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Solving conic optimization problems

For convex cone K ⊆ Rn, A ∈ Rm×n, b ∈ Rm and c ∈ Rn,
consider conic optimization problem:

minimize cT x
subject to Ax = b

x ∈ K
(1)

Let θ ∈ R ∪ {±∞} denote optimal value, i.e.,

θ := inf{cT x : Ax = b, x ∈ K}.

We say (1) is solved if one finds:

Optimal value θ and point attaining it (if one exists).
Certificate of optimality, unboundedness, or infeasibility.
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Certifying optimality with complementary solutions

A primal-dual feasible point (x , s, y) of

minimize cT x
subject to Ax = b

x ∈ K

maximize bT y
subject to c − AT y = s

s ∈ K∗, y ∈ Rm,

is called a complementary solution if duality gap sT x = 0.

Given comp. solution, (s, y) certifies x optimal and vice-versa.

Complementary solutions need not exist, e.g.,

sup{bT y : c − AT y ∈ K∗}
6=

inf{cT x : Ax = b, x ∈ K}

(Duality gap.) y1

y2

b

(Optimal value unattained.) 4 / 21



Certifying unboundedness with improving rays

An improving ray is a feas. direction of strictly decreasing cost:

Improving ray d :

cT d < 0,
Ad = 0,

d ∈ K

c

d K

An improving ray and feasible point certify unboundedness, i.e.,
that inf{cT x : Ax = b, x ∈ K} = −∞.

Improving rays need not exist, e.g.,

x1

x2

c Ad = 0, d ∈ K implies
cT d ≥ 0
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Certifying infeasibility with dual improving rays

Set {x : Ax = b, x ∈ K} empty if hyperplane strictly seperates

{b}, A(K) := {Ax : x ∈ K}

A dual improving ray y strictly separates these sets, i.e.,

yT b > 0,

−AT y ∈ K∗
(

holds iff yT (Ax) ≤ 0 ∀x ∈ K
)
.

Dual improving rays need not exist when A(K) not closed.

A(K)

b

yb̂

Closedness of A(K) studied extensively in Pataki ’07.
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Summary and motivation

In summary, to solve primal problem of

minimize cT x
subject to Ax = b

x ∈ K

maximize bT y
subject to c − AT y = s

s ∈ K∗, y ∈ Rm,

can try to find one of the following objects:

Object Description
complementary solution solution and optimality cert.

primal improving ray and feas. point unboundedness cert.
dual improving ray infeasibility cert.

This (standard) approach fails when complementary solutions
and improving rays don’t exist. Motivates different approach...
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Overview of approach (P., Friberg, Andersen ’15)

If improving rays and complementary solutions don’t exist we...

Find new problem with equal optimal value; specifically,
find new cone C:

inf{cT x : Ax = b, x ∈ K} = inf{cT x : Ax = b, x ∈ C}

Find improving rays or complementary solutions for new
problem; certify equality of optimal values.

To do this, we identify & exploit connection between
Self-dual embeddings (a conic linear system)
Facial reduction (a regularization method)

Assuming oracle access to embedding solutions, a complete
algorithm for solving conic problems is obtained.
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The self-dual embedding...

...is a conic system introduced by Goldman & Tucker ’56:

Ax − bτ = 0,
cτ − AT y − s = 0,

bT y − cT x − κ = 0,
(x , s, y , τ, κ) ∈ K ×K∗ × Rm × R+ × R+.

All solutions satisfy τκ = 0,

If τ > 0, 1
τ (x , s, y) is a complementary solution

If κ > 0, x and/or y are improving rays

τ = κ = 0 holds for all solutions iff no improving rays or
complementary solutions exist.

Studied extensively: Ye, Todd, Mizuno; Nesterov; Luo, Sturm,
Zhang; Potra, Sheng; de Klerk, Roos, Terlaky.

Basis of solvers: SeDuMi, MOSEK, SCS, SDPT3 4.0. 9 / 21



Facial reduction (Borwein and Wolkowicz ’81).

Let A := {x ∈ Rn : Ax = b}. Facial reduction algorithms find
face F = K ∩ s⊥ containing A ∩K by solving

Find s ∈ K∗ \ {0}
subject to s⊥ ⊇ A s

Vector s called a facial reduction certificate.

inf{cT x : x ∈ A ∩ K} = inf{cT x : x ∈ A ∩ F}

A seq. of certs si yields FN = K ∩ s⊥i ∩ · · · ∩ s⊥N and

minimize cT x
subject to Ax = b x ∈ FN

maximize bT y
subject to c − AT y ∈ F∗N .

Primal satisfies Slater’s cond. OR dual has improv. ray.
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Self-dual embeddings provide facial reduction
certificates (P., Friberg, Andersen ’15)

Theorem (P.,F.,A.’15)

If τ = κ = 0 and (x , s, y , τ, κ) is in rel. int. of the soln. set of

Ax − bτ = 0,
cτ − AT y − s = 0,

bT y − cT x − κ = 0,
(x , s, y , τ, κ) ∈ K ×K∗ × Rm × R+ × R+,

then s and x are optimal facial reduction certificates.

I.e., s and x expose smallest faces of K and K∗ subj. to

s⊥ ⊇
{

x ∈ Rn : Ax = b
}

x⊥ ⊇
{

c − AT y : y ∈ Rm
}

Rel. interior restriction follows de Klerk, Roos, Terlaky ’98.
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A complete classification of relative interior solutions

Let H denote solution set of the embedding:

Ax − bτ = 0,
cτ − AT y − s = 0,

bT y − cT x − κ = 0,
(x , s, y , τ, κ) ∈ K ×K∗ × Rm × R+ × R+.

If (x , s, y , τ, κ) ∈ relint H...

Case What’s obtained?
τ > 0 Complementary solution
κ > 0 Improving ray(s)

τ = κ = 0 Facial reduction certificate(s)

Conversely, fix (x , s, y , τ, κ) ∈ relint H. If complementary
solutions exist, τ > 0; if improving rays exist, κ > 0.

Related converses in de Klerk, Roos, Terlaky ’98.
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A unified algorithm P., F., A. ’15 (Basic version)

Letting A := {x ∈ Rn : Ax = b}, following solves:

min. cT x subj. to x ∈ K ∩A

repeat
Find relint sol. (x , s, y , τ, κ) of embedding
if τ = κ = 0 then
K ← K ∩ s⊥

else
return complementary solution or improving ray(s)

end
until algorithm returns;

Letting K0 and KN denote initial and final K,

inf{cT x : x ∈ A ∩ K0} = inf{cT x : x ∈ A ∩ KN}.

Terminates unless optimal val. finite but unattained or −∞
but no primal improving ray exists...
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Handling unattained finite optimal values

Goal: if opt. val. unattained for given problem, find new problem
with equal opt. val. that’s attained.

x1

x2

c

Given problem
x1

x2

c

New problem

Strategy (Abrams ’75): Do m facial reduction iterations to given
primal P0, then n iterations to resulting dual. Opts vals. satisfy:

θP0 = θP1 = · · · = θPm ≥ θDm = θD′1
= · · · = θD′n ≤ θP′n

If Pm and D′n satisfy Slater condition, θP0 = θP′n and θP′n attained.
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A unified algorithm P.,F.,A. ’15 (Full version)

Full algorithm (always terminates, new steps in blue):
repeat

Find relint sol. (x , s, y , τ, κ) to embedding
if τ = κ = 0 then

if A ∩ relintK = ∅ then
K ← K ∩ s⊥

else
K ← (K∗ ∩ x⊥)∗

end
else

return complementary solution or improving ray(s)
end

until algorithm returns;

Optimal value unchanged, i.e., letting K0 and KN denote
initial and final K, and A := {x ∈ Rn : Ax = b}

inf{cT x : x ∈ A ∩ K0} = inf{cT x : x ∈ A ∩ KN}.

When τ = κ = 0, can show

A ∩ relintK = ∅ ⇔ s /∈ (spanK)⊥.
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What if we wanted to solve the dual?

To solve dual

max. bT y subj. to c − AT y ∈ K∗,

swap order of facial reduction steps, i.e., replace

if {x : Ax = b} ∩ relintK = ∅ then
K ← K ∩ s⊥

else
K ← (K∗ ∩ x⊥)∗

end

with

if {c − AT y : y ∈ Rm} ∩ relintK∗ = ∅ then
K ← (K∗ ∩ x⊥)∗

else
K ← K ∩ s⊥

end

Now, iterations won’t change sup{bT y : c − AT y ∈ K∗}.
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Implementation details.

To implement, we need:
An oracle that produces points in relative interior of
embedding solution set
A way of representing faces, e.g., K ∩ s⊥.

For semidefinite programming (K = Sn
+)

Faces represented by subspaces of Rn (Barker & Carlson)
A central-path-following algorithm can serve as an oracle.
Shown in P.F.A. ’15 using hammers from Halická, de Klerk,
Roos, ’02 and de Klerk, Roos, Terlaky ’98.
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A relative interior oracle for semidefinite programming.

The self-dual embedding of Ye, Todd, Mizuno ’94 (strictly
feasible; θ = 0 at optimality; pi , µ new parameters):

minimize µθ
subject to Ax − bτ = p1θ

−AT y − s + cτ = p2θ

bT y − cT x − κ = p3θ

pT
1 y + pT

2 x + p3τ = −µ

(2)

(x , s, y , τ, κ, θ) ∈ K ×K∗ × Rm × R+ × R+ × R.

If (2) an SDP, can find relative interior solution by tracking
central path! (de Klerk, Roos, Terlaky; Halická, de Klerk, Roos)

Lemma (P.F.A. ’15)

If (x , s, y , τ, κ, θ) a rel. int. solution of (2), then (x , s, y , τ, κ) a
rel. int. solution of simpler embedding.
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Representing faces of the PSD cone Sn
+.

Representation due to Barker & Carlson:

Faces of Sn
+ are sets of form {UX̂UT : X̂ ∈ Sd

+} where
U ∈ Rn×d is fixed.

X = U
X̂︸ ︷︷ ︸
∈ Sd

+

UT

To represent face Sn
+ ∩ S⊥, pick any U such that

range U = null S.
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Summary and future work

Summary: Connection between facial reduction and self-dual
embeddings affords natural algorithm for solving conic
problems; ‘implementable’ for semidefinite programming if we
can track central path to its limit point.

Future work:
How far can we push numerical implementation?
Formal complexity analysis possible?
Study embedding solution set (e.g., facial structure) in
more detail.
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Paper and references

Our Paper (P., Friberg, Andersen, ’15):

www.mit.edu/˜fperment

or
www.optimization− online.org/
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