
Algebraic Optimization

and Semidefinite Optimization

EIDMA minicourse

This research-oriented course will focus on algebraic and computational techniques for
optimization problems involving polynomial equations and inequalities, with particular em-
phasis on the connections with semidefinite optimization.

The course will develop in a parallel fashion several algebraic and numerical approaches
to polynomial systems, with a view towards methods that simultaneously incorporate both
elements. We will study both the complex and real cases, developing techniques of general
applicability, and stressing convexity-based ideas, complexity results, and efficient implemen-
tations. Although we will use examples from several engineering areas, particular emphasis
will be given to those arising from systems and control applications.

Time and place: CWI Amsterdam, May 31 - June 4, 2010

Instructor: Prof. Pablo A. Parrilo (MIT)
e-mail: parrilo@mit.edu, URL: http://www.mit.edu/~parrilo.

Prerequisites: Besides general mathematical maturity, the minimal suggested requirements
for the minicourse are the following: linear algebra, background on linear optimization
or convex analysis, basic probability. Familiarity with the basic elements of modern
algebra (e.g., groups, rings, fields) is encouraged. Knowledge of the essentials of dy-
namical systems and control is recommended, but not required.

Bibliography: We will use a variety of book chapters and current papers. Some of these
are listed at the end of this syllabus.

Lecture notes: All handouts, including homework, will be posted in the course website:

http://homepages.cwi.nl/~monique/eidma-seminar-parrilo/
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Course Syllabus (Preliminary)

Lec. Time Topic Readings

1. Introduction / Presentation / Review

2. Semidefinite programming (I)

3. Semidefinite programming (II)

4. Algebra review

5. Univariate polynomials

6. Resultants and discriminants

7. Hyperbolic polynomials

8. SDP representability

9. Newton polytopes/BKK bound

10. Sums of squares (I)

11. Sums of squares (II)

12. SOS Applications

13. Varieties, Ideals

14. Groebner bases, Nullstellensatz

15. Zero dimensional systems (I)

16. Zero dimensional systems (II)

17. Quantifier elimination

18. Real Nullstellensatz

19. Representation theorems

20. Symmetry reduction methods

21. Apps: polynomial solving, Markov chains

22. Graph theoretic apps

23. Advanced topics
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MIT 6.256 - Algebraic techniques and semidefinite optimization February 3, 2010

Lecture 1
Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo

1 Introduction: what is this course about?

In this course we aim to understand the properties, both mathematical and computational, of sets
defined by polynomial equations and inequalities. In particular, we want to work towards methods that
will enable the solution (either exact or approximate) of optimization problems with feasible sets that
are defined through polynomial systems. Needless to say (is it?), many problems in estimation, control,
signal processing, etc., admit simple formulations in terms of polynomial equations and inequalities.
However, these formulations can be tremendously difficult to solve, and thus our methods should try to
exploit as many structural properties as possible.

The computational aspects of these sets are not fully understood at the moment. In the well-known
case of polyhedra, for instance, there is a well defined relationship between the geometrical properties
of the set (e.g., the number of facets, or the number of extreme points) and its algebraic representation.
Furthermore, polyhedral sets are preserved by natural operations (e.g., projections). None of this will
generally be true for (basic) semialgebraic sets, and this causes a very interesting interaction between
their geometry and algebraic descriptions.

2 Topics

To understand better what is going on, we will embark in a journey to learn a wide variety of methods
used to approach these problems. Some of our stops along the way will include:

• Linear optimization, second order cones, semidefinite programming

• Algebra: groups, fields, rings

• Univariate polynomials

• Resultants and discriminants

• Hyperbolic polynomials

• Sum of squares

• Ideals, varieties, Groebner bases, Hilbert’s Nullstellensatz

• Quantifier elimination

• Real Nullstellensatz

• And much more. . .

We are interested in computational methods, and want to emphasize efficiency. Throughout, appli-
cations will play an important role, both as motivation and illustration of the techniques.
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3 Review: convexity

A very important notion in modern optimization is that of convexity. To a large extent, modulo some
(important) technicalities, there is a huge gap between the theoretical and practical solvability of opti-
mization problems where the feasible set is convex, versus those where this property fails. Recommended
presentations of convex optimization from a modern viewpoint are [BV04, BTN01, BNO03], with [Roc70]
being the classical treatment of convex analysis.

Unless specified otherwise, we will work on a finite dimensional vector space, which we will identify
with Rn. The same will extend to the corresponding dual spaces. Often, we will implicitly use the
standard Euclidean inner product, thus identifying Rn and its dual.

Here are some relevant definitions:

Definition 1 A set S is convex if x1, x2 ∈ S implies λx1 + (1− λ)x2 ∈ S for all 0 ≤ λ ≤ 1.

The intersection of convex sets is always convex. Given a convex set S, a point x ∈ S is extreme if for
any two points x1, x2 in S, having x = λx1 + (1− λ)x2 and λ ∈ (0, 1) implies that x1 = x2 = x.

Example 2 The following are examples of convex sets:

• The n-dimensional hypercube is defined by 2n linear inequalities:

{x ∈ Rn : −1 ≤ xi ≤ 1, i = 1, . . . , n}.

This convex set has 2n extreme points, namely all those of the form (±1,±1, . . . ,±1).

• The n-dimensional Euclidean unit ball is defined by the inequality x2
1 + · · · + x2

n ≤ 1. It has an
infinite number of extreme points, namely all those on the hypersurface x2

1 + · · · + x2
n = 1.

• The n-dimensional crosspolytope has 2n extreme points, namely all those whose coordinates are
permutations of (±1, 0, . . . , 0). It can be defined using 2n linear inequalities, of the form

±x1 ± x2 ± · · · ± xn ≤ 1.

All these examples actually correspond to unit balls of different norms (�∞, �2, and �1, respectively).
It is easy to show that the unit ball of every norm is always a convex set. Conversely, given any full-
dimensional convex set symmetric with respect to the origin, one can define a norm via the gauge (or
Minkowski) functional.

One of the most important results about convex sets is the separating hyperplane theorem.

Theorem 3 Given two disjoint convex sets S1, S2 in Rn, there exists a nontrivial linear functional c
and a scalar d such that

�c, x� ≥ d ∀x ∈ S1

�c, x� ≤ d ∀x ∈ S2.

Under certain additional conditions, strict separation can be guaranteed. One of the most useful cases
is when one of the sets is compact and the other one is closed.

An important class of convex sets are those that are invariant under nonnegative scalings.

Definition 4 A set S ⊆ Rn is a cone if λ ≥ 0, x ∈ S ⇒ λx ∈ S.

Definition 5 The dual of a set S is S∗ := {y ∈ Rn : �y, x� ≥ 0 ∀x ∈ S}.
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The dual S∗ is always a closed convex cone. Duality reverses inclusion, that is, S1 ⊆ S2 implies S∗1 ⊇ S∗2 .
If S is a closed convex cone, then S∗∗ = S. Otherwise, S∗∗ is the closure of the smallest convex cone
that contains S.

A cone K is pointed if K ∩ (−K) = {0}, and solid if the interior of K is not empty. A cone that
is convex, closed, pointed and solid is called a proper cone. The dual set of a proper cone is also
a proper cone, called the dual cone. An element x is in the interior of the cone K if and only if
�x, y� > 0, ∀y ∈ K∗, y �= 0.

Example 6 The nonnegative orthant is defined as Rn
+ := {x ∈ Rn : xi ≥ 0}, and is a proper cone.

The nonnegative orthant is self-dual, i.e., we have (Rn
+)∗ = Rn

+.

A proper cone K induces a partial order1 on the vector space, via x � y if and only if y−x ∈ K. We
also use x ≺ y if y − x is in the interior of K. Important examples of proper cones are the nonnegative
orthant, the Lorentz cone, the set of symmetric positive semidefinite matrices, and the set of nonnegative
polynomials. We will discuss some of these in more detail later in the lectures and the exercises.

Example 7 Consider the second-order cone, defined by {(x0, x1, . . . , xn) ∈ Rn+1 :
��n

i=1 x2
i

� 1
2 ≤ x0}.

This is a self-dual proper cone, and is also known as the ice-cream, or Lorentz cone.
An interesting physical interpretation of the partial order induced by this cone appears in the theory

of special relativity. In this case, the cone can be expressed (after an inconsequential rescaling and
reordering) as

{(x, y, z, t) ∈ R4 : x2 + y2 + z2
≤ c2t2, t ≥ 0},

where c is a given constant (speed of light). In this case, the vector space is interpreted as the Minkowski
spacetime. Given a fixed point x0, those points x for which x � x0 correspond to the absolute future,
while those for which x � x0 are in the absolute past. There are, however, many points that are neither
in the absolute future nor in the absolute past (for these, the causal order will depend on the observer).

Remark 8 Convexity has two natural definitions. The first one is the one given above, that emphasizes
the “internal” aspect, in terms of convex combinations of elements of the set. Alternatively, one can look
at the “external” aspect, and define a convex set as the intersection of a (possibly infinite) collection of
half-spaces. The possibility of these “dual” descriptions is what enables many of the useful and intriguing
properties of convex sets. In the context of convex functions, for instance, these ideas are made concrete
through the use of the Legendre-Fenchel transformation.

4 Review: linear programming

Linear programming (LP) is the problem of minimizing a linear function, subject to linear inequality
constraints. An LP in standard form is written as:

min cT x s.t.
�

Ax = b
x ≥ 0 (P)

Every LP problem has a corresponding dual problem, which in this case is:

max bT y s.t. c−AT y ≥ 0. (D)

There are many important features of LP. Among them, we mention the following ones:
1
A partial order is a binary relation � that is reflexive, antisymmetric, and transitive.
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Geometry of the feasible set: The feasible set of linear programs are polyhedra. The geometry of
polyhedra is quite well understood. In particular, the Minkowski-Weyl theorem (e.g., [BT97,
Zie95]) states that every polyhedron P is finitely generated, i.e., it can be written as

P = conv(u1, . . . , ur) + cone(v1, . . . , vs),

where the ui, vi are the extreme points and extreme rays of P , respectively.

Weak duality: For any feasible solutions x, y of (P) and (D), respectively, it always holds that:

cT x− bT y = xT c− (Ax)T y = xT (c−AT y) ≥ 0.

In other words, from any feasible dual solution we can obtain a lower bound on the primal.
Conversely, primal feasible solutions give upper bounds on the value of the dual.

Strong duality: If both primal and dual are feasible, then they achieve exactly the same value, and
there exist optimal feasible solutions x�, y� such that cT x� = bT y�.

Some of these properties (which ones?) will break down as soon as we leave LP and go the more
general case of conic or semidefinite programming. These will cause some difficulties, although with the
right assumptions, the resulting theory will closely parallel the LP case.

Remark 9 The software codes cdd (Komei Fukuda, http: // www. ifor. math. ethz. ch/ ~ fukuda/

cdd_ home/ index. html ) and lrs (David Avis, http: // cgm. cs. mcgill. ca/ ~ avis/ C/ lrs. html )
are very useful for polyhedral computations. In particular, both of them allow to convert an inequal-
ity representation of a polyhedron (usually called an H-representation) into extreme points/rays (V-
representation), and viceversa.
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Lecture 2
Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo

Notation: The set of real symmetric n×n matrices is denoted Sn. A matrix A ∈ Sn is called positive
semidefinite if xT Ax ≥ 0 for all x ∈ Rn, and is called positive definite if xT Ax > 0 for all nonzero
x ∈ Rn. The set of positive semidefinite matrices is denoted Sn

+ and the set of positive definite matrices
is denoted by Sn

++. As we shall prove soon, Sn
+ is a proper cone (i.e., closed, convex, pointed, and solid).

We will use the inequality signs “�” and “�” to denote the partial order induced by Sn
+ (usually called

the Löwner partial order).

1 PSD matrices

There are several equivalent conditions for a matrix to be positive (semi)definite. We present below
some of the most useful ones:

Proposition 1. The following statements are equivalent:

• The matrix A ∈ Sn is positive semidefinite (A � 0).

• For all x ∈ Rn, xT Ax ≥ 0.

• All eigenvalues of A are nonnegative.

• All 2n − 1 principal minors of A are nonnegative.

• There exists a factorization A = BT B.

For the definite case, we have a similar characterization:

Proposition 2. The following statements are equivalent:

• The matrix A ∈ Sn is positive definite (A � 0).

• For all nonzero x ∈ Rn, xT Ax > 0.

• All eigenvalues of A are strictly positive.

• All n leading principal minors of A are positive.

• There exists a factorization A = BT B, with B square and nonsingular.

Here are some useful additional facts:

• If T is nonsingular, A � 0 ⇔ TT AT � 0.

• Schur complement. The following conditions are equivalent:

�
A B

BT C

�
� 0 ⇔

�
A � 0

C −BT A−1B � 0
⇔

�
C � 0

A−BC−1BT
� 0

We now prove the following result:

Theorem 3. The set Sn
+ of positive semidefinite matrices is a proper cone.
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Proof. Invariance under nonnegative scalings follows directly from the definition, so Sn
+ is a cone. By the

second statement in Proposition 1, Sn
+ is the intersection of infinitely many closed halfspaces, and hence

it is both closed and convex. To show pointedness, notice that if there is a symmetric matrix A that
belongs to both Sn

+ and −Sn
+, then xT Ax must vanish for all x ∈ Rn, thus A must be the zero matrix.

Finally, the cone is solid since In + X is positive definite for all X provided ||X|| is small enough.

We state next some additional facts on the geometry of the cone Sn
+ of positive semidefinite matrices.

• If Sn is equipped with the inner product �X,Y � := X • Y = Tr(XY ), then Sn
+ is a self-dual cone.

• The cone Sn
+ is not polyhedral, and its extreme rays are the rank one matrices.

2 Semidefinite programming

Semidefinite programming (SDP) is a specific kind of convex optimization problem (e.g., [VB96, Tod01,
BV04]), with very appealing numerical properties. An SDP problem corresponds to the optimization of
a linear function subject to matrix inequality constraints.

An SDP problem in standard primal form is written as:

minimize C • X

subject to Ai • X = bi, i = 1, . . . ,m (1)
X � 0,

where C, Ai ∈ Sn, and X•Y := Tr(XY ). The matrix X ∈ Sn is the variable over which the maximization
is performed. The inequality in the second line means that the matrix X must be positive semidefinite,
i.e., all its eigenvalues should be greater than or equal to zero. The set of feasible solutions, i.e., the set
of matrices X that satisfy the constraints, is always a convex set. In the particular case in which C = 0,
the problem reduces to whether or not the inequality can be satisfied for some matrix X. In this case,
the SDP is referred to as a feasibility problem. The convexity of SDP has made it possible to develop
sophisticated and reliable analytical and numerical methods to solve them.

A very important feature of SDP problems, from both the theoretical and applied viewpoints, is the
associated duality theory. For every SDP of the form (1) (usually called the primal problem), there is
another associated SDP, called the dual problem, that can be stated as

maximize bT y
subject to

�m
i=1 Aiyi � C, (2)

where b = (b1, . . . , bm), and the vector y = (y1, . . . , ym) contains the dual decision variables.
The key relationship between the primal and the dual problem is the fact that feasible solutions of

one can be used to bound the values of the other problem. Indeed, let X and y be any two feasible
solutions of the primal and dual problems respectively. We then have the following inequality:

C • X − bT y = (C −
m�

i=1

Aiyi) • X ≥ 0, (3)

where the last inequality follows from the fact that the two terms are positive semidefinite matrices.
From (1) and (2) we can see that the left hand side of (3) is just the difference between the objective
functions of the primal and dual problems. The inequality in (3) tells us that the value of the primal
objective function evaluated at any feasible matrix X is always greater than or equal to the value of
the dual objective function at any feasible vector y. This property is known as weak duality. Thus, we
can use any feasible X to compute an upper bound for the optimum of bT y, and we can also use any
feasible y to compute a lower bound for the optimum of C • X. Furthermore, in the case of feasibility
problems (i.e., C = 0), the dual problem can be used to certify the nonexistence of solutions to the
primal problem. This property will be crucial in our later developments.
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2.1 Conic duality

A general formulation, discussed briefly during the previous lecture, that unifies LP and SDP (as well as
some other classes of optimization problems) is conic programming. We will be more careful than usual
here (risking being a bit pedantic) in the definition of the respective spaces and mappings. It does not
make much of a difference if we are working on Rn (since we can identify a space and its dual), but it is
“good hygiene” to keep these distinctions in mind, and also useful when dealing with more complicated
spaces.

We will start with two real vector spaces, S and T , and a linear mapping A : S → T . Every real
vector space has an associated dual space, which is the vector space of real-valued linear functionals.
We will denote these dual spaces by S∗ and T ∗, respectively, and the pairing between an element of a
vector space and one of the dual as �·, ·� (i.e., f(x) = �f, x�). The adjoint mapping of A is the unique
linear map A∗ : T ∗ → S∗ defined through the property

�A
∗y, x�S = �y,Ax�T ∀x ∈ S, y ∈ T ∗.

Notice here that the brackets on the left-hand side of the equation represent the pairing in S, and those
on the right-hand side correspond to the pairing in T . We can then define the primal-dual pair of (conic)
optimization problems:

minimize �c, x�S

subject to
�

Ax = b
x ∈ K

maximize �y, b�T
subject to c−A∗y ∈ K∗,

where b ∈ T , c ∈ S∗, K ⊂ S is a proper cone, and K∗ ⊂ S∗ is the corresponding dual cone. Notice that
exactly the same proof presented earlier works here to show weak duality:

�c, x�S − �y, b�T = �c, x�S − �y,Ax�T

= �c, x�S − �A
∗y, x�S

= �c−A
∗y, x�S

≥ 0.

In the usual cases (e.g., LP and SDP), the vector spaces are finite dimensional, and thus isomorphic to
their duals. The specific correspondence between these is given through whatever inner product we use.

Among the classes of problems that can be interpreted as particular cases of the general conic
formulation we have linear programs, second-order cone programs (SOCP), and SDP, when we take the
cone K to be the nonnegative orthant Rn

+, the second order cone in n variables, or the PSD cone Sn
+.

We have then the following natural inclusion relationship among the different optimization classes.

LP ⊆ SOCP ⊆ SDP.

2.2 Geometric interpretation: separating hyperplanes

We give here a simple interpretation of duality, in terms of the separating hyperplane theorem. For
simplicity, we concentrate on the case of feasibility only, i.e., where we are interested in deciding the
existence of a solution x to the equations

Ax = b, x ∈ K, (4)

where as before K is a proper cone in the vector space S.
Consider now the image A(K) of the cone under the linear mapping. Notice that feasibility of (4) is

equivalent to the point b being contained on A(K). We have now two convex sets in T , namely A(K)
and {b}, and we are interested in knowing whether they intersect or not. If these sets satisfy certain
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properties (for instance, closedness and compactness) then we could apply the separating hyperplane
theorem, to produce a linear functional y that will be positive on one set, and negative on the other. In
particular, nonnegativity on A(K) implies

�y,A(x)� ∀x ∈ K ⇔ �A
∗(y), x� ∀x ∈ K ⇔ A

∗(y) ∈ K
∗.

Thus, under these conditions, if (4) is infeasible, there is a linear functional y satisfying

�y, b� < 0, A
∗y ∈ K

∗.

This yields a certificate of the infeasibility of the conic system (4).

2.3 Strong duality in SDP

Despite the formal similarities, there are a number of differences between linear programming and general
conic programming (and in particular, SDP). Among them, we notice that in SDP optimal solutions
may not necessarily exist (even if the optimal value is finite), and there can be a nonzero duality gap.

Nevertheless, we have seen that weak duality always holds for conic programming problems. As
opposed to the LP case, strong duality can fail in general SDP. A nice example is given in [VB96, p. 65],
where both the primal and dual problems are feasible, but their optimal values are different (i.e., there
is a nonzero finite duality gap).

Nevertheless, under relatively mild constraint qualifications (Slater’s condition, equivalent to the ex-
istence of strictly feasible primal and dual solutions) that are usually satisfied in practice, SDP problems
have strong duality, and thus zero duality gap.

Theorem 4. Assume that both the primal and dual problems are strictly feasible. Then, both achieve
their optimal solutions, and there is no duality gap.

There are several geometric interpretations of what causes the failure of strong duality for general SDP
problems. A good one is based on the fact that the image of a proper cone under a linear transformation
is not necessarily a proper cone. This fact seems quite surprising (or even wrong!) the first time one
encounters it, but after a little while it starts being quite reasonable. Can you think of an example where
this happens? What property will fail?

It should be mentioned that it is possible to formulate a more complicated SDP dual program
(called the “Extended Lagrange-Slater Dual” in [Ram97]) for which strong duality always holds. For
details, as well as a comparison with the more general “minimal cone” approach, we refer the reader to
[Ram97, RTW97].

3 Applications

There have been many applications of SDP in a variety of areas of applied mathematics and engineering.
We present here just a few, to give a flavor of what is possible. Many more will follow.

3.1 Lyapunov stability and control

Consider a linear difference equation (i.e., a discrete-time linear system) given by

x(k + 1) = Ax(k), x(0) = x0.

It is well-known (and easy to prove) that x(k) converges to zero for all initial conditions x0 iff |λi(A)| < 1,
for i = 1, . . . , n.

There is a simple characterization of this spectral radius condition in terms of a quadratic Lyapunov
function V (x(k)) = x(k)T Px(k).

2-4



Theorem 5. Given an n× n real matrix A, the following conditions are equivalent:

(i) All eigenvalues of A are inside the unit circle, i.e., |λi(A)| < 1 for i = 1, . . . , n.

(ii) There exist a matrix P ∈ Sn such that

P � 0, AT PA− P ≺ 0.

Proof. (ii) ⇒ (i) : Let Av = λv. Then,

0 > v∗(AT PA− P )v = (|λ|2 − 1) v∗Pv� �� �
>0

,

and therefore |λ| < 1.
(i) ⇒ (ii) : Let P :=

�∞
k=0(A

k)T QAk, where Q � 0. The sum converges by the eigenvalue assumption.
Then,

AT PA− P =
∞�

k=1

(Ak)T QAk
−

∞�

k=0

(Ak)T QAk = −Q ≺ 0

Consider now the case where A is not stable, but we can use linear state feedback, i.e., A(K) =
A + BK, where K is a fixed matrix. We want to find a matrix K such that A + BK is stable, i.e., all
its eigenvalues have absolute value smaller than one.

Use Schur complements to rewrite the condition:

(A + BK)T P (A + BK)− P ≺ 0, P � 0
��

P (A + BK)T P
P (A + BK) P

�
� 0

This condition is not simultaneously convex in (P,K) (since it is bilinear). However, we can do a
congruence transformation with Q := P−1, and obtain:

�
Q Q(A + BK)T

(A + BK)Q Q

�
� 0

Now, defining a new variable Y := KQ we have
�

Q QAT + Y T BT

AQ + BY Q

�
� 0.

This problem is now linear in (Q, Y ). In fact, it is an SDP problem. After solving it, we can recover the
controller K via K = Q−1Y .

3.2 Theta function

Given a graph G = (V,E), a stable set (or independent set) is a subset of V with the property that the
induced subgraph has no edges. In other words, none of the selected vertices are adjacent to each other.

The stability number of a graph, usually denoted by α(G), is the cardinality of the largest stable set.
Computing the stability number of a graph is NP-hard. There are many interesting applications of the
stable set problem. In particular, they can be used to provide upper bounds on the Shannon capacity of
a graph [Lov79], a problem of that appears in coding theory (when computing the zero-error capacity of
a noisy channel [Sha56]). In fact, this was one of the first appearances of what today is known as SDP.
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The Lovász theta function is denoted by ϑ(G), and is defined as the solution of the SDP :

max J • X s.t.






Tr(X) = 1
Xij = 0 (i, j) ∈ E

X � 0
(5)

where J is the matrix with all entries equal to one. The theta function is an upper bound on the stability
number, i.e.,

α(G) ≤ ϑ(G).

The inequality is easy to prove. Consider the indicator vector ξ(S) of any stable set S, and define the
matrix X := 1

|S|ξξ
T . Is is easy to see that this X is a feasible solution of the SDP, and it achieves an

objective value equal to |S|. As a consequence, the inequality above directly follows.

3.3 Euclidean distance matrices

Assume we are given a list of pairwise distances between a finite number of points. Under what conditions
can the points be embedded in some finite-dimensional space, and those distances be realized as the
Euclidean metric between the embedded points? This problem appears in a large number of applications,
including distance geometry, computational chemistry, and machine learning.

Concretely, assume we have a list of distances dij , for (i, j) ∈ [1, n]×[1, n]. We would like to find points
xi ∈ Rk (for some value of k), such that ||xi − xj || = dij for all i, j. What are necessary and sufficient
conditions for such an embedding to exist? In 1935, Schoenberg [Sch35] gave an exact characterization
in terms of the semidefiniteness of the matrix of squared distances:

Theorem 6. The distances dij can be embedded in a Euclidean space if and only if the n× n matrix

D :=





0 d2
12 d2

13 . . . d2
1n

d2
12 0 d2

23 . . . d2
2n

d2
13 d2

23 0 . . . d2
3n

...
...

...
. . .

...
d2
1n d2

2n d2
3n . . . 0





is negative semidefinite on the subspace orthogonal to the vector e := (1, 1, . . . , 1).

Proof. We show only the necessity of the condition. Assume an embedding exists, i.e., there are points
xi ∈ Rk such that dij = ||xi − xj ||. Consider now the Gram matrix G of inner products

G :=





�x1, x1� �x1, x2� . . . �x1, xn�

�x2, x1� �x2, x2� . . . �x2, xn�

...
...

. . .
...

�xn, x1� �xn, x2� . . . �xn, xn�




= [x1, . . . , xn]T [x1, . . . , xn],

which is positive semidefinite by construction. Since Dij = ||xi − xj ||
2 = �xi, xi� + �xj , xj� − 2�xi, xj�,

we have
D = diag(G) · eT + e · diag(G)T

− 2G,

from where the result directly follows.

Notice that the dimension of the embedding is given by the rank k of the Gram matrix G.
For more on this and related embeddings problems, good starting points are Schoenberg’s original

paper [Sch35], as well as the book [DL97].
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4 Software

Remark 7. There are many good software codes for semidefinite programming. Among the most well-
known, we mention the following ones:

• SeDuMi, originally by Jos Sturm, now being maintained by the optimization group at Lehigh:
http: // sedumi. ie. lehigh. edu

• SDPT3, by Kim-Chuan Toh, Reha Tütüncü, and Mike Todd. http: // www. math. nus. edu. sg/

~ mattohkc/ sdpt3. html

• SDPA, by the research group of Masakazu Kojima, http: // sdpa. indsys. chuo-u. ac. jp/ sdpa/

• CSDP, originally by Brian Borchers, now a COIN-OR project: https: // projects. coin-or.

org/ Csdp/

A very convenient way of using these (and other) SDP solvers under MATLAB is through the YALMIP
parser/solver (Johan Löfberg, http: // users. isy. liu. se/ johanl/ yalmip/ ), or the disciplined con-
vex programming software CVX (Michael Grant and Stephen Boyd, http: // www. stanford. edu/ ~ boyd/
cvx .
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Lecture 3
Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo

In this lecture, we will discuss one of the most important applications of semidefinite programming,
namely its use in the formulation of convex relaxations of nonconvex optimization problems. We will
present the results from several different, but complementary, points of view. These will also serve us as
starting points for the generalizations to be presented later in the course.

We will discuss first the case of binary quadratic optimization, since in this case the notation is
simpler, and perfectly illustrates many of the issues appearing in more complicated problems. Afterwards,
a more general formulation containing arbitrary linear and quadratic constraints will be presented.

1 Binary optimization

Binary (or Boolean) quadratic optimization is a classical combinatorial optimization problem. In the
version we consider, we want to minimize a quadratic function, where the decision variables can only
take the values ±1. In other words, we are minimizing an (indefinite) quadratic form over the vertices
of an n-dimensional hypercube. The problem is formally expressed as:

minimize xT Qx

subject to xi ∈ {−1, 1}
(1)

where Q ∈ Sn. There are many well-known problems that can be naturally written in the form above.
Among these, we mention the maximum cut problem (MAXCUT) discussed below, the 0-1 knapsack,
the linear quadratic regulator (LQR) control problem with binary inputs, etc.

Notice that we can model the Boolean constraints using quadratic equations, i.e.,

xi ∈ {−1, 1} ⇐⇒ x2
i − 1 = 0.

These n quadratic equations define a finite set, with an exponential number of elements, namely all
the n-tuples with entries in {−1, 1}. There are exactly 2n points in this set, so a direct enumeration
approach to (1) is computationally prohibitive when n is large (already for n = 30, we have 2n ≈ 109).

We can thus write the equivalent polynomial formulation:

minimize xT Qx

subject to x2
i = 1

(2)

We will denote the optimal value and optimal solution of this problem as f� and x�, respectively. It is
well-known that the decision version of this problem is NP-complete (e.g., [GJ79]). Notice that this is
true even if the matrix Q is positive definite (i.e., Q � 0), since we can always make Q positive definite
by adding to it a constant multiple of the identity (this only shifts the objective by a constant).

Example 1 (MAXCUT) The maximum cut (MAXCUT) problem consists in finding a partition of
the nodes of a graph G = (V,E) into two disjoint sets V1 and V2 (V1 ∩ V2 = ∅, V1 ∪ V2 = V ), in such a
way to maximize the number of edges that have one endpoint in V1 and the other in V2. It has important
practical applications, such as optimal circuit layout. The decision version of this problem (does there
exist a cut with value greater than or equal to K?) is NP-complete [GJ79].

We can easily rewrite the MAXCUT problem as a binary optimization problem. A standard formu-
lation (for the weighted problem) is the following:

max
yi∈{−1,1}

1
4

�

i,j

wij(1− yiyj), (3)
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where wij is the weight corresponding to the (i, j) edge, and is zero if the nodes i and j are not connected.
The constraints yi ∈ {−1, 1} are equivalent to the quadratic constraints y2

i = 1.
We can easily convert the MAXCUT formulation into binary quadratic programming. Removing the

constant term, and changing the sign, the original problem is clearly equivalent to:

min
y2

i =1

�

i,j

wijyiyj . (4)

1.1 Semidefinite relaxations

Computing “good” solutions to the binary optimization problem given in (2) is a quite difficult task, so
it is of interest to produce accurate bounds on its optimal value. As in all minimization problems, upper
bounds can be directly obtained from feasible points. In other words, if x0 ∈ Rn has entries equal to
±1, it always holds that f� ≤ xT

0 Qx0 (of course, for a poorly chosen x0, this upper bound may be very
loose).

To prove lower bounds, we need a different technique. There are several approaches to do this, but
as we will see in detail in the next sections, many of them will turn out to be exactly equivalent in the
end. Indeed, many of these different approaches will yield a characterization of a lower bound in terms
of the following primal-dual pair of semidefinite programming problems:

minimize Tr QX

subject to Xii = 1
X � 0

maximize TrΛ
subject to Q � Λ

Λ diagonal
(5)

In the next sections, we will derive these SDPs several times, in a number of different ways. Let us
notice here first that for this primal-dual pair of SDP, strong duality always holds, and both achieve
their corresponding optimal solutions (why?).

1.2 Lagrangian duality

A general approach to obtain lower bounds on the value of (non)convex minimization problems is to use
Lagrangian duality. As we have seen, the original Boolean minimization problem can be written as:

minimize xT Qx

subject to x2
i − 1 = 0.

(6)

For notational convenience, let Λ := diag(λ1, . . . ,λn). Then, the Lagrangian function can be written as:

L(x,λ) = xT Qx−
n�

i=1

λi(x2
i − 1) = xT (Q− Λ)x + Tr Λ.

For the dual function g(λ) := infx L(x, λ) to be bounded below, we need the implicit constraint that
the matrix Q − Λ must be positive semidefinite. In this case, the optimal value of x is zero, yielding
g(λ) = Tr Λ, and thus we obtain a lower bound on f� given by the solution of the SDP:

maximize TrΛ
subject to Q− Λ � 0

(7)

This is exactly the dual side of the SDP in (5).
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Figure 1: The ellipsoids E1 and E2.

1.3 Underestimator of the objective

A different but related interpretation of the SDP relaxation (5) is through the notion of an underestimator
of the objective function. Indeed, the quadratic function xT Λx is an “easily optimizable” function that
is guaranteed to lie below the desired objective xT Qx. To see this, notice that for any feasible x we have

xT Qx ≥ xT Λx =
n�

i=1

Λiix
2
i = Tr Λ,

where

• The first inequality follows from Q � Λ

• The second equation holds since the matrix Λ is diagonal

• Finally, the third one holds since xi ∈ {+1,−1}

There is also a nice corresponding geometric interpretation. For simplicity, we assume without loss
of generality that Q is positive definite. Then, the problem (2) can be intepreted as finding the largest
value of γ for which the ellipsoid {x ∈ Rn|xT Qx ≤ γ} does not contain a vertex of the unit hypercube.

Consider now the two ellipsoids in Rn defined by:

E1 = {x ∈ Rn
|xT Qx ≤ TrΛ}

E2 = {x ∈ Rn
|xT Λx ≤ TrΛ}.

The principal axes of ellipsoid E2 are aligned with the coordinates axes (since Λ is diagonal), and
furthermore its boundary contains all the vertices of the unit hypercube. Also, it is easy to see that the
condition Q � Λ implies E1 ⊆ E2.

With these facts, it is easy to understand the related problem that the SDP relaxation is solving:
dilating E1 as much as possible, while ensuring the existence of another ellipsoid E2 with coordinate-
aligned axes and touching the hypercube in all 2n vertices; see Figure 1 for an illustration.

1.4 Probabilistic interpretation

The standard semidefinite relaxation described above can also be motivated via a probabilistic argument.
For this, assume that rather than choosing the optimal x in a deterministic fashion, we want to find
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Figure 2: The three-dimensional “spectraplex.” This is the set of 3× 3 positive semidefinite matrices,
with unit diagonal.

instead a probability distribution that will yield “good” solutions on average. For symmetry reasons, we
can always restrict ourselves to distributions with zero mean. The objective value then becomes

E[xT Qx] = E[TrQxxT ] = Tr QE[xxT ] = Tr QX, (8)

where X is the covariance matrix of the distribution (which is necessarily positive semidefinite). For the
constraints, we may require that the solutions we generate be feasible on expectation, thus having:

E[x2
i ] = Xii = 1. (9)

Maximizing the expected value of the expected cost (8), under the constraint (9) yields the primal side
of the SDP relaxation presented in (5).

1.5 Lifting and rank relaxation

We present yet another derivation of the SDP relaxations, this time focused on the primal side. Recall
the original formulation of the optimization problem (2). Define now X := xxT . By construction, the
matrix X ∈ Sn satisfies X � 0, Xii = x2

i = 1, and has rank one. Conversely, any matrix X with

X � 0, Xii = 1, rankX = 1

necessarily has the form X = xxT for some ±1 vector x (why?). Furthermore, by the cyclic property of
the trace, we can express the objective function directly in terms of the matrix X, via:

xT Qx = Tr xT Qx = Tr QxxT = Tr QX.

As a consequence, the original problem (2) can be exactly rewritten as:

minimize Tr QX

subject to Xii = 1, X � 0
rank(X) = 1.

This is almost an SDP problem (all the constraints are either linear or conic), except for the rank one
constraint on X. Since this is a minimization problem, a lower bound on the solution can be obtained
by dropping the (nonconvex) rank constraint, which enlarges the feasible set.
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A useful interpretation is in terms of a nonlinear lifting to a higher dimensional space. Indeed, rather
than solving the original problem in terms of the n-dimensional vector x, we are instead solving for the
n× n matrix X, effectively converting the problem from Rn to Sn (which has dimension

�n+1
2

�
).

Observe that this line of reasoning immediately shows that if we find an optimal solution X of the
SDP (5) that has rank one, then we have solved the original problem. Indeed, in this case the upper
and lower bounds on the solution coincide.

As a graphical illustration, in Figure 2 we depict the set of 3 × 3 positive semidefinite matrices of
unit diagonal. The rank one matrices correspond to the four “vertices” of this convex set, and are in
(two-to-one) correspondence with the eight 3-vectors with ±1 entries.

In general, it is not the case that the optimal solution of the SDP relaxation will be rank one.
However, as we will see in the next section, it is possible to use rounding schemes to obtain “nearby”
rank one solutions. Furthermore, in some cases, it is possible to do so while obtaining some approximation
guarantees on the quality of the rounded solutions.

2 Bounds: Goemans-Williamson and Nesterov

So far, our use of the SDP relaxation (5) has been limited to providing only a posteriori bounds on the
optimal solution of the original minimization problem. However, two desirable features are missing:

• Approximation guarantees: is it possible to prove general properties on the quality of the bounds
obtained by SDP?

• Feasible solutions: can we (somehow) use the SDP relaxations to provide not just bounds, but
actual feasible points with good (or optimal) values of the objective?

As we will see, it turns out that both questions can be answered in the positive. As it has been shown
by Goemans and Williamson [GW95] in the MAXCUT case, and Nesterov in a more general setting,
we can actually achieve both of these objectives by randomly “rounding” in an appropriate manner the
solution X of this relaxation. We discuss these results below.

2.1 Goemans-Williamson rounding

In their celebrated MAXCUT paper, Goemans and Williamson developed the following randomized
method for finding a “good” feasible cut from the solution of the SDP.

• Factorize X as X = V T V , where V = [v1 . . . vn] ∈ Rr×n, where r is the rank of X.

• Then Xij = vT
i vj , and since Xii = 1 this factorization gives n vectors vi on the unit sphere in Rr

• Instead of assigning either 1 or −1 to each variable, we have assigned to each xi a point on the
unit sphere in Rr.

• Now, choose a random hyperplane in Rr, and assign to each variable xi either a +1 or a −1,
depending on which side of the hyperplane the point vi lies.

It turns out that this procedure gives a solution that, on average, is quite close to the value of the
SDP bound. We will compute the expected value of the rounded solution in a slightly different form
from the original G-W argument, but one that will be helpful later.

The random hyperplane can be characterized by its normal vector p, which is chosen to be uniformly
distributed on the unit sphere (e.g., by suitably normalizing a standard multivariate Gaussian random
variable). Then, according to the description above, the rounded solution is given by xi = sign(pT vi).
The expected value of this solution can then be written as:

Ep[xT Qx] =
�

ij

QijEp[xixj ] =
�

ij

QijEp[sign(pT vi) sign(pT vj)].
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We can easily compute the value of this expectation. Consider the plane spanned by vi and vj , and let
θij be the angle between these two vectors. Then, it is easy to see that the desired expectation is equal
to the probability that both points are on the same side of the hyperplane, minus the probability that
they are on different sides. These probabilities are 1 − θij

π and θij

π , respectively. Thus, the expected
value of the rounded solution is exactly:

�

ij

Qij

�
1−

2θij

π

�
=

�

ij

Qij

�
1−

2
π

arccos(vT
i vj)

�
=

2
π

�

ij

Qij arcsinXij . (10)

Notice that the expression is of course well-defined, since if X is PSD and has unit diagonal, all its
entries are bounded in absolute value by 1. This result exactly characterizes the expected value of the
rounding procedure, as a function of the optimal solution of the SDP. We would like, however, to directly
relate this quantity to the optimal solution of the original optimization problem. For this, we will need
additional assumptions on the matrix Q. We discuss next two of the most important results in this
direction.

2.2 MAXCUT bound

Recall from (3) that for the MAXCUT problem, the objective function does not only include the quadratic
part, but there is actually a constant term:

1
4

�

ij

wij (1− yiyj).

The expected value of the cut is then:

csdp-expected =
1
4

�

ij

wij

�
1−

2
π

arcsinXij

�
=

1
4
·

2
π

�

ij

wij arccos Xij ,

where we have used the identity arcsin t + arccos t = π
2 . On the other hand, the optimal solution of the

primal SDP gives an upper bound on the cut capacity equal to:

csdp-upper-bound =
1
4

�

ij

wij(1−Xij).

To relate these two quantities, we look for a constant α such that

α (1− t) ≤
2
π

arccos(t) for all t ∈ [−1, 1]
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The best possible (i.e., largest) such constant is α = 0.878; see Figure 3. So we have

csdp-upper-bound ≤
1
α
·
1
4
·

2
π

�

ij

wij arccos Xij =
1
α

csdp-expected

Notice that here we have used the nonnegativity of the weights (i.e., wij ≥ 0). Thus, so far we have the
following inequalities:

• csdp-upper-bound ≤
1
α csdp-expected

• Also clearly csdp-expected ≤ cmax

• And cmax ≤ csdp-upper-bound

Putting it all together, we can sandwich the value of the relaxation as follows:

α · csdp-upper-bound ≤ csdp-expected ≤ cmax ≤ csdp-upper-bound.

2.3 Nesterov’s 2

π
result

A result by Nesterov generalizes the MAXCUT bound described above, but for a larger class of problems.
The original formulation is for the case of binary maximization, and applies to the case when the matrix
A is positive semidefinite. Since the problem is homogeneous, the optimal value is guaranteed to be
nonnegative.

As we have seen, the expected value of the solution after randomized rounding is given by (10). Since
X is positive semidefinite, it follows from the nonnegativity of the Taylor series of arcsin(t)− t and the
Schur product theorem that

arcsin[X] � X,

where the arcsin function is applied componentwise. This inequality can be combined with (10) to give
the bounds:

2
π
· fsdp-upper-bound ≤ fsdp-expected ≤ fmax ≤ fsdp-upper-bound,

where 2/π ≈ 0.636. For more details, see [BTN01, Section 4.3.4]. Among others, the paper [Meg01]
presents several new results, as well as a review of many of the available approximation schemes.

3 Linearly constrained problems

In this section we extend the earlier results, to general quadratic optimization problems under linear
and quadratic constraints. For notational simplicity, we write the constraints in homogeneous form, i.e.,
in terms of the vector x =

�
1 yT

�T .
The general primal form of the SDP optimization problems we are concerned with is

minimize xT Qx

subject to xT Aix ≥ 0
Bx ≥ 0

x =
�
1
y

�
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The corresponding primal and dual SDP relaxations are given by

minimize Q • X

subject to eT
1 Xe1 = 1

Ai • X ≥ 0
BXe1 ≥ 0

BXBT
≥ 0

X � 0

maximize γ

subject to Q � γ e1e
T
1 +

�
i λi Ai + · · ·

+ e1µ
T B + BT µeT

1 + BT ΘB

λi ≥ 0
µ ≥ 0
Θ ≥ 0

Θii = 0

(11)

Here e1 is the n-vector with a 1 on the first component, and all the rest being zero. The dual variables λi

can be interpreted as Lagrange multipliers associated to the quadratic constraints of the primal problem,
while the nonnegative symmetric matrix Θ corresponds to pairwise products of the linear constraints.
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Lecture 4
Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo

In this lecture we will review some basic elements of abstract algebra. We also introduce and begin
studying the main objects of our considerations, multivariate polynomials.

1 Review: groups, rings, fields

We present here standard background material on abstract algebra. Most of the definitions are from
[Lan71, CLO97, DF91, BCR98].

Definition 1 A group consists of a set G and a binary operation “·” defined on G, for which the
following conditions are satisfied:

1. Associative: (a · b) · c = a · (b · c), for all a, b, c ∈ G.

2. Identity: There exist 1 ∈ G such that a · 1 = 1 · a = a, for all a ∈ G.

3. Inverse: Given a ∈ G, there exists b ∈ G such that a · b = b · a = 1.

For example, the integers Z form a group under addition, but not under multiplication. Another example
is the set GL(n, R) of real nonsingular n× n matrices, under matrix multiplication.

If we drop the condition on the existence of an inverse, we obtain a monoid. Note that a monoid
always has at least one element, the identity. As an example, given a set S, then the set of all strings of
elements of S is a monoid, where the monoid operation is string concatenation and the identity is the
empty string λ. Another example is given by N0, with the operation being addition (in this case, the
identity is the zero). Monoids are also known as semigroups with identity.

In a group we only have one binary operation (“multiplication”). We will introduce another operation
(“addition”), and study the structure that results from their interaction.

Definition 2 A commutative ring (with identity) consists of a set k and two binary operations “·” and
“+”, defined on k, for which the following conditions are satisfied:

1. Associative: (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c), for all a, b, c ∈ k.

2. Commutative: a + b = b + a and a · b = b · a, for all a, b ∈ k.

3. Distributive: a · (b + c) = a · b + a · c, for all a, b, c ∈ k.

4. Identities: There exist 0, 1 ∈ k such that a + 0 = a · 1 = a, for all a ∈ k.

5. Additive inverse: Given a ∈ k, there exists b ∈ k such that a + b = 0.

A simple example of a ring are the integers Z under the usual operations. After formally introducing
polynomials, we will see a few more examples of rings.

If we add a requirement for the existence of multiplicative inverses, we obtain fields.

Definition 3 A field consists of a set k and two binary operations “·” and “+”, defined on k, for which
the following conditions are satisfied:

1. Associative: (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c), for all a, b, c ∈ k.

2. Commutative: a + b = b + a and a · b = b · a, for all a, b ∈ k.

3. Distributive: a · (b + c) = a · b + a · c, for all a, b, c ∈ k.

4-1



4. Identities: There exist 0, 1 ∈ k, where 0 �= 1, such that a + 0 = a · 1 = a, for all a ∈ k.

5. Additive inverse: Given a ∈ k, there exists b ∈ k such that a + b = 0.

6. Multiplicative inverse: Given a ∈ k, a �= 0, there exists c ∈ k such that a · c = 1.

Any field is obviously a commutative ring. Some commonly used fields are the rationals Q, the reals
R and the complex numbers C. There are also Galois or finite fields (the set k has a finite number of
elements), such as Zp, the set of integers modulo p, where p is a prime. Another important field is given
by k(x1, . . . , xn), the set of rational functions with coefficients in the field k, with the natural operations.

2 Polynomials and ideals

Consider a given field k, and let x1, . . . , xn be indeterminates. We can then define polynomials.

Definition 4 A polynomial f in x1, . . . , xn with coefficients in a field k is a finite linear combination
of monomials:

f =
�

α

cαxα =
�

α

cαxα1
1 . . . xαn

n , cα ∈ k, (1)

where the sum is over a finite number of n-tuples α = (α1, . . . ,αn), αi ∈ N0. The set of all polynomials
in x1, . . . , xn with coefficients in k is denoted k[x1, . . . , xn].

It follows from the previous definitions that k[x1, . . . , xn], i.e., the set of polynomials in n variables with
coefficients in k, is a commutative ring with identity. We also notice that it is possible (and sometimes,
convenient) to define polynomials where the coefficients belong to a ring with identity, not necessarily
to a field.

Definition 5 A form is a polynomial where all the monomials have the same degree d :=
�

i αi. In this
case, the polynomial is homogeneous of degree d, since it satisfies f(λx1, . . . ,λxn) = λdf(x1, . . . , xn).

A polynomial in n variables of degree d has
�n+d

d

�
coefficients. Since there is a natural bijection

between n-variate forms and (n−1)-variate polynomials via homogenization, it then follows that a form
in n variables of degree d has

�n+d−1
d

�
coefficients.

A commutative ring is called an integral domain if it has no zero divisors, i.e. a �= 0, b �= 0⇒ a ·b �= 0.
Every field is also an integral domain (why?). Two examples of rings that are not integral domains are
the set of matrices Rn×n, and the set of integers modulo n, when n is a composite number (with the
usual operations). If k is an integral domain, then so is k[x1, . . . , xn].

Remark 6 Another important example of a ring (in this case, non-commutative) appears in systems
and control theory, through the ring M(s) of stable proper rational functions. This is the set of matri-
ces (of fixed dimension) whose entries are rational functions of s (i.e., in the field C(s)), are bounded
at infinity, and have all poles in the strict left-half plane. In this algebraic setting (usually called “co-
prime factorization approach”), the question of finding a stabilizing controller is exactly equivalent to the
solvability of a Diophantine equation ax + by = 1.

2.1 Algebraically closed and formally real fields

A very important property of a univariate polynomial p is the existence of a root, i.e., an element x0 for
which p(x0) = 0. Depending on the solvability of these equations, we can characterize a particular nice
class of fields.

Definition 7 A field k is algebraically closed if every nonconstant polynomial in k[x] has a root in k.
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Formally real Not formally real
Algebraically closed ——— C

Not algebraically closed R, Q finite fields Fpk

Table 1: Examples of fields.

If a field is algebraically closed, then it has an infinite number of elements (why?). What can we say about
the most usual fields, C and R? The Fundamental Theorem of Algebra (“every univariate polynomial
has at least one complex root”) shows that C is an algebraically closed field.

However, this is clearly not the case of R, since for instance the polynomial x2 +1 does not have any
real root. The lack of algebraic closure of R is one of the main sources of complications when dealing
with systems of polynomial equations and inequalities. To deal with the case when the base field is not
algebraically closed, the Artin-Schreier theory of formally real fields was introduced.

The starting point is one of the intrinsic properties of R:

n�

i=1

x2
i = 0 =⇒ x1 = . . . = xn = 0. (2)

A field will be called formally real if it satisfies the above condition (clearly, R and Q are formally real,
but C is not). As we can see from the definition, the theory of formally real fields has very strong
connections with sums of squares, a notion that will reappear in several forms later in the course. For
example, an alternative (but equivalent) statement of (2) is to say that a field is formally real if and
only if the element −1 is not a sum of squares.

The relationships between these concepts, as well as a few examples, are presented in Table 2.1. Notice
that if a field is algebraically closed, then it cannot be formally real, since we have that (

√
−1)2 +12 = 0

(and
√
−1 is in the field).

A related important notion is that of an ordered field:

Definition 8 A field k is said to be ordered if a relation > is defined on k, that satisfies

1. If a, b ∈ k, then either a > b or a = b or b > a.

2. If a > b, c ∈ k, c > 0 then ac > bc.

3. If a > b, c ∈ k, then a + c > b + c.

A crucial result relating these two notions is the following:

Lemma 9 A field can be ordered if and only if it is formally real.

For a field to be ordered (or equivalently, formally real), it necessarily must have an infinite number of
elements. This is somewhat unfortunate, since this rules out several modular methods for dealing with
real solutions to polynomial inequalities.

2.2 Ideals

We consider next ideals, which are subrings with an “absorbent” property:

Definition 10 Let R be a commutative ring. A subset I ⊂ R is an ideal if it satisfies:

1. 0 ∈ I.

2. If a, b ∈ I, then a + b ∈ I.
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3. If a ∈ I and b ∈ R, then a · b ∈ I.

A simple example of an ideal is the set of even integers, considered as a subset of the integer ring Z.
Another important example is the set of nilpotent elements of a ring, i.e., those x ∈ R for which there
exists a positive integer k such that xk = 0. Also, notice that if the ideal I contains the multiplicative
identity 1, then I = R.

To introduce another important example of ideals, we need to define the concept of an algebraic
variety as the zero set of a set of polynomial equations:

Definition 11 Let k be a field, and let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Let the set V be

V(f1, . . . , fs) = {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0 ∀1 ≤ i ≤ s}.

We call V(f1, . . . , fs) the affine variety defined by f1, . . . , fs.

Then, the set of polynomials that vanish in a given variety, i.e.,

I(V ) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 ∀(a1, . . . , an) ∈ V },

is an ideal, called the ideal of V .
By Hilbert’s Basis Theorem [CLO97], k[x1, . . . , xn] is a Noetherian ring, i.e., every ideal I ⊂

k[x1, . . . , xn] is finitely generated. In other words, there always exists a finite set f1, . . . , fs ∈ k[x1, . . . , xn]
such that for every f ∈ I, we can find gi ∈ k[x1, . . . , xn] that verify f =

�s
i=1 gifi.

We also define the radical of an ideal:

Definition 12 Let I ⊂ k[x1, . . . , xn] be an ideal. The radical of I, denoted
√

I, is the set

{f | fk
∈ I for some integer k ≥ 1}.

It is clear that I ⊂
√

I, and it can be shown that
√

I is also a polynomial ideal. A very important result,
that we will see later in some detail, is the following:

Theorem 13 (Hilbert’s Nullstellensatz) If I is a polynomial ideal, then I(V(I)) =
√

I.

2.3 Associative algebras

Another important notion, that we will encounter at least twice later in the course, is that of an asso-
ciative algebra.

Definition 14 An associative algebra A over C is a vector space with a C-bilinear operation · : A×A→
A that satisfies

x · (y · z) = (x · y) · z, ∀x, y, z ∈ A.

In general, associative algebras do not need to be commutative (i.e., x · y = y · x). However, that is
an important special case, with many interesting properties. We list below several examples of finite
dimensional associative algebras.

• Full matrix algebra Cn×n, standard product.

• The subalgebra of square matrices with equal row and column sums.

• The diagonal, lower triangular, or circulant matrices.

• The n-dimensional algebra generated by a single n× n matrix.

• The incidence algebra of a partially ordered finite set.

• The group algebra: formal C-linear combination of group elements.

• Polynomial multiplication modulo a zero dimensional ideal.

• The Bose-Mesner algebra of an association scheme.

We will discuss the last three in more detail later in the course.
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3 Questions about polynomials

There are many natural questions that we may want to answer about polynomials, even in the univariate
case. Among them, we mention:

• When does a univariate polynomial have only real roots?

• What conditions must it satisfy for all roots to be real?

• When does a polynomial satisfy p(x) ≥ 0 for all x?

We will answer many of these next week.
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Lecture 5
Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo

In this lecture we study univariate polynomials, particularly questions regarding the existence of real
roots and nonnegativity conditions. For instance:

• When does a univariate polynomial have only real roots?

• What conditions must it satisfy for all roots to be real?

• When is a polynomial nonnegative, i.e., it satisfies p(x) ≥ 0 for all x ∈ R?

1 Univariate polynomials

A univariate polynomial p(x) ∈ R[x] of degree n has the form:

p(x) = pnxn + pn−1x
n−1 + · · · + p1x + p0, (1)

where the coefficients pk are real. We normally assume pn �= 0, and occasionally we will normalize it to
pn = 1, in which case we say that p(x) is monic.

As we have seen, the field C of complex numbers is algebraically closed:

Theorem 1 (Fundamental theorem of algebra). Every nonzero univariate polynomial of degree n has
exactly n complex roots (counted with multiplicity). Furthermore, we have the unique factorization

p(x) = pn

n�

k=1

(x− xk),

where xk ∈ C are the roots of p(x).

If all the coefficients pk are real, if xk is a root, then so its complex conjugate x∗k. In other words, all
complex roots appear in complex conjugate pairs.

2 Counting real roots

How many real roots does a polynomial have? There are many options, ranging from all roots being
real (e.g., (x− 1)(x− 2) . . . (x− n)), to all roots being complex (e.g., x2d + 1). We will give a couple of
different characterizations of the location of the roots of a polynomial, both of them in terms of some
associated symmetric matrices.

2.1 The companion matrix

A very well-known relationship between univariate polynomials and matrices is given through the so-
called companion matrix.

Definition 2. The companion matrix Cp associated with the polynomial p(x) in (1) is the n × n real
matrix

Cp :=





0 0 · · · 0 −p0/pn

1 0 · · · 0 −p1/pn

0 1 · · · 0 −p2/pn
...

...
. . .

...
...

0 0 · · · 1 −pn−1/pn




.
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Lemma 3. The characteristic polynomial of Cp is (up to a constant) equal to p(x). Formally, det(xI −
Cp) = 1

pn
p(x).

From this lemma, it directly follows that the eigenvalues of Cp are exactly equal to the roots xi of p(x),
including multiple roots the appropriate number of times. In other words, if we want to obtain the roots
of a polynomial, we can do this by computing instead the eigenvalues of the associated (nonsymmetric)
companion matrix. In fact, that is exactly the way that MATLAB computes roots of polynomials; see
the source file roots.m.

Left and right eigenvectors The companion matrix Cp is diagonalizable if and only the polynomial
p(x) has no multiple roots. What are the corresponding diagonalizing matrices (equivalently, the right
and left eigenvectors)?

Define the n× n Vandermonde matrix

V =





1 x1 . . . xn−1
1

1 x2 . . . xn−1
2

...
...

. . .
...

1 xn . . . xn−1
n




(2)

where x1, . . . , xn ∈ C. It can be shown that the matrix V is nonsingular if and only if all the xi are
distinct. We have then the identity

V · Cp = diag[x1, . . . , xn] · V, (3)

and thus the left eigenvectors of Cp are the rows of the Vandermonde matrix.
The right eigenvectors are of course given by the columns of V −1, as can be easily seen by left-

and right-multiplying (3) by this inverse. A natural interpretation of this dual basis (i.e., the columns
of V −1) is in terms of the Lagrange interpolating polynomials of the points xi. These are a set of n
univariate polynomials that satisfy the property Lj(xi) = δij , where δ is the Kronecker delta. It is
easy to verify that the columns of V −1 are the coefficients (in the monomial basis) of the corresponding
Lagrange interpolating polynomials.

Example 4. Consider the polynomial p(x) = (x− 1)(x− 2)(x− 5). Its companion matrix is

Cp =




0 0 10
1 0 −17
0 1 8



 ,

and it is diagonalizable since p has simple roots. Ordering the roots as {1, 2, 5}, the corresponding
Vandermonde matrix and its inverse are:

V =




1 1 1
1 2 4
1 5 25



 , V −1 =
1
12




30 −20 2
−21 24 −3
3 −4 1



 .

From the columns of V −1, we can read the coefficients of the Lagrange interpolating polynomials; e.g.,
L1(x) = (30− 21x + 3x2)/12 = (x− 2)(x− 5)/4.

Symmetric functions of roots For any A ∈ Cn×n, we always have TrA =
�n

i=1 λi(A), and λi(Ak) =
λi(A)k. Therefore, it follows that

�n
i=1 xk

i = Tr [Ck
p ]. As a consequence of linearity, we have that if

q(x) =
�m

j=0 qjxj is a univariate polynomial,

n�

i=1

q(xi) =
n�

i=1

m�

j=0

qjx
j
i =

m�

j=0

qjTr[Cj
p] = Tr[

m�

j=0

qjC
j
p] = Tr [q(Cp)], (4)
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where the expression q(Cp) indicates the evaluation of the polynomial q(x) on the companion matrix of
p(x). Note that if p is monic, then the final expression in (4) is a polynomial in the coefficients of p.
This is an identity that we will use several times in the sequel.

Remark 5. Our presentation of the companion matrix has been somewhat unmotivated, other than
noticing that “it just works.” After presenting some additional material on Gröbner bases, we will
revisit this construction, where we will give a natural interpretation of Cp as representing a well-defined
linear operator in the quotient ring R[x]/�p(x)�. This will enable a very appealing extension of many
results about companion matrices to multivariate polynomials, in the case where the underlying system
has only a finite number of solutions (i.e., a “zero dimensional ideal”). For instance, the generalization
of the diagonalizability of the companion matrix Cp when p(x) has only simple roots will be the fact that
the multiplication algebra associated with a zero-dimensional ideal is semisimple if and only if the ideal
is radical.

2.2 Inertia and signature

Definition 6. Consider a symmetric matrix A. The inertia of A, denoted I(A), is the integer triple
(n+, n0, n−), where n+, n0, n− are the number of positive, zero, and negative eigenvalues, respectively.
The signature of A is equal to the number of positive eigenvalues minus the number of negative eigen-
values, i.e., the integer n+ − n−.

Notice that, with the notation above, the rank of A is equal to n+ + n−. A symmetric positive
definite n × n matrix has inertia (n, 0, 0), while a positive semidefinite one has (n − k, k, 0) for some
k ≥ 0. The inertia is an important invariant of a quadratic form, since it holds that I(A) = I(T ∗AT ),
where T is nonsingular. This invariance of the inertia of a matrix under congruence transformations is
known as Sylvester’s law of inertia; see for instance [HJ95].

2.3 The Hermite form

While the companion matrix is quite useful, we will present now a different characterization of the roots
of a polynomial. Among others, an advantage of this formulation is the fact that we will be using
symmetric matrices.

Let q(x) be a fixed auxiliary polynomial. Consider the following n × n symmetric Hankel matrix
Hq(p) with entries defined by

[Hq(p)]jk =
n�

i=1

q(xi)xj+k−2
i . (5)

Like every symmetric matrix, Hq(p) defines an associated quadratic form via

fT Hq(p)f =





f0

f1
...

fn−1





T 



�n
i=1 q(xi)

�n
i=1 q(xi)xi · · ·

�n
i=1 q(xi)xn−1

i�n
i=1 q(xi)xi

�n
i=1 q(xi)x2

i · · ·
�n

i=1 q(xi)xn
i

...
...

. . .
...�n

i=1 q(xi)xn−1
i

�n
i=1 q(xi)xn

i · · ·
�n

i=1 q(xi)x2n−2
i









f0

f1
...

fn−1





=
n�

i=1

q(xi)(f0 + f1xi + · · · + fn−1x
n−1
i )2

= Tr[(qf2)(Cp)].

Although not immediately obvious from the definition (5), the expression above shows that when p(x)
is monic, the entries of Hq(p) are actually polynomials in the coefficients of p(x). Notice that we have
used (4) in the derivation of the last step.
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Recall that a Vandermonde matrix defines a linear transformation mapping the coefficients of a degree
n − 1 polynomial f to its values

�
f(x1), . . . , f(xn)

�
. Since this transformation is invertible, given any

y ∈ Rn there always exists an f of degree n−1 such that f(xi) = yi (i.e., there is always an interpolating
polynomial). From expression (5), we have the factorization

Hq(p) = V T diag[q(x1), . . . , q(xn)]V.

This is almost a congruence transformation, except that there are complex entries in V if some of the
xi are complex. However, this can be easily resolved, to obtain the theorem below.

Theorem 7. The signature of Hq(p) is equal to the number of real roots xj of p for which q(xj) > 0,
minus the number of real roots for which q(xj) < 0.

Proof. For simplicity, we assume all roots are distinct (this is easy to change, at the expense of slightly
more complicated notation). We have then

fT Hq(p)f =
n�

j=1

q(xj)(f0 + f1xj + · · · + fn−1x
n−1
j )2

=
�

xj∈R
q(xj)f(xj)2 +

�

xj ,x∗j∈C\R
q(xj)f(xj)2 + q(x∗j )f(x∗j )

2

=
�

xj∈R
q(xj)f(xj)2 + 2

�

xj ,x∗j∈C\R

�
�f(xj)
�f(xj)

�T �
�q(xj) −�q(xj)
−�q(xj) −�q(xj)

� �
�f(xj)
�f(xj)

�
.

Notice that an expression of the type f(xi) is a linear form in [f0, . . . , fn−1]. Because of the assumption
that all the roots xj are distinct, the linear forms {f(xj)}j=1,...,n are linearly independent (the corre-
sponding Vandermonde matrix is nonsingular), and thus so are {f(xj)}xj∈R ∪ {�f(xj),�f(xj)}xj∈C\R.
Therefore, the expression above gives a congruence transformation of Hq(p), and we can obtain its sig-
nature by adding the signatures of the scalar elements q(xj) and the 2× 2 blocks. The signature of the
2× 2 blocks is always zero (they have zero trace), and thus the result follows.

In particular, notice that if we want to count the number of real roots, we can just use q(x) = 1. The
matrix corresponding to this quadratic form (called the Hermite form) is:

H1(p) = V T V =





s0 s1 · · · sn−1

s1 s2 · · · sn
...

...
. . .

...
sn−1 sn · · · s2n−2




, sk =

n�

j=1

xk
j .

The sk are known as the power sums and can be computed using (4) (although there are much more
efficients ways, such as the Newton identities). When p(x) is monic, the sk are polynomials of degree k
in the coefficients of p(x).

Example 8. Consider the monic cubic polynomial

p(x) = x3 + p2x2 + p1x + p0.

Then, the first five power sums are:

s0 = 3
s1 = −p2

s2 = p2
2 − 2p1

s3 = −p3
2 + 3p1p2 − 3p0

s4 = p4
2 − 4p1p

2
2 + 2p2

1 + 4p0p2.
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Lemma 9. The signature of H1(p) is equal to the number of real roots. The rank of H1(p) is equal to
the number of distinct complex roots of p(x).

Corollary 10. If p(x) has odd degree, there is always at least one real root.

Example 11. Consider p(x) = x3 + 2x2 + 3x + 4. The corresponding Hermite matrix is:

H(p) =




3 −2 −2
−2 −2 −2
−2 −2 18





This matrix has one negative and two positive eigenvalues, all distinct (i.e., its inertia is (2, 0, 1)). Thus,
p(x) has three simple roots, and exactly one of them is real.

Sylvester’s law of inertia guarantees that this result is actually coordinate independent.

3 Nonnegativity

An important property of a polynomial is whether it only takes nonnegative values. As we will see, this
is of interest in a wide variety of applications.

Definition 12. A univariate polynomial p(x) is positive semidefinite or nonnegative if p(x) ≥ 0 for all
real values of x.

Clearly, if p(x) is nonnegative, then its degree must be an even number. The set of nonnegative
polynomials has very interesting properties. Perhaps the most appealing one for our purposes is the
following:

Theorem 13. Consider the set Pn of nonnegative univariate polynomials of degree less than or equal
to n (n is even). Then, identifying a polynomial with its n + 1 coefficients (pn, . . . , p0), the set Pn is a
proper cone (i.e., closed, convex, pointed, solid) in Rn+1.

An equivalent condition for the (nonconstant) univariate polynomial (1) to be strictly positive, is
that p(x0) > 0 for some x0, and it that has no real roots. Thus, we can use Theorem 7 to write explicit
conditions for a polynomial p(x) to be nonnegative in terms of the signature of the associated Hermite
matrix H1(p).

4 Sum of squares

Definition 14. A univariate polynomial p(x) is a sum of squares (SOS) if there exist q1, . . . , qm ∈ R[x]
such that

p(x) =
m�

k=1

q2
k(x).

If a polynomial p(x) is a sum of squares, then it obviously satisfies p(x) ≥ 0 for all x ∈ R. Thus, a
SOS condition is a sufficient condition for global nonnegativity.

Interestingly, in the univariate case, the converse is also true:

Theorem 15. A univariate polynomial is nonnegative if and only if it is a sum of squares.
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Proof. (⇐) Obvious. If p(x) =
�

k q2
k(x) then p(x) ≥ 0.

(⇒) Since p(x) is univariate, we can factorize it as

p(x) = pn

�

j

(x− rj)nj
�

k

(x− ak + ibk)mk(x− ak − ibk)mk ,

where rj and ak ± ibk are the real and complex roots, respectively, of multiplicities nj and mk. Because
p(x) is nonnegative, then pn > 0 and the multiplicies of the real roots are even, i.e., nj = 2sj .

Notice that (x− a + ib)(x− a− ib) = (x− a)2 + b2. Then, we can write

p(x) = pn

�

j

(x− rj)2sj
�

k

�
(x− ak)2 + b2

k

�mk ,

Since products of sums of squares are sums of squares, and all the factors in the expression above are
SOS, it follows that p(x) is SOS.

Furthermore, the two-squares identity (α2 + β2)(γ2 + δ2) = (αγ − βδ)2 + (αδ + βγ)2 allows us to
combine every partial product as a sum of only two squares.

Notice that the proof shows that if p(x) is SOS, then there exists a representation p(x) = q2
1(x)+q2

2(x).
As we will see very soon, we can decide whether a univariate polynomial is a sum of squares (equiv-

alently, if it is nonnegative) by solving a semidefinite optimization problem.

5 Positive semidefinite matrices

Recall from Lecture 2 the (apparent) disparity between the stated conditions for a matrix to be positive
definite versus the semidefinite case. In the former, we could use a test (Sylvester’s criterion) that
required the calculation of only n minors, while for the semidefinite case apparently we needed a much
larger number, 2n − 1.

If the matrix X is positive definite, Sylvester’s criterion requires the positivity of the leading principal
minors, i.e.,

detX1,1 > 0, detX12,12 > 0, . . . , detX > 0.

For positive semidefiniteness, it is not enough to replace strict positivity with the nonstrict inequality;
a simple counterexample is the matrix �

0 0
0 −1

�
,

for which the leading minors vanish, but is not PSD. As mentioned, an alternative approach is given by
the following classical result:

Lemma 16. Let A ∈ Sn be a symmetric matrix. Then A � 0 if and only if all 2n − 1 principal minors
of A are nonnegative.

Although the condition above requires the nonnegativity of 2n − 1 expressions, it is possible to do
the same by checking only n inequalities:

Theorem 17 (e.g. [HJ95, p. 403]). A real n×n symmetric matrix A is positive semidefinite if and only
if all the coefficients ci of its characteristic polynomial p(λ) = det(λI−A) = λn+pn−1λn−1+· · ·+p1λ+p0

alternate in sign, i.e., they satisfy pi(−1)n−i ≥ 0.

We prove this below, since we will use a slightly more general version of this result when discussing
hyperbolic polynomials. Note that in the n = 2 case, Theorem 17 is the familiar result that A ∈ S2 is
positive semidefinite if and only if detA ≥ 0 and TrA ≥ 0.
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Lemma 18. Consider a monic univariate polynomial p(t) = tn +
�n−1

k=0 pktk, that has only real roots.
Then, all roots are nonpositive if and only if all coefficients are nonnegative (i.e., pk ≥ 0, k = 0, . . . , n−1).

Proof. Since all roots of p(t) are real, this can be obtained from a direct application of Descartes’ rules
of signs; see e.g. [BPR03]. For completeness, we present here a direct proof.

If all roots ti are nonpositive (ti ≤ 0), from the factorization

p(t) =
n�

k=1

(t− ti)

it follows directly that all coefficients pk are nonnegative.
For the other direction, from the nonnegativity of the coefficients it follows that p(0) ≥ 0 and p(t)

is nondecreasing. If there exists a ti > 0 such that p(ti) = 0, then the polynomial must vanish in the
interval [0, ti], which is impossible since it is monic and hence nonzero.

Definition 19. A set S ⊂ Rn is basic closed semialgebraic if it can be written as

S = {x ∈ Rn
| fi(x) ≥ 0, hj(x) = 0}

for some finite set of polynomials {fi, hj}.

Theorem 20. Both the primal and dual feasible sets of a semidefinite program are basic closed semial-
gebraic.

Proof. The condition X � 0 is equivalent to n nonstrict polynomial inequalities in the entries of X. This
can be conveniently shown applying Lemma 18 to the characteristic polynomial of −X, i.e.,

p(λ) = det(λI + X) = λn +
n−1�

k=0

pk(X)λk.

where the pk(X) are homogeneous polynomials of degree n − k in the entries of X. For instance, we
have p0(X) = detX, and pn−1(X) = TrX.

Since X is symmetric, all its eigenvalues are real, and thus p(λ) has only real roots. Positive semidef-
initeness of X is equivalent to p(λ) having no roots that are strictly positive. It then follows than the
two following statements are equivalent:

X � 0 ⇔ pk(X) ≥ 0 k = 0, . . . , n− 1.

Remark 21. These inequalities correspond to the elementary symmetric functions ek evaluated at the
eigenvalues of the matrix X.

As we will see in subsequent lectures, the same inequalities will reappear when we consider a class
of optimization problems known as hyperbolic programs.
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Lecture 6
Lecturer: Pablo A. Parrilo Scribe: ???

Last week we learned about explicit conditions to determine the number of real roots of a univariate
polynomial. Today we will expand on these themes, and study two mathematical objects of fundamental
importance: the resultant of two polynomials, and the closely related discriminant.

The resultant will be used to decide whether two univariate polynomials have common roots, while
the discriminant will give information about the existence of multiple roots. Furthermore, we will see the
intimate connections between discriminants and the boundary of the cone of nonnegative polynomials.

Besides the properties described above, a direct consequence of their definitions, there are many
other interesting applications of resultants and discriminant. We describe a few of them below, and we
will encounter them again in later lectures, when studying elimination theory and the construction of
cylindrical algebraic decompositions. For much more information about resultants and discriminants,
particularly their generalizations to the sparse and multipolynomial case, we refer the reader to the very
readable introductory article [Stu98] and the books [CLO97, GKZ94].

1 Resultants

Consider two polynomials p(x) and q(x), of degree n, m, respectively. We want to obtain an easily
checkable criterion to determine whether they have a common root, that is, there exists an x0 ∈ C for
which p(x0) = q(x0) = 0. There are several approaches, seemingly different at first sight, for constructing
such a criterion:

• Sylvester matrix: If p(x0) = q(x0) = 0, then we can write the following (n+m)× (n+m) linear
system:





pn pn−1 . . . p1 p0

pn
. . . . . . . . .

...
p1 p0

p2 p1 p0

qm qm−1 . . . q0

qm
. . . . . .

. . .
q1 q0

q2 q1 q0









xn+m−1
0

xn+m−2
0

...
xn

0

xn−1
0

...

x0

1





=





p(x0)xm−1
0

p(x0)xm−2
0

...
p(x0)x0

p(x0)
q(x0)xn−1

0

q(x0)xn−2
0

...
q(x0)x0

q(x0)





= 0.

This implies that the matrix on the left-hand side, called the Sylvester matrix Sylx(p, q) associated
to p and q, is singular and thus its determinant must vanish. It is not too difficult to show that
the converse is also true; if det Sylx(p, q) = 0, then there exists a vector in the kernel of Sylx(p, q)
of the form shown in the matrix equation above, and thus a common root x0.

• Root products and companion matrices: Let αj , βk be the roots of p(x) and q(x), respectively.
By construction, the expression

n�

j=1

m�

k=1

(αj − βk)

vanishes if and only if there exists a root of p that is equal to a root of q. Although the computation
of this product seems to require explicit access to the roots, this can be avoided. Multiplying by
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a convenient normalization factor, we have:

pm
n qn

m

n�

j=1

m�

k=1

(αj − βk) = pm
n

n�

j=1

q(αj) = pm
n det q(Cp)

= (−1)nmqn
m

m�

k=1

p(βk) = (−1)nmqn
m det p(Cq)

(1)

• Kronecker products: Using a well-known connection to Kronecker products, we can also write
(1) as

pm
n qn

m det(Cp ⊗ Im − In ⊗ Cq).

• Bézout matrix: Given p(x) and q(x) as before, consider the bivariate function

B(s, t) :=
p(s)q(t)− p(t)q(s)

s− t
.

It is easy to see that this is actually a polynomial in the variables s, t, and is invariant under
the interchange s ↔ t. Let d := max(n, m), and Bezx(p, q) be the symmetric d × d matrix that
represents this polynomial in the standard monomial basis, i.e.,

B(s, t) =





1
s
...

sd−1





T

Bezx(p, q)





1
t
...

td−1




.

The Bézout matrix is singular if and only p and q have a common root.
Notice the differences with the Sylvester matrix: while that approach requires a non-symmetric
(n+m)× (n+m) matrix depending linearly on the coefficients, in the Bézout approach the matrix
is smaller and symmetric, but with entries that depend bilinearly on the pi, qi.

If can be shown that all these constructions are equivalent. They define exactly the same polynomial,
called the resultant of p and q, denoted as Resx(p, q):

Resx(p, q) = det Sylx(p, q)
= pm

n det q(Cp)
= (−1)nmqn

m det p(Cq)
= pm

n qn
m det(Cp ⊗ Im − In ⊗ Cq)

=
(−1)(

n
2)

pn−m
n

det Bezx(p, q).

The resultant is a homogeneous multivariate polynomial, with integer coefficients, and of degree n + m
in the n + m + 2 variables pj , qk. It vanishes if and only if the polynomials p and q have a common
root. Notice that the definition is not symmetric in its two arguments, Resx(p, q) = (−1)nmRes(q, p) (of
course, this does not matter in checking whether it is zero).

Remark 1. To compute the resultant of two polynomials p(x) and q(x) in Maple, you can use the
command resultant(p,q,x). In Mathematica, use instead Resultant[p,q,x].
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2 Discriminants

As we have seen, the resultant allows us to write an easily checkable condition for the simultaneous
vanishing of two univariate polynomials. Can we use the resultant to produce a condition for a polynomial
to have a double root? Recall that if a polynomial p(x) has a double root at x0 (which can be real or
complex), then its derivative p�(x) also vanishes at x0. Thus, we can check for the existence of a root of
multiplicity two (or higher) by computing the resultant betweeen a polynomial and its derivative.

Definition 2. The discriminant of a univariate polynomial p(x) is defined as

Disx(p) := (−1)(
n
2) 1

pn
Resx

�
p(x),

dp(x)
dx

�
.

Similar to what we did in the resultant case, the discriminant can also be obtained by writing a
natural condition in terms of the roots αi of p(x):

Disx(p) = p2n−2
n

�

j<k

(αj − αk)2.

If p(x) has degree n, its discriminant is a homogeneous polynomial of degree 2n−2 in its n+1 coefficients
pn, . . . , p0.

Example 3. Consider the quadratic univariate polynomial p(x) = ax2 + bx + c. Its discriminant is:

Disx(p) = −
1
a
Resx(ax2 + bx + c, 2ax + b) = b2

− 4ac.

For the cubic polynomial p(x) = ax3 + bx2 + cx + d we have

Disx(p) = −27a2d2 + 18adcb + b2c2
− 4b3d− 4ac3.

3 Applications

3.1 Polynomial equations

One of the most natural applications of resultants is in the solution of polynomial equations in two
variables. For this, consider a polynomial system

p(x, y) = 0, q(x, y) = 0, (2)

with only a finite number of solutions (which is generically the case). Consider a fixed value of y0, and
the two univariate polynomials p(x, y0), q(x, y0). If y0 corresponds to the y-component of a root, then
these two univariate polynomials clearly have a common root, hence their resultant vanishes.

Therefore, to solve (2), we can compute Resx(p, q), which is a univariate polynomial in y. Solving
this univariate polynomial, we obtain a finite number of points yi. Backsubstituting in p (or q), we
obtain the corresponding values of xi. Naturally, the same construction can be used by computing first
the univariate polynomial in x given by Resy(p, q).

Example 4. Let p(x, y) = 2xy +3y3− 2x3−x− 3x2y2, and q(x, y) = 2x2y2− 4y3−x2 +4y +x2y. The
resultant (with respect to the x variable) is

Resx(p, q) = y(y + 1)3(72y8
− 252y7 + 270y6

− 145y5 + 192y4
− 160y3 + 28y + 4).

One particular root of this polynomial is y� ≈ 1.6727, with the corresponding value of x� ≈ −1.3853.
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3.2 Implicitization of plane rational curves

Consider a plane curve parametrized by rational functions, i.e.,

x(t) =
p1(t)
q1(t)

, y(t) =
p2(t)
q2(t)

.

What is the implicit equation of the curve, i.e., what constraint h(x, y) = 0 must the points (x, y) ∈ R2

that lie on the curve satisfy? The corresponding equation can be easily obtained by computing a resultant
to eliminate the parametrizing variable t, i.e.,

h(x, y) = Rest(q1(t) · x− p1(t), q2(t) · y − p2(t)).

Example 5. Consider the curve described by the parametrization.

x(t) =
t(1 + t2)
1 + t4

, y(t) =
t(1− t2)
1 + t4

. (3)

Its implicit equation can be computed by the resultant:

Rest((1 + t4)x− t(1 + t2), (1 + t4)y − t(1− t2)) = 4y4 + 8y2x2 + 4x4 + 4y2
− 4x2.

Remark 6. The inverse problem (given an implicit polynomial equation for a curve, find a rational
parametrization) is not always solvable. In fact, there is a full characterization of when this is possible,
in terms of a topological invariant of the curve called the genus (the rationally parametrizable curves are
exactly those of genus zero).

3.3 Eigenvalue distribution of random matrices

This section is based on the results in [RE08]. The eigenvalues of a random symmetric matrix belonging
to a given ensemble can be characterized in terms of the asymptotic eigenvalue distribution F (x) (e.g., the
semi-circle law, Marčenko-Pastur, etc). Often, rather than the actual distribution, it is more convenient
to use instead some other equivalent object, such as its moment generating function, Stieltjes transform,
R-transform, etc. For many ensembles of interest, these auxiliary transforms F̃ (z) are algebraic functions,
in the sense that they satisfy an equation of the form ψ(F̃ (z), z) = 0, where ψ(s, t) is a bivariate
polynomial, and furthermore they can all be derived from each other. As a consequence, to each given
random ensemble of this class we can associate a bivariate polynomial that uniquely describes the limiting
eigenvalue distribution.

A natural question arises: given two matrices M1, M2, belonging to random ensembles with associated
polynomials ψ1(s, t) and ψ2(s, t), what can be said about the eigenvalue distribution of the sum M1+M2

(or the product M1M2)? Voiculescu has shown that under a certain natural independence condition
(“freeness”), the R-transform of the sum is the sum of the individual transforms (this is somewhat akin
to the well-known fact that the pdf of the sum of independent random variables is the convolution of the
individual pdfs, or the additivity of the moment generating function). Under the freeness condition, the
bivariate polynomial associated with the ensemble M3 = M1 +M2 can be computed from the individual
polynomials ψ1, ψ2 via:

ψ3(s, t) = Resu(ψ1(s− u, t), ψ2(u, t)).

Similar expressions are also possible for the product M1M2, also in terms of resultants. This allows the
computation of the spectra of arbitrary random ensembles, that can be built from individual “building
blocks” with known eigenvalue distributions.

We cannot provide a full description here of this area, and the very interesting connections with “free
probability.” We refer the reader to [RE08] for a more complete account.
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Figure 1: The shaded region corresponds to the polynomial x4 + 2ax2 + b being nonnegative. The
numbers indicate how many real roots p(x) has.

4 The set of nonnegative polynomials

One of the main reasons why nonnegativity conditions about polynomials are difficult is because these
sets can have a quite complicated structure, even though they are always convex.

Recall from last lecture that we have defined Pn ⊂ Rn+1 as the set of nonnegative polynomials of
degree n. It is easy to see that if p(x) lies on the boundary of the set Pn, then it must have a real
root, of multiplicity at least two. Indeed, if there is no real root, then p(x) is in the strict interior of P
(small enough perturbations will not create a root), and if it has a simple real root it clearly cannot be
nonnegative.

Thus, on the boundary of Pn, the discriminant of p(x) must necessarily vanish. However, it turns
out that Disx(p) does not vanish only on the boundary, but it also vanishes at points inside the set.
Why is this?

Example 7. Consider the univariate polynomial p(x) = x4 + 2ax2 + b. For what values of a, b does it
hold that p(x) ≥ 0∀x ∈ R? Since the leading term x4 has even degree and is strictly positive, p(x) is
strictly positive if and only if it has no real roots. The discriminant of p(x) is equal to 256 b (a2 − b)2.
The set of (a, b) for which p(x) is nonnegative is shown in Figure 1.

Here is a slightly different example, showing the same phenomenon.

Example 8. As another example, consider now p(x) = x4 +4ax3 +6bx2 +4ax+1. Its discriminant, in
factored form, is equal to 256(1 + 3b + 4a)(1 + 3b− 4a)(1 + 2a2 − 3b)2. The corresponding nonnegativity
region and number of real roots are presented in Figure 2.

As we can see, this creates some difficulties. For instance, even though we have a perfectly valid
analytic expression for the boundary of the set, we cannot get a good sense of “how far we are” from
the boundary by looking at the absolute value of the discriminant.

From the mathematical viewpoint, there are a couple of (unrelated?) reasons with these sets cannot
be directly handled by “standard” optimization, at least if we want to keep the polynomial structure.
One has to do with its algebraic structure, and the other one with convexity, and in particular its facial
structure.

Lemma 9 (e.g., [And03]). The set described in Figure 1 is not basic closed semialgebraic.

Remark 10. Notice that the convex sets described in Figures 1 and 2 both have an uncommon feature.
They both have proper faces that are not exposed, i.e., they cannot be isolated by a supporting hyper-
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Figure 2: Region of nonnegativity of the polynomial x4 + 4ax3 + 6bx2 + 4ax + 1, and number of real
roots.
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Figure 3: A three-dimensional convex set, described by one quadratic and one linear inequality, whose
projection on the (a, b) plane is equal to the set in Figure 1.

plane1. Indeed, in Figure 1 the origin (0, 0) is a non-exposed zero-dimensional face, while in Figure 2
the point (1, 1) has the same property. A non-exposed face is a known obstruction for a convex set to be
the feasible set of a semidefinite program, see [RG95].

Even though these sets have these complicating features, it turns out that we can often provide some
“good” representations. These are normally given as a projection from higher dimensional spaces, where
the object “upstairs” is much more smooth and well-behaved. For instance, as a graphical illustration,
in Figure 3 we can see the three-dimensional convex set {(a, b, t) ∈ R3 : b ≥ (a − t)2, t ≥ 0}, whose
projection on the plane (a, b) is exactly the set discussed in Example 7 and Figure 1.

The presence of “extraneous” components of the discriminant inside the feasible set is an important
roadblock for the availability of “easily computable” barrier functions. Indeed, every polynomial that
vanishes on the boundary of the set Pn must necessarily have the discriminant as a factor. This is an
striking difference with the case of the case of the nonnegative orthant or the PSD cone, where the
standard barriers are given (up to a logarithm) by products of the linear constraints or a determinant
(which are polynomials). The way out of this problem is to produce non-polynomial barrier functions,
either by partial minimization from a higher-dimensional barrier (i.e., projection) or other constructions
such as the “universal” barrier function introduced by Nesterov and Nemirovski [NN94].

1
A face of a convex set S is a convex subset F ⊆ S, with the property that x, y ∈ S,

1
2 (x + y) ∈ F ⇒ x, y ∈ F . A face

F is exposed if it can be written as F = S ∩H, where H is a supporting hyperplane of S.
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Figure 4: The discriminant of the polynomial x4 + 4ax3 + 6bx2 + 4cx + 1. The convex set inside the
“bowl” corresponds to the region of nonnegativity. There is an additional one-dimensional component
inside the set.

In this direction, there have been several research efforts that aim at directly characterizing barrier
functions for the set of nonnegative polynomials (or related modifications). Among them, we mention
the work of Kao and Megretski [KM02] and Faybusovich [Fay02], both of which produce barriers that
rely on the computation of one or more integral expressions. Given the fact that these integrals must
be computed numerically, there is no clear consensus yet on how useful this approach is in practical
optimization problems.
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Lecture 7
Lecturer: Pablo A. Parrilo Scribe: ???

In this lecture we introduce a special class of multivariate polynomials, called hyperbolic. These
polynomials were originally studied in the context of partial differential equations. As we will see, they
have many surprising properties, and are intimately linked with convex optimization problems that have
an algebraic structure. A few good references about the use of hyperbolic polynomials in optimization
are [Gül97, BGLS01, Ren06].

1 Hyperbolic polynomials

Consider a homogeneous multivariate polynomial p ∈ R[x1, . . . , xn] of degree d. Here homogeneous of
degree d means that the sum of degrees of each monomial is constant and equal to d, i.e.,

p(x) =
�

|α|=d

cαxα,

where α = (α1, . . . ,αn), αi ∈ N ∪ {0}, and |α| = α1 + · · · + αn. A homogeneous polynomial satisfies
p(tw) = tdp(w) for all real t and vectors w ∈ Rn. We denote the set of such polynomials by Hn(d).
By identifying a polynomial with its vector of coefficients, we can consider Hn(d) as a vector space of
dimension

�n+d−1
d

�
.

Definition 1. Let e be a fixed vector in Rn. A polynomial p ∈ Hn(d) is hyperbolic with respect to e if
p(e) > 0 and, for all vectors x ∈ Rn, the univariate polynomial t �→ p(x− te) has only real roots.

A natural geometric interpretation is the following: consider the hypersurface in Rn given by p(x) = 0.
Then, hyperbolicity is equivalent to the condition that every line in Rn parallel to the direction e
intersects this hypersurface at exactly d points (counting multiplicities), where d is the degree of the
polynomial.

Example 2. The polynomial x1x2 · · ·xn is hyperbolic with respect to the vector e = (1, 1, . . . , 1), since
the univariate polynomial t �→ (x1 − t)(x2 − t) · · · (xn − t) has roots x1, x2, . . . , xn.

Hyperbolic polynomials enjoy a very surprising property, that connects in an unexpected way algebra
with convex analysis. Given a hyperbolic polynomial p(x), consider the set defined as:

Λ++ := {x ∈ Rn : p(x− te) = 0 ⇒ t > 0}.

Geometrically, this condition says that if we start at the point x ∈ Rn, and slide along a line in the
direction parallel to e, then we will never encounter the hypersurface p(x) = 0, while if we move in the
opposite direction, we will cross it exactly d times. Figure 1 illustrates a particular hyperbolicity cone.

It is immediate from homogeneity and the definition above that λ > 0, x ∈ Λ++ ⇒ λx ∈ Λ++.
Thus, we call Λ++ the hyperbolicity cone associated to p, and denote its closure by Λ+. As we will see
shortly, it turns out that these cones are actually convex cones. We prove this following the arguments
in Renegar [Ren06]; the original results are due to G̊arding [G̊ar59].

Lemma 3. The hyperbolicity cone Λ++ is the connected component of p(x) > 0 that includes e.

Example 4. The hyperbolicity cone Λ++ associated with the polynomial x1x2 · · ·xn discussed in Exam-
ple 2 is the open positive orthant {x ∈ Rn |xi > 0}.

The first step is to show that we can replace e with any vector in the hyperbolicity cone.

Lemma 5. If p(x) is hyperbolic with respect to e, then it is also hyperbolic with respect to every direction
v ∈ Λ++. Furthermore, the hyperbolicity cones are the same.
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Figure 1: Hyperbolicity cone corresponding to the polynomial p(x, y, z) = 4xyz + xz2 + yz2 + 2z3 −

x3 − 3zx2 − y3 − 3zy2. This polynomial is hyperbolic with respect to (0, 0, 1).

Proof. By Lemma 3 we have p(v) > 0. We need to show that for every x ∈ Rn, the polynomial
β �→ p(βv + x) has only real roots if v ∈ Λ++.

Let α > 0 be fixed, and consider the polynomial β �→ p(αie+βv+γx), where i is the imaginary unit.
We claim that if γ ≥ 0, this polynomial has only roots in the lower half-plane. Let’s look at the γ = 0
case first. It is clear that β �→ p(αie + βv) cannot have a root at β = 0, since p(αie) = (αi)dp(e) �= 0. If
β �= 0, we can write

p(αie + βv) = 0 ⇔ p(αβ−1ie + v) = 0 ⇒ αβ−1i < 0 ⇒ β ∈ iR−,

and thus the roots of this polynomial are on the strict negative imaginary axis (we have used v ∈ Λ++ in
the second implication). If by increasing γ there is ever a root in the upper half-plane, then there must
exist a γ� for which β �→ p(αie+βv+γ�x) has a real root β�, and thus p(αie+β�v+γ�x) = 0. However,
this contradicts hyperbolicity, since β�v+γ�x ∈ Rn. Thus, for all γ ≥ 0, the roots of β �→ p(αie+βv+γx)
are in the lower half-plane.

The conclusion above was true for any α > 0. Letting α→ 0, by continuity of the roots we have that
the polynomial β �→ p(βv +γx) must also have its roots in the lower closed half-plane. However, since it
is a polynomial with real coefficients (and therefore its roots always appear in complex-conjugate pairs),
then all the roots must actually be real. Taking now γ = 1, we have that β �→ p(βv + x) has real roots
for all x, or equivalently, p is hyperbolic in the direction v.

The following result shows that this set is actually convex:

Theorem 6 ([G̊ar59]). The hyperbolicity cone Λ++ is convex.

Proof. We want to show that u, v ∈ Λ++, β, γ > 0 implies that βu + γv ∈ Λ++. The previous result
implies that it is enough to show hyperbolicity of p with respect to v (instead of e), i.e., to analyze the
polynomial t �→ p(x − tv). Notice that the roots of t �→ p(βu + γv − tv) are just a nonnegative affine
scaling of the roots of t �→ p(u− tv), since

p(u− t�v) = 0 ⇔ p(βu + γv − (βt� + γ)v) = 0,
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and u ∈ Λ++ this implies that t� > 0, hence βt� + γ > 0. As a consequence, βu + γv ∈ Λ++.

Hyperbolic polynomials are of interest in convex optimization, because they unify in a quite appealing
way many facts about the most important tractable classes: linear, second order, and semidefinite
programming.

Example 7 (SOCP). Let p(x) = x2
n+1−

�n
k=1 x2

k. This is a homogeneous quadratic polynomial, hyper-
bolic in the direction e = (0, . . . , 0, 1), since

p(x− te) = (xn+1 − t)2 −
n�

k=1

x2
k = t2 − 2txn+1 +

�
x2

n+1 −

n�

k=1

x2
k

�
,

and the discriminant of this quadratic equation is equal to

4x2
n+1 − 4

�
x2

n+1 −

n�

k=1

x2
k

�
= 4

n�

k=1

x2
k,

which is always nonnegative, so the polynomial t �→ p(x − te) has only real roots. The corresponding
hyperbolicity cone is the Lorentz or second order cone given by

Λ+ =

�
x ∈ Rn+1

| xn+1 ≥ 0,
n�

k=1

x2
k ≤ x2

n+1

�
.

Example 8 (SDP). Consider the homogeneous polynomial

p(x) = det(x1A1 + · · · + xnAn),

where Ai ∈ Sd are given symmetric matrices, with A1 � 0. The polynomial p(x) is homogeneous of
degree d. Letting e = (1, 0, . . . , 0), we have

p(x− te) = det

�
n�

k=1

xkAk − tA1

�
= detA1 · det

�
n�

k=1

xkA
− 1

2
1 AkA

− 1
2

1 − tI

�
,

and as a consequence the roots of p(x− te) are always real since they are the eigenvalues of a symmetric
matrix. Thus, p(x) is hyperbolic with respect to e. The corresponding hyperbolicity cone is

Λ++ = {x ∈ Rn |x1A1 + · · · + xnAn � 0}.

Thus, by Lemma 5, p(x) is hyperbolic with respect to every x ∈ Λ++.

Based on the results discussed earlier regarding the number of real roots of a univariate polynomial,
we have the following lemma.

Lemma 9. The polynomial p(x) is hyperbolic with respect to e if and only if the Hermite matrix H1(p) ∈
Sn[x] is positive semidefinite for all x ∈ Rn.

As we will see later in the course, this observation will allow us to give an exact characterization in
terms of semidefinite programming of the hyperbolicity of trivariate polynomials [Par].

Lemma 10. The hyperbolicity cone Λ+ is basic closed semialgebraic, i.e., it can be described by unquan-
tified polynomial inequalities.

The two following results are of importance in optimization and the formulation of interior-point
methods.
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Theorem 11 ([Ren06]). A hyperbolic cone Λ+ is facially exposed.

Theorem 12 ([Gül97]). The function − log p(x) is a logarithmically homogeneous self-concordant bar-
rier1 for the hyperbolicity cone Λ++, with barrier parameter equal to d.

One of the main open issues regarding hyperbolic cones is about their generality. As Example 8 shows,
the cone associated with a semidefinite program is a hyperbolic cone. An open question (known as the
generalized Lax conjecture) is whether the converse holds, more specifically, whether every hyperbolic
cone is a “slice” of the semidefinite cone, i.e., it can be represented as the intersection of an affine
subspace and Sn

+. As we will see in the next lecture, a special case of the conjecture has been settled
recently.

2 SDP representability

Recall that in the previous lecture, we encountered a class of convex sets in R2 that lacked certain
desirable properties (namely, being basic semialgebraic, and facially exposed). As we will see, hyperbolic
polynomials will play a fundamental role in the characterization of the properties a set in R2 must satisfy
for it to be the feasible set of a semidefinite program.
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1
A function f : R→ R is self-concordant if it satisfies f

��
(x) ≥ | 12f

���
(x)|

2
3 . A function f : Rn → R is self-concordant if

the univariate function obtained when restricting to any line is self-concordant. Self-concordance implies strict convexity,

and is a crucial property in the analysis of the polynomial-time global convergence of Newton’s method; see [NN94] or

[BV04, Section 9.6] for more details.
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Lecture 8
Lecturer: Pablo A. Parrilo Scribe: ???

1 SDP representability

A few lectures ago, when discussing the set of nonnegative polynomials, we encountered convex sets in
R2 that lacked certain desirable properties (namely, being basic semialgebraic, and facially exposed). As
we will see, hyperbolic polynomials will play a fundamental role in the characterization of the properties
a set in R2 must satisfy for it to be the feasible set of a semidefinite program.

2 Convex sets in R2

In this lecture we will study conditions that a set S ⊂ R2 must satisfy for it to be semidefinite repre-
sentable, i.e., to admit a characterization of the type

{(x, y) ∈ R2
| I + xB + yC � 0}, (1)

where B,C ∈ Sd. Notice that we have assumed (without loss of generality) that 0 ∈ int S, and normalized
the first matrix in the matrix pencil to be an identity matrix (this can always be achieved by left- and
right-multiplying by an appropriate factor).

Remark 1. We should not confuse the notion of semidefinite representability described above, with the
much more general lifted SDP representability, that allows the representation of the original set as a
projection of a higher-dimensional SDP set. In other words, here we are not allowed to use additional
variables.

Clearly, from (1), we have the following necessary conditions for SDP representability:

• Closed: Every set of the form (1) is closed, in the standard topology.

• Convex: Every set of the form (1) is necessarily convex, since it is (the projection of) the inter-
section of an affine subspace and the convex set of PSD matrices. Of course, this is also easy to
prove directly.

• Basic semialgebraic: As we have discussed, the boundary of the set (1) is defined by d unquan-
tified polynomial inequalities of degree at most equal to d. In fact, the interior of this set exactly
corresponds to the connected component of det(I + xB + yC) > 0 that contains the origin.

There is a less obvious additional condition, which we have also seen already:

• Exposed faces: Every convex set of the form (1) has proper faces that are exposed. In other
words, every face F must have a representation as F = S∩H, where H is a supporting hyperplane
of the convex set S.

A natural question, then, is the following: are the conditions listed above sufficient for SDP repre-
sentability? If a set S ⊂ R2 satisfies these four conditions, do there always exist matrices B, C, for which
the set (1) is exactly equal to S? To ask a concrete question: does the set in Figure 1 admit an SDP
representation? Before settling this issue, let us discuss first an apparently different question, involving
hyperbolic polynomials.
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Figure 1: Convex set defined by x4 + y4 ≤ 1.

3 Hyperbolicity and the Lax conjecture

Recall from the previous lecture that a hyperbolic polynomial is a homogeneous polynomial p(x) of
degree d, with the property that when restricted to lines parallel to a particular direction e, the resulting
univariate polynomial has all its d roots real.

Furthermore, we have also seen that every polynomial of the form

p(x) = det(x1A1 + · · · + xnAn), (2)

where Ai ∈ Sd and A1 � 0, is hyperbolic with respect to the (1, 0, . . . , 0) direction.
A 1958 conjecture by Peter Lax [Lax58], asks whether the converse is true in the case n = 3 (i.e.,

trivariate polynomials). In other words, is it true that for every hyperbolic polynomial p(x) in three
variables of degree d, there exist three symmetric matrices {A1, A2, A3} ⊂ Sd for which (2) holds?

As a first step towards answering this question, let us verify that this at least makes sense in terms
of dimension counting. As we have seen, the dimension of the set of hyperbolic polynomials in three
variables (n = 3) and degree d is equal to

�n+d−1
d

�
=

�d+2
2

�
. On the other hand, for a polynomial of

the form (2), by an appropriate similarity transform we can always assume without loss of generality
A1 = a0Id, and A2 = diag(a1, . . . , ad). The total number of parameters is then 1 + d +

�d+1
2

�
, which is

exactly equal to
�d+2

2

�
. Of course, this by itself does not prove the result, but it shows that it is certainly

possible.

4 Relating SDP-representable sets and hyperbolic polynomials

As we will see shortly, these two apparently different problems are in fact one and the same. Before
showing this, let us consider one additional necessary condition for a set in R2 to be SDP-representable.
For later reference, we first define the following notion:

Definition 2. A polynomial p ∈ R[x] is a real zero polynomial if for every x ∈ Rn, p(tx) = 0 implies
that t is real.

Recall that the boundary of a set described by (1) is determined by the zero set of the polynomial
det(I + xB + yC). Consider now any line passing through the origin, i.e., of the form (x, y) = (βt, γt).
We have then

det[I + (βB + γC)t] = 0,

and this univariate polynomial in t has exactly d real roots (namely, the negative inverse of the eigenvalues
of βB + γC). In terms of the notation just introduced, the polynomial defined by det(I + xB + yC) is
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a real zero polynomial. Equivalently, for every set of the form (1), is it always the case that every line
through the origin intersects (the Zariski closure1 of) the boundary of the set exactly d times.

In the preceding, our starting point was directly a determinantal representation as in (1). It can be
shown (see [HV07]) that if we start directly from a given set that admits an SDP representation, we can
precisely characterize a unique minimal polynomial that defines the boundary of the set.

Hence, this gives us an additional necessary condition ([HV07]) for SDP representability:

• Rigid convexity: Consider a set in R2, with the origin in the interior. Every line that passes
through the origin must intersect the polynomial defining the boundary exactly d times (counting
multiplicities, and points at infinity), where d is the degree of the boundary polynomial.

This additional requirement is quite strong, and immediately allows us to discard sets for which the
previous conditions were satisfied.

Example 3. Consider the set described by x4 + y4 ≤ 1; see Figure 1. It clearly satisfies the first four
necessary conditions. However, it we consider any line through the origin, it will intersect the defining
polynomial only two times, instead of the four required by the rigid convexity condition. Thus, this set
is not rigidly convex, and hence does not admit a (non-lifted) semidefinite representation.

5 Characterization

It should be apparent that the rigid convexity condition looks very similar to the hyperbolicity property
of a polynomial. In fact, they are exactly the same condition, provided we redefine things accordingly
[LPR05]. As we will see, this equivalence will make explicit the connection between the Helton &
Vinnikov characterization of SDP-representable sets and the Lax conjecture described earlier.

Theorem 4 ([LPR05]). If p ∈ R[x, y, z] is a polynomial of degree d, hyperbolic with respect to e = (0, 0, 1)
and that satisfies p(e) = 1, then the polynomial in R[x, y] defined by q(x, y) = p(x, y, 1) is a real zero
polynomial of degree no more than d, and satisfying q(0, 0) = 1.

Conversely, if q ∈ R[x, y] is a real zero polynomial of degree d satisfying q(0, 0) = 1, then the
polynomial defined by

p(x, y, z) = zdq
�x

z
,
y

z

�

is a hyperbolic polynomial of degree d with respect to e = (0, 0, 1), and p(e) = 1.

In their paper [HV07], Helton and Vinnikov proved that the rigid convexity condition fully charac-
terizes the plane sets that are semidefinite representable.

Theorem 5 ([HV07]). If p(x, y) is a real zero polynomial of degree d with p(0) > 0, then the closure of
the connected component of p(x) > 0 containing the origin admits a representation as in (1).

For hyperbolic cones, we have shown earlier that the specific hyperbolicity direction e does not matter
too much (as long as it belong to the hyperbolicity cone). Similarly, it can be shown that when checking
the real zero condition we can choose any point in the interior of the set, not necessarily the origin.

Combining these two results, the truth of the Lax conjecture follows:

Theorem 6. Every hyperbolic polynomial in three variables admits a determinantal representation of
the type (2). If coordinates are chosen so that e = (1, 0, 0), then we can choose A1 = I.

1
The Zariski topology on Cn

can be defined in terms of its closed sets, which are the algebraic varieties, i.e., the

vanishing set of a finite set of polynomial equations. The Zariski topology is a very weak topology, and is quite different

from the usual topology in Cn
. For instance, the Zariski closure of the open interval (0, 1) is equal to C. The Zariski

topology is not Hausdorff, i.e., distinct points do not always have disjoint neighborhoods.

8-3



-6 -5 -4 -3 -2 -1 1 2
x

-3

-2

-1

1

2

3
y

-6 -5 -4 -3 -2 -1 1 2
x

-3

-2

-1

1

2

3
y

Figure 2: Convex set defined by {3 + x− x3 − 3x2 − 2y2 ≥ 0, x ≥ −1}. A semidefinite representation
is given in (3).

An interesting issue concerns the possibility of a constructive approach. In other words, given a
hyperbolic polynomial in three variables, how to effectively obtain matrices Ai that give a determinantal
representation? While “explicit” formulae for these matrices are given in [HV07] in terms of objects that
are quite complicated to compute (namely, theta functions of Jacobian varieties), it seems likely that a
more elementary formulation exists.

5.1 Example

As an illustration, consider the convex set shown in Figure 3, which corresponds to the “oval” of the
elliptic curve given by 3 + x− x3 − 3x2 − 2y2 = 0. This set satisfies the real zero condition, since every
line that passes through a point in the interior of the set intersects the polynomial defining the boundary
at exactly three points (if the lines are vertical, then the corresponding intersections are at infinity).

Homogenizing this polynomial, we obtain p(x, y, z) = 3z3 +xz2−x3−3x2z−2y2z; the corresponding
zero set is given in Figure 3. As we can see (and proved earlier), the section corresponding to the plane
z = 1 is exactly the zero set of the original polynomial. Furthermore, lines parallel to the hyperbolicity
direction e are projectively mapped into lines in this plane that go through the origin. Hence, the number
of intersections (and thus, real roots) is preserved.

The theorem presented above promises the existence of a semidefinite representation. In this case,
one such representation is: 


x + 1 0 y

0 2 −x− 1
y −x− 1 2



 � 0, (3)

with the corresponding determinantal representation of the hyperbolic polynomial being:

p(x, y, z) = det




x + z 0 y

0 2z −x− z
y −x− z 2z



 . (4)
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Figure 3: The polynomial 3z3 + xz2 − x3 − 3x2z − 2y2z = 0 and corresponding hyperbolicity cone.
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Lecture 9
Lecturer: Pablo A. Parrilo Scribe: ???

In this lecture, we study first a relatively simple type of polynomial equations, namely binomial
equations. As we will see, in this case there exists a quite efficient solution method. We define next an
important geometric and combinatorial object associated with every multivariate polynomial, called the
Newton polytope. Finally, we put together these two notions in the formulation of a family of bounds
on the number of solutions of systems of polynomial equations. Our presentation of the material here is
inspired by [Stu02, Chapter 3] and [CLO98].

1 Binomial equations

We introduce in this section a particular kind of polynomial equations, that have nice computational
properties. A binomial system of polynomial equations is one where each equation has only two terms.
We also assume that the system has only a finite number of complex solutions, i.e., the solution set is a
finite set of points in Cn. We are interested in determining the exact number of solutions, and in efficient
computational procedures for solving the system.

Let’s start with an example. Consider the binomial system given by

8x2y3
− 1 = 0

2x3y2
− yx = 0.

(1)

If we assume that the solutions satisfy x �= 0, y �= 0, then we can put these equations in the more
symmetric form

8x2y3 = 1

2x2y = 1.
(2)

Now, by dividing the first equation by the second one, we obtain 4y2 = 1, which has two solutions (y = 1
2

and y = −
1
2 ). Substituting into the resulting equations for every value of y we have two corresponding

values of x, so the system has a big total of four complex solutions.
Let’s try to understand in a big more detail what manipulations we where performing here. For this,

let’s define the integer matrix

B =
�
2 3
2 1

�

corresponding to the exponents in (2). Notice that when we divided the two equations, that is equivalent
to an elementary row operation in the matrix B, namely subtracting the second row of B from the first
one. Thus, the operations we have done can be understood as the matrix multiplication UB = C, where

U =
�
0 1
1 −1

�
, C =

�
2 1
0 2

�
.

The fact that the matrix C is lower triangular, is what allows us to start solving the system for y, and
then backsolving for the other variable.

It is not too difficult to understand from this example how to generalize this. Let C∗ = C \ {0},
and consider a system of binomial equations in n variables, where we are interested in computing (or
bounding the number of) solutions in (C∗)n. We can always put the system in the normalized form in
(2). Notice that, in general, the entries of the integer B could be either positive or negative (i.e., we
write polynomials in xi and x−1

i , which is fine since xi �= 0).
Then, a well-known result in integer linear algebra (the Hermite normal form of an integer matrix)

guarantees the existence of a unimodular matrix U ∈ SLn(Z) (an integer matrix, with determinant
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Figure 1: Newton polytope of the polynomial p(x, y) = 5− xy − x2y2 + 3y2 + x4.

equal to one), such that C = UB is a lower triangular matrix. We can then use this expression to obtain
values for the last variable, and backsolve to obtain all solutions.

How can we determine the number of solutions from this factorization? When backsubstituting
using C, at each step we have to solve an equation of the type xcii

i = di, and thus the current number
of possible solutions is multiplied by |cii|. Therefore, the total number of solutions in (C∗)n will then be
equal to |det(C)| = |det(U) det(B)| = |det(B)|.

Remark 1. To compute the Hermite normal form of an integer matrix in Maple, you can use the
command ihermite. In Mathematica, use instead HermiteNormalForm.

2 Newton polytopes

Many of the polynomial systems that appear in practice are far from being “generic,” but rather present a
number of structural features that, when properly exploited, allow for much more efficient computational
techniques. This is quite similar to the situation in numerical linear algebra, where there is a big difference
in performance between algorithms that take into account the sparsity structure of a matrix and those
that do not. For matrices, the standard notion of sparsity is relatively straightforward, and relates
mostly to the number of nonzero coefficients. In computational algebra, however, there exists a much
more refined notion of sparsity that refers not only to the number of zero coefficients of a polynomial,
but also to the underlying combinatorial structure.

This notion of sparsity for multivariate polynomials is usually presented in terms of the Newton
polytope of a polynomial, defined below.

Definition 2. Consider a multivariate polynomial p(x1, . . . , xn) =
�

α cαxα. The Newton polytope of
p, denoted by New(f), is defined as the convex hull of the set of exponents α, considered as vectors in
Rn.

Thus, the Newton polytope of a polynomial always has integer extreme points, given by a subset of
the exponents of the polynomial.

Example 3. Consider the polynomial p(x, y) = 5− xy− x2y2 + 3y2 + x4. Its Newton polytope New(f),
displayed in Figure 1, is the convex hull of the points (0, 0), (1, 1), (2, 2), (0, 2), (4, 0).

Example 4. Consider the polynomial p(x, y) = 1 − x2 + xy + 4y4. Its Newton polytope New(p) is the
triangle in R2 with vertices {(0, 0), (2, 0), (0, 4)}.

Newton polytopes are an essential tool when considering polynomial arithmetic because of the fol-
lowing fundamental identity:

New(g · h) = New(g) + New(h),

where + denotes the Minkowski addition of polytopes.
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Example 5. Let p(a, b, c, d) = (a4 + 1)(b4 + 1)(c4 + 1)(d4 + 1) + 2a + 3b + 4c + 5d. Its Newton polytope
is the hypercube in R4 of side length equal to 4, and with opposing vertices at (0, 0, 0, 0) and (4, 4, 4, 4).

It is a general theme in computational algebra that the complexity of many problems involving
polynomials is directly related to some measure of the size of the corresponding Newton polytopes.
We discuss an example below, in terms of the number of solutions of polynomial equations. We will
encounter Newton polytopes again later in the course, when discussing the semidefinite characterization
of polynomials that are sums of squares.

3 The Bézout and BKK bounds

Consider a system of two polynomial equations, p(x, y) = 0, q(x, y) = 0. As we have seen in previous
lectures, we can solve this by computing the resultant of the polynomials p and q with respect to either
variable, and then factorizing the corresponding univariate polynomial. If the degree of the polynomials
is d1 and d2, respectively, then the degree of the resultant is bounded by d1 · d2, and thus the number of
zeros of the system is at most this number.

However, when the polynomials p and q are sparse (in the sense defined earlier) then the number of
solutions can be much smaller. For instance, the system

a + bx + cy + dy2 = 0
ex + fy + gxy = 0

(3)

has, for a generic choice of the coefficients {a, . . . , g}, exactly three complex roots, while the bound based
on the individuals degrees (usually called the Bézout bound) will give a total of 2×2 = 4. As we will see,
much sharper bounds can be obtained by considering the Newton polytopes of the individual equations.

To introduce the main theorem, we need to introduce the following concept, that generalizes the
notion of volume of a polytope, to a collection of them.

Definition 6. Consider polytopes P1, . . . , Pn ⊂ Rn, nonnegative scalars λ1, . . . ,λn, and let V (λ) =
Vol(λ1P1 + · · ·+λnPn). It can be shown that V (λ) is a homogeneous polynomial of degree n. The mixed
volume MV (P1, . . . , Pn) is the coefficient of this polynomial, corresponding to the monomial λ1λ2 · · ·λn.

Although not obvious from its definition, the mixed volume is always a nonnegative number. It
further satisfies a number of very interesting properties, such as the Alexandrov-Fenchel inequality.
Although computing the mixed volume is difficult in general, in certain cases it can be approximated
via convex optimization methods with strong relationships to hyperbolic polynomials [Gur].

One of the main result in this area, with different versions due to Bernstein, Kouchnirenko, and
Khovanskii, relates the number of solutions of a sparse polynomial system with the mixed volume of the
Newton polytopes of the individual equations. Formally, we have

Theorem 7 (BKK bound). The number of solutions in (C∗)n of a sparse polynomial system of n
equations and n unknowns is less than or equal to the mixed volume of the n Newton polytopes. If the
coefficients are “generic” enough, then the upper bound is achieved.

The basic idea behind the derivation of the theorem is to introduce an additional parameter t in
the equations, in such a way that for t = 1 we have the original system, while for t = 0 the system is
binomial, which as we have seen can be solved in an efficient manner. This process is usually called a
toric deformation, and is somewhat similar in spirit to the homotopies used in interior point methods.
To make our words a bit more precise, an important fact is that we will not deform to just one binomial
system, but actually to a collection of them, given by what is called a mixed subdivision of the sum
of Newton polytopes. The important fact is that the sum of the number of roots of all these binomial
systems is exactly equal to the mixed volume of the collection of polytopes.
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Example 8. Consider the univariate polynomial

p(x) = anxn + an−1x
n−1 + · · · + amxm,

where n ≥ m. It is clear that the Newton polytope is the line segment with endpoints in n and m. The
mixed volume (in this case, just the volume) is equal to n−m. Thus, the BKK bound for this polynomial
is equal to n−m, which is clearly exact for generic choices of the coefficients.

Example 9. Let us consider again the example discussed in (1). The Newton polytope of the first
polynomial is the line segment with endpoints (0, 0) and (2, 3), while the second one has endpoints (1, 1)
and (3, 2). If we denote these by P1 and P2, it is easy to see that

Vol(λ1P1 + λ2P2) = 4λ1λ2,

and thus the mixed volume of (P1, P2) is equal to 4, which is the number of solutions of (1).

Example 10. Consider now the example in equation (3). The Newton polytope of the first polyno-
mial is the triangle with vertices {(0, 0), (1, 0), (0, 2)}, and the second one is the triangle with vertices
{(1, 0), (0, 1), (1, 1)}. It’s not hard to show (how?) that

Vol(λ1P1 + λ2P2) = λ2
1 +

1
2
λ2

2 + 3λ1λ2,

and thus the MV (P1, P2) = 3, which as we have seen, is the number of solutions of (3) when the
coefficients are “generic.”

4 Application: Nash equilibria

We can use the results described, to give a bound on the number of isolated Nash equilibria of a
game. For simplicity, consider the three-player case, where each player has two pure strategies. We
are interested here only in totally mixed equilibria, i.e., those where the players randomize among all
their pure strategies with nonzero probability (if this is not the case, then by eliminating the never
played strategies we can reduce the game to the totally mixed case). Thus, the mixed strategies can be
parametrized in terms of three variables a, b, c ∈ (0, 1), representing the probabilities with which they
play their different strategies.

It can be shown that the Nash equilibrium condition result in a polynomial system of the structure

p11bc + p12b + p13c + p14 = 0
p21ca + p22c + p23a + p24 = 0
p31ab + p32a + p33b + p34 = 0,

(4)

where the coefficients pij are explicit linear functions of the payoffs. The mixed volume of the Newton
polytopes of these three equations is equal to 2, so the maximum number of totally mixed Nash equilibria
that a three-player, two-strategy game can have is equal to two.

The same argument can be generalized to the case of n players, obtaining the following result:

Theorem 11 ([MM97],[Stu02, p.82]). The maximum number of isolated totally mixed Nash equilibria
for an n-person game where each player has two pure strategies is equal to the mixed volume of the n
facets of the n cube.

This mixed volume can be computed explicitly, and is equal to the number of derangements (fixed-
point free permutations) of a set with n elements. This number is also the permanent1 of the matrix
En−In, where En is the all-ones matrix. It can be shown that this number is the closest integer to n!/e.

1
The permanent of a square matrix A ∈ Rn×n

is defined as per(A) :=
�

σ∈Πn

�n
i=1 ai,σ(i), where Πn is the set of all

permutations in n elements. The formula is quite similar to that of the determinant (except that the signs of all terms are

always positive). In contrast to the determinant, which can easily be obtained in polynomial time via Gaussian elimination,

it is believed that the permanent is hard to compute (in fact, it is #P-hard).
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There are extensions of this result to the case of graphical games; see [Stu02] and the references
therein for details.
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Lecture 10
Lecturer: Pablo A. Parrilo Scribe: ???

In this lecture we begin our study of one of the main themes of the course, namely the relationships
between polynomials that are sums of squares and semidefinite programming.

1 Nonegativity and sums of squares

Recall from a previous lecture the definition of a polynomial being a sum of squares.

Definition 1. A univariate polynomial p(x) is a sum of squares (SOS) if there exist q1, . . . , qm ∈ R[x]
such that

p(x) =
m�

k=1

q2
k(x). (1)

If a polynomial p(x) is a sum of squares, then it obviously satisfies p(x) ≥ 0 for all x ∈ R. Thus, a
SOS condition is a sufficient condition for global nonnegativity.

As we have seen, in the univariate case, the converse is also true:

Theorem 2. A univariate polynomial is nonnegative if and only if it is a sum of squares.

As we will see, there is a very direct link between sum of squares conditions on polynomials and
semidefinite programming. We study first the univariate case.

2 Sums of squares and semidefinite programming

Consider a polynomial p(x) of degree 2d that is a sum of squares, i.e., it can be written as in (1). Notice
that the degree of the polynomials qk is at most equal to d, since the highest term of each q2

k is positive,
and thus there cannot be any cancellation in the highest power of x. Then, we can write





q1(x)
q2(x)

...
qm(x)




= V





1
x
...

xd




, (2)

where V ∈ Rm×(d+1), and its kth row contains the coefficients of the polynomial qk. For future reference,
let [x]d be the vector in the right-hand side of (2). Consider now the matrix Q = V T V . We then have
p(x) =

�m
k=1 q2

k(x) = (V [x]d)T (V [x]d) = [x]Td V T V [x]d = [x]Td Q[x]d.
Conversely, assume there exists a symmetric positive definite Q, for which p(x) = [x]Td Q[x]d. Then, by

factorizing Q = V T V (e.g., via Choleski, or square root factorization), we arrive at a SOS decomposition
of p.

We formally express this in the following lemma, that gives a direct relation between positive semidef-
inite matrices and a sum of squares condition.

Lemma 3. Let p(x) be a univariate polynomial of degree 2d. Then, p(x) is nonnegative (or SOS) if and
only if there exists Q ∈ S

d+1
+ that satisfies

p(x) = [x]Td Q[x]d.
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Indexing the rows and columns of Q by {0, . . . , d}, we have:

[x]Td Q[x]d =
d�

j=0

d�

k=0

Qjkxj+k =
2d�

i=0




�

j+k=i

Qjk



 xi

Thus, for this expression to be equal to p(x), it should be the case that

pi =
�

j+k=i

Qjk, i = 0, . . . , 2d. (3)

This is a system of 2d + 1 linear equations between the entries of Q and the coefficients of p(x). Thus,
since Q is simultaneously constrained to be positive semidefinite, and to belong to a particular affine
subspace, a SOS condition is exactly equivalent to a semidefinite programming problem.

Lemma 4. A polynomial p(x) =
�2d

i=0 pixi is a sum of squares if and only if there exists Q ∈ S
d+1
+

satisfying (3). This is a semidefinite programming problem.

3 Applications and extensions

We discuss first a few applications of the SDP characterization of nonnegative polynomials, followed by
several extensions.

3.1 Optimization

Our first application concerns the global optimization of a univariate polynomial p(x). Rather than
focusing on computing an x� for which p(x�) is as small as possible, we attempt first to obtain a good
(or the best) lower bound on its optimal value. It is easy to see that a number γ is a global lower bound
of a polynomial p(x), if and only if the polynomial p(x)− γ is nonnegative, i.e.,

p(x) ≥ γ ∀x ∈ R ⇐⇒ p(x)− γ ≥ 0 ∀x ∈ R.

Notice that the polynomial p(x) − γ has coefficients that depend affinely on γ. Consider now the
optimization problem defined by

max γ s.t. p(x)− γ is SOS.

It should be clear that this is a convex problem, since the feasible set is defined by an infinite number
of linear inequalities. Its optimal solution γ� is equal to the global minimum of the polynomial, p(x�).
Furthermore, using Lemma 4, we can easily write this as a semidefinite programming problem. We can
thus obtain the global minimum of a univariate polynomial, by solving an SDP problem. Notice also
that at optimality, we have 0 = p(x�)− γ� =

�m
k=1 q2

k(x�), and thus all the qk simultaneously vanish at
x�, which gives a way of computing the optimal solution x�. As we shall see later, we can also obtain
this solution directly from the dual problem, by using complementary slackness.

Notice that even though p(x) may be hightly nonconvex, we are nevertheless effectively computing
its global minimum.

3.2 Nonnegativity on intervals

We have seen how to characterize a univariate polynomial that is nonnegative on (−∞,∞) in terms of
SDP conditions. But what if we are interested in polynomials that are nonnegative only in an interval
(either finite, or semi-infinite)? As explained below, we can use very similar ideas, and two classical
characterizations, usually associated to the names Pólya-Szegö, Fekete, or Markov-Lukacs. The basic
results are the following:
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Theorem 5. The polynomial p(x) is nonnegative on [0,∞), if and only if it can be written as

p(x) = s(x) + x · t(x),

where s(x), t(x) are SOS. If deg(p) = 2d, then we have deg(s) ≤ 2d, deg(t) ≤ 2d− 2, while if deg(p) =
2d + 1, then deg(s) ≤ 2d, deg(t) ≤ 2d.

Theorem 6. Let a < b. Then, p(x) is nonnegative on [a, b], if and only if it can be written as
�

p(x) = s(x) + (x− a) · (b− x) · t(x), if deg(p) is even
p(x) = (x− a) · s(x) + (b− x) · t(x), if deg(p) is odd

where s(x), t(x) are SOS. In the first case, we have deg(p) = 2d, and deg(s) ≤ 2d, deg(t) ≤ 2d − 2. In
the second, deg(p) = 2d + 1, and deg(s) ≤ 2d, deg(t) ≤ 2d.

Notice that in both of these results, one direction of the implication is evident.

3.3 Rational functions

What happens if we want to minimize a univariate rational function, rather than a polynomial? Consider
a rational function given as a quotient of polynomials p(x)/q(x), where q(x) is strictly positive (why?).
Then, we have

p(x)
q(x)

≥ γ ⇔ p(x)− γ q(x) ≥ 0,

and therefore we can find the global minimum of the rational function by solving

max γ s.t. p(x)− γ q(x) is SOS.

The constrained case (i.e., over finite or semi-infinite intervals) are very similar, and can be formulated
using the results in the Section 3.2. The details are left for the exercises.

4 Multivariate polynomials

If a polynomial p(x) is a sum of squares, it is always true that p(x) ≥ 0. However, for polynomials in
more than one variable, it is no longer true that nonnegativity is equivalent to a sum of squares condition.
In fact, for polynomials of degree greater than or equal to four, deciding polynomial nonnegativity is an
NP-hard problem (as a function of the number of variables).

More than a century ago, David Hilbert showed that equality between the set of nonnegative and
SOS polynomials holds only in the following three cases:

• Univariate polynomials (i.e., n = 1)

• Quadratic polynomials (2d = 2)

• Bivariate quartics (n = 2, 2d = 4)

For all other cases, there always exist nonnegative polynomials that are not sums of squares. A classical
counterexample is the bivariate sextic (n = 2, 2d = 6) due to Motzkin, given by (in dehomogenized
form)

M(x, y) = x4y2 + x2y4 + 1− 3x2y2.

This polynomial is nonnegative, but is not a sum of squares. We will prove both facts later. An excellent
account of much of the classical work in this area has been provided by Bruce Reznick in [Rez00].
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4.1 SDP formulation

Essentially the same construction we have seen in Lemma 4 applies to the multivariate case. In this
case, we consider polynomials of degree 2d in n variables. In the dense case, i.e., when the polynomial
is not sparse, the number of coefficients is equal to

�n+2d
2d

�
. If we let p(x) =

�
α pαxα, and indexing the

matrix Q by the
�n+d

d

�
monomials in n variables of degree d, we have the SDP conditions on Q ∈ S

(n+d
d )

+ :

pα =
�

β+γ=α

Qβγ , Q � 0. (4)

We have exactly
�n+2d

2d

�
linear equations, one per each coefficient of p(x). As before, these conditions are

affine conditions relating the entries of Q and the coefficients of p(x). Thus, we can decide membership
to, or optimize over, the set of SOS polynomials by solving a semidefinite programming problem.

4.2 Using the Newton polytope

Recall that we have defined in a previous lecture the Newton polytope of a polynomial p(x) ∈ R[x1, . . . , xn]
as the convex hull of the set of exponents appearing in p. This allowed us to introduce a notion of
sparseness for a polynomial, related to the size of its Newton polytope. Sparsity (in this algebraic sense)
allows a notable reduction in the computational cost of checking sum of squares conditions of multivariate
polynomials. The reason is the following theorem due to Reznick:

Theorem 7 ([Rez78], Theorem 1). If p(x) =
�

qi(x)2, then New(qi) ⊆ 1
2New(p).

In other words, this theorem allows us, without loss of generality, to restrict the set of monomials
appearing in the representation (4) to those in the Newton polytope of p, scaled by a factor of 1

2 . This
reduces the size of the corresponding matrix Q, thus simplifying the SDP problem.

Example 8. Consider the following polynomial:

p = (w4 + 1)(x4 + 1)(y4 + 1)(z4 + 1) + 2w + 3x + 4y + 5z.

The polynomial p has degree 2d = 16, and four independent variables (n = 4). A naive approach, along
the lines described earlier, would require a matrix Q of size

�n+d
d

�
= 495. However, the Newton polytope of

p is easily seen to be the four dimensional hypercube with vertices in (0, 0, 0, 0) and (4, 4, 4, 4). Therefore,
the polynomials qi in the SOS decomposition of p will have at most 34 = 81 distinct monomials, and as
a consequence the full decomposition can be computed by solving a much smaller SDP.

5 Duality and density

In the next lecture, we will revisit the sum of squares construction, but emphasizing this time the dual
side, and its appealing measure-theoretic interpretation. We will also review some recent results on the
relative density of the cones of nonnegative polynomials and SOS.
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Lecture 11
Lecturer: Pablo A. Parrilo Scribe: ???

In this lecture we continue our study of SOS polynomials. After presenting a couple of applications,
we focus here on the dual side, and provide a natural probabilistic interpretation of the corresponding
problem. We further introduce a geometric description, in terms of the approximation of the convex hull
of a certain algebraic variety.

1 SOS applications

1.1 Lyapunov functions

The possibility of reformulating conditions for a polynomial to be a sum-of-squares as an SDP is very
useful, since we can use the SOS property as a convenient sufficient condition for polynomial nonnega-
tivity. In the dynamical systems context, recent work has applied the sum-of-squares approach to the
problem of finding a Lyapunov function for nonlinear systems [Par00, PP02].

This approach enables the search over affinely parametrized polynomial or rational Lyapunov func-
tions for systems with dynamics of the form

ẋi(t) = fi(x(t)) for all i = 1, . . . , n (1)

where the functions fi are polynomials or rational functions. Recall that for a system to be globally
asymptotically stable, it is sufficient to prove the existence of a Lyapunov function that satisfies

V (x) > 0, V̇ (x) =
�

∂V

∂x

�T

f(x) < 0

for all x ∈ Rn \ {0}, where without loss of generality we have assumed that the system (1) has an
equilibrium at the origin (see, e.g., [Kha92]). Then the condition that the Lyapunov function be positive,
and that its Lie derivative be negative, are both directly imposed as sum-of-squares constraints in terms
of the coefficients of the Lyapunov function.

As an example, consider the following system:

ẋ = −x + (1 + x)y
ẏ = −(1 + x)x.

Using SOSTOOLS [PPP05] we easily find a quartic polynomial Lyapunov function, which after rounding
(for purely cosmetic reasons) is given by

V (x, y) = 6x2
− 2xy + 8y2

− 2y3 + 3x4 + 6x2y2 + 3y4.

It can be readily verified that both V (x, y) and (−V̇ (x, y)) are SOS, since

V =





x
y
x2

xy
y2





T 



6 −1 0 0 0
−1 8 0 0 −1

0 0 3 0 0
0 0 0 6 0
0 −1 0 0 3









x
y
x2

xy
y2




, −V̇ =





x
y
x2

xy





T 



10 1 −1 1
1 2 1 −2

−1 1 12 0
1 −2 0 6









x
y
x2

xy



 ,

and the matrices in the expression above are positive definite. Similar approaches may also be used for
finding Lyapunov functionals for certain classes of hybrid systems.
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1.2 Entangled states in quantum mechanics

The state of a finite-dimensional quantum system can be described in terms of a positive semidefinite
Hermitian matrix, called the density matrix. An important property of a bipartite quantum state ρ is
whether or not it is separable, which means that it can be written as a convex combination of tensor
products of rank one matrices, i.e.,

ρ =
�

i

pi (xix
T
i )⊗ (yiy

T
i ), pi ≥ 0,

�

i

pi = 1,

where for simplicity we have restricted ρ, xi, yi to be real. Here xi ∈ Rn1 , yi ∈ Rn2 , and ρ ∈ S
n1n2
+ . If

the state is not separable, then it is said to be entangled.
A question of interest is the following: Given the density matrix ρ of a quantum state, how to

recognize whether the state is entangled or not? How can we certify that the state is entangled? It has
been shown by Gurvits that in general this is an NP-hard question [Gur03].

A natural mathematical object to study in this context is the set of positive maps, i.e., the linear
operators Λ : Sn1 → Sn2 that map positive semidefinite matrices into positive semidefinite matrices.
Notice that to any such Λ, we can associate a unique “observable” L ∈ Sn1n2 , that satisfies yT Λ(xxT )y =
(x ⊗ y)T L(x ⊗ y). Furthermore, if Λ is a positive map, then the pairing between the observable L and
any separable state will always give a nonnegative number, since

�L, ρ� = Tr L · (
�

i

pi (xix
T
i )⊗ (yiy

T
i )) =

�

i

pi TrL · (xi ⊗ yi) · (xi ⊗ yi)T

=
�

i

pi (xi ⊗ yi)T L(xi ⊗ yi) =
�

i

pi yT
i Λ(xix

T
i )yi ≥ 0.

In other words, every positive map yields a separating hyperplane for the convex set of separable states.
It can further be shown that this is in fact a complete characterization (and thus, these sets are dual to
each other).

The set of positive maps can be exactly characterized in terms of a multivariate polynomial non-
negativity condition, since the map Λ : Sn1 → Sn2 is positive if and only if the polynomial p(x, y) =
yT Λ(xxT )y is nonnegative for all x, y (why?). Replacing nonnegativity with sum of squares based con-
ditions, we can obtain a family of efficiently computable criteria that certify entanglement.

For more background and details about this problem, see [DPS02, DPS04] and the references therein.

2 Moments

Consider a nonnegative measure µ on R (or if you prefer, a real-valued random variable X). We can
then define the moments, which are the expectation of powers of X.

µk := E[Xk] =
�

xkdµ (2)

What constraints, if any, should the µk satisfy? Is is true that for any set of numbers µ0, µ1, . . . , µk,
there always exists a nonnegative measure having exactly these moments?

It should be apparent that some conditions are required. For instance, consider (2) for an even value
of k. Since the measure µ is nonnegative, it is clear that in this case we have µk ≥ 0.

However, that’s clearly not enough, and more restrictions should hold. A simple one can be derived by
recalling the relationship between the first and second moments and the variance of a random variable,
i.e., var(X) = E[X2] − E[X]2 = µ2 − µ2

1. Since the variance is always nonnegative, we should have
µ2 − µ2

1 ≥ 0.
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How to systematically derive conditions of this kind? Notice that the previous inequality can be
obtained by noticing that for all a, b,

0 ≤ E[(a + bX)2] = a2 + 2abE[X] + b2E[X2] =
�
a
b

�T �
1 µ1

µ1 µ2

� �
a
b

�
,

which implies that the 2 × 2 matrix above must be positive semidefinite. Interestingly, the inequality
obtained earlier is exactly equal to the determinant of this matrix.

Exactly the same procedure can be done for higher-order moments. Proceeding this way, we have
that the higher order moments must always satisfy:





1 µ1 µ2 · · · µd

µ1 µ2 µ3 · · · µd+1

µ2 µ3 µ4 · · · µd+2
...

...
...

. . .
...

µd µd+1 µd+2 · · · µ2d




� 0. (3)

Notice that the diagonal elements correspond to the even-order moments, which should obviously be
nonnegative.

As we will see below, this condition is “almost” necessary and sufficient in the univariate case. In the
multivariate case, however, there will be more serious problems (just like for polynomial nonnegativity
vs. sums of squares).

Remark 1. For unbounded intervals, the SDP conditions characterize the closure of the set of moments,
but not necessarily the whole set. As an example, consider the set of moments given by µ = (1, 0, 0, 0, 1),
corresponding to the Hankel matrix 


1 0 0
0 0 0
0 0 1



 .

Although the matrix above is PSD, it is not hard to see that there is no nonnegative measure corresponding
to those moments. However, the parametrized atomic measure given by

µε =
ε4

2
· δ(x +

1
ε
) + (1− ε4) · δ(x) +

ε4

2
· δ(x−

1
ε
)

has as first five moments (1, 0, ε2, 0, 1), and thus as ε → 0 the corresponding Hankel matrix is the one
given above.

2.1 Nonnegative measures on intervals

Just like we did for the case of polynomials nonnegative on intervals, we can similarly obtain a necessary
and sufficient characterization for moments. For simplicity, we present below only one particular case,
corresponding to the interval [−1, 1].

Lemma 2. There exists a nonnegative measure in [−1, 1] with moments (µ0, µ1, . . . , µ2d+1) if and only
if 



µ0 µ1 µ2 · · · µd

µ1 µ2 µ3 · · · µd+1

µ2 µ3 µ4 · · · µd+2
...

...
...

. . .
...

µd µd+1 µd+2 · · · µ2d




±





µ1 µ2 µ3 · · · µd+1

µ2 µ3 µ4 · · · µd+2

µ3 µ4 µ5 · · · µd+3
...

...
...

. . .
...

µd+1 µd+2 µd+3 · · · µ2d+1




� 0. (4)
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Figure 1: Set of valid moments (µ1, µ2, µ3) of a probability measure on [−1, 1]. This is the convex hull
of the moment curve (t, t2, t3), for −1 ≤ t ≤ 1. An explicit SDP representation is given in (4).

Notice that the necessity is clear, since it follows from consideration of the quadratic form (in the
ai):

0 ≤ E
�
(1 ± X)(

�d
i=0 aiXi)2

�
=

d�

j=0

d�

k=0

(µj+k ± µj+k+1)ajak,

where the first inequality follows since 1 ± X is always nonnegative, since X is supported on [−1, 1].
Notice the similarities (in fact, the duality) with the conditions for polynomial nonnegativity.

2.2 The moment curve

An appealing geometric interpretation of the set of valid moments is in terms of the so-called moment
curve, which is the parametric curve in Rd+1 given by t �→ (1, t, t2, . . . , td). Indeed, it is easy to see that
every point on the curve corresponds to a Dirac measure, where all the probability is concentrated on a
given point. Thus, every finite (or infinite) measure on the interval corresponds to a point in the convex
hull. In Figure 1 we present an illustration of the set of valid moments, for the case d = 3.

3 Bridging the gap

What to do in the cases where the set of nonnegative polynomials is no longer equal to the SOS ones? As
we will see in much more detail later, it turns out that we can approximate any semialgebraic problem
(including the simple case of a single polynomial being nonnegative) by sum of squares techniques.

As a preview, and a hint at some of the possibilities, let’s consider how to prove nonnegativity of a
particular polynomial which is not a sum of squares. Recall that the Motzkin polynomial was defined
as:

M(x, y) = x4y2 + x2y4 + 1− 3x2y2.

and is a nonnegative polynomial that is not SOS. We can try multiplying it by another polynomial which
is known to be positive, and check whether the resulting product is SOS. In this case, multiplying by
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the factor (x2 + y2), we can find the decomposition

(x2 + y2) · M(x, y) = y2(1− x2)2 + x2(1− y2)2 + x2y2(x2 + y2
− 2)2,

which clearly certifies that M(x, y) ≥ 0.
More details will follow...
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Lecture 12
Lecturer: Pablo A. Parrilo Scribe: ???

In previous lectures, we have described necessary conditions for the existence of a nonnegative measure
with given moments. In the univariate case, these conditions were also sufficient. We revisit first a
classical algorithm to effectively obtain this measure.

1 Recovering a measure from its moments

We review next a classical method for producing a univariate atomic measure with a given set of moments
(e.g., [ST43, Dev86]). Other similar variations of this method are commonly used in signal processing,
e.g., Pisarenko’s harmonic decomposition method, where we are interested in producing a superposition
of sinusoids with a given covariance matrix. This technique (or essentially similar ones) is known under
a variety of names, such as Prony’s method, or the Vandermonde decomposition of a Hankel matrix.

Consider the set of moments (µ0, µ1, . . . , µ2n−1) for which we want to find an associated nonnegative
measure, supported on the real line. The resulting measure will be discrete, of the form

�n
i=1 wiδ(x−xi).

For this, consider the linear system




µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

...
. . .

...
µn−1 µn · · · µ2n−2









c0

c1
...

cn−1




= −





µn

µn+1
...

µ2n−1




. (1)

The Hankel matrix on the left-hand side of this equation is the one that appeared earlier as a sufficient
condition for the moments to represent a nonnegative measure. The linear system in (1) has a unique
solution if the matrix is positive definite. In this case, we let xi be the roots of the univariate polynomial

xn + cn−1x
n−1 + · · · + c1x + c0 = 0,

which are all real and distinct (why?). We can then obtain the corresponding weights wi by solving the
nonsingular Vandermonde system given by

n�

i=1

wix
j
i = µj (0 ≤ j ≤ n− 1).

In the exercises, you will have to prove that this method actually works (i.e., the xi are real and distinct,
the wi are nonnegative, and the moments are the correct ones).

Example 1. Let’s find a nonnegative measure whose first six moments are given by (1, 1, 2, 1, 6, 1). The
solution of the linear system (1) yields the polynomial

x3
− 4x2

− 9x + 16 = 0,

whose roots are −2.4265, 1.2816, and 5.1449. The corresponding weights are 0.0772, 0.9216, and 0.0012,
respectively.

Example 2. We outline here a “stylized” application of these results. Consider a time-domain signal
that is the sum of k Dirac functions, i.e., f(x) :=

�k
i=1 wiδ(x− xi), where the 2k parameters wi, xi are

unknown. By the results above, it is enough to obtain 2k linear functionals on the signal (namely, the
moments µi :=

�
xif(x)dx) to fully recover it from the measurements. Indeed, the signal can always be

exactly reconstructed from these 2k moments, by using the algorithm described above. Notice that the
nonnegativity assumption on the weights wi is not critical, and can easily be removed.
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More realistic, but essentially similar results can be obtained by considering signals that are sums
of (possibly damped) sinusoids of different frequencies. This viewpoint has a number of interesting
connections with error-correcting codes (in particular, interpolation-based codes such as Reed-Solomon),
as well as the recent “compressed sensing” results.

Remark 3. As described, the measure recovery method described always works correctly, provided the
computations are done in exact arithmetic. In most practical applications, it is necessary or convenient
to use floating-point computations. Furthermore, in many settings such as optimization the moment
information may be noisy, and therefore the matrices may contain some (hopefully small) perturbations
from their nominal values. For these reasons, it is of interest to understand sensitivity issues, both at
the level of what is intrinsic about the problem (conditioning), and about the specific algorithm used
(numerical stability).

As described, the technique described above can run into numerical difficulties. On the conditioning
side, it is well-known that from the numerical viewpoint, the monomial basis (with respect to which we
are taking moments) is a “bad” basis for the space of polynomials. On the numerical stability side, the
algorithm above does a number of inefficient calculations, such as explicitly computing the coefficients
ci of the polynomial corresponding to the support of the measure. A better approach involves directly
computing the nodes xi as the generalized eigenvalues of a matrix pencil. Some of these issues will be
explored in more detail in the exercises.

2 A probabilistic interpretation

We also mention here an appealing probabilistic interpretation of the dual (2), commonly used in integer
and quadratic programming or game theory, and developed by Lasserre in the polynomial optimization
case [Las01]. Consider as before the problem of minimizing a polynomial. Now, rather than looking for
a minimizer x in Rn, let’s “relax” our notion of solution to allow for probabilities densities µ on Rn,
and replace the objective function by its natural generalization

�
p(x)dµ. It clearly holds that the new

objective is never larger than the original one, since we are making the feasible set bigger.
This change makes the problem trivially convex, although infinite-dimensional. To produce a finite

dimensional approximation (which may or may not be exact), we rewrite the objective function in terms
of the moments of the measure µ, and write valid semidefinite contraints for the moments µk.

3 Duality and complementary slackness

What is the relationship between this classical method and semidefinite programming duality? Recall
our approach to minimizing a polynomial p(x) by computing

max γ s.t. p(x)− γ is SOS.

If this relaxation is exact (i.e., the optimal γ is equal to the optimal value of the polynomial) then at
optimality, we necessarily have p(x�)− γ� =

�
i g2

i (x�). This implies that all the gi must vanish at the
optimal point. We can thus obtain the optimal value by looking at the roots of the polynomials gi(x).

However, it turns out that if we are simultaneously solving the primal and the dual SDPs (as most
modern interior point solvers) this is unnecessary, since from complementary slackness we can extract
almost all the information needed. In particular, notice that if we have

p(x)− γ = [x]Td Q[x]d = 0

then necessarily Q · [x]d = 0.
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Recall the SDP formulation of the univariate optimization problem is given by

max γ s.t.






Q00 + γ = p0
�

j+k=i

Qjk = pi i = 1, . . . , 2d

Q � 0

and its dual

min
2d�

i=0

piµi s.t. M(µ) :=





µ0 µ1 · · · µd

µ1 µ2 · · · µd+1
...

...
. . .

...
µd µd+1 · · · µ2d




� 0, µ0 = 1. (2)

At optimality, complementarity slackness holds, i.e., the product of the primal and dual matrices
vanishes. We have then M(µ) ·Q = 0. Assume that the leading k×k submatrix of M(µ) is nonsingular.
Then, the procedure described in Section 1 gives a k-atomic measure, with support in the minimizers
of p(x). Generically, this matrix M(µ) will be rank one, which will correspond to the case of a unique
optimal solution.

Remark 4. Unlike the univariate case, a multivariate polynomial that is bounded below may not achieve
its minimum. A well-known example is p(x, y) = x2 +(1−xy)2, which clearly satisfies p(x, y) ≥ 0. Since
p(x, y) = 0 would imply x = 0 and 1 − xy = 0 (which is impossible), this value cannot be achieved.
However, we can get arbitrarily close, since p(�, 1/�) = �2, for any � > 0.

4 Multivariate case

We have seen previously that in the multivariate case, it is no longer the case that nonnegative poly-
nomials are always sums of squares. The corresponding result on the dual side is that the set of valid
moments is no longer described by the “obvious” semidefinite constraints, obtained by considering the
expected value of squares (even if we require strict positivity).

Example 5 (“Dual Motzkin”). Consider the existence of a probability measure on R2, that satisfies the
moment constraints:

E[1] = E[X4Y 2] = E[X2Y 4] = 1,

E[X2Y 2] = 2,

E[XY ] = E[XY 2] = E[X2Y ] = E[X2Y 3] = E[X3Y 2] = E[X3Y 3] = 0.

(3)

The “obvious” nonnegativity constraints are satisfied, since

E[(a + bXY + cXY 2 + dX2Y )2] = a2 + 2b2 + c2 + d2
≥ 0.

However, it turns out that these conditions are only necessary, but not sufficient. This can be seen by
computing the expectation of the Motzkin polynomial (which is nonnegative), since in this case we have

E[X4Y 2 + X2Y 4 + 1− 3X2Y 2] = 1 + 1 + 1− 6 = −3,

thus proving that no nonnegative measure with the given moments can exist.
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5 Density results

Recent results by Blekherman [Ble06] give quantitative bounds on the relative density of the cone of
sum of squares versus the cone of nonnegative polynomials. Concretely, in [Ble06] it is proved that a
suitably normalized section of the cone of positive polynomials P̃n,2d satisfies

c1n
− 1

2 ≤

�
Vol P̃n,2d

VolBM

� 1
DM

≤ c2n
− 1

2 ,

while the corresponding expression for the section of the cone of sum of squares Σ̃n,2d is

c3n
− d

2 ≤

�
Vol Σ̃n,2d

VolBM

� 1
DM

≤ c4n
− d

2 ,

where c1, c2, c3, c4 depend on d only (explicit expressions are available), DM =
�n+2d

2d

�
− 1, and BM is

the unit ball in RDM .
These expressions show that for fixed d, as n→∞ the volume of the set of sum of squares becomes

vanishingly small when compared to the nonnegative polynomials.

Show the values of the actual bounds, for reasonable dimensions ToDo

References

[Ble06] G. Blekherman. There are significantly more nonegative polynomials than sums of squares.
Israel Journal of Mathematics, 153(1):355–380, 2006.

[Dev86] L. Devroye. Nonuniform random variate generation. Springer-Verlag, New York, 1986.

[Las01] J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM J.
Optim., 11(3):796–817, 2001.

[ST43] J.A. Shohat and J.D. Tamarkin. The Problem of Moments. American Mathematical Society
Mathematical surveys, vol. II. American Mathematical Society, New York, 1943.

12-4



MIT 6.256 - Algebraic techniques and semidefinite optimization April 2, 2010

Lecture 13
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Today we introduce the first basic elements of algebraic geometry, namely ideals and varieties over the
complex numbers. This dual viewpoint (ideals for the algebra, varieties for the geometry) is enormously
powerful, and will help us later in the development of methods for solving polynomial equations. We
also present the notion of quotient rings, which are very natural when considering functions defined on
algebraic varieties (e.g., in polynomial optimization problems with equality constraints). Finally, we
begin our study of Groebner bases, by defining the notion of term orders. A superb introduction to
algebraic geometry, emphasizing the computational aspects, is the textbook of Cox, Little, and O’Shea
[CLO97]. Another recommended introductory-level book is the one by Hassett [Has07].

1 Polynomial ideals

For notational simplicity, we use C[x] to denote the polynomial ring in n variables C[x1, . . . , xn]. Spe-
cializing the general definition of an ideal to a polynomial ring, we have the following:

Definition 1. A subset I ⊂ C[x] is an ideal if it satisfies:

1. 0 ∈ I.

2. If a, b ∈ I, then a + b ∈ I.

3. If a ∈ I and b ∈ C[x], then a · b ∈ I.

The two most important examples of polynomial ideals for our purposes are the following:

• The set of polynomials that vanish in a given set S ⊂ Cn, i.e.,

I(S) := {f ∈ C[x] : f(a1, . . . , an) = 0 ∀(a1, . . . , an) ∈ S},

is an ideal, called the vanishing ideal of S.

• The ideal generated by a finite set of polynomials {f1, . . . , fs}, defined as

�f1, . . . , fs� := {f | f = g1f1 + · · · + gsfs, gi ∈ C[x]}. (1)

An ideal is finitely generated if it can be written as in (1) for some finite set of polynomials {f1, . . . , fs}.
An ideal is called principal if it can be generated by a single polynomial. The intersection of two ideals
is again an ideal. What about the union of ideals?

Example 2. In the univariate case (i.e., the polynomial ring is C[x]), every ideal is principal.

One of the most important facts about polynomial ideals is Hilbert’s finiteness theorem:

Theorem 3 (Hilbert Basis Theorem). Every polynomial ideal in C[x] is finitely generated.

We will present a proof of this after learning about Groebner bases.
From the computational viewpoint, two very natural questions about ideals are the following:

• Given a polynomial p(x), how to decide if it belongs to a given ideal?

• How to find a “convenient” representation of an ideal? What does “convenient” mean?
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Figure 1: Two algebraic varieties. The one on the left is defined by the equation (x2 + y2 − 1)(3x +
6y − 4) = 0. The one on the right is a quartic surface, defined by 1− x2 − y2 − 2z2 + z4 = 0.

2 Algebraic varieties

An (affine) algebraic variety is the zero set of a finite collection of polynomials (see formal definition
below). The word “affine” here means that we are working in the standard affine space, as opposed to
projective space, where we identify x, y ∈ Cn if x = λy for some λ �= 0.

Definition 4. Let f1, . . . , fs be polynomials in C[x]. Let the set V be

V(f1, . . . , fs) := {(a1, . . . , an) ∈ Cn : fi(a1, . . . , an) = 0 1 ≤ i ≤ s}.

We call V(f1, . . . , fs) the affine variety defined by f1, . . . , fs.

A simple example of a variety is a (complex) affine subspace, that corresponds to the vanishing of a
finite collection of affine polynomials. A few additional examples of varieties are shown in Figure 1.

It is not too hard to show that finite unions and intersections of algebraic varieties are again algebraic
varieties. What about the infinite case?

Remark 5. Recall our previous encounter with the Zariski topology, whose closed sets where defined to
be the algebraic varieties, i.e., the vanishing set of a finite set of polynomial equations. To prove that
this is actually a topology, we need to show that arbitrary intersections of closed sets are closed. Hilbert’s
basis theorem precisely guarantees this fact.

Perhaps the most natural question about algebraic varieties is the following:

• Given a variety V , how to decide it is nonempty?

Let’s start connecting ideals and varieties. Consider a finite set of polynomials {f1, . . . , fs}. We
already know how to generate an ideal, namely �f1, . . . , fs�. However, we can also look at the corre-
sponding variety V(f1, . . . , fs). Since this variety is a subset of Cn, we can form the corresponding
vanishing ideal, I(V(f1, . . . , fs)). How do these two ideals related to each other? Is it always the case
that

�f1, . . . , fs� = I(V(f1, . . . , fs)),

and if it is not, what are the reasons? The answer to these questions (and more) will be given by another
famous result by Hilbert, known as the Nullstellensatz.
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3 Quotient rings

Whenever we have an ideal in a ring, we can immediately define a notion of equivalence classes, where
we identify two elements in the ring if and only if their difference is in the ideal.

Example 6. Recall that a simple example of an ideal in the ring Z was the set of even integers. By
identifying two integers if their difference is even, we partition Z into two equivalence classes, namely
the even and the odd numbers. More generally, if the ideal is given by the integer multiples of a given
number m, then Z can be partitioned into m equivalence classes.

We can do this for the polynomial ring C[x], and any ideal I.

Definition 7. Let I ⊂ C[x] be an ideal, and let f, g ∈ C[x]. We say f and g are congruent modulo I,
written

f ≡ g mod I,

if f − g ∈ I.

It is easy to show that this is an equivalence relation, i.e., it is reflexive, symmetric, and transi-
tive. Thus, this partitions C[x] into equivalence classes, where two polynomials are “the same” if their
difference belongs to the ideal. This allows us to define the quotient ring:

Definition 8. The quotient C[x]/I is the set of equivalence classes for congruence modulo I.

The quotient C[x]/I inherits the ring structure of C[x], with the natural operations. Thus, with
these operations now defined between equivalence classes, C[x]/I becomes a ring, known as the quotient
ring.

Quotient rings are particularly useful when considering a polynomial function p(x) over the algebraic
variety defined by gi(x) = 0. Notice that if we define the ideal I = �gi�, then any polynomial q that is
congruent with p modulo I takes exactly the same values in the variety.

4 Monomial orderings

In order to begin studying “nice” bases for ideals, we need a way of ordering monomials. In the univariate
case, this is straightforward, since we can define xa � xb as being true if and only if a > b. In the
multivariate case, there are a lot more options.

We also want the ordering structure to be consistent with polynomial multiplication. This is formal-
ized in the following definition.

Definition 9. A monomial ordering on C[x] is a relation � on Zn
+ (i.e., the monomial exponents), such

that:

1. The relation � is a total ordering.

2. If α � β, and γ ∈ Zn
+, then α + γ � β + γ.

3. The relation � is a well-ordering (every nonempty subset has a smallest element).

One of the simplest examples of a monomial ordering is the lexicographic ordering, where α �lex β if
the left-most nonzero entry of α−β is positive. We will see some other examples of monomial orderings
later in the course.
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Lecture 14
Lecturer: Pablo A. Parrilo Scribe: ???

After a brief review of monomial orderings, we develop the basic ideas of Groebner bases, followed
by examples and applications. For background and much more additional material, we recommend the
textbook of Cox, Little, and O’Shea [CLO97]. Other good, more specialized references are [AL94, BW93,
KR00].

1 Monomial orderings

Recall from last lecture the notion of a monomial ordering:

Definition 1. A monomial ordering on C[x] is a relation � on Zn
+ (i.e., the monomial exponents), such

that:

1. The relation � is a total ordering.

2. If α � β, and γ ∈ Zn
+, then α + γ � β + γ.

3. The relation � is a well-ordering (every nonempty subset has a smallest element).

There are several term orderings of interest in computational algebra. Among them, we mention:

• Lexicographic (“dictionary”). Here α �lex β if the left-most nonzero entry of α − β is positive.
Notice that a particular order of the variables is assumed, and by changing this, we obtain n!
nonequivalent lexicographic orderings.

• Graded lexicographic. Sort first by total degree, then lexicographic, i.e., α �grlex β if |α| > |β|, or
if |α| = |β| and α �lex β.

• Graded reverse lexicographic. Here α �grevlex β if |α| > |β|, or if |α| = |β| and the right-most
nonzero entry of α − β is negative. This ordering, although somewhat nonintuitive, has some
desirable computational properties.

• General matrix orderings. Described by a weight matrix W ∈ Rk×n(k ≤ n), where α �W β if
(Wα) �lex (Wβ). For W to correspond to a monomial ordering as defined, the first nonzero entry
on each column must be positive.

It turns out that every monomial ordering can be described by an associated matrix W , i.e., every
monomial ordering is a matrix ordering. What are the matrices corresponding to the first three orderings
described?

Example 2. Consider the polynomial ring C[x, y]. In the lexicographic ordering (≺lex) discussed, we
have:

1 ≺ y ≺ y2
≺ · · · ≺ x ≺ xy ≺ xy2

≺ · · · ≺ x2
≺ x2y ≺ x2y2

≺ · · · ,

while for the other two orderings (≺grlex and ≺grevlex), which in the special case of two variables coincide,
we have:

1 ≺ y ≺ x ≺ y2
≺ xy ≺ x2

≺ y3
≺ xy2

≺ x2y ≺ x3
≺ · · · .

Picture comparing different orderings ToDo

Example 3. Consider the monomials α = x3y2z8 and β = x2y9z2. If the variables are ordered as
(x, y, z), we have

α �lex β, α �grlex β, α ≺grevlex β.

Notice that x � y � z for all three orderings.
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2 Groebner bases

2.1 Monomial ideals

Before studying general ideals, it is convenient to introduce first a special class, known as monomial
ideals.

Definition 4. A monomial ideal is a polynomial ideal that can be generated by monomials.

What are the possible monomials that belong to a given monomial ideal? Since xα ∈ I ⇒ xα+β ∈ I
for β ≥ 0, we have that these sets are “closed upwards.”

Picture of monomial ideals ToDo

Furthermore, a polynomial belongs to a monomial ideal I if and only if it all its terms are in I.

Theorem 5 (Dickson’s lemma). Every monomial ideal is finitely generated.

We consider next a special monomial ideal, associated to every polynomial ideal I. From now on, we
assume a fixed monomial ordering (e.g., graded reverse lexicographic), and denote by in(f) the “largest”
monomial appearing in the polynomial f �= 0.

Definition 6. Consider an ideal I ⊂ C[x], and a fixed monomial ordering. The initial ideal of I,
denoted in(I), is the monomial ideal generated by the leading terms of all the elements in I, i.e.,

in(I) := �in(f) : f ∈ I \ {0}�.

A monomial xα is called standard, if it does not belong to the initial ideal in(I).

2.2 Groebner bases

Given an ideal I = �f1, . . . , fs�, we can construct two monomial ideals associated with it. On the one
hand, we have the initial ideal in(I), previously defined. However, we can also consider the monomial
ideal generated by the initial monomials of the generators, i.e., �in(f1), . . . , in(fs)�. Although we always
have �in(f1), . . . , in(fs)� ⊂ in(I), in general these two monomial ideals are distinct.

Example 7. Consider the ideal I = �x3− 1, x2 +1�. Since 1 = 1
2 (x− 1)(x3− 1)− 1

2 (x2−x− 1)(x2 +1),
we have 1 ∈ I, and thus in(I) = I = C[x]. On the other hand, 1 �∈ �x3, x2�.

However, it may be possible to produce a set of generators for which these two ideals are the same.
This is exactly the notion of a Groebner basis.

Definition 8. Consider the polynomial ring C[x], with a fixed monomial ordering, and an ideal I. A
finite set of polynomials {g1, . . . , gs} ⊂ I is a Groebner basis of I if the initial ideal of I is generated by
the leading terms of the gi, i.e.,

in(I) = �in(g1), . . . , in(gs)�. (1)

Theorem 9. Every ideal I has a Groebner basis G. Furthermore, I = �g1, . . . , gs�.

The previous theorem essentially establishes Hilbert’s finiteness result, and gives an explicit charac-
terization of a finite generating set for the ideal I. Furthermore, since there are explicit algorithms to
compute Groebner bases, this is a constructive version of this theorem.

Even though the monomial ordering is fixed, Groebner bases as defined are not unique (why?). This
can be easily fixed, by refining the concept to the so-called reduced Groebner bases, which are uniquely
defined.
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There are several possible algorithms to effectively compute Groebner bases. The traditional one
is Buchberger’s algorithm, developed by Bruno Buchberger around 1965, and many variants have been
proposed since. There are also several newer methods, based on sparse linear algebra, that in some in-
stances can significantly outperform the Buchberger approach. Good specialized programs for Groebner
bases calculations (and much more) are CoCoA[CoC], Macaulay2 [GS] and Singular [GPS05].

2.3 Quotients and normal forms

Recall that if we have an ideal I ⊂ C[x], we defined the quotient ring C[x]/I as the set of equivalence
classes modulo the ideal. For computational purposes, we want a “good” representation of these classes,
and in particular, a way to provide a “unique representative” to every polynomial. This can in fact be
easily done once we have computed a Groebner basis. To each polynomial p ∈ C[x], we can associate a
unique “normal form”, defined below.

Lemma 10. Let G be a Groebner basis of the ideal I ⊂ C[x]. Given any p ∈ C[x], there exists a unique
polynomial p̄, called the normal form of p, such that

1. The polynomials p and p̄ are congruent mod I, i.e., p− p̄ ∈ I.

2. Only standard monomials appear in p̄.

Notice that we have p = q1g1 + · · · + qsgs + p̄. Thus, the normal form can be interpreted as the
“remainder” after a division-like process by the generators gi. The key property (1) guarantees that this
remainder is uniquely defined.

As a consequence of this, we can solve the ideal membership problem: to check if a polynomial p(x)
is in a given ideal I, compute a Groebner basis G of I, and check if the normal form of p(x) is the zero
polynomial, i.e., p ∈ I ⇔ p̄ = 0.

3 Applications and examples

Groebner bases enable the algorithmic solution of many problems in computational algebraic geometry.
We discuss some these below.

• Ideal membership. As we have seen, given an ideal I and a polynomial p, we can check if p ∈ I by
computing the normal form of p.

• Radical membership. Consider an ideal I = �f1, . . . , fs� ⊂ C[x], and a polynomial p, for which we
want to check whether p ∈

√
I. Since

√
I is also an ideal, we could compute a Groebner basis for

it, and then reduce the problem to the previous one. However, it is often more efficient to instead
use the following result (“Rabinowitch’s trick”):

p ∈
√

I ⇔ 1 ∈ �f1, . . . , fs, 1− yp�,

where y is a (new) additional variable.

• Consistency of polynomial equations. Consider a finite set of polynomial equations {fi = 0}, and
let I = �fi� be the corresponding ideal. By the Nullstellensatz, the given equations are infeasible
if and only if {1} is the reduced Groebner basis of I.

• Elimination. For notational simplicity, consider an ideal I ⊂ C[x, y, z]. Suppose that we want
to compute all the polynomials in I, that do not depend on the variable z, i.e., I ∩ C[x, y].
Geometrically, this elimination of variables corresponds to (the Zariski closure of) the projection
of the corresponding variety into (x, y). This intersection (or projection) can be easily obtained,
by computing a Groebner basis G of I with respect to a lexicographic (or elimination) ordering.
The corresponding ideal is then generated by G ∩ C[x, y].
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4 Zero-dimensional ideals

In practice, we are often interested in polynomial systems that have only a finite number of solutions
(the “zero-dimensional” case), and many interesting things happen in this case. Among other properties,
the quotient ring C[x]/I is now a finite dimensional vector space, with its dimension being equal to the
number of standard monomials. Furthermore, Groebner bases can be used to fully reduce their solution
to a classical eigenvalue problem, generalizing the “companion matrix” notion from the univariate case.
All this, and much more, next time...
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Today we will see a few more examples and applications of Groebner bases, and we will develop the
zero-dimensional case.

1 Zero-dimensional ideals

In practice, we are often interested in polynomial systems that have only a finite number of solutions
(the “zero-dimensional” case), and as we will see, many interesting things happen in this case.

Definition 1. An ideal I is zero-dimensional if the associated variety V (I) is a finite set.

Given a system of polynomial equations, how to decide if it has a finite number of solutions (i.e.,
if the corresponding ideal is zero-dimensional)? We can state a simple criterion for this in terms of a
Groebner basis.

Lemma 2. Let G be a Groebner basis of the ideal I ⊂ C[x1, . . . , xn]. The ideal I is zero-dimensional if
and only if for each i (1 ≤ i ≤ n), there exists an element in the Groebner basis whose initial term is a
pure power of xi.

Among other important consequences, when I is a zero-dimensional ideal the quotient ring C[x]/I is
a finite dimensional vector space, with its dimension being equal to the number of standard monomials.
These are the monomials that are not in the initial ideal in(I) (i.e., the monomials “under the staircase”).

Furthermore, we can use Groebner bases to reduce the effective calculation of the solutions of a zero-
dimensional polynomial system to an eigenvalue problem, generalizing the “companion matrix” notion
from the univariate case. We sketch this below.

Recall that in this case, the quotient C[x]/I is a finite dimensional vector space. The main idea is
to consider the homomorphisms given by the n linear maps Mxi : C[x]/I → C[x]/I, f �→ �(xif) (that
is, multiplication by the coordinate variables, followed by normal form). Choosing as a basis the set
of standard monomials, we can effectively compute a matrix representation of these linear maps. This
defines n matrices Mxi , that commute with each other (why?).

Assume for simplicity that all the roots have single multiplicity. Then, all the Mxi can be simulta-
neously diagonalized by a single matrix V , and the kth diagonal entry of V MxiV

−1 contains the ith
coordinate of the kth solution, for 1 ≤ k ≤ #{V (I)}.

(In general, we can block-diagonalize this commutative algebra, splitting into its semisimple and
nilpotent components. The nilpotent part is trivial if and only if the ideal is radical.)

Remark 3. In practice, a better alternative to a full diagonalization (which is in general numerically
unstable) is a Schur-like approach, where we find a unitary matrix U that simultaneously triangularizes
the matrices in the commuting family; see [CGT97] for details.

To understand these ideas a bit better, let’s recall the univariate case.

Example 4. Consider the ring C[x] of polynomials in a single variable x, and an ideal I ⊂ C[x]. Since
every ideal in this ring is principal, I can be generated by a single polynomial p(x) = pnxn+· · ·+p1x+p0.
Then, we can write I = �p(x)�, and {p(x)} is a Groebner basis for the ideal (why?). The quotient C[x]/I
is an n-dimensional vector, with a suitable basis given by the standard monomials {1, x, . . . , xn−1}.

Consider as before the linear map Mx : C[x]/I → C[x]/I. The matrix representation of this linear
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map in the given basis is given by




0 0 0 · · · −p0/pn

1 0 0 · · · −p1/pn

0 1 0 · · · −p2/pn
...

...
...

. . .
...

0 0 0 · · · −pn−1/pn




,

which is the standard companion matrix Cp associated with p(x). Its eigenvalues are exactly the roots of
p(x).

We present next a multivariate example.

Example 5. Consider the ideal I ⊂ C[x, y, z] given by

I = �xy − z, yz − x, zx− y�.

Choosing a term ordering (e.g., lexicographic, where x ≺ y ≺ z), we obtain the Groebner basis

G = {x3
− x, yx2

− y, y2
− x2, z − yx}.

We can directly see from this that I is zero-dimensional (why?). A basis for the quotient space is
given by {1, x, x2, y, yx}. Consider the maps Mx, My, and Mz, we have that their corresponding matrix
representations are given by

Mx =





0 0 0 0 0
1 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0




, My =





0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
1 0 1 0 0
0 1 0 0 0




, Mz =





0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
1 0 1 0 0




.

It can be verified that these three matrices commute. A simultaneous diagonalizing transformation is
given by the matrix:

V =





1 0 0 0 0
1 1 1 1 1
1 1 1 −1 −1
1 −1 1 1 −1
1 −1 1 −1 1




, V −1 =

1
4





4 0 0 0 0
0 1 1 −1 −1

−4 1 1 1 1
0 1 −1 1 −1
0 1 −1 −1 1




.

The corresponding transformed matrices are:

V MxV −1 = diag(0, 1, 1,−1,−1)

V MyV −1 = diag(0, 1,−1, 1,−1)

V MzV
−1 = diag(0, 1,−1,−1, 1)

,

from where the coordinates of the five roots can be read.

In the general (radical) case, the matrix V is a generalized Vandermonde matrix, with rows indexed
by roots (points in the variety) and columns indexed by the standard monomials. The Vij entry contains
the j-th monomial evaluated at the ith root. Since V V −1 = I, we can also interpret the jth column
of V −1 as giving the coefficients of a Lagrange interpolating polynomial pj(x), that vanishes at all the
points in the variety, except at rj , where it takes the value 1 (i.e., pj(rk) = δjk).

Generalize Hermite form, etc ToDo
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x1 x2 x3

x5 x4x6

Figure 1: A six-node graph.

2 Hilbert series

Consider an ideal I ⊂ C[x] and the corresponding quotient ring C[x]/I. We have seen that, once a
particular Groebner basis is chosen, we could associate to every element of C[x]/I a unique representative,
namely a C-linear combination of standard monomials, obtained as the remainder after division with
the corresponding Groebner basis. We are interested in studying, for every integer k, the dimension of
the vector space of remainders of degree less than or equal to k. Expressed in a simpler way, we want
to know how many standard monomials of degree k there are, for any given k.

Rather than studying this for different values of k separately, it is convenient to collect (or bundle) all
these numbers together in a single object (this general technique is usually called “generating function”).
The Hilbert series of I, denoted HI(t), is then defined as the generating function of the dimension of
the space of residues of degree k, i.e.,

HI(t) =
∞�

k=0

dim(C[x]/I ∩ Pn,k) · tk, (1)

where Pn,k denotes the set of homogeneous polynomials is n variables of degree k.
Notice that, if the ideal is zero-dimensional, the corresponding Hilbert series is actually a finite sum,

and thus a polynomial. The number of solutions is then equal to HI(1).

Example 6. For the ideal I in Example 5, the corresponding Hilbert function is HI(t) = 1 + 2t + 2t2.

In general, the Hilbert series does depend on the specific Groebner basis chosen, not only on the
ideal I. However, almost all of the relevant algebraic and geometric properties (e.g., its degree, if it is a
polynomial) are actually invariants associated only with the ideal.

3 Examples

3.1 Graph ideals

Consider a graph G = (V,E), and define the associated edge ideal IG = �xixj : (i, j) ∈ E�. Notice that
IG is a monomial ideal. For instance, for the graph in Figure 1, the corresponding ideal is given by:

IG := �x1x2, x2x3, x3x4, x4x5, x5x6, x1x6, x1x5, x3x5�.

One of the motivations for studying this kind of ideals is that many graph-theoretic properties (e.g.,
bipartiteness, acyclicity, connectedness, etc) can be understood in terms of purely algebraic properties
of the corresponding ideal. This enables the extension and generalization of these notions to much more
abstract settings (e.g., simplicial complexes, resolutions, etc).
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For our purposes here, rather than studying IG directly, we will instead study the ideal obtained
when restricting to zero-one solutions1. For this, consider the ideal Ib defined as

Ib := �x2
1 − x1, . . . , x

2
n − xn�. (2)

Clearly, this is a zero-dimensional radical ideal, with the corresponding variety having 2n distinct points,
namely {0, 1}n. Its corresponding Hilbert series is HIb(t) = (1 + t)n =

�n
k=0

�n
k

�
tk.

Since we want to study the intersection of the corresponding varieties, we must consider the sum
of the ideals, i.e., the ideal I := IG + Ib. It can be shown that the given set of generators (i.e., the
ones corresponding to the edges, and the quadratic relations in (2)) are always a Groebner basis of the
corresponding ideal. What are the standard monomials? How can they be interpreted in terms of the
graph?

The Hilbert function of the ideal I can be obtained from the Groebner basis. In this case, the
corresponding Hilbert function is given by

HI(t) = 1 + 6t + 7t2 + t3,

and we can read from the coefficient of tk the number of stable sets of size k. In particular, the degree
of the Hilbert function (which is actually a polynomial, since the ideal is zero-dimensional) indicates the
size of the maximum stable set, which is equal to three in this example (for the subset {x2, x4, x6}).

3.2 Integer programming

Another interesting application of Groebner bases deals with integer programming. For more details,
see the papers [CT91, ST97, TW97].

Consider the integer programming problem

min cT x s.t.






Ax = b

x ≥ 0
x ∈ Zn

(3)

where A ∈ Zm×n, b ∈ Zm, and c ∈ Zn. For simplicity, we assume that A, c ≥ 0, and that we know a
feasible solution x0. These assumptions can be removed.

The main idea to solve (3) will be to interpret the nonnegative integer decision variables x as the
exponents of a monomial.

Complete ToDo

Example 7. Consider the problem data given by

A =
�
4 5 6 1
1 2 7 3

�
, b =

�
750
980

�
, cT =

�
1 2 3 4

�
.

An initial feasible solution is given by x0 = [0, 30, 80, 120]T . We will work on the ring C[z1, z2, w1, w2, w3, w4].
Thus, we need to compute a Groebner basis G of the binomial ideal

�z4
1z2 − w1, z

5
1z2

2 − w2, z
6
1z7

2 − w3, z1z
3
2 − w4�,

for a term ordering that combines elimination of the zi with the weight vector c. To obtain the solu-
tion, we compute the normal form of the monomial given by the initial feasible point, i.e., w30

2 w80
3 w120

4 .
This reduction process yields the result w8

2w
106
3 w74

4 , and thus the optimal solution is [0, 8, 106, 74]. The
corresponding costs of the initial and optimal solutions are cT x0 = 780 and cT xopt = 630.

1
There are more efficient ways of doing this, that would not require adding generators. We adopt this approach to keep

the discussion relatively straightforward.
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We should remark that there are more efficients ways of implementing this than the one described.
Also, although this basic method cannot currently compete with specialized techniques used in integer
programming, there are some particular cases where it is very efficient, mostly related with the solution
of parametric problems.
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Lecture 16
Lecturer: Pablo A. Parrilo Scribe: ???

1 Generalizing the Hermite matrix

Recall the basic construction of the Hermite matrix Hq(p) in the univariate case, whose signature gave
important information on the signs of the polynomial q(x) on the real roots of p(x).

In a very similar way to the extension of the companion matrix to the multivariate case, we can
construct an analogue of the Hermite form for general zero-dimensional ideals. The basic idea is again
to consider the zero-dimensional ideal I ⊂ R[x1, . . . , xn], and an associated basis of the quotient ring
B = {xα1 , . . . , xαm}, where the elements of B are standard monomials.

For simplicity, we assume first that I is radical. In this case, the corresponding finite variety is given
by m distinct points, i.e., V (I) = {r1, . . . , rm} ⊂ Cn. Notice first that, by the definition of the matrices
Mxi , we have

�m
i=1 rα

i = Tr[Mα1
x1

· · ·Mαn
xn

]. Thus, in a similar way as we did in the univariate case, for
any polynomial q =

�
β qβxβ we have

m�

i=1

q(ri) = Tr[q(Mx1 , . . . ,Mxn)]. (1)

Once again, this implies that if we have access to matrix representations Mx1 , . . . ,Mxn , then we can
explicitly evaluate these expressions. Notice also that, if both q and the generators of the ideal have
rational coefficients, then the expression above is also a rational number (even if the roots are not).

Example 1. Consider the system in Example 4 of the previous lecture, and the polynomial p(x, y, z) =
(x + y + z)2. To evaluate the sum of the values that this polynomial takes on the variety, we compute:

p(Mx, My, Mz) = Tr (Mx + My + Mz)2 = Tr





0 0 0 0 0
2 3 2 2 2
3 2 3 2 2
2 2 2 3 2
2 2 2 2 3




= 12.

As expected, the squares of the sum of the coordinates of each of the five roots are {0, 9, 1, 1, 1}, with the
total sum being equal to 12.

Given any q ∈ R[x1, . . . , xn], we can then define a Hermite-like matrix Hq(I) as

[Hq(I)]jk :=
m�

i=1

q(ri)r
αj+αk

i . (2)

Notice that the rows and columns of Hq(I) are indexed by standard monomials.
Consider now a vector f = [f1, . . . , fm]T , and the quadratic form

fT Hq(I)f :=
m�

j,k=1

m�

i=1

q(ri)(fjr
αj

i )(fkrαk
i )

=
m�

i=1

q(ri)(f1r
α1
i + · · · + fmrαm

i )2

= Tr[(qf2)(Mx1 , . . . ,Mxn)].

(3)
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As we see, the matrix Hq(I) is a specific representation, in a basis given by standard monomials,
of a quadratic form Hq : C[x]/I → C, with Hq : f →

�m
i=1(qf

2)(ri). The expressions in (3) allow
us to explicitly compute a matrix representation of this quadratic map. (What is the other “natural”
representation of this map?)

The following theorem then generalizes the results of the univariate case, and enable, among other
things, to do root counting.

Theorem 2. The signature of the matrix Hq(I) is equal to the number of real points ri in V (I) for
which q(ri) > 0, minus the number of real points for which q(ri) < 0.

Corollary 3. Consider a zero dimensional ideal I. The signature of the matrix H1(I) is equal to the
number of real roots, i.e., |V (I) ∩ Rn|.

In the general (non-radical) case, we would take the property (3) as the definition of Hq(I), instead
of (2). Also, in Theorem 2, multiple real zeros are counted only once.

2 Parametric versions

One of the most appealing properties of Groebner-based eigenvalue methods is that they allow us to
extend many of the results to the parametric case, i.e., when we are interested in obtaining all solutions
of a polynomial system as a function of some additional parameters ηi.

Consider for simplicity the case of a single parameter η, and a polynomial system defined by pi(x, η) =
0. In order to solve this for any fixed η, we need to compute a Groebner basis of the corresponding
ideal. However, when η changes, it is possible that the resulting set of polynomials is no longer a GB. A
way of fixing this inconvenience is to compute instead a comprehensive Groebner basis, which is a set of
polynomials with the the property that it remains a Groebner basis of I for all possible specializations
of the parameters. Using the corresponding monomials as a basis for the quotient space, we can give an
eigenvalue characterization of the solutions for all values of η.

3 SOS on quotients

For simplicity, we assume throughout that the ideal I is radical. We can interpret the previous result as
essentially stating the fact that when a polynomial is nonnegative on a finite variety, then it is a sum of
squares on the quotient ring; see [Par02].

Theorem 4. Let f(x) be nonnegative on {x ∈ Rn|hi(x) = 0}. If the ideal I = �h1, . . . , hm� is radical,
then f(x) is a sum of squares in the quotient ring R[x]/I, i.e.. there exist polynomials qi, λi, such that

f(x) =
�

i

q2
i (x) +

m�

i=1

λi(x)hi(x).

Remark 5. The assumption that I is radical (or a suitable local modification) is necessary when f(x) is
nonnegative but not strictly positive. For instance, the polynomial f = x is nonnegative over the variety
defined by the (non-radical) ideal �x2�, although no decomposition of the form x = s0(x)+λ(x)x2 (where
s0 is SOS), can possibly exist.
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Lecture 17
Lecturer: Pablo A. Parrilo Scribe: ???

One of our main goals in this course is to achieve a better understanding of the techniques available
for polynomial systems over the real field. Today we discuss how to certify infeasibility for polynomial
equations over the reals, and contrast these approaches with well-known results in linear algebra, linear
programming, and complex algebraic geometry.

We will discuss the possible convergence of these schemes in the general case later in the course,
concentrating today on an elementary proof of the finite convergence in the zero-dimensional case [Par02].

1 Infeasibility of real polynomial equations

Based on what we have learned in the past weeks, we have a quite satisfactory answer to the question
of when a system of polynomial equations has solutions over the complex field. Indeed, as we have seen,
given a system of polynomial equations {hi(x) = 0, i = 1, . . . ,m}, we can form the associated ideal
I = �h1, . . . , hm�. By the Nullstellensatz, the associated complex variety V (I) (i.e., the solution set
{x ∈ Cn |hi(x) = 0}) will be empty if and only if I = C[x], or equivalently, 1 ∈ I. Computationally,
this condition can be checked by computing a reduced Groebner basis of I (with respect to any term
ordering), which will be equal to {1} if this holds.

What happens, however, when we are interested in real solutions, and not just complex ones? Or,
if not only we have equations, but also inequalities? Consider, for instance, the basic semialgebraic set
given by

S = {x ∈ Rn
| fi(x) ≥ 0, hi(x) = 0}. (1)

How to decide if the set S is empty? Can we give a Groebner-like criterion to demonstrate the infea-
sibility of this system of equations? Even worse, do we even know that this question can be decided
algorithmically1?

Fortunately for us, a famous result, the Tarski-Seidenberg theorem, guarantees the algorithmic solv-
ability of this problem (in fact, of a much larger class of problems, that may include quantifiers). We will
discuss this powerful approach in more detail later, when presenting cylindrical algebraic decomposition
(CAD) techniques, concentrating instead in a more direct way of tackling the feasibility problem.

2 Certificates

Discuss certificates: NP/co-NP, Linear algebra, LP, Nullstellensatz, P-satz ToDo

3 The zero-dimensional case

What happens in the case where the equations in the system (1) define a zero dimensional ideal? It
should be intuitively obvious that, in some sense, such a finite certificate exists. Indeed, if we had access
to all the roots, of which there are a finite number, just by evaluating the corresponding expressions we
could decide the feasibility or infeasibility. As we will see, we can actually “encode” this process in a set
of polynomials, that prove the existence of these certificates.

1
There are certainly similar-looking problems that are not decidable. A famous one is the solvability of polynomial

equations over the integers. This is Hilbert’s 10th problem, solved in 1970 by Matiyasevich; see [Dav73] for a full account

of the solution and historical remarks. This result implies, in particular, the nonexistence of an algorithm to solve integer

quadratic programming; see [Jer73].
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Theorem 1. Consider the set S in (1), and assume the ideal I = �h1, . . . , hm� is radical. Then, S if
empty if and only if there exists a decomposition

−1 = s0(x) +
�

i=1

si(x)fi(x) +
�

i=1

λi(x)hi(x).

where the si are sums of squares.

Notice that we can equivalently write

−1 ≡ s0(x) +
�

i=1

si(x)fi(x) mod I.

It should be clear that one direction of the implication is obvious (which one?).

4 Optimization

Since optimization can be interpreted as a parametrized family of feasibility problems, we can directly
apply these results towards optimization of polynomial or rational functions. For instance, we have the
following result:

Theorem 2. Let p(x) be nonnegative on S = {x ∈ Rn|fi(x) ≥ 0, hi(x) = 0}, and assume that the ideal
I = �h1, . . . , hm� is radical. Consider the optimization problem

max γ s.t. p(x)− γ = s0(x) +
�

i=1

si(x)fi(x) +
�

i=1

λi(x)hi(x).

where the si are sums of squares, and the decision variables are γ and the coefficients of the polynomials
si(x), λi(x). Then, the optimal value of γ is exactly equal to the minimum of p(x) over S.

Notice that this is exactly a sum of squares program, since all the constraints are linear and/or sum
of squares constraints.

Remark 3. The assumption that I is radical (or a suitable local modification) is necessary when p(x) is
nonnegative but not strictly positive. For instance, the polynomial p = x is nonnegative over the variety
defined by the (non-radical) ideal �x2�, although no decomposition of the form x = s0(x)+λ(x)x2 (where
s0 is SOS), can possibly exist.

More details will follow...
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Quantifier elimination (QE) is a very powerful procedure for problems involving first-order formulas
over real fields. The cylindrical algebraic decomposition (CAD) is a technique for the “efficient” im-
plementation of QE, that effectively reduces an seemingly infinite problem into a finite (but potentially
large) instance. For much more information about QE and CAD (including a reprint of Tarski’s original
1930 work), we recommend the book [CJ98].

1 Quantifier elimination

A quantifier-free formula is an expression consisting of polynomial equations (f(x) = 0) and inequalities
(f(x) ≤ 0) combined using the Boolean operators ∧ (and), ∨ (or), and ⇒ (implies). We often also allow
strict inequalities f(x) > 0 and inequations f(x) �= 0, since these are just shorthands for particular
boolean combinations of equations and inequalities.

In general, a formula (in prenex form) is an expression in the variables x = (x1, ..., xn) of the following
type:

(Q1x1)...(Qsxs) F(f1(x), ..., fr(x)) (1)

where Qi is one of the quantifiers ∀ (for all) and ∃ (there exists). Furthermore, F(f1(x), ..., fr(x)) is
assumed to be a quantifier-free formula. If there is a quantifier corresponding to the variable xi, we say
that xi is quantified, or free otherwise.

Example 1. The following are valid formulas

(∀x) [(x ≥ 0) ⇒ (x2 + ax + b ≥ 0)]

(∀x)(∃y) [x > y2]

(∀δ)(∃�) [(�2 + δ2
≤ 1) ∨ (� �= 0)] ⇒ [δ < 1].

The first formula has two free variables (since the variables a and b are unquantified), while for the other
two all variables are quantified.

We will interpret the symbols in a formula as taking only real values. Notice that a formula without
free variables (usualled called a closed formula or a sentence) is either true or false. For instance, the
last two expressions in Example 1 are sentences, with the first one being false and the second being true.
Notice also that the truth value may depend on the order of the quantifiers.

Tarski showed that for every formula including quantifiers there is always an equivalent quantifier
free formula. Obtaining the latter from the former is called quantifier elimination.

Theorem 2 (Tarski-Seidenberg). For every first-order formula over the real field there exists an equiv-
alent quantifier-free formula. Furthermore, there is an explicit algorithm to compute this quantifier-free
formula.

The Tarski-Seidenberg theorem is an extremely powerful result, since it provides a complete charac-
terization and algorithmic technique for an extremely large collection of problems involving polynomials.
Unfortunately, there are very serious computational barriers to the efficient practical implementation of
these ideas, since the resulting algorithms have extremely poor scaling properties, with respect to the
number of variables (towers of exponentials). Newer methods, such as the (partial) cylindrical algebraic
decomposition (CAD) technique due to Collins and described below, or the critical point method, are by
comparison much better. Nevertheless, by necessity they still behave exponentially (or worse) in terms
of the number of variables.
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2 Tarski-Seidenberg

Example 3. Consider the quantified first-order formula:

(∀x)(∀y) [(x2 + ay2
≤ 1) ⇒ (ax2

− a2xy + 2 ≥ 0)]. (2)

This formula is equivalent to the quantifier free expression:

(a ≥ 0) ∧ (a3
− 8a− 16 ≤ 0),

which defines the interval [0, a�], where a� ≈ 3.538. Thus, the original expression (2) is true only for
a ∈ [0, a�].

2.1 Geometric interpretation

A geometric interpretation of the Tarski-Seidenberg theorem is the following:

Theorem 4. The projection of a semialgebraic set is semialgebraic.

2.2 Applications

Add many more ToDo

Static output feedback An early application of Tarski-Seidenberg in control theory was the “so-
lution” of the static output feedback stabilization problem in [ABJ75]. Given matrices A ∈ Rn×n,
B ∈ Rn×m, we want to find a matrix K ∈ Rm×n such that the matrix A + BK is Hurwitz, i.e., all its
eigenvalues are in the left-hand plane. Since the existence of such a matrix can be easily expressed as a
formula in first order logic1, the decidability and existence of an effective (but not efficient) algorithm
immediately follows.

Simultaneous stabilization A very interesting result by Blondel [Blo94, BG93] shows that the si-
multaneous stabilization of three linear time-invariant systems is not decidable (and thus, cannot be
semialgebraic). Notice however that, for any given bound on the degree of the controller, the problem
is decidable.

3 Cylindrical Algebraic Decomposition (CAD)

There are a few approaches for effective implementation of the QE procedure. One of the most well-
known, which is also relatively easy to understand, is the cylindrical algebraic decomposition (CAD)
due to Collins [Col75]. We describe the elements of this approach below. We remark that much better
algorithms (in the theoretical complexity sense) are known; see for instance the article by Renegar
[Ren91] (also reprinted in [CJ98]) or [BPR03]. In particular, for CAD the number of operations usually
scales in a doubly exponential fashion with the number of variables, while the newer methods are doubly
exponential in the number of quantifier alternations.

1
For instance, (∃K)(∀x)(∀λ) [(A + BK)x = λx ∨ x �= 0] ⇒ [�(λ) ≤ 0]. Notice that we are being a bit sloppy with

notation, since for a fully real formulation, we should split x and λ into real and imaginary parts. There are many other

equivalent expressions, using for instance a Lyapunov equation, or the Routh array.
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3.0.1 Description

Given a set P of multivariate polynomials in n variables, a CAD is a special partition of Rn into com-
ponents, called cells, over which all the polynomials have constant signs. The algorithm for computing
a CAD also provides a point in each cell, called sample point, which can be used to determine the sign
of the polynomials in the cell.

A cell is called cylindrical if it has the form S × Rk, for some k ≤ n. A decomposition of Rn is a
CAD if all polynomials have constant sign on each cell, and all cells are cylindrical.

The CAD associated to the formula (1) depends only on its quantifier free part F(f1(x), ..., fr(x)).
Since all possible truth values of the formula are in correspondence with the values at the sample points,
we can use the CAD to evaluate its truth value, and to perform quantifier elimination.

The basic CAD construction consists of two steps: projection and lifting (plus an additional third
one, if formula construction is desired).

In the first projection phase, we computes successive sets of polynomials in n−1, n−2, ..., 1 variables.
The main idea is, given an input set of polynomials, to compute at each step a new set of polynomials
obtained by eliminating one variable at a time. In general, the elimination order does matter and a good
choice leads to lower computational complexity.

The second phase (lifting) constructs a decomposition of R, at the lowest level of projection, af-
ter all but one variable have been eliminated. This decomposition of R is successively extended to a
decomposition of Rn.

The basic operations necessary in the construction of CADs are (sub)resultants and (sub)discriminants.

Complete ToDo

An implementation of (an improved version of) the CAD method for quantifier elimination is the
software package QEPCAD [Bro03].
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Lecture 19
Lecturer: Pablo A. Parrilo Scribe: ???

Today we continue with some additional aspects of quantifier elimination. We will then recall the
Positivstellensatz and its relations with semidefinite programming. After introducing copositive matrices,
we present Pólya’s theorem on positive forms on the simplex, and the associated relaxations. Finally,
we conclude with an important result due to Schmüdgen about representation of positive polynomials
on compact sets.

1 Certificates

Talk about certificates in QE ToDo

2 Psatz revisited

Recall the statement of the Positivstellensatz.

Theorem 1 (Positivstellensatz). Consider the set S = {x ∈ Rn | fi(x) ≥ 0, hi(x) = 0}. Then,

S = ∅ ⇔ ∃f, h ∈ R[x] s.t.






f + h = −1
f ∈ cone{f1, . . . , fs}

h ∈ ideal{h1, . . . , ht}

Once again, since the conditions on the polynomials f, h are convex and affine, respectively, by re-
stricting their degree to be less than or equal to a given bound d we have a finite-dimensional semidefinite
programming problem.

2.1 Hilbert 17th problem

As we have seen, in the general case nonnegative multivariate polynomials can fail to be a sum of squares
(the Motzkin polynomial being the classical counterxample). As part of his famous list of twenty-three
problems that he presented at the International Congress of Mathematicians in 1900, David Hilbert
asked the following1:

17. Expression of definite forms by squares. A rational integral function or form
in any number of variables with real coefficient such that it becomes negative for no real
values of these variables, is said to be definite. The system of all definite forms is invariant
with respect to the operations of addition and multiplication, but the quotient of two definite
forms in case it should be an integral function of the variables is also a definite form. The
square of any form is evidently always a definite form. But since, as I have shown, not every
definite form can be compounded by addition from squares of forms, the question arises
which I have answered affirmatively for ternary forms whether every definite form may not
be expressed as a quotient of sums of squares of forms. At the same time it is desirable, for
certain questions as to the possibility of certain geometrical constructions, to know whether
the coefficients of the forms to be used in the expression may always be taken from the realm
of rationality given by the coefficients of the form represented.

1
This text was obtained from http://aleph0.clarku.edu/~djoyce/hilbert/, and corresponds to Newson’s translation

of Hilbert’s original German address. In that website you will also find links to the current status of the problems, as well

as the original German text.
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In other words, can we write every nonnegative polynomial as a sum of squares of rational functions?
As we we show next, this is a rather direct consequence of the Psatz. Of course, it should be clear (and
goes without saying) that we are (badly) inverting the historical order! In fact, much of the motivation
for the development of real algebra came from Hilbert’s question.

How can we use the Psatz to prove that a polynomial p(x) is nonnegative? Clearly, p is nonnegative
if and only if the set {x ∈ Rn | p(x) < 0} is empty. Since our version of the Psatz does not allow for
strict inequalities (there are slightly more general, though equivalent, formulations that do), we’ll need
a useful trick discussed earlier (“Rabinowitch’s trick”). Introducing a new variable z, the nonnegativity
of p(x) is equivalent to the emptiness of the set described by

−p(x) ≥ 0, 1− zp(x) = 0.

The Psatz can be used to show that this holds if and only if there exist polynomials s0, s1, t ∈ R[x, z]
such that

s0(x, z)− s1(x, z) · p + t(x, z) · (1− zp) = −1,

where s0, s1 are sums of squares. Replace now z → 1/p(x), and multiply by p2k (where k is sufficiently
large) to obtain

s̃0 − s̃1 · p = −p2k,

where s̃0, s̃1 are sums of squares in R[x]. Solving now for p, we have:

p(x) =
s̃0(x) + p(x)2k

s̃1(x)
=

s̃1(x)(s̃0(x) + p(x)2k)
s̃2
1(x)

,

and since the numerator is a sum of squares, it follows that p(x) is indeed a sum of squares of rational
functions.

3 Copositive matrices and Pólya’s theorem

An interesting class of matrices are the so-called copositive matrices, which are those for which the
associated quadratic form is nonnegative on the nonnegative orthant.

Definition 2. A matrix M ∈ Sn is copositive is it satisfies

xT Mx ≥ 0, for all xi ≥ 0.

As opposed to positive semidefiniteness, which can be checked in polynomial time, the recognition
problem for copositive matrices is an NP-hard problem. The set of copositive is a closed convex cone,
for which checking membership is a difficult problem. Its dual cone is the set of completely positive
matrices:

Definition 3. A matrix W ∈ Sn is completely positive if it is the sum of outer products of nonnegative
vectors, i.e.,

W =
m�

i

xix
T
i , xi ≥ 0.

Alternatively, it factors as W = FFT , where F is a nonnegative matrix (i.e., F = [x1, . . . , xm] ∈ Rm×n).

A good reference on completely positive matrices is [BSM03].
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Applications There are many interesting applications of copositive and completely positive matrices.
Among others, we mention:

• Consider a graph G, with A being its the adjacency matrix. The stability number α of the graph
G is equal to the cardinality of its largest stable set. By a result of Motzkin and Straus, it is known
that it can be obtained as:

1
α(G)

= min
xi≥0,

�
i xi=1

xT (I + A)x

This implies that α(G) ≤ γ if and only if the matrix γ · (I + A)− eeT is copositive.

• In the analysis of linear dynamical systems with piecewise affine dynamics, it is often convenient to
use piecewise-quadratic Lyapunov functions. In this case, we need to verify positivity conditions
of an indefinite quadratic on a polyhedron. To make this precise, consider an affine dynamical
system ẋ = Ax + b, a polyhedron S and a Lyapunov function V (x) defined by:

S :=
�

x ∈ Rn
|L

�
x
1

�
≥ 0

�
, V (x) =

�
x
1

�T

P

�
x
1

�
.

Then, conditions for V and −V̇ to be nonnegative on the set are:

P � LT C1L, P

�
A b
0 0

�
+

�
A b
0 0

�T

P � −LT C2L,

with C1, C2 copositive.

• Another interesting application of copositive matrices is in the performance analysis of queueing
networks; see e.g. [KM96]. Modulo some (important) details, the basic idea is to use a quadratic
function xT Mx as a Lyapunov function, where the matrix M is copositive and x represents the
lengths of the queues.

An important related result is Pólya’s theorem on positive forms on the simplex:

Theorem 4 (Pólya). Consider a homogeneous polynomial in n variables of degree d, that is strictly
positive in the unit simplex ∆n := {x ∈ Rn |xi ≥ 0,

�n
i=1 xi = 1}. Then, for large enough k, the

polynomial (x1 + · · · + xn)kp(x) has nonnegative coefficients.

A natural sufficient condition for a matrix M to be copositive is if we can express it as the sum of a
positive semidefinite matrix and a nonnegative matrix, i.e.,

M = P + N, P � 0, Nij ≥ 0.

It is clear that this condition can be checked via SDP. In fact, it exactly corresponds to the condition
that the polynomial p(z1, . . . , zn) := zT Mz be SOS, where z := [z2

1 , . . . , z2
n]T .

It is possible to provide a natural hierarchy of sufficient conditions for a matrix to be copositive.
Completeness of this hierarchy follows directly from Pólya’s theorem [Par00].

There are some very interesting connections between Pólya’s result and a foundational theorem in
probability known as De Finetti’s exchangeability theorem.

Expand... ToDo
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4 Positive polynomials

The Positivstellensatz allows us to obtain certificates of the emptiness of a basic semialgebraic set,
explicitly given by polynomials.

What if we want to apply this for optimization? As we have seen, it is relatively straightforward to
convert an optimization problem to a family of feasibility problems, by considering the sublevel sets, i.e.,
the sets {x ∈ Rn | f(x) ≤ γ}.

In the general case of constrained problems, however, using the Psatz we will require conditions that
are not linear in the unknown parameter γ (because we need products between the contraints), and this
presents a difficulty to the direct use of SDP. Notice nevertheless, that the problem is certainly an SDP
for any fixed value of γ, and it thus quasiconvex (which is almost as good, except for the fact that we
cannot use “standard” SDP solvers to solve it directly, but rather rely on methods such as bisection).

Theorem 5 ([Sch91]). If p(x) is strictly positive on K = {x ∈ Rn | fi(x) ≥ 0}, and K is compact, then
p(x) ∈ cone{f1, . . . , fs}.

In the next lecture we will describe the basic elements of Schmüdgen’s proof. His approach com-
bines both algebraic tools (using the Positivstellensatz to prove the boundedness of certain operators)
and functional analysis (spectral measures of commuting families of operators and the Hahn-Banach
theorem). We will also describe some alternative versions due to Putinar, as well as a related purely
functional-analytic result due to Megretski.

For a comprehensive treatment and additional references, we mention [BCR98, Mar00, PD01] among
others.

References

[BCR98] J. Bochnak, M. Coste, and M-F. Roy. Real Algebraic Geometry. Springer, 1998.

[BSM03] A. Berman and N. Shaked-Monderer. Completely positive matrices. World Scientific, 2003.

[KM96] P. R. Kumar and S. P. Meyn. Duality and linear programs for stability and performance
analysis of queuing networks and scheduling policies. IEEE Trans. Automat. Control, 41(1):4–
17, 1996.

[Mar00] M. Marshall. Positive polynomials and sums of squares. Dottorato de Ricerca in Matematica.
Dept. di Mat., Univ. Pisa, 2000.

[MJ81] D.H. Martin and D.H. Jacobson. Copositive matrices and definiteness of quadratic forms
subject to homogeneous linear inequality constraints. Linear Algebra and its Applications,
35:227–258, 1981.

[Par00] P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robust-
ness and optimization. PhD thesis, California Institute of Technology, May 2000. Available at
http://resolver.caltech.edu/CaltechETD:etd-05062004-055516.

[PD01] A. Prestel and C. N. Delzell. Positive polynomials: from Hilbert’s 17th problem to real algebra.
Springer Monographs in Mathematics. Springer, 2001.
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Lecture 20
Lecturer: Pablo A. Parrilo Scribe: ???

In this lecture we introduce Schmüdgen’s theorem about the K-moment problem (or equivalently, on
the representation of positive polynomials) and describe the basic elements in his proof. This approach
combines both algebraic tools (using the Positivstellensatz to prove the boundedness of certain operators)
and functional analysis (spectral measures of commuting families of operators and the Hahn-Banach
theorem). We will also describe some alternative versions due to Putinar, as well as a related purely
functional-analytic result due to Megretski.

For a comprehensive treatment and additional references, we mention [BCR98, Mar00, PD01] among
others.

1 Positive polynomials

As we have seen, the Positivstellensatz allows us to obtain certificates of the emptiness of a basic
semialgebraic set, explicitly given by polynomials. When looking for bounded degree certificates, this
provides a natural hierarchy of SDP-based conditions [Par00, Par03].

What if we want to apply this for the particular case of optimization? As we have seen, it is relatively
straightforward to convert a polynomial optimization problem to a one-parameter family of feasibility
problems, by considering the sublevel sets, i.e., the sets {x ∈ Rn | f(x) ≤ γ}.

In the general case of constrained problems, however, using the full power of the Psatz will yield
conditions that are not linear in the unknown parameter γ (because we need products between the
constraints and objective function), and in principle, this presents a difficulty to the direct use of SDP.
Notice nevertheless, that the problem is certainly an SDP for any fixed value of γ, and is thus quasiconvex
(which is almost as good, except for the fact that we cannot use “standard” SDP solvers to solve it
directly, but rather rely on methods such as bisection).

Of course, we can always produce specific families of certificates that are linear in γ, and use them
for optimization (e.g., like we did in the copositivity case). However, in general it is unclear whether the
desired family is “complete,” in the sense that we will be able to prove arbitrarily good bounds on the
optimal value as the degree of the polynomials grows to infinity.

2 Schmüdgen’s theorem

In 1991, Schmüdgen presented a characterization of the moment sequences of measures supported on a
compact semialgebraic K (the K-moment problem). As in the one-dimensional case we studied earlier
the question is, given an (infinite) sequence of moments, decide whether it actually corresponds to a
nonnegative measure with support on a given set K.

His solution combined both real algebraic methods (the Psatz), with some functional analytic tools
(reproducing kernel Hilbert spaces, bounded operators, and the spectral theorem).

This characterization of moment sequences can be used, in turn, to produce an explicit description
of the set of strictly positive polynomials on a compact semialgebraic set:

Theorem 1 ([Sch91]). If p(x) is strictly positive on K = {x ∈ Rn | fi(x) ≥ 0}, and K is compact, then
p(x) ∈ cone{f1, . . . , fm}.

expand ToDo

There are several interesting ideas in the proof; a coarse description follows. The first step is to use
the Positivstellensatz to produce an algebraic certificate of the compactness of the set K. Then the
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given moment sequence (which is a positive definite function on the semigroup of monomials) is used to
construct a particular pre-Hilbert space and its completion (namely, the associated reproducing kernel
Hilbert space). In this Hilbert space, we consider linear operators Txi given by multiplication by the
coordinate variables, and use the algebraic certificate of compactness to prove that these are bounded.
Now, the Txi are a finite collection of pairwise commuting, bounded, self-adjoint operators, and thus
there exists a spectral measure for the family, from which a measure, only supported in K, can be
extracted. Finally, a Hahn-Banach (separating hyperplane) argument is used to prove the final result.

2.1 Putinar’s approach

The theorem in the previous section requires (in principle) all 2m−1 squarefree products of constraints1.
Putinar [Put93] presented a modified formulation (under stronger assumptions) for which the represen-
tation is linear in the constraints. We introduce the following concept:

Definition 2. Let {f1, . . . , fm} ⊂ R[x]. The preprime generated by the fi, and denoted by preprime{f1, . . . , fm}

is the set of all polynomials of the form s0 + s1f1 + · · · + smfm, where all the si are sums of squares.

Notice that preprime{fi} ⊂ cone{fi}, and that every element in the preprime takes only nonneg-
ative values on {x ∈ Rn, fi(x) ≥ 0}.

Theorem 3 ([Put93]). Consider a set K = {x ∈ Rn | fi(x) ≥ 0}, such that there exists a q ∈

preprime{f1, . . . , fm} and {x ∈ Rn, q(x) ≥ 0} is compact (this implies that K is compact). Then,
p(x) > 0 on K if and only if p(x) ∈ preprime{f1, . . . , fm}.

Notice that here, the polynomial q serves as an algebraic certificate of the compactness of K, so in
this case the Psatz is not needed.

Putinar’s theorem was used by Lasserre to present a hierarchy of semidefinite relaxations for poly-
nomial optimization, based on the dual moment interpretation [Las01].

2.2 Tradeoffs

In principle (and often, in practice) there is a tradeoff between how “expressive” our family of certificates
is, the quality of the resulting bounds, and the complexity of finding proofs.

On one extreme, the most general method is the Psatz, as it encapsulates pretty much every possi-
ble “algebraic deduction,” and will certainly provide the strongest bounds, since it includes the other
techniques as special cases. For optimization, Schmüdgen’s theorem provides the advantages of a linear
representation, although (possibly) at the cost of having a large number of products between the con-
straints. Finally, the Putinar approach has a reduced number of constraints (and thus, SOS multipliers),
although the obtained bounds can potentially be much weaker than the previous ones.

In the end, the decision concerning what approach to use should be dictated by the available com-
putational resources, i.e., the size of the SDPs that we can solve in a reasonable time. It is not difficult
to produce examples with significant gaps between the corresponding bounds; see for instance [Ste96]
for a particularly simple example, that is trivial for the Psatz, but for which either the Schmüdgen or
Putinar representations need large degree refutations.

Example 4. In [Ste96], Stengle presented an interesting example to assess the computational require-
ments of Schmüdgen’s theorem. His concrete example was to find a representation certifying the non-
negativity of f(x) := 1− x2 over g(x) := (1− x2)3 ≥ 0.

The Positivstellansatz gives a very simple certificate of this property, or equivalently, the emptiness
of the set {g(x) ≥ 0,−f(x) ≥ 0, zf(x) − 1 = 0} (where we have used, as before, Rabinowitch’s trick).
Indeed, we have the identity:

z4
· (−f) · g + (zf − 1) · (z3f3 + z2f2 + zf + 1) = −1.

1
Recall that in practice, this may not be a issue at all, since the restriction on the degree of the certificates imposes a

strict limit on how many products can be included.
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Using a simple argument, Stengle proved in [Ste96], that no representation of the form (1) exists
when γ = 0.

(1− x2) + γ = Q(x) + P (x)(1− x2)3, (1)

where Q(x), P (x) are sums of squares.
Furthermore, he has shown that γ → 0, the degrees of P,Q satisfying the identity necessarily have to

go to infinity, and provided the bounds O(γ− 1
2 ) ≤ deg(P ) ≤ O(γ− 1

2 log 1
γ ).

As an interesting aside, it can be shown that the optimal solution of this problem can be exactly
computed:

Theorem 5. Let the degree of P (x) be equal to 4N . Then, the optimal solution that minimizes γ in (1)
has:

γ∗N =
1

(2N + 2)2 − 1
, P (x) = p(x)2, Q(x) = q(x)2

where

p(x) = 2(N + 1) 2F1(−N,N + 2 ;
1
2
;x2)

q(x) =
1

γ∗N
x 2F1(−N − 1, N + 1 ; 3

2 ;x2)

and 2F1(a, b; c, x) is the standard Gauss hypergeometric function [AS64, Chapter 15].

2.3 Trigonometric case

Recently, Megretski [Meg03] analyzed the trigonometric case. We introduce the following notation: let
Tn = {z ∈ Cn, |zi| = 1} be the n-dimensional torus, Pn is the set of multivariate Laurent polynomials,
and RPn ⊂ Pn are the Laurent polynomials that are real-valued on Tn.

Theorem 6 ([Meg03]). Let {F,Q1, . . . , Qm} ⊂ RPn , such that F (z) > 0 for all z ∈ Tn satisfying
Q1(z) = . . . = Qm(z) = 0. Then there exist V1, . . . , Vr ∈ Pn, H1, . . . ,Hm ∈ RPn, such that

F (z) =
r�

i=1

|Vi(z)|2 +
m�

j=1

Hj(z)Qi(z).

Notice that, by splitting into real and imaginary part, this corresponds to a special kind of (standard)
polynomials, and a compact semialgebraic set (so in principle, any of the previous theorems would apply).
Of course, the result exploits the complex structure for a more concise representation.

In particular, Megretski’s proof is purely functional-analytic, the main tools being Bochner’s theorem
and Hahn-Banach. Bochner’s theorem is an important result in harmonic analysis, that characterizes a
positive definite function on an Abelian group in terms of the nonnegativity of its Fourier transform.

Notice that the theorem above deals only with the equality case (no inequalities), and the feasible set
is compact (since so it Tn). It essentially states that a positive polynomial is a sum of squares modulo
the ideal generated by the Qi. Recall we have proved similar results in the zero-dimensional case, and
this theorem naturally generalizes these.

In simplified terms, one reason why trigonometric (or Laurent) polynomials are somewhat “easier”
than the general case is because in this case there is a group structure, as opposed to the semigroup
structure of regular monomials. For the group case, the corresponding theory is the classical harmonic
analysis on abelian groups (e.g., [Rud90]); while for semigroups there is the newer, but well-developed
characterizations of positive definite functions on (Abelian) semigroups; see for instance [BCR84].

We also mention that there are “purely algebraic” versions of these theorems, that do not use func-
tional analytic ideas (e.g., [Mar00]). Roughly, the role played by the compactness of K in proving the
boundedness of the operators Txi is replaced with a property called Archimedeanity of the corresponding
preorder.
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Lecture 21
Lecturer: Pablo A. Parrilo Scribe: ???

In this lecture we study techniques to exploit the symmetry that can be present in semidefinite
programming problems, particularly those arising from sum of squares decompositions [GP04]. For this,
we present the basic elements of the representation theory of finite groups. There are many possible
applications of these ideas in different fields; for the case of Markov chains, see [BDPX05]. The celebrated
Delsarte linear programming upper bound for codes (and generalizations by Levenshtein, McEliece, etc.,
[DL98]) can be understood as a natural symmetry reduction of the SDP relaxations based on the Lovász
theta function; see e.g. [Sch79].

1 Groups and their representations

The representation theory of finite groups is a classical topic; good descriptions are given in [FS92, Ser77].
We concentrate here on the finite case; extensions to compact groups are relatively straightforward.

Definition 1. A group consists of a set G and a binary operation “·” defined on G, for which the
following conditions are satisfied:

1. Associative: (a · b) · c = a · (b · c), for all a, b, c ∈ G.

2. Identity: There exist 1 ∈ G such that a · 1 = 1 · a = a, for all a ∈ G.

3. Inverse: Given a ∈ G, there exists b ∈ G such that a · b = b · a = 1.

We consider a finite group G, and an n-dimensional vector space V . We define the associated (infinite)
group GL(V ), which we can interpret as the set of invertible n× n matrices. A linear representation of
the group G is a homomorphism ρ : G → GL(V ). In other words, we have a mapping from the group
into linear transformations of V , that respects the group structure, i.e.

ρ(st) = ρ(s)ρ(t) ∀s, t ∈ G.

Example 2. Let ρ(g) = 1 for all g ∈ G. This is the trivial representation of the group.

Example 3. For a more interesting example, consider the symmetric group Sn, and the “natural”
representation ρ : Sn → GL(Cn), where ρ(g) is a permutation matrix. For instance, for the group of
permutations of two elements, S2 = {e, g}, where g2 = e, we have

ρ(e) =
�
1 0
0 1

�
, ρ(g) =

�
0 1
1 0

�
.

The representation given in Example 3 has an interesting property. The set of matrices {ρ(e), ρ(g)}
have common invariant subspaces (other than the trivial ones, namely (0, 0) and C2). Indeed, we can eas-
ily verify that the (orthogonal) one-dimensional subspaces given by (t, t) and (t,−t) are invariant under
the action of these matrices. Therefore, the restriction of ρ to those subspaces also gives representations
of the group G. In this case, the one corresponding to the subspace (t, t) is “equivalent” (in a well-defined
sense) to the trivial representation described in Example 2. The other subspace (t,−t) gives the one-
dimensional alternating representation of S2, namely ρA(e) = 1, ρA(g) = −1. Thus, the representation
ρ decomposes as ρ = ρT ⊕ ρA, a direct sum of the trivial and the alternating representations.

The same ideas extend to arbitrary finite groups.

Definition 4. An irreducible representation of a group is a linear representation with no nontrivial
invariant subspaces.
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Non convex Convex

Figure 1: Two symmetric optimization problems, one non-convex and the other convex. For the latter,
optimal solutions always lie on the fixed-point subspace.

Theorem 5. Every finite group G has a finite number of nonequivalent irreducible representations ρi,
of dimension di. The relation

�
i d2

i = |G| holds.

Example 6. Consider the group S3 (permutations in three elements). This group is generated by the
two permutations s : 123 → 213 and c : 123 → 312 (“swap” and “cycle”), and has six elements
{e, s, c, c2, cs, sc}. Notice that c3 = e, s2 = e, and s = csc.

The group S3 has three irreducible representations, two one-dimensional, and one two-dimensional
(so 12 + 12 + 22 = |S3| = 6). These are:

ρT (s) = 1, ρT (c) = 1
ρA(s) = −1, ρA(c) = 1

ρS(s) =
�
0 1
1 0

�
, ρS(c) =

�
ω 0
0 ω2

�

where ω = e
2πi
3 is a cube root of 1. Notice that it is enough to specify a representation on the generators

of the group.

1.1 Symmetry and convexity

A key property of symmetric convex sets is the fact that the “group average” 1
|G|

�
g∈G σ(g)x always

belongs to the set.
Therefore, in convex optimization we can always restrict the solution to the fixed-point subspace

F := {x|σ(g)x = x, ∀g ∈ G}.

In other words, for convex problems, no “symmetry-breaking” is ever necessary.
As another interpretation, that will prove useful later, the “natural” decision variables of a symmetric

optimization problem are the orbits, not the points themselves. Thus, we may look for solutions in the
quotient space.

1.2 Invariant SDPs

We consider a general SDP, described in geometric form. If L is an affine subspace of Sn, and C, X ∈ Sn,
an SDP is given by:

min�C, X� s.t. X ∈ X := L ∩ S
n
+.
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Definition 7. Given a finite group G, and associated representation σ : G → GL(Sn), a σ-invariant
SDP is one where both the feasible set and the cost function are invariant under the group action, i.e.,

�C, X� = �C, σ(g)X�, ∀g ∈ G, X ∈ X ⇒ σ(g)X ∈ X ∀g ∈ G

Example 8. Consider the SDP given by

min a + c, s.t.
�

a b
b c

�
� 0,

which is invariant under the Z2 action:
�

X11 X12

X12 X22

�
→

�
X22 −X12

−X12 X11

�
.

Usually in SDP, the group acts on Sn through a congruence transformation, i.e., σ(g)M = ρ(g)T Mρ(g),
where ρ is a representation of G on Cn. In this case, the restriction to the fixed-point subspace takes
the form:

σ(g)M = M =⇒ ρ(g)M −Mρ(g) = 0, ∀g ∈ G. (1)

The Schur lemma of representation theory exactly characterizes the matrices that commute with a group
action.

As a consequence of an important structural result (Schur’s lemma), it turns out that every repre-
sentation can be written in terms of a finite number of primitive blocks, the irreducible representations
of a group.

Theorem 9. Every group representation ρ decomposes as a direct sum of irreducible representations:

ρ = m1ϑ1 ⊕m2ϑ2 ⊕ · · ·⊕mNϑN

where m1, . . . ,mN are the multiplicities.

This decomposition induces an isotypic decomposition of the space

Cn = V1 ⊕ · · ·⊕ VN , Vi = Vi1 ⊕ · · ·⊕ Vini .

In the symmetry-adapted basis, the matrices in the SDP have a block diagonal form:

(Im1 ⊗M1)⊕ . . .⊕ (ImN ⊗MN )

In terms of our symmetry-reduced SDPs, this means that not only the SDP block-diagonalizes, but
there is also the possibility that many blocks are identical.

1.3 Example: symmetric graphs

Consider the MAXCUT problem on the cycle graph Cn with n vertices (see Figure 2). It is easy to see
that the optimal cut has cost equal to n or n− 1, depending on whether n is even or odd, respectively.
What would the SDP relaxation yield in this case? If A is the adjacency matrix of the graph, then the
SDP relaxations have essentially the form

minimize Tr AX

s.t. Xii = 1
X � 0

maximize TrΛ
s.t. A � Λ

Λ diagonal
(2)

By the symmetry of the graph, the matrix A is circulant, i.e., Aij = ai−j mod n.
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Figure 2: The cyclic graph Cn in n vertices (here, n = 9).

We focus now on the dual form. It should be clear that the cyclic symmetry of the graph in-
duces a cyclic symmetry in the SDP, i.e., if Λ = diag(λ1, λ2, . . . ,λn) is a feasible solution, then
Λ̃ = diag(λn, λ1, λ2, . . . ,λn−1) is also feasible and achieves the same objective value. Thus, by av-
eraging over the cyclic group, we can always restrict D to be a multiple of the identity matrix, i.e.,
Λ = λI. Furthermore, the constraint A � λI can be block-diagonalized via the Fourier matrix (i.e., the
irreducible representations of the cyclic group), yielding:

A � λI ⇔ 2 cos
kπ

n
≥ λ k = 0, . . . , n− 1.

From this, the optimal solution of the relaxation can be directly computed, yielding the exact expressions
for the upper bound on the size of the cut

mc(Cn) ≤ SDP (Cn) =

�
n n even
n cos2 π

2n n odd.

Although this example is extremely simple, exactly the same techniques can be applied to much more
complicated problems; see for instance [PP04, dKMP+06, Sch05, BV08] for some recent examples.

1.4 Example: even polynomials

Another (but illustrative) example of symmetry reduction is the case of SOS decompositions of even
polynomials. Consider a polynomial p(x) that is even, i.e., it satisfies p(x) = p(−x). Does this symmetry
help in making the computations more efficient?

Complete ToDo

1.5 Benefits

In the case of semidefinite programming, there are many benefits to exploiting symmetry:

• Replace one big SDP with smaller, coupled problems.

• Instead of checking if a big matrix is PSD, we use one copy of each repeated block (constraint
aggregation).

• Eliminates multiple eigenvalues (numerical difficulties).

• For groups, the coordinate change depends only on the group, and not on the problem data.

• Can be used as a general preprocessing scheme. The coordinate change T is unitary, so well-
conditioned.

As we will see in the next section, this approach can be extended to more general algebras that do not
necessarily arise from groups.

21-4



1.6 Sum of squares

In the case of SDPs arising from sum of squares decompositions, a parallel theory can be developed
by considering the symmetry-induced decomposition of the full polynomial ring R[x]. Since the details
involve some elements of invariant theory, we omit the details here; see [GP04] for the full story.

Include example ToDo

2 Algebra decomposition

An alternative (and somewhat more general) approach can be obtained by focusing instead on the
associative algebra generated by the matrices in a semidefinite program.

Definition 10. An associative algebra A over C is a vector space with a C-bilinear operation · : A×A→

A that satisfies
x · (y · z) = (x · y) · z, ∀x, y, z ∈ A.

In general, associative algebras do not need to be commutative (i.e., x · y = y · x). However, that is
an important special case, with many interesting properties. Important examples of finite dimensional
associative algebras are:

• Full matrix algebra Cn×n, standard product.

• The subalgebra of square matrices with equal row and column sums.

• The n-dimensional algebra generated by a single n× n matrix.

• The group algebra: formal C-linear combination of group elements.

• Polynomial multiplication modulo a zero dimensional ideal.

• The Bose-Mesner algebra of an association scheme.

We have already encountered some of these, when studying the companion matrix and its general-
izations to the multivariate case. A particularly interesting class of algebras (for a variety of reasons)
are the semisimple algebras.

Definition 11. The radical of an associative algebra A, denoted rad(A), is the intersection of all
maximal left ideals of A.

Definition 12. An associative algebra A is semisimple if Rad(A) = 0.

For a semidefinite programming problem in standard (dual) form

max bT y s.t. A0 −

m�

i=1

Aiyi � 0,

we consider the algebra generated by the Ai.

Theorem 13. Let {A0, . . . , Am} be given symmetric matrices, and A the generated associative algebra.
Then, A is a semisimple algebra.

Semisimple algebras have a very nice structure, since they are essentially the direct sum of much
simpler algebras.
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Theorem 14 (Wedderburn). Every finite dimensional semisimple associative algebra over C can be
decomposed as a direct sum

A = A1 ⊕A2 ⊕ . . .⊕Ak.

Each Ai is isomorphic to a simple full matrix algebra.

Example 15. A well-known example is the (commutative) algebra of circulant matrices, i.e., those of
the form

A =





a1 a2 a3 a4

a4 a1 a2 a3

a3 a4 a1 a2

a2 a3 a4 a1



 .

Circulant matrices are ubiquitous in many applications, such as signal processing. It is well-known that
there exists a fixed coordinate change (the Fourier matrix) under which all matrices A are diagonal (with
distinct scalar blocks).

Remark 16. In general, any associative algebra is the direct sum of its radical and a semisimple algebra.
For the n-dimensional algebra generated by a single matrix A ∈ Cn×n, we have that A = S + N , where
S is diagonalizable, N is nilpotent, and SN = NS. Thus, this statement is essentially equivalent to the
existence of the Jordan decomposition.
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Lecture 22
Lecturer: Pablo A. Parrilo Scribe: ???

In this lecture we revisit a few questions raised at different points during the course, and reexamine
them under the light of the results we have learned. Finally, we point out several interesting research
directions and open problems.

1 SDP representations for convex semialgebraic sets

One of the main questions we were originally interested in is the possible existence of exact semidefinite
representations for arbitrary convex basic semialgebraic sets. While the full question still remains open,
the SOS approach allows us to settle the approximation question.

Indeed, as we have seen, we have learned how to optimize arbitrary polynomials over semialgebraic
sets. Recall that convex sets are uniquely defined by their set of supporting hyperplanes. Therefore, by
minimizing arbitrary affine functions over the set, we can produce (an inner approximation of) all the
separating hyperplanes, and by duality, we obtain an outer approximation of the original set. These can
be directly interpreted in terms of a “lifting” of the original set into a higher-dimensional space.

As we have seen, in general, this procedure can only guarantee approximate representations, since
both the Putinar and Schmüdgen-type results apply only to strictly positive polynomials (and thus,
only strictly separating hyperplanes are guaranteed). Of course, it is of interest to develop alternative
approximation procedures, or special problem classes, for which exact representations hold. An example
of this is provided in the next section.

2 Exact SDP representations for genus zero curves

We present now a particular class of convex sets in the plane, for which we can guarantee exact semidef-
inite representations.

A (real) plane algebraic curve is the set in R2 defined by a single polynomial equation p(x, y) = 0.
An important invariant of a plane curve is its genus. This is usually defined algebraically, in terms of
the degree of the curve and the number of singularities. It also corresponds (in the nonsingular case) to
the topological genus of the associated Riemann surface, i.e., the complex surface p(z1, z2) = 0, where
ziinC.

The crucial property (for us) of genus zero curves is the fact that they are rational curves, i.e., it is
possible to parametrize them in terms of rational functions of a single parameter t, i.e., (x(t), y(t)) =
( r1(t)

r2(t)
, r3(t)

r4(t)
).

Example 1. Consider the lemniscate p(x, y) = y4 + 2y2x2 + x4 + y2 − x2, illustrated in Figure 1. This
curve has genus zero, and the rational representation:

x(t) =
t(1 + t2)
1 + t4

, y(t) =
t(1− t2)
1 + t4

.

For this class of curves, we have the following result:

Theorem 2 ([Para]). Consider a plane algebraic curve p(x, y) = 0 of genus zero. Consider the set S,
defined as the convex hull of a finite collection of closed segments of the curve. Then, the set S has an
exact representation in terms of semidefinite constraints.
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Figure 1: Lemniscate curve. This is a genus zero (rational) curve.

3 Outlook and additional topics

There are many interesting research directions and open problems in this general area. Of paramount
interest is a better integration between “purely symbolic” and “purely numerical” approaches. There are
significant strenghts in both viewpoints, and a much more unified understanding of these is necessary.
SOS-based methods are a good ground for this in the case of real algebra, but are by no means the only
possible approach (see for instance [Ste04] for polynomial equation solving).

In this direction, several issues deserve a much more careful attention:

• Numerical conditioning issues.

• Efficient formulation and solution of SOS-based SDPs.

Among other interesting applications, we mention:

• Games with strategy sets and payoffs that are semialgebraic [Parb, SOP].

• Safety and performance analysis of hybrid systems [PJ04].

• Separability and entanglement of quantum systems [DPS02, DPS04].

• Geometric inequalities [PP04].

For systems and control applications, the volume [HG05] is a good starting point.
On the theoretical side of SOS/SDP methods, there are many aspects that deserve a better under-

standing, and several interesting new developments:

• Polynomial matrix constraints [HS04, Koj03].

• Sparse relaxations [KKW05]

• Fast methods for SOS-based SDPs [GHND03, LP04, RV].

Incomplete, add many more ToDo
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1 Introduction

Consider a given system of polynomial equations and
inequalities, for instance:

f1(x1, x2) := x2
1 + x2

2 − 1 = 0,

g1(x1, x2) := 3 x2 − x3
1 − 2 ≥ 0,

g2(x1, x2) := x1 − 8 x3
2 ≥ 0.

(1)

How can one find real solutions (x1, x2)? How to
prove that they do not exist? And if the solution set
is nonempty, how to optimize a polynomial function
over this set?

Until a few years ago, the default answer to these
and similar questions would have been that the possi-
ble nonconvexity of the feasible set and/or objective
function precludes any kind of analytic global results.
Even today, the methods of choice for most prac-
titioners would probably employ mostly local tech-
niques (Newton’s and its variations), possibly com-
plemented by a systematic search using deterministic
or stochastic exploration of the solution space, inter-
val analysis or branch and bound.

However, very recently there have been renewed
hopes for the efficient solution of specific instances of
this kind of problems. The main reason is the appear-
ance of methods that combine in a very interesting
fashion ideas from real algebraic geometry and convex
optimization [27, 30, 21]. As we will see, these meth-
ods are based on the intimate links between sum of
squares decompositions for multivariate polynomials
and semidefinite programming (SDP).

In this note we outline the essential elements of
this new research approach as introduced in [30, 32],
and provide pointers to the literature. The center-
pieces will be the following two facts about multi-
variate polynomials and systems of polynomials in-
equalities:

Sum of squares decompositions can be com-
puted using semidefinite programming.

The search for infeasibility certificates is a
convex problem. For bounded degree, it is
an SDP.

In the rest of this note, we define the basic ideas
needed to make the assertions above precise, and ex-
plain the relationship with earlier techniques. For
this, we will introduce sum of squares polynomials
and the notion of sum of squares programs. We then
explain how to use them to provide infeasibility cer-
tificates for systems of polynomial inequalities, finally
putting it all together via the surprising connections
with optimization.

On a related but different note, we mention a grow-
ing body of work also aimed at the integration of ideas
from algebra and optimization, but centered instead
on integer programming and toric ideals; see for in-
stance [7, 42, 3] and the volume [1] as starting points.

2 Sums of squares and SOS
programs

Our notation is mostly standard. The monomial xα

associated to the n-tuple α = (α1, . . . ,αn) has the
form xα1

1 . . . xαn
n , where αi ∈ N0. The degree of a

monomial xα is the nonnegative integer
�n

i=1 αi. A
polynomial is a finite linear combination of monomi-
als

�
α∈S cαxα, where the coefficients cα are real. If

all the monomials have the same degree d, we will call
the polynomial homogeneous of degree d. We denote
the ring of multivariate polynomials with real coeffi-
cients in the indeterminates {x1, . . . , xn} as R[x].

A multivariate polynomial is a sum of squares
(SOS) if it can be written as a sum of squares of
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other polynomials, i.e.,

p(x) =
�

i

q2
i (x), qi(x) ∈ R[x].

If p(x) is SOS then clearly p(x) ≥ 0 for all x. In
general, SOS decompositions are not unique.

Example 1 The polynomial p(x1, x2) = x2
1−x1x2

2 +
x4

2 + 1 is SOS. Among infinite others, it has the de-
compositions:

p(x1, x2) =
3
4
(x1 − x2

2)
2 +

1
4
(x1 + x2

2)
2 + 1

=
1
9
(3− x2

2)
2 +

2
3
x2

2 +

+
1

288
(9x1 − 16x2

2)
2 +

23
32

x2
1.

The sum of squares condition is a quite natural suf-
ficient test for polynomial nonnegativity. Its rich
mathematical structure has been analyzed in detail in
the past, notably by Reznick and his coauthors [6, 38],
but until very recently the computational implica-
tions have not been fully explored. In the last few
years there have been some very interesting new de-
velopments surrounding sums of squares, where sev-
eral independent approaches have produced a wide
array of results linking foundational questions in al-
gebra with computational possibilities arising from
convex optimization. Most of them employ semidef-
inite programming (SDP) as the essential computa-
tional tool. For completeness, we present in the next
paragraph a brief summary of SDP.

Semidefinite programming SDP is a broad gen-
eralization of linear programming (LP), to the case
of symmetric matrices. Denoting by Sn the space of
n×n symmetric matrices, the standard SDP primal-
dual formulation is:

minX C • X s.t.
�

Ai • X = bi, i = 1, . . . ,m
X � 0

maxy bT y, s.t.
�m

i=1 Aiyi � C
(2)

where Ai, C, X ∈ Sn and b, y ∈ Rm. The matrix
inequalities are to be interpreted in the partial or-
der induced by the positive semidefinite cone, i.e.,
X � Y means that X − Y is a positive semidefinite
matrix. Since its appearance almost a decade ago
(related ideas, such as eigenvalue optimization, have
been around for decades) there has been a true “rev-
olution” in computational methods, supported by an

astonishing variety of applications. By now there are
several excellent introductions to SDP; among them
we mention the well-known work of Vandenberghe
and Boyd [44] as a wonderful survey of the basic the-
ory and initial applications, and the handbook [45]
for a comprehensive treatment of the many aspects
of the subject. Other survey works, covering differ-
ent complementary aspects are the early work by Al-
izadeh [2], Goemans [15], as well as the more recent
ones due to Todd [43], De Klerk [9] and Laurent and
Rendl [25].

From SDP to SOS The main object of interest in
semidefinite programming is

Quadratic forms, that are positive semi-
definite.

When attempting to generalize this construction to
homogeneous polynomials of higher degree, an un-
surmountable difficulty that appears is the fact that
deciding nonnegativity for quartic or higher degree
forms is an NP-hard problem. Therefore, a computa-
tional tractable replacement for this is the following:

Even degree polynomials, that are sums
of squares.

Sum of squares programs can then be defined as op-
timization problems over affine families of polynomi-
als, subject to SOS contraints. Like SDPs, there are
several possible equivalent descriptions. We choose
below a free variables formulation, to highlight the
analogy with the standard SDP dual form discussed
above.

Definition 1 A sum of squares program has the
form

maxy b1y1 + · · · + bmym

s.t. Pi(x, y) are SOS, i = 1, . . . , p

where Pi(x, y) := Ci(x)+Ai1(x)y1 + · · ·+Aim(x)ym,
and the Ci, Aij are given polynomials in the variables
xi.

SOS programs are very useful, since they directly op-
erate with polynomials as their basic objects, thus
providing a quite natural modelling formulation for
many problems. Among others, examples for this are
the search for Lyapunov functions for nonlinear sys-
tems [30, 28], probability inequalities [4], as well as
the relaxations in [30, 21] discussed below.

Interestingly enough, despite their apparently
greater generality, sum of squares programs are in
fact equivalent to SDPs. On the one hand, by choos-
ing the polynomials Ci(x), Aij(x) to be quadratic
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forms, we recover standard SDP. On the other hand,
as we will see in the next section, it is possible to
exactly embed every SOS program into a larger SDP.
Nevertheless, the rich algebraic structure of SOS pro-
grams will allow us a much deeper understanding of
their special properties, as well as enable customized,
more efficient algorithms for their solution [26].

Furthermore, as illustrated in later sections, there
are numerous questions related to some foundational
issues in nonconvex optimization that have simple
and natural formulations as SOS programs.

SOS programs as SDPs Sum of squares pro-
grams can be written as SDPs. The reason is the
following theorem:

Theorem 1 A polynomial p(x) is SOS if and only
if p(x) = zT Qz, where z is a vector of monomials in
the xi variables, Q ∈ SN and Q � 0.

In other words, every SOS polynomial can be written
as a quadratic form in a set of monomials of cardinal-
ity N , with the corresponding matrix being positive
semidefinite. The vector of monomials z (and there-
fore N) in general depends on the degree and sparsity
pattern of p(x). If p(x) has n variables and total de-
gree 2d, then z can always be chosen as a subset of
the set of monomials of degree less than or equal to
d, of cardinality N =

�n+d
d

�
.

Example 2 Consider again the polynomial from Ex-
ample 1. It has the representation

p(x1, x2) =
1
6





1
x2

x2
2

x1





T 



6 0 −2 0
0 4 0 0

−2 0 6 −3
0 0 −3 6









1
x2

x2
2

x1



 ,

and the matrix in the expression above is positive
semidefinite.

In the representation f(x) = zT Qz, for the right-
and left-hand sides to be identical, all the coefficients
of the corresponding polynomials should be equal.
Since Q is simultaneously constrained by linear equa-
tions and a positive semidefiniteness condition, the
problem can be easily seen to be directly equivalent
to an SDP feasibility problem in the standard primal
form (2).

Given a SOS program, we can use the theorem
above to construct an equivalent SDP. The conversion
step is fully algorithmic, and has been implemented,
for instance, in the SOSTOOLS [36] software pack-
age. Therefore, we can in principle directly apply
all the available numerical methods for SDP to solve
SOS programs.

SOS and convexity The connection between sum
of squares decompositions and convexity can be
traced back to the work of N. Z. Shor [39]. In this
1987 paper, he essentially outlined the links between
Hilbert’s 17th problem and a class of convex bounds
for unconstrained polynomial optimization problems.
Unfortunately, the approach went mostly unnoticed
for several years, probably due to the lack of the con-
venient framework of SDP.

3 Algebra and optimization

A central theme throughout convex optimization is
the idea of infeasibility certificates (for instance, in
LP via Farkas’ lemma), or equivalently, theorems of
the alternative. As we will see, the key link relating
algebra and optimization in this approach is the fact
that infeasibility can always be certified by a partic-
ular algebraic identity, whose solution is found via
convex optimization.

We explain some of the concrete results in The-
orem 5, after a brief introduction to two algebraic
concepts, and a comparison with three well-known
infeasibility certificates.

Ideals and cones For later reference, we define
here two important algebraic objects: the ideal and
the cone associated with a set of polynomials:

Definition 2 Given a set of multivariate polynomi-
als {f1, . . . , fm}, let

ideal(f1, . . . , fm) := {f | f =
m�

i=1

tifi, ti ∈ R[x]}.

Definition 3 Given a set of multivariate polynomi-
als {g1, . . . , gm}, let

cone(g1, . . . , gm) := {g | g = s0 +
�

{i}

sigi+

+
�

{i,j}

sijgigj +
�

{i,j,k}

sijkgigjgk + · · · },

where each term in the sum is a squarefree product of
the polynomials gi, with a coefficient sα ∈ R[x] that is
a sums of squares. The sum is finite, with a total of
2m− 1 terms, corresponding to the nonempty subsets
of {g1, . . . , gm}.

These algebraic objects will be used for deriving valid
inequalities, which are logical consequences of the
given constraints. Notice that by construction, every
polynomial in ideal(fi) vanishes in the solution set
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of fi(x) = 0. Similarly, every element of cone(gi) is
clearly nonnegative on the feasible set of gi(x) ≥ 0.

The notions of ideal and cone as used above are
standard in real algebraic geometry; see for instance
[5]. In particular, the cones are also referred to as a
preorders. Notice that as geometric objects, ideals are
affine sets, and cones are closed under convex com-
binations and nonnegative scalings (i.e., they are ac-
tually cones in the convex geometry sense). These
convexity properties, coupled with the relationships
between SDP and SOS, will be key for our develop-
ments in the next section.

Infeasibility certificates If a system of equations
does not have solutions, how do we prove this fact?
A very useful concept is that of certificates, which
are formal algebraic identities that provide irrefutable
evidence of the inexistence of solutions.

We briefly illustrate some well-known examples be-
low. The first two deal with linear systems and poly-
nomial equations over the complex numbers, respec-
tively.

Theorem 2 (Range/kernel)

Ax = b is infeasible
�

∃µ s.t. AT µ = 0, bT µ = −1.

Theorem 3 (Hilbert’s Nullstellensatz) Let
fi(z), . . . , fm(z) be polynomials in complex variables
z1, . . . , zn. Then,

fi(z) = 0 (i = 1, . . . ,m) is infeasible in Cn

�

−1 ∈ ideal(f1, . . . , fm).

Each of these theorems has an “easy” direction. For
instance, for the first case, given the multipliers µ the
infeasibility is obvious, since

Ax = b ⇒ µT Ax = µT b ⇒ 0 = −1,

which is clearly a contradiction.
The two theorems above deal only with the case of

equations. The inclusion of inequalities in the prob-
lem formulation poses additional algebraic challenges,
because we need to work on an ordered field. In other
words, we need to take into account special properties
of the reals, and not just the complex numbers.

For the case of linear inequalities, LP duality pro-
vides the following characterization:

Theorem 4 (Farkas lemma)
�

Ax + b = 0
Cx + d ≥ 0 is infeasible

�

∃λ ≥ 0, µ s.t.
�

AT µ + CT λ = 0
bT µ + dT λ = −1.

Although not widely known in the optimization com-
munity until recently, it turns out that similar cer-
tificates do exist for arbitrary systems of polynomial
equations and inequalities over the reals. The result
essentially appears in this form in [5], and is due to
Stengle [40].

Theorem 5 (Positivstellensatz)
�

fi(x) = 0, (i = 1, . . . ,m)
gi(x) ≥ 0, (i = 1, . . . , p) is infeasible in Rn

�

∃F (x), G(x) ∈ R[x] s.t.






F (x) + G(x) = −1
F (x) ∈ ideal(f1, . . . , fm)
G(x) ∈ cone(g1, . . . , gp).

The theorem states that for every infeasible system
of polynomial equations and inequalities, there ex-
ists a simple algebraic identity that directly certifies
the inexistence of real solutions. By construction,
the evaluation of the polynomial F (x) + G(x) at any
feasible point should produce a nonnegative number.
However, since this expression is identically equal to
the polynomial −1, we arrive at a contradiction. Re-
markably, the Positivstellensatz holds under no as-
sumptions whatsoever on the polynomials.

The use of the German word “Positivstellensatz”
is standard in the field, and parallels the classical
“Nullstellensatz” (roughly, “theorem of the zeros”)
obtained by Hilbert in 1901 and mentioned above.

In the worst case, the degree of the infeasibility
certificates F (x), G(x) could be high (of course, this
is to be expected, due to the NP-hardness of the
original question). In fact, there are a few explicit
counterexamples where large degree refutations are
necessary [16]. Nevertheless, for many problems of
practical interest, it is often the case that it is pos-
sible to prove infeasibility using relatively low-degree
certificates. There is significant numerical evidence
that this is the case, as indicated by the large num-
ber of practical applications where SDP relaxations
based on these techniques have provided solutions of
very high quality.
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Degree \ Field Complex Real
Linear Range/Kernel Farkas Lemma

Linear Algebra Linear Programming
Polynomial Nullstellensatz Positivstellensatz

Bounded degree: Linear Algebra Bounded degree: SDP
Groebner bases

Table 1: Infeasibility certificates and associated computational techniques.

Of course, we are concerned with the effective com-
putation of these certificates. For the cases of Theo-
rems 2–4, the corresponding refutations can be ob-
tained using either linear algebra, linear program-
ming, or Groebner bases techniques (see [8] for a su-
perb introduction to Groebner bases).

For the Positivstellensatz, we notice that the cones
and ideals as defined above are always convex sets in
the space of polynomials. A key consequence is that
the conditions in Theorem 5 for a certificate to ex-
ist are therefore convex, regardless of any convexity
property of the original problem. Even more, the
same property holds if we consider only bounded-
degree sections, i.e., the intersection with the set of
polynomials of degree less than or equal to a given
number D. In this case, the conditions in the P-
satz have exactly the form of a SOS program! Of
course, as discussed earlier, this implies that we can
find bounded-degree certificates, by solving semidefi-
nite programs. In Table 1 we present a summary of
the infeasibility certificates discussed, and the associ-
ated computational techniques.

Example 3 Consider again the system (1). We will
show that it has no solutions (x1, x2) ∈ R2. By the P-
satz, the system is infeasible if and only if there exist
polynomials t1, s0, s1, s2, s12 ∈ R[x1, x2] that satisfy

f1 · t1� �� �
ideal(f1)

+ s0 + s1 · g1 + s2 · g2 + s12 · g1 · g2� �� �
cone(g1,g2)

≡ −1,

(3)
where s0, s1, s2 and s12 are SOS.

A SOS relaxation is obtained by looking for solu-
tions where all the terms in the left-hand side have
degree less than or equal to D. For each fixed integer
D > 0 this can be tested by semidefinite programming.

For instance, for D = 4 we find the certificate

t1 = −3x2
1 + x1 − 3x2

2 + 6x2 − 2,

s1 = 3, s2 = 1, s12 = 0,

s0 = 3x4
1 + 2x3

1 + 6x2
1x

2
2 − 6x2

1x2 − x2
1 − x1x2

2+
+3x4

2 + 2x3
2 − x2

2 − 3x2 + 3

=
1
2

zT





6 −3 −3 0 0 −3
−3 4 2 0 1 1
−3 2 6 −2 0 −3

0 0 −2 4 −7 2
0 1 0 −7 18 0

−3 1 −3 2 0 6




z,

where

z =
�

1 x2 x2
2 x1 x1x2 x2

1

�T
.

The resulting identity (3) thus certifies the inconsis-
tency of the system {f1 = 0, g1 ≥ 0, g2 ≥ 0}.

As outlined in the preceding paragraphs, there is a
direct connection going from general polynomial op-
timization problems to SDP, via P-satz infeasibility
certificates. Pictorially, we have the following:

Polynomial systems
⇓

P-satz certificates
⇓

SOS programs
⇓

SDP

Even though we have discussed only feasibility prob-
lems, there are obvious straightforward connections
with optimization. By considering the emptiness of
the sublevel sets of the objective function, sequences
of converging bounds indexed by certificate degree
can be directly constructed.

4 Further developments and
applications

We have covered only the core elements of the
SOS/SDP approach. Much more is known, and even
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more still remains to be discovered, both in the theo-
retical and computational ends. Some specific issues
are discussed below.

Exploiting structure and numerical computa-
tion To what extent can the inherent structure in
SOS programs be exploited for efficient computa-
tions? Given the algebraic origins of the formulation,
it is perhaps not surprising to find that several intrin-
sic properties of the input polynomials can be prof-
itably used [29]. In this direction, symmetry reduc-
tion techniques have been employed by Gatermann
and Parrilo in [14] to provide novel representations
for symmetric polynomials. Kojima, Kim and Waki
[20] have recently presented some results for sparse
polynomials. Parrilo [31] and Laurent [23] have ana-
lyzed the further simplifications that occur when the
inequality constraints define a zero-dimensional ideal.

Other relaxations Lasserre [21, 22] has indepen-
dently introduced a scheme for polynomial optimiza-
tion dual to the one described here, but relying on
Putinar’s representation theorem for positive poly-
nomials rather than the P-satz. There are very inter-
esting relationship between SOS-based methods and
earlier relaxation and approximation schemes, such
as Lovász-Schrijver and Sherali-Adams. Laurent [24]
analyzes this in the specific case of 0-1 programming.

Implementations The software SOSTOOLS [36]
is a free, third-party MATLAB1 toolbox for formu-
lating and solving general sum of squares programs.
The related sofware Gloptipoly [17] is oriented to-
ward global optimization problems. In their current
version, both use the SDP solver SeDuMi [41] for nu-
merical computations.

Approximation properties There are several im-
portant open questions regarding the provable qual-
ity of the approximations. In this direction, De Klerk
and Pasechnik [11] have established some approxima-
tions guarantees of a SOS-based scheme for the ap-
proximation of the stability number of a graph. Re-
cently, De Klerk, Laurent and Parrilo [10] have shown
that a related procedure based on a result by Pólya
provides a polynomial-time approximation scheme
(PTAS) for polynomial optimization over simplices.

Applications There are many exciting applica-
tions of the ideas described here. The descriptions
that follow are necessarily brief; our main objective

1
A registered trademark of The MathWorks, Inc.

here is to provide the reader with some good starting
points to this growing literature.

In systems and control theory, the techniques have
provided some of the best available analysis and de-
sign methods, in areas such as nonlinear stability and
robustness analysis [30, 28, 35], state feedback control
[19], fixed-order controllers [18], nonlinear synthesis
[37], and model validation [34]. Also, there have been
interesting recent applications in geometric theorem
proving [33] and quantum information theory [12, 13].

Acknowledgments: The author would like to thank
Etienne de Klerk and Luis Vicente for their helpful
comments and suggestions.
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