New upper bounds for nonbinary codes based on quadruples

Bart Litjens and Sven Polak

Based on joint work with Lex Schrijver

Korteweg-de Vries Institute for Mathematics
Faculty of Science
University of Amsterdam

June 30th, 2016
Outline of the talk

- Introduction: definitions and notation
Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)
Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)
- Intermezzo: large SDPs for binary codes and constant weight codes
Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (I)
Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (I)
- Results
Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (I)
- Results
- Mixed binary/ternary codes
Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (I)
- Results
- Mixed binary/ternary codes
- Results
Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q] := \{0, \ldots, q - 1\}$.

Examples
(i) $d_{\min}(\{1112, 2111, 3134\}) = 2$,
(ii) $d_{\min}(\{111, 001, 010, 001, 110\}) = 1$.

Bart Litjens and Sven Polak
Semidefinite code bounds
5th SDP-day, June 30th, 2016
Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q] := \{0, \ldots, q - 1\}$.

- A **word** is an element of $[q]^n$ and a **code** is a subset of $[q]^n$.

Examples

(i) $d_{\min}(\{1112, 2111, 3134\}) = 2$,

(ii) $d_{\min}(\{111, 001, 010, 001, 110\}) = 1$.

Bart Litjens and Sven Polak
Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q] := \{0, \ldots, q - 1\}$.

- A word is an element of $[q]^n$ and a code is a subset of $[q]^n$.
- The Hamming distance between two words $u, v \in [q]^n$ is

$$d_H(u, v) := |\{i : u_i \neq v_i\}|.$$
Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q] := \{0, \ldots, q - 1\}$.

- A **word** is an element of $[q]^n$ and a **code** is a subset of $[q]^n$.

- The **Hamming distance** between two words $u, v \in [q]^n$ is
 \[
d_H(u, v) := |\{i : u_i \neq v_i\}|.\]

- The **minimum distance** $d_{\text{min}}(C)$ of a code $C \subseteq [q]^n$ is the minimum of $d_H(u, v)$ over all distinct $u, v \in C$.

Examples

(i) $d_{\text{min}}(\{1112, 2111, 3134\}) = 2$,

(ii) $d_{\text{min}}(\{111, 001, 010, 001, 110\}) = 1$.

Bart Litjens and Sven Polak
Semidefinite code bounds
5th SDP-day, June 30th, 2016
Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q] := \{0, \ldots, q - 1\}$.

- A **word** is an element of $[q]^n$ and a **code** is a subset of $[q]^n$.
- The **Hamming distance** between two words $u, v \in [q]^n$ is
 \[d_H(u, v) := |\{ i : u_i \neq v_i \}|. \]
- The **minimum distance** $d_{\text{min}}(C)$ of a code $C \subseteq [q]^n$ is the minimum of $d_H(u, v)$ over all distinct $u, v \in C$.

Examples

(i) $d_{\text{min}}(\{1112, 2111, 3134\}) = 2,$
Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q] := \{0, \ldots, q-1\}$.

- A **word** is an element of $[q]^n$ and a **code** is a subset of $[q]^n$.
- The **Hamming distance** between two words $u, v \in [q]^n$ is
 \[d_H(u, v) := |\{i : u_i \neq v_i\}|. \]
- The **minimum distance** $d_{\min}(C)$ of a code $C \subseteq [q]^n$ is the minimum of $d_H(u, v)$ over all distinct $u, v \in C$.

Examples

(i) $d_{\min}([1112, 2111, 3134]) = 2,$
Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q] := \{0, \ldots, q - 1\}$.

- A word is an element of $[q]^n$ and a code is a subset of $[q]^n$.
- The Hamming distance between two words $u, v \in [q]^n$ is
 \[d_H(u, v) := |\{i : u_i \neq v_i\}|. \]
- The minimum distance $d_{\min}(C)$ of a code $C \subseteq [q]^n$ is the minimum of $d_H(u, v)$ over all distinct $u, v \in C$.

Examples

(i) $d_{\min}(\{1112, 2111, 3134\}) = 2$,
(ii) $d_{\min}(\{111, 001, 010, 001, 110\}) = 1$.
Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q] := \{0, \ldots, q - 1\}$.

- A word is an element of $[q]^n$ and a code is a subset of $[q]^n$.
- The Hamming distance between two words $u, v \in [q]^n$ is
 $$d_H(u, v) := |\{i : u_i \neq v_i\}|.$$
- The minimum distance $d_{\text{min}}(C)$ of a code $C \subseteq [q]^n$ is the minimum of $d_H(u, v)$ over all distinct $u, v \in C$.

Examples

(i) $d_{\text{min}}(\{1112, 2111, 3134\}) = 2$,

(ii) $d_{\text{min}}(\{111, 001, 010, 001, 110\}) = 1$.

Bart Litjens and Sven Polak
Semidefinite code bounds
5th SDP-day, June 30th, 2016
The parameter $A_q(n, d)$

Definition

$$A_q(n, d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\text{min}}(C) \geq d\}.$$
The parameter \(A_q(n, d) \)

Definition

\[
A_q(n, d) := \max\{ |C| \mid C \subseteq [q]^n, \ d_{\min}(C) \geq d \}.
\]

Examples

- \(A_q(n, 1) = q^n \).
The parameter $A_q(n, d)$

Definition

$$A_q(n, d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \geq d\}.$$

Examples

- $A_q(n, 1) = q^n$.
- $A_2(4, 3) = 2$.

(i) Tables with bounds on $A_q(n, d)$ on the website of Andries Brouwer.

(ii) Interesting parameter in cryptography: a code $C \subseteq [q]^n$ with $d_{\min}(C) = 2e + 1$ is e-error correcting.
The parameter $A_q(n, d)$

Definition

$$A_q(n, d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \geq d\}.$$

Examples

- $A_q(n, 1) = q^n$.
- $A_2(4, 3) = 2$.
- $A_q(n, n) = |\{1\ldots1, 2\ldots2, \ldots, q\ldots q\}| = q$.

(i) Tables with bounds on $A_q(n, d)$ on the website of Andries Brouwer.
(ii) Interesting parameter in cryptography: a code $C \subseteq [q]^n$ with $d_{\min}(C) = 2e + 1$ is e-error correcting.
The parameter $A_q(n, d)$

Definition

$$A_q(n, d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \geq d\}.$$

Examples

- $A_q(n, 1) = q^n$
- $A_2(4, 3) = 2$
- $A_q(n, n) = |\{1 \ldots 1, 2 \ldots 2, \ldots, q \ldots q\}| = q$

(i) Tables with bounds on $A_q(n, d)$ on the website of Andries Brouwer.
The parameter $A_q(n, d)$

Definition

$A_q(n, d) := \max\{|C| \mid C \subseteq [q]^n, d_{\min}(C) \geq d\}$.

Examples

- $A_q(n, 1) = q^n$.
- $A_2(4, 3) = 2$.
- $A_q(n, n) = |\{1\ldots1, 2\ldots2, \ldots, q\ldots q\}| = q$.

(i) Tables with bounds on $A_q(n, d)$ on the website of Andries Brouwer.
(ii) Interesting parameter in cryptography: a code $C \subseteq [q]^n$ with $d_{\min}(C) = 2e + 1$ is e-error correcting.
The parameter $A_q(n, d) - II$

Definition

$$A_q(n, d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \geq d\}.$$
The parameter $A_q(n, d) - II$

Definition

\[A_q(n, d) := \max \{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \geq d\}. \]

Remark

Let $G = (V, E)$ be the graph with $V = [q]^n$ and

\[E := \{\{u, v\} \mid 0 < d_H(u, v) < d\}. \]
The parameter $A_q(n, d) - II$

Definition

$$A_q(n, d) := \max\{ |C| \mid C \subseteq [q]^n, \ d_{\min}(C) \geq d \}.$$

Remark

Let $G = (V, E)$ be the graph with $V = [q]^n$ and

$$E := \{\{u, v\} \mid 0 < d_H(u, v) < d\}.$$

Then $A_q(n, d) = \alpha(G)$, the stable set number of G.

Bart Litjens and Sven Polak

Semidefinite code bounds

5th SDP-day, June 30th, 2016
The parameter $A_q(n, d)$ – II

Definition

$$A_q(n, d) := \max\{ |C| \mid C \subseteq [q]^n, \ d_{\min}(C) \geq d \}.$$

Remark

Let $G = (V, E)$ be the graph with $V = [q]^n$ and

$$E := \{ \{u, v\} \mid 0 < d_H(u, v) < d \}.$$

Then $A_q(n, d) = \alpha(G)$, the stable set number of G.

![Graph Diagram]

$n = 3, d = 2$
The parameter $A_q(n, d) - II$

Definition

$$A_q(n, d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \geq d\}.$$

Remark

Let $G = (V, E)$ be the graph with $V = [q]^n$ and

$$E := \{\{u, v\} \mid 0 < d_H(u, v) < d\}.$$

Then $A_q(n, d) = \alpha(G)$, the stable set number of G.

![Graph Diagram](image-url)
The parameter $A_q(n, d) - II$

Definition

$$A_q(n, d) := \max \{ |C| \mid C \subseteq [q]^n, \ d_{\min}(C) \geq d \}.$$

Remark

Let $G = (V, E)$ be the graph with $V = [q]^n$ and

$$E := \{ \{u, v\} \mid 0 < d_H(u, v) < d \}.$$

Then $A_q(n, d) = \alpha(G)$, the stable set number of G.

Bart Litjens and Sven Polak

Semidefinite code bounds

5th SDP-day, June 30th, 2016
The parameter $A_q(n, d) - II$

Definition

$$A_q(n, d) := \max\{|C| \mid C \subseteq [q]^n, d_{\min}(C) \geq d\}.$$

Remark

Let $G = (V, E)$ be the graph with $V = [q]^n$ and

$$E := \{\{u, v\} \mid 0 < d_H(u, v) < d\}.$$

Then $A_q(n, d) = \alpha(G)$, the stable set number of G.

$n = 3, d = 2$
Bounds on $A_q(n, d)$

- Lower bounds via explicit constructions (e.g. linear codes, designs).
Bounds on $A_q(n, d)$

- Lower bounds via explicit constructions (e.g. linear codes, designs).
- Classical upper bound: Delsarte linear programming bound.
Bounds on $A_q(n, d)$

- Lower bounds via explicit constructions (e.g. linear codes, designs).
- Classical upper bound: Delsarte linear programming bound.

Schrijver (starting in 2005): hierarchy of semidefinite programming upper bounds via k-tuples of codewords ($k \geq 2$).
Bounds on $A_q(n, d)$

- Lower bounds via explicit constructions (e.g. linear codes, designs).
- Classical upper bound: Delsarte linear programming bound.

Schrijver (starting in 2005): hierarchy of semidefinite programming upper bounds via k-tuples of codewords ($k \geq 2$).

<table>
<thead>
<tr>
<th>k</th>
<th>Studied by</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Delsarte (1973)</td>
</tr>
<tr>
<td>3</td>
<td>Schrijver (2005) for $q = 2$ and Gijswijt, Schrijver and Tanaka (2006) for $q \in {3, 4, 5}$</td>
</tr>
<tr>
<td>4</td>
<td>Gijswijt, Mittelmann and Schrijver (2012) for $q = 2$</td>
</tr>
</tbody>
</table>
Delsarte bound

$$\theta^*(q, n, d) := \max \left\{ \sum_{u, v \in [q]^n} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \right. $$

(i) $\text{trace}(X) = 1$,

(ii) $X_{u, v} = 0$ if $\{u, v\} \in E$,

(iii) X is positive semidefinite \}

Proposition. $A_{q}(n, d) \leq \theta^*(q, n, d)$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d and maximum size. Define X by $X_{u, v} = 1/|C|$ if $u, v \in C$ and $X_{u, v} = 0$ else. Then X is feasible. Moreover,

$$\sum_{u, v \in [q]^n} X_{u, v} = |C|^2/|C| = A_{q}(n, d),$$

which yields the proposition. □
\[\theta^*(q, n, d) := \max \left\{ \sum_{u, v \in [q]^n} X_{u,v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \right. \]

(i) \(\text{trace}(X) = 1 \),
(ii) \(X_{u,v} = 0 \) if \(\{u, v\} \in E \),
(iii) \(X \) is positive semidefinite \}.

Proposition. \(A_q(n, d) \leq \theta^*(q, n, d) \)

Proof. Let \(C \subseteq [q]^n \) be a code of minimum distance at least \(d \) and maximum size.
Delsarte bound

\[\theta^*(q, n, d) := \max \left\{ \sum_{u, v \in [q]^n} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \right. \]

(i) \(\text{trace}(X) = 1 \),
(ii) \(X_{u, v} = 0 \) if \(\{u, v\} \in E \),
(iii) \(X \) is positive semidefinite \}.

Proposition. \(A_q(n, d) \leq \theta^*(q, n, d) \)

Proof. Let \(C \subseteq [q]^n \) be a code of minimum distance at least \(d \) and maximum size. Define \(X \) by \(X_{u, v} = 1/|C| \) if \(u, v \in C \) and \(X_{u, v} = 0 \) else.
Delsarte bound

\[\theta^*(q, n, d) := \max \left\{ \sum_{u, v \in [q]^n} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \right. \]

(i) \(\text{trace}(X) = 1 \),

(ii) \(X_{u, v} = 0 \) if \(\{u, v\} \in E \),

(iii) \(X \) is positive semidefinite \}.

Proposition. \(A_q(n, d) \leq \theta^*(q, n, d) \)

Proof. Let \(C \subseteq [q]^n \) be a code of minimum distance at least \(d \) and maximum size. Define \(X \) by \(X_{u, v} = 1/|C| \) if \(u, v \in C \) and \(X_{u, v} = 0 \) else. Then \(X \) is feasible.
\[\theta^*(q, n, d) := \max \left\{ \sum_{u, v \in [q]^n} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \right. \\
\left. \begin{array}{l}
(i) \quad \text{trace}(X) = 1, \\
(ii) \quad X_{u, v} = 0 \text{ if } \{u, v\} \in E, \\
(iii) \quad X \text{ is positive semidefinite} \right\}. \]

Proposition. \(A_q(n, d) \leq \theta^*(q, n, d) \)

Proof. Let \(C \subseteq [q]^n \) be a code of minimum distance at least \(d \) and maximum size. Define \(X \) by \(X_{u, v} = 1/|C| \) if \(u, v \in C \) and \(X_{u, v} = 0 \) else. Then \(X \) is feasible. Moreover,

\[\sum_{u, v \in [q]^n} X_{u, v} = |C|^2/|C| = A_q(n, d), \]

which yields the proposition.
Delsarte bound

\[\theta^*(q, n, d) := \max \left\{ \sum_{u, v \in [q]^n} X_{u,v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \right\} \]

\begin{align*}
(i) & \quad \text{trace}(X) = 1, \\
(ii) & \quad X_{u,v} = 0 \text{ if } \{u, v\} \in E, \\
(iii) & \quad X \text{ is positive semidefinite.}
\end{align*}

Proposition. \(A_q(n, d) \leq \theta^*(q, n, d) \)

Proof. Let \(C \subseteq [q]^n \) be a code of minimum distance at least \(d \) and maximum size. Define \(X \) by \(X_{u,v} = 1/|C| \) if \(u, v \in C \) and \(X_{u,v} = 0 \) else. Then \(X \) is feasible. Moreover,

\[\sum_{u, v \in [q]^n} X_{u,v} = |C|^2/|C| = A_q(n, d), \]

which yields the proposition.
Reductions

\[\theta(q, n, d) := \max \left\{ \sum_{u, v \in [q]^n} X_{u, v} \mid X \in \mathbb{R}^{[q]^n \times [q]^n}, \right. \]

\[\left. \, \, \, \left(i \right) \text{trace}(X) = 1, \right. \]

\[\left. \, \, \, \left(ii \right) X_{u, v} = 0 \text{ if } \{ u, v \} \in E, \right. \]

\[\left. \, \, \, \left(iii \right) X \text{ is positive semidefinite} \right\} . \]

Reduction of the optimization problem

Let \(G \) be the group of distance preserving permutations of \([q]^n\).

If \(X = (X_{u, v}) \) is an optimum solution, then also \(X_{\pi(u), \pi(v)} \) is optimum for all \(\pi \in G \). Moreover, the feasible region is convex.

\[\left(\frac{1}{|G|} \right) \sum_{\pi \in G} X_{\pi} \] is a \(G \)-invariant optimum solution. Hence the SDP has at most \(n + 1 \) variables.
Reductions

\[\theta^*(q, n, d) := \max \left\{ \sum_{u,v \in [q]^n} X_{u,v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \right. \]

(i) \(\text{trace}(X) = 1, \)
(ii) \(X_{u,v} = 0 \) if \(\{u, v\} \in E, \)
(iii) \(X \) is positive semidefinite \}

Reduction of the optimization problem

Let \(G \) be the group of distance preserving permutations of \([q]^n\).

If \(X = (X_{u,v}) \) is an optimum solution, then also \(X_{\pi}(u, v) := (X_{\pi}(u), \pi(v)) \) is optimum for all \(\pi \in G \). Moreover, the feasible region is convex.

\(\frac{1}{|G|} \sum_{\pi \in G} X_{\pi} \) is a \(G \)-invariant optimum solution. Hence the SDP has at most \(n + 1 \) variables.
Reductions

\[\theta^*(q, n, d) := \max \left\{ \sum_{u,v \in [q]^n} X_{u,v} \mid X \in \mathbb{R}^{[q]^n \times [q]^n}_{\geq 0} \right\} \]

with:

(i) \(\text{trace}(X) = 1 \),

(ii) \(X_{u,v} = 0 \) if \(\{u, v\} \in E \),

(iii) \(X \) is positive semidefinite \).

Reduction of the optimization problem

- Let \(G \) be the group of distance preserving permutations of \([q]^n\).
Reductions

\[\theta^*(q, n, d) := \max \left\{ \sum_{u, v \in [q]^n} X_{u,v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \right\} \]

with:

(i) \(\text{trace}(X) = 1 \),
(ii) \(X_{u,v} = 0 \) if \(\{u, v\} \in E \),
(iii) \(X \) is positive semidefinite.

Reduction of the optimization problem

- Let \(G \) be the group of distance preserving permutations of \([q]^n\).

- If \(X = (X_{u,v}) \) is an optimum solution, then also \(X^{\pi} := (X_{\pi(u),\pi(v)}) \) is optimum for all \(\pi \in G \). Moreover, the feasible region is convex.
\[\theta^*(q, n, d) := \max \left\{ \sum_{u, v \in [q]^n} X_{u,v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \right. \]

\begin{align*}
(i) & \quad \text{trace}(X) = 1, \\
(ii) & \quad X_{u,v} = 0 \text{ if } \{u, v\} \in E, \\
(iii) & \quad X \text{ is positive semidefinite}.
\end{align*}

Reduction of the optimization problem

- Let \(G \) be the group of distance preserving permutations of \([q]^n\).
- If \(X = (X_{u,v}) \) is an optimum solution, then also \(X^\pi := (X_{\pi(u),\pi(v)}) \) is optimum for all \(\pi \in G \). Moreover, the feasible region is convex.
- \(\frac{1}{|G|} \sum_{\pi \in G} X^\pi \) is a \(G \)-invariant optimum solution. Hence the SDP has at most \(n + 1 \) variables.
Let C_k be the collection of codes $C \subseteq [q]^n$ with $|C| \leq k$. Given $x : C_2 \rightarrow \mathbb{R}_{\geq 0}$, define the $C_1 \times C_1$-matrix M_x by

$$(M_x)_{C,C'} = x(C \cup C').$$
Delsarte bound – II

Notation

Let C_k be the collection of codes $C \subseteq [q]^n$ with $|C| \leq k$. Given $x : C_2 \to \mathbb{R}_{\geq 0}$, define the $C_1 \times C_1$-matrix M_x by

$$(M_x)_{C,C'} = x(C \cup C').$$

It can be proven that the Delsarte bound equals

$$D_q(n, d) := \max \left\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : C_2 \to \mathbb{R}_{\geq 0} \text{ with:} \right\}$$

1. $x(\emptyset) = 1$,
2. $x(C) = 0$ if $d_{\min}(C) < d$,
3. M_x is positive semidefinite.
The quadruple bound

Notation

Let C_k be the collection of codes $C \subseteq [q]^n$ with $|C| \leq k$. Given $x : C_4 \rightarrow \mathbb{R}_{\geq 0}$, define the $C_2 \times C_2$-matrix M_x by

$$(M_x)_{C, C'} = x(C \cup C').$$
The quadruple bound

Notation

Let \(C_k \) be the collection of codes \(C \subseteq [q]^n \) with \(|C| \leq k \).
Given \(x : C_4 \rightarrow \mathbb{R}_{\geq 0} \), define the \(C_2 \times C_2 \)-matrix \(M_x \) by

\[
(M_x)_{C,C'} = x(C \cup C').
\]

Now we define
Notation

Let C_k be the collection of codes $C \subseteq [q]^n$ with $|C| \leq k$.

Given $x : C_4 \to \mathbb{R}_{\geq 0}$, define the $C_2 \times C_2$-matrix M_x by

$$(M_x)_{C,C'} = x(C \cup C').$$

Now we define

$$B_q(n,d) := \max \left\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : C_4 \to \mathbb{R}_{\geq 0} \text{ with:} \right. \right.$$

(i) $x(\emptyset) = 1$,
(ii) $x(C) = 0$ if $d_{\text{min}}(C) < d$,
(iii) M_x is positive semidefinite.\right.$
The quadruple bound

\[B_q(n, d) := \max \left\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \right. \]

(i) \(x(\emptyset) = 1, \)
(ii) \(x(C) = 0 \text{ if } d_{\text{min}}(C) < d, \)
(iii) \(M_x \text{ is positive semidefinite} \} . \]

Proposition. \(A_q(n, d) \leq B_q(n, d) \)

Proof. Let \(C \subseteq [q]^n \) be a code of minimum distance at least \(d \)
The quadruple bound

\[B_q(n, d) := \max \left\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : C_4 \to \mathbb{R}_{\geq 0} \text{ with:} \right. \]

(i) \[x(\emptyset) = 1, \]
(ii) \[x(C) = 0 \text{ if } d_{\text{min}}(C) < d, \]
(iii) \[M_x \text{ is positive semidefinite}. \]

Proposition. \(A_q(n, d) \leq B_q(n, d) \)

Proof. Let \(C \subseteq [q]^n \) be a code of minimum distance at least \(d \) and maximum size.
The quadruple bound

\[B_q(n, d) := \max \left\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : C_4 \to \mathbb{R}_{\geq 0} \text{ with:} \right. \]

(i) \(x(\emptyset) = 1 \),
(ii) \(x(C) = 0 \) if \(d_{\text{min}}(C) < d \),
(iii) \(M_x \) is positive semidefinite \}.

Proposition. \(A_q(n, d) \leq B_q(n, d) \)

Proof. Let \(C \subseteq [q]^n \) be a code of minimum distance at least \(d \) and maximum size. Define \(x \) by \(x(S) = 1 \) if \(S \subseteq C \) and \(x(S) = 0 \) else.
The quadruple bound

\[B_q(n, d) \coloneqq \max \left\{ \sum_{\nu \in \{q\}^n} x(\{\nu\}) \mid x : C_4 \to \mathbb{R}_{\geq 0} \text{ with:} \right. \]

(i) \(x(\emptyset) = 1 \),

(ii) \(x(C) = 0 \) if \(d_{\min}(C) < d \),

(iii) \(M_x \) is positive semidefinite \}.

Proposition. \(A_q(n, d) \leq B_q(n, d) \)

Proof. Let \(C \subseteq \{q\}^n \) be a code of minimum distance at least \(d \) and maximum size. Define \(x \) by \(x(S) = 1 \) if \(S \subseteq C \) and \(x(S) = 0 \) else. Then \(x \) is feasible.
The quadruple bound

\[B_q(n, d) := \max \left\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : C_4 \to \mathbb{R}_{\geq 0} \text{ with:} \right. \]

\begin{align*}
(i) & \quad x(\emptyset) = 1, \\
(ii) & \quad x(C) = 0 \text{ if } d_{\text{min}}(C) < d, \\
(iii) & \quad M_x \text{ is positive semidefinite}. \]

\[\sum_{u \in [q]^n} x(\{u\}) = |C| = A_q(n, d), \]

which yields the proposition.
The quadruple bound

\[B_q(n, d) := \max \left\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : C_4 \rightarrow \mathbb{R}_{\geq 0} \text{ with:} \right. \]

(i) \(x(\emptyset) = 1 \),
(ii) \(x(C) = 0 \) if \(d_{\min}(C) < d \),
(iii) \(M_x \) is positive semidefinite \}.

Proposition. \(A_q(n, d) \leq B_q(n, d) \)

Proof. Let \(C \subseteq [q]^n \) be a code of minimum distance at least \(d \) and maximum size. Define \(x \) by \(x(S) = 1 \) if \(S \subseteq C \) and \(x(S) = 0 \) else. Then \(x \) is feasible. Moreover,

\[\sum_{u \in [q]^n} x(\{u\}) = |C| = A_q(n, d), \]

which yields the proposition. \(\square \)
Suppose that \(q = 2 \) and let \(n, d, w \in \mathbb{N} \).

Constant weight codes

The **weight** \(\text{wt}(u) \) of a codeword \(u \in \{0, 1\}^n \) is the number of nonzero entries in \(u \).
Intermezzo: constant weight codes

Suppose that \(q = 2 \) and let \(n, d, w \in \mathbb{N} \).

Constant weight codes

The **weight** \(\text{wt}(u) \) of a codeword \(u \in \{0, 1\}^n \) is the number of nonzero entries in \(u \). Let

\[
\mathcal{E} := \{ C \subseteq [q]^n \mid d_{\text{min}}(C) \geq d, \ \text{wt}(u) = w \ \forall \ u \in C \}
\]
Intermezzo: constant weight codes

Suppose that $q = 2$ and let $n, d, w \in \mathbb{N}$.

Constant weight codes

The weight $\text{wt}(u)$ of a codeword $u \in \{0, 1\}^n$ is the number of nonzero entries in u. Let $\mathcal{E} := \{ C \subseteq [q]^n \mid d_{\text{min}}(C) \geq d, \text{wt}(u) = w \ \forall u \in C \}$ and

$$A(n, d, w) := \max\{|C| \mid C \in \mathcal{E}\}.$$
Intermezzo: constant weight codes

Suppose that $q = 2$ and let $n, d, w \in \mathbb{N}$.

Constant weight codes

The **weight** $\text{wt}(u)$ of a codeword $u \in \{0, 1\}^n$ is the number of nonzero entries in u. Let $E := \{ C \subseteq [q]^n \mid d_{\text{min}}(C) \geq d, \text{wt}(u) = w \ \forall \ u \in C \}$ and

$$A(n, d, w) := \max\{|C| \mid C \in E\}.$$

Then $A(n, d, w) \leq B(n, d, w)$, where

$$B(n, d, w) := \max \left\{ \sum_{v \in \{0,1\}^n} x(\{v\}) \mid x : C_4 \rightarrow \mathbb{R}_{\geq 0} \text{ with:} \right. $$

(i) $x(\emptyset) = 1$,

(ii) $x(C) = 0$ if $C \notin E$,

(iii) M_x is positive semidefinite.
(i) Schrijver (2005) found upper bounds on constant weight codes for $k = 3$.
Intermezzo: constant weight codes

(i) Schrijver (2005) found upper bounds on constant weight codes for $k = 3$.
(ii) Possible to find new upper bounds for $k = 4$?
Intermezzo: constant weight codes

(i) Schrijver (2005) found upper bounds on constant weight codes for $k = 3$.

(ii) Possible to find new upper bounds for $k = 4$?

(iii) $A(19, 6, 8)$. Best known lower bound: 408. Schrijver’s upper bound: 718.
Intermezzo: constant weight codes

(i) Schrijver (2005) found upper bounds on constant weight codes for $k = 3$.

(ii) Possible to find new upper bounds for $k = 4$?

(iii) $A(19, 6, 8)$. Best known lower bound: 408. Schrijver’s upper bound: 718.

```
phase.value = pdFEAS
Iteration = 111
mu = 1.0595571803025323e-06
relative gap = 3.3729668079904213e-03
gap = 1.2966860772542390e-02
digits = 2.4719879325070719e+00
objValPrimal = -6.89000228713742179733350691711352e+02
objValDual = -6.86680166557914958473403040732179e+02
p.feas.error = 9.0463901819100310e-08
d.feas.error = 7.0071861627726210e-08
relative eps = 4.9303806576313200e-32
total time = 1440171.900
main loop time = 1439609.910000
**total time = 1440171.900000**
file read time = 550.020000
```

sven@Sven-PC:~/Documents/codesJuni$
Intermezzo: $k = 5$ for binary codes

Suppose that $q = 2$ and let $n, d \in \mathbb{N}$.

SDP-bound on $A_2(n, d)$ based on quintuples, $k = 5$

Let $\mathbf{0} := 0\ldots0$ and let C'_k be the collection of codes $C \subseteq [q]^n$ with $|C| \leq k$ and $\mathbf{0} \in C$. Then $A_2(n, d) \leq Q(n, d)$, where

$$Q(n, d) := \max \left\{ \sum_{v \in [q]^n} x(\{\mathbf{0}, v\}) \mid x : C'_5 \to \mathbb{R}_{\geq 0} \text{ with:} \right. $$

(i) $x(\{\mathbf{0}\}) = 1$,

(ii) $x(C) = 0$ if $d_{\min}(C) < d$,

(iii) M_x is positive semidefinite \}

where $(M_x)_{C, C'} = x(C \cup C')$ for all $x \in C'_3$.
Intermezzo: $k = 5$ for binary codes

(i) Östergård (2011): $A_2(17, 8) = 36$.
Intermezzo: \(k = 5 \) for binary codes

(i) Östergård (2011): \(A_2(17, 8) = 36 \).
(ii) Proved by a clique search taking two months.
Intermezzo: $k = 5$ for binary codes

(i) Östergård (2011): $A_2(17, 8) = 36$.
(ii) Proved by a clique search taking two months.
(iii) Possible to prove via semidefinite programming?
Intermezzo: $k = 5$ for binary codes

(i) Östergård (2011): $A_2(17, 8) = 36$.
(ii) Proved by a clique search taking two months.
(iii) Possible to prove via semidefinite programming?
(iv) Around 6000 variables, 70 blocks, max block size 400.
Intermezzo: $k = 5$ for binary codes

(i) Östergård (2011): $A_2(17, 8) = 36$.

(ii) Proved by a clique search taking two months.

(iii) Possible to prove via semidefinite programming?

(iv) Around 6000 variables, 70 blocks, max block size 400.
Reductions

\[B_q(n, d) := \max \left\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : C_4 \rightarrow \mathbb{R}_{\geq 0} \text{ with:} \right. \]

(i) \(x(\emptyset) = 1 \),

(ii) \(x(C) = 0 \) if \(d_{\min}(C) < d \),

(iii) \(M_x \) is positive semidefinite \}.

Let \(G = S_n \wr S_n \) be the group of distance preserving permutations of \([q]^n\). If \(x \) is an optimum solution, then also \(x_\pi \) given by

\[x_\pi(C) := x(\pi \circ C) \]

is optimum for all \(\pi \in G \).

\(\frac{1}{|G|} \sum_{\pi \in G} x_\pi \) is a \(G \)-invariant optimum solution.
Reductions

\[B_q(n, d) := \max \left\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : C_4 \to \mathbb{R}_{\geq 0} \text{ with:} \right. \]

\begin{align*}
(i) & \quad x(\emptyset) = 1, \\
(ii) & \quad x(C) = 0 \text{ if } d_{\min}(C) < d, \\
(iii) & \quad M_x \text{ is positive semidefinite} \right\}.
\]

Reduction of the optimization problem

- Let \(G = S_q^n \rtimes S_n \) be the group of distance preserving permutations of \([q]^n\).
Reductions

\[B_q(n, d) := \max \left\{ \sum_{v \in [q]^n} \chi(\{v\}) \mid \chi : C_4 \to \mathbb{R}_{\geq 0} \text{ with:} \right. \]

(i) \(\chi(\emptyset) = 1 \),

(ii) \(\chi(C) = 0 \) if \(d_{\min}(C) < d \),

(iii) \(M_\chi \) is positive semidefinite.\]

Reduction of the optimization problem

- Let \(G = S_q^n \rtimes S_n \) be the group of distance preserving permutations of \([q]^n\).

- If \(\chi \) is an optimum solution, then also \(\chi^\pi \) given by \(\chi^\pi(C) := \chi(\pi \circ C) \) is optimum for all \(\pi \in G \).
Reductions

\[B_q(n, d) := \max \left\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : C_4 \to \mathbb{R}_{\geq 0} \text{ with:} \right. \]

\begin{align*}
(i) & \quad x(\emptyset) = 1, \\
(ii) & \quad x(C) = 0 \text{ if } d_{\min}(C) < d, \\
(iii) & \quad M_x \text{ is positive semidefinite}. \\
\end{align*}

Reduction of the optimization problem

- Let \(G = S_q^n \times S_n \) be the group of distance preserving permutations of \([q]^n\).

- If \(x \) is an optimum solution, then also \(x^\pi \) given by \(x^\pi(C) := x(\pi \circ C) \) is optimum for all \(\pi \in G \).

- \(\frac{1}{|G|} \sum_{\pi \in G} x^\pi \) is a \(G \)-invariant optimum solution.
Let Π denote the collection of set partitions of $\{1, 2, 3, 4\}$ in at most q parts.
Let Π denote the collection of set partitions of $\{1, 2, 3, 4\}$ in at most q parts.

Then Π is in bijection with the orbits of the natural action of S_q on $[q]^4$ via the map

$$P \mapsto S_q \cdot (a_1, a_2, a_3, a_4),$$

with $a_i = a_j$ if and only if i and j are in the same class in P.

Let Π denote the collection of set partitions of $\{1, 2, 3, 4\}$ in at most q parts.

Then Π is in bijection with the orbits of the natural action of S_q on $[q]^4$ via the map

$$P \mapsto S_q \cdot (a_1, a_2, a_3, a_4),$$

with $a_i = a_j$ if and only if i and j are in the same class in P.

For example, if we assume that $q \geq 3$, then

$$\{\{1, 3\}, \{2\}, \{4\}\} \mapsto S_q \cdot (0, 1, 0, 2).$$
Let Ω be the set of G-orbits of C_4.

$\Rightarrow |\Omega|$ bounded by a polynomial in n.

Bart Litjens and Sven Polak
Semidefinite code bounds
5th SDP-day, June 30th, 2016
Let Ω be the set of G-orbits of C_4.

The map $([q]^n)^4 \rightarrow C_4$, $(v_1, v_2, v_3, v_4) \mapsto \{v_1, v_2, v_3, v_4\}$ gives a surjection $\{\text{degree } n \text{ monomials in } |\Pi| \text{ variables}\} \twoheadrightarrow \Omega \setminus \{\emptyset\}$.
Let Ω be the set of G-orbits of C_4.

The map $([q]^n)^4 \rightarrow C_4$, $(v_1, v_2, v_3, v_4) \mapsto \{v_1, v_2, v_3, v_4\}$ gives a surjection

$$\{\text{degree } n \text{ monomials in } |\Pi| \text{ variables}\} \twoheadrightarrow \Omega \setminus \{\emptyset\}.$$
G-orbits of C_4 – II

Let Ω be the set of G-orbits of C_4.

The map $([q]^n)^4 \to C_4, (v_1, v_2, v_3, v_4) \mapsto \{v_1, v_2, v_3, v_4\}$ gives a surjection

$$\{\text{degree } n \text{ monomials in } |\Pi| \text{ variables}\} \to \Omega \setminus \{\{\emptyset\}\}.$$

For example, writing $\{\{1, 2\}, \{3\}, \{4\}\}$ as $12, 3, 4$, letting $n = 4$ and $q \geq 3$ then

$$x_{1234}x_{12,3,4}^2 \mapsto G \cdot \{0000, 0000, 0001, 0112\} = G \cdot \{0000, 0001, 0112\}.$$
Let Ω be the set of G-orbits of C_4.

The map $([q]^n)^4 \rightarrow C_4$, $(v_1, v_2, v_3, v_4) \mapsto \{v_1, v_2, v_3, v_4\}$ gives a surjection

$$\{\text{degree } n \text{ monomials in } |\Pi| \text{ variables}\} \twoheadrightarrow \Omega \setminus \{\emptyset\}.$$

For example, writing $\{\{1, 2\}, \{3\}, \{4\}\}$ as $12, 3, 4$, letting $n = 4$ and $q \geq 3$ then

$$x_{1234}x_{123,4}^2x_{12,3,4} \mapsto G \cdot \{0000, 0000, 0001, 0112\}$$

$$= G \cdot \{0000, 0001, 0112\}.$$

$$\Rightarrow |\Omega| \text{ bounded by a polynomial in } n.$$
Reductions

- Replace variable $x(C)$ in the matrix M_x, with $C \in C_4$, by $y(w)$, with $w \in \Omega$ the orbit containing C.

Get a matrix M_y that is invariant under the action of G on rows and columns.

$$M_y \in \text{End}_G(R_{C_2}).$$

Using representation theory of the isometry group, one can construct a matrix U, independent of y, such that

Theorem (Maschke's theorem + Schur's lemma)

$\text{End}_G(R_{C_2}) \cong - \rightarrow \bigoplus_i R_{m_i \times m_i}$ (as linear spaces), via $A \mapsto U^t A U$.

Moreover, A is positive semidefinite if and only if each of the blocks of $U^t A U$ is.
Reductions

- Replace variable $x(C)$ in the matrix M_x, with $C \in C_4$, by $y(w)$, with $w \in \Omega$ the orbit containing C.

- Get a matrix M_y that is invariant under the action of G on rows and columns.
Reduce variable $x(C)$ in the matrix M_x, with $C \in C_4$, by $y(w)$, with $w \in \Omega$ the orbit containing C.

- Get a matrix M_y that is invariant under the action of G on rows and columns.

$$\implies M_y \in \text{End}_G(\mathbb{R}^{c_2}).$$
Reduce variable $x(C)$ in the matrix M_x, with $C \in \mathcal{C}_4$, by $y(w)$, with $w \in \Omega$ the orbit containing C.

- Get a matrix M_y that is invariant under the action of G on rows and columns.

$\implies M_y \in \text{End}_G(\mathbb{R}^{C_2})$.

Using representation theory of the isometry group, one can construct a matrix U, independent of y, such that
Reductions

- Replace variable \(x(C) \) in the matrix \(M_x \), with \(C \in \mathcal{C}_4 \), by \(y(w) \), with \(w \in \Omega \) the orbit containing \(C \).

- Get a matrix \(M_y \) that is invariant under the action of \(G \) on rows and columns.

\[\implies M_y \in \text{End}_G(\mathbb{R}^{C_2}). \]

Using representation theory of the isometry group, one can construct a matrix \(U \), independent of \(y \), such that

Theorem (Maschke's theorem + Schur's lemma)

\[\text{End}_G(\mathbb{R}^{C_2}) \overset{\sim}{\longrightarrow} \bigoplus_i \mathbb{R}^{m_i \times m_i} \text{ (as linear spaces), via } A \mapsto U^t A U. \]

Moreover, \(A \) is positive semidefinite if and only if each of the blocks of \(U^t A U \) is.
The blocks

- Blocks parametrized by quadruples of Young shapes of certain bound heights.
The blocks

- Blocks parametrized by quadruples of Young shapes of certain bound heights.

- Given a block (a quadruple of Young shapes), the size is determined by the number of semistandard Young tableaux, i.e., fillings of the shapes.
The blocks

- Blocks parametrized by quadruples of Young shapes of certain bound heights.

- Given a block (a quadruple of Young shapes), the size is determined by the number of semistandard Young tableaux, i.e., fillings of the shapes.

- The coefficients can be computed in time polynomial in n.
Table: New upper bounds on $A_q(n, d)$

<table>
<thead>
<tr>
<th>q</th>
<th>n</th>
<th>d</th>
<th>Best lower bound known</th>
<th>New upper bound</th>
<th>Best upper bound previously known</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>3</td>
<td>164</td>
<td>176</td>
<td>179</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>3</td>
<td>512</td>
<td>596</td>
<td>614</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>4</td>
<td>128</td>
<td>155</td>
<td>169</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
<td>250</td>
<td>489</td>
<td>545</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
<td>53</td>
<td>87</td>
<td>108</td>
</tr>
</tbody>
</table>
Fix $n_2, n_3, d \in \mathbb{Z}_{\geq 0}$.

- A mixed binary/ternary code is a subset of $[2]^{n_2}[3]^{n_3}$.
Mixed binary/ternary codes

Fix $n_2, n_3, d \in \mathbb{Z}_{\geq 0}$.

- A mixed binary/ternary code is a subset of $[2]^{n_2}[3]^{n_3}$.

- The Hamming distance, minimum distance and weight are defined in a similar fashion.
Fix \(n_2, n_3, d \in \mathbb{Z}_{\geq 0} \).

- A mixed binary/ternary code is a subset of \([2]^{n_2} [3]^{n_3}\).

- The Hamming distance, minimum distance and weight are defined in a similar fashion.

Definition

\[
N(n_2, n_3, d) := \max\{|C| \mid C \subseteq [2]^{n_2} [3]^{n_3}, \ d_{\min}(C) \geq d\}.
\]
Motivation: football pools

Source: http://www.uefa.com/uefaeuro/draws/
Motivation: the (extended) football pool problem

Fix $0 \leq e \leq n_2 + n_3$. Suppose n_3 games are played with possible outcome win/draw/loss and n_2 games with possible outcome win/loss.
Motivation: the (extended) football pool problem

Fix $0 \leq e \leq n_2 + n_3$. Suppose n_3 games are played with possible outcome win/draw/loss and n_2 games with possible outcome win/loss.

Covering problem

How many forms need to be filled in to make sure that, whatever the outcome, there is at least one form with e good answers?
Fix $0 \leq e \leq n_2 + n_3$. Suppose n_3 games are played with possible outcome win/draw/loss and n_2 games with possible outcome win/loss.

Covering problem

How many forms need to be filled in to make sure that, whatever the outcome, there is at least one form with e good answers?

Packing problem

How many forms can be filled in such that, whatever the outcome, there are no two or more forms with more than e good answers?
Motivation: the (extended) football pool problem

Fix $0 \leq e \leq n_2 + n_3$. Suppose n_3 games are played with possible outcome win/draw/loss and n_2 games with possible outcome win/loss.

Covering problem

How many forms need to be filled in to make sure that, whatever the outcome, there is at least one form with e good answers?

Packing problem

How many forms can be filled in such that, whatever the outcome, there are no two or more forms with more than e good answers?

\implies amounts to determining $N(n_2, n_3, d)$ with $d = 2e + 1$.
Bounds on $N(n_2, n_3, d)$

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.

Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

Problem: set of mixed binary/ternary words in general does not form an association scheme with respect to the Hamming distance.

Solution: it has a product scheme structure.

\Rightarrow Linear programming bound with $\leq \left(\left(n_2 + n_3 + 1 \right) \left(n_2 + n_3 + 2 \right) \right)^2$ constraints (Brouwer, Hämäläinen, Östergård and Sloane, 1998).
Bounds on $N(n_2, n_3, d)$

- **Lower bounds**: all but one best known lower bounds found on a Spanish forum about football pools.

- **Upper bounds**: Delsarte linear programming bound cannot be applied directly anymore.

Problem: set of mixed binary/ternary words in general does not form an association scheme with respect to the Hamming distance.

Solution: it has a product scheme structure.

Linear programming bound with $\leq (n_2^2 + n_3^2 + 1)(n_2^2 + n_3^2 + 2)^2$ constraints (Brouwer, Hamalainen, Ostergard and Sloane, 1998).
Bounds on $N(n_2, n_3, d)$

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.

- Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

Problem: set of mixed binary/ternary words in general does not form an association scheme with respect to the Hamming distance.
Bounds on $N(n_2, n_3, d)$

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.

- Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

Problem: set of mixed binary/ternary words in general does not form an association scheme with respect to the Hamming distance.

Solution: it has a product scheme structure.
Bounds on $N(n_2, n_3, d)$

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.
- Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

Problem: set of mixed binary/ternary words in general does not form an association scheme with respect to the Hamming distance.

Solution: it has a product scheme structure.

\implies Linear programming bound with $\leq \frac{(n_2+n_3+1)(n_2+n_3+2)}{2}$ constraints (Brouwer, Hämäläinen, Östergård and Sloane, 1998).
Let $0 := 0 \ldots 0$ and let C'_3 be the collection of codes $C \subseteq [2]^{n_2}[3]^{n_3}$ with $|C| \leq 3$ and $0 \in C$. Then $N(n_2, n_3, d) \leq N_3(n_2, n_3, d)$, where

$$N_3(n_2, n_3, d) := \max \left\{ \sum_{v \in [2]^{n_2}[3]^{n_3}} x(\{0, v\}) \mid x : C'_3 \rightarrow \mathbb{R}_{\geq 0} \text{ with:} \right. \left. \begin{array}{l}
(i) \quad x(\{0\}) = 1, \\
(ii) \quad x(C) = 0 \text{ if } d_{\min}(C) < d, \\
(iii) \quad M_x \text{ is positive semidefinite}\right\},$$

where $(M_x)_{C,C'} = x(C \cup C')$ for all $C, C' \in C'_2$.
Reductions and results

- Symmetry reduction using the group \((S_2^{n_2} \rtimes S_{n_2}) \times (S_3^{n_3} \rtimes S_{n_3})\).

Results (L., 2016)

In total 135 improved upper bounds were found: 131 from the SDP with \(k = 3\), one new bound from the SDP with \(k = 4\) and three implicit improvements.
Reductions and results

- Symmetry reduction using the group \((S_{n_2}^2 \times S_{n_2}) \times (S_{n_3}^3 \times S_{n_3})\).

- Blocks and coefficients of the constraint matrices can be expressed in terms of the blocks and coefficients for the corresponding programs with \(n_2 = 0\) and \(n_3 = 0\) respectively.

Results (L., 2016)

In total 135 improved upper bounds were found: 131 from the SDP with \(k = 3\), one new bound from the SDP with \(k = 4\) and three implicit improvements.
Reductions and results

- Symmetry reduction using the group \((S_{n_2}^n \ltimes S_{n_2}) \times (S_{n_3}^n \ltimes S_{n_3})\).

- Blocks and coefficients of the constraint matrices can be expressed in terms of the blocks and coefficients for the corresponding programs with \(n_2 = 0\) and \(n_3 = 0\) respectively.

Results (L., 2016)
In total 135 improved upper bounds were found: 131 from the SDP with \(k = 3\), one new bound from the SDP with \(k = 4\) and three implicit improvements.
A selection of the results

Table: A part of the table with best known bounds on $N(n_2, n_3, 4)$. The improved bounds are boldface.

<table>
<thead>
<tr>
<th>$n_2 \backslash n_3$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>22</td>
<td>51-61</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>36-43</td>
<td>92-117</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>11</td>
<td>28-30</td>
<td>62-83</td>
<td>158-228</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>20</td>
<td>50-59</td>
<td>114-160</td>
<td>288-436</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>34-40</td>
<td>96-114</td>
<td>216-308</td>
<td>576-825</td>
</tr>
<tr>
<td>7</td>
<td>36-30</td>
<td>64-80</td>
<td>192-220</td>
<td>408-585</td>
<td>1152-1576</td>
</tr>
<tr>
<td>8</td>
<td>50-59</td>
<td>128-153</td>
<td>384-407</td>
<td>768-1103</td>
<td>2304-3027</td>
</tr>
<tr>
<td>9</td>
<td>96-108</td>
<td>256-288</td>
<td>548-771</td>
<td>1536-2105</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>192-212</td>
<td>420-548</td>
<td>1050-1480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>384</td>
<td>784-1032</td>
<td>1050-1480</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>