξ stabr (Kk � G) = k

}
. (37)

For each c ∈ [k], the set Cc = {(c, i) : i ∈ V } is a clique in Kk � G, and we let

CKk�G = {
gCc : c ∈ [k]}, where gCc = 1 −

∑

i∈V
xic,

denote the set of polynomials corresponding to these cliques. As these k cliques cover
the vertex set of Kk � G, we can use Lemma 3 to conclude that ξ stabr (Kk � G) ≤ k for
all r ∈ N ∪ {∞, ∗}.

Again, observe that the quadratic polynomials in the setH stab
G,k correspond precisely

to the edges of Kk � G and that we have

I2r (H
stab
G,k ) = I2r (HKk�G ∪ CKk�G).
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Based on this, one can show the analogue of Lemma 4: If L is feasible for the program
ξ stabr (Kk � G), then we have L(

∑
i,c x

i
c) = k if and only if L = 0 on I2r (CKk�G).

This lemma can be used to show the following result, whose proof is analogous to that
of Proposition 12 and thus omitted.

Proposition 13 For r ∈ N ∪ {∞} we have γ stab
r (G) = max{k : ξ stabr (Kk � G) = k}.

We do not know whether the results of Propositions 12 and 13 hold for r = ∗,
because we do not know whether the supremum is attained in the program defining
the parameter ξ stab∗ (·) = αp(·) (as was already observed in [51, p. 120]). Hence we
can only claim the inequalities

γ col∗ (G) ≥ min{k : ξ stab∗ (G�Kk) = |V |} and

γ stab∗ (G) ≤ max{k : ξ stab∗ (Kk � G) = k}.

As mentioned above, we have lascolr (G) ≤ Λr (G) for any r ∈ N [19, Prop. 3.3].
This result extends to the noncommutative setting and the analogous result holds for
the stability parameters. In other words the hierarchies {γ col

r (G)} and {γ stab
r (G)} refine

the hierarchies {ξ colr (G)} and {ξ stabr (G)}.
Proposition 14 For r ∈ N ∪ {∞, ∗}, ξ colr (G) ≤ γ col

r (G) and ξ stabr (G) ≥ γ stab
r (G).

Proof We may restrict to r ∈ N since we have seen earlier that the inequalities hold
for r ∈ {∞, ∗}. The proof for the coloring parameters is similar to the proof of [19,
Prop. 3.3] in the classical case and thus we omit it. We now show ξ stabr (G) ≥ γ stab

r (G).
Set k = γ stab

r (G) and, using Proposition 13, let L ∈ R〈xic: i ∈ V, c ∈ [k]〉∗2r be
optimal for ξ stabr (Kk � G) = k. That is, L is tracial, symmetric, positive, and satisfies
L(1) = 1, L(

∑
i,c x

i
c) = k, and L = 0 on I (HKk�G). It suffices now to construct

a tracial symmetric positive linear form L̂ ∈ R〈xi : i ∈ V 〉∗2r such that L̂(1) = 1,
L̂(

∑
i∈V xi ) = k, and L̂ = 0 on I2r (HG), since this will imply ξ stabr (G) ≥ k. For

this, for any word xi1 , . . . , xit with degree 1 ≤ t ≤ 2r , we define L̂(xi1 , . . . , xit ) :=
∑

c∈[k] L(xi1c , . . . , xitc ), andwe set L̂(1) = L(1) = 1. Then,we have L̂(
∑

i∈V xi ) = k.

Moreover, one can easily check that L̂ is indeed tracial, symmetric, positive, and
vanishes on I2r (HG). ��
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