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Abstract The generalized problem of moments is a conic linear optimization
problem over the convex cone of positive Borel measures with given support. It
has a large variety of applications, including global optimization of polynomials
and rational functions, option pricing in finance, constructing quadrature schemes
for numerical integration, and distributionally robust optimization. A usual solution
approach, due to J.B. Lasserre, is to approximate the convex cone of positive
Borel measures by finite dimensional outer and inner conic approximations. We
will review some results on these approximations, with a special focus on the
convergence rate of the hierarchies of upper and lower bounds for the general
problem of moments that are obtained from these inner and outer approximations.

1 Introduction

The classical problem of moments is to decide when a measure is determined
by a set of specified moments and variants of this problem were studied (in the
univariate case) by leading nineteenth and early twentieth century mathematicians,
like Hamburger, Stieltjes, Chebyshev, Hausdorff, and Markov. We refer to [1] for an
early reference and to the recent monograph [51] for a comprehensive treatment of
the moment problem.

The generalized problem of moments is to optimize a linear function over the
set of finite, positive Borel measures that satisfy certain moment-type conditions.
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More precisely, we consider continuous functions f0 and fi (i ∈ [m]) where [m] =
{1, . . . , m}, that are defined on a compact set K ⊂ R

n. The generalized problem of
moments (GPM) may now be defined as follows.1

Generalized Problem of Moments (GPM)

val := inf
μ∈M(K)+

{∫
K

f0(x)dμ(x) :
∫

K

fi(x)dμ(x) = bi ∀i ∈ [m]
}

, (1)

where

• M(K)+ denotes the convex cone of positive, finite, Borel measures (i.e., Radon
measures) supported on the set K2;

• The scalars bi ∈ R (i ∈ [m]) are given.

In this survey we will mostly consider the case where all fi’s are polynomials,
and will always assume K ⊆ R

n to be compact. Moreover, for some of the results,
we will also assume that K is a basic semi-algebraic set and we will sometimes
further restrict to simple sets like a hypercube, simplex or sphere.

The generalized problem of moments has a rich history; see, e.g., [1, 30, 51]
and references therein and [36] for a recent overview of many of its applications. In
the recent years modern optimization approaches have been investigated in depth, in
particular, by Lasserre (see [32], the monograph [33] and further references therein).
Among others, there is a well-understood duality theory, and hierarchies of inner
and outer approximations for the cone M(K)+ have been introduced that lead to
converging upper and lower bounds for the problem (1). In this survey we will
present these hierarchies and show how the corresponding bounds can be computed
using semidefinite programming. Since several overviews are already available on
general properties of these hierarchies (e.g., in [33, 34, 37, 38]), our main focus here
will be on recent results that describe their rate of convergence. We will review in
particular in more detail recent results on the upper bounds arising from the inner
approximations, and highlight some recent links made with orthogonal polynomials
and cubature rules for integration.

1We only deal with the GPM in a restricted setting; more general versions of the problem are
studied in, e.g., [54].
2Formally, we consider the usual Borel σ -algebra, say B, on R

n, i.e., the smallest (or coarsest)
σ -algebra that contains the open sets in R

n. A positive, finite Borel measure μ is a nonnegative-
valued set function on B, that is countably additive for disjoint sets in B. The support of μ is the
set, denoted Supp(μ), and defined as the smallest closed set S such that μ(Rn \ S) = 0.
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1.1 The Dual Problem of the GPM

The GPM is an infinite-dimensional conic linear program, and therefore it has an
associated dual problem. Formally we introduce a duality (or pairing) between the
following two vector spaces:

1. the space M(K) of all signed, finite, Borel measures supported on K ,
2. the space C(K) of continuous functions on K , endowed with the supremum norm

‖ · ‖∞.

The duality (pairing) in question is provided by the nondegenerate bilinear form
〈·, ·〉 : C(K) × M(K) → R, defined by

〈f,μ〉 =
∫

K

f (x)dμ(x) (f ∈ C(K), μ ∈ M(K)).

Thus the dual cone of M(K)+ w.r.t. this duality is the cone of continuous functions
that are nonnegative on K , and will be denoted by C(K)+ = (M(K)+)∗.

In our setting of compact K ⊂ R
n, M(K) is also the dual space of C(K), i.e.,

M(K) may be associated with the space of linear functionals defined on C(K).
In particular, due to the Riesz-Markov-Kakutani representation theorem (e.g. [56,
§1.10]), every linear functional on C(K) may be expressed as

f �→ 〈f,μ〉 for a suitable μ ∈ M(K).

As a result, we have the weak∗ topology on M(K) where the open sets are finite
intersections of elementary sets of the form

{μ ∈ M(K) | α < 〈f,μ〉 < β},

for given α, β ∈ R, and f ∈ C(K), and the unions of such finite intersections.
A sequence {μk} ⊂ M(K) converges in the weak∗ topology, say μk ⇀ μ, if,

and only if,

lim
k→∞〈f,μk〉 = 〈f,μ〉 ∀f ∈ C(K). (2)

As a consequence of (2), the cone M(K)+ is closed and the set of probability
measures in M(K) is closed.

By Alaoglu’s theorem, e.g. [2, Theorem III(2.9)], the following set (i.e., the unit
ball in M(K)) is compact in the weak∗ topology of M(K):

{μ ∈ M(K) | |〈f,μ〉| ≤ 1 ∀f ∈ C(K) with ‖f ‖∞ ≤ 1} . (3)

Hence the set of probability measures in M(K) is compact, since it is a closed
subset of the compact set in (3), and thus it provides a compact base in the weak∗
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topology for the cone M(K)+. This implies again that M(K)+ is closed in this
topology (using Lemma 7.3 in [2, Part IV]) and we will also use this fact to analyze
duality in the next section.

Dual Linear Optimization Problem of (1)

Using this duality setting, the dual conic linear program of (1) reads

val∗ := sup
y∈Rm

⎧⎨
⎩
∑
i∈[m]

biyi : f0 −
∑
i∈[m]

yifi ∈ C(K)+

⎫⎬
⎭ ,

= sup
y∈Rm

⎧⎨
⎩
∑
i∈[m]

biyi : f0(x) −
∑
i∈[m]

yifi(x) ≥ 0 ∀x ∈ K

⎫⎬
⎭ . (4)

By the duality theory of conic linear optimization, one has the following duality
relations; see, e.g., [2, Section IV.7.2] or [33, Appendix C].

Theorem 1 Consider the GPM (1) and its dual (4). Assume (1) has a feasible
solution. One has val ≥ val∗ (weak duality), with equality val = val∗ (strong
duality) if the cone {(〈f0, μ〉, 〈f1, μ〉, . . . , 〈fm,μ〉) : μ ∈ M(K)+} is a closed
subset of Rm+1. If, in addition, val > −∞ then (1) has an optimal solution.

We mention another sufficient condition for strong duality, that is a consequence
of Theorem 1 in our setting.

Corollary 1 Assume (1) has a feasible solution, and there exist z0, z1, . . . , zm ∈ R

for which the function
∑m

i=0 zifi is strictly positive on K (i.e.,
∑m

i=0 zifi(x) > 0
for all x ∈ K). Then, val = val∗ holds and (1) has an optimal solution.

Hence, if in problem (1) we optimize over the probability measures (i.e., with
f1 ≡ 1, b1 = 1) then the assumptions in Corollary 1 are satisfied.

We indicate how Corollary 1 can be derived from Theorem 1. Consider the linear
map L : M(K) → R

m+1 defined by L(μ) = (〈f0, μ〉, . . . , 〈fm,μ〉), which is
continuous w.r.t. the weak* topology on M(K). First we claim Ker L ∩ M(K)+ =
{0}. Indeed, assume L(μ) = 0 for some μ ∈ M(K)+. Setting f = ∑m

i=0 zifi ,
L(μ) = 0 implies 〈f,μ〉 = 0 and thus μ = 0 since f is strictly positive on K .
Since the cone M(K)+ has a compact convex base in the weak∗ topology and the
linear map L is continuous, we can conclude that the image L(M(K)+) is closed
(using Lemma 7.3 in [2, Part IV]). Now we can conclude using Theorem 1.
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1.2 Atomic Solution of the GPM

If the GPM has an optimal solution, then it has a finite atomic optimal solution,
supported on at most m points (i.e., the weighted sum of at most m Dirac delta
measures). This is a classical result in the theory of moments; see, e.g., [48]
(univariate case), [29] (which shows an atomic measure with m + 1 atoms using
induction on m) and a modern exposition in [54] (which shows an atomic measure
with m atoms). The result may also be obtained as a consequence of the following,
dimension-free version of the Carathéodory theorem.

Theorem 2 (See, e.g., Theorem 9.2 in Chapter III of [2]) Let S be a convex
subset of a vector space such that, for every line L, the intersection S ∩ L is a
closed bounded interval. Then every extreme point of the intersection of S with m

hyperplanes can be expressed as a convex combination of at most m + 1 extreme
points of S.

Atomic Solution of the (GPM)

Theorem 3 If the GPM (1) has an optimal solution then it has one which is finite
atomic with at most m atoms, i.e., of the form μ∗ = ∑m

�=1 w�δx(�) where w� ≥ 0,
x(�) ∈ K , and δx(�) denotes the Dirac measure supported at x(�) (� ∈ [m]).

This result can be derived from Theorem 2 in the following way. By assumption,
the GPM has an optimal solution μ∗. Moreover, since it has one at an extreme point
we may assume that μ∗ is an extreme point of the feasibility region M(K)+ ∩
∩m

i=1Hi of the program (1), where Hi is the hyperplane 〈fi, μ〉 = bi . Then the
following set S = {μ ∈ M(K)+ : μ(K) = μ∗(K)} meets the condition of
Theorem 2, since the set of probability measures in M(K)+ is compact in the weak∗
topology, and any line in a topological vector space is closed (e.g. [2, p. 111]).
Moreover, the extreme points of S are precisely the scaled Dirac measures supported
by points in K (see, e.g., Section III.8 in [2]). In addition, μ∗ is an extreme point
of the set S ∩ ∩m

i=1Hi and thus, by Theorem 2, μ∗ is a conic combination of m + 1
Dirac measures supported at points x(�) ∈ K for � ∈ [m + 1]. Finally, as in [54],
consider the LP

min
m+1∑
�=1

w�f0(x
(�)) s.t. w� ≥ 0 (� ∈ [m + 1]),

m+1∑
�=1

w�fi(x
(�)) = bi (i ∈ [m])

whose optimal value is val. Then an optimal solution attained at an extreme point
provides an optimal solution of the GPM (1) which is atomic with at most m atoms.
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1.3 GPM in Terms of Moments

From now on we will assume the functions f0, f1, . . . , fm in the definition of the
GPM (1) are all polynomials and the set K is compact. Then the GPM may be
reformulated in terms of the moments of the variable measure μ. To be precise,
given a multi-index α = (α1, . . . , αn) ∈ N

n the moment of order α of a measure
μ ∈ M(K)+ is defined as

mμ
α(K) :=

∫
K

xαdμ(x).

Here we set xα = x
α1
1 · · · xαn

n . We may write the polynomials f0, f1, . . . , fm in
terms of the standard monomial basis as:

fi(x) =
∑
α∈Nn

d

fi,αxα ∀i = 0, . . . , m,

where the fi,α ∈ R are the coefficients in the monomial basis, and we assume the
maximum total degree of the polynomials f0, f1, . . . , fm to be at most d.

Throughout we let Nn
d = {α ∈ N

n : |α| ≤ d} denote the set of multi-indices,
with |α| = ∑n

i=1 αi , and R[x]d denotes the set of multivariate polynomials with
degree at most d.

GPM in Terms of Moments

We may now rewrite the GPM (1) in terms of moments:

inf
μ∈M(K)+

⎧⎨
⎩
∑
α∈Nn

d

f0,αmμ
α (K) :

∑
α∈Nn

d

fi,αmμ
α (K) = bi ∀i ∈ [m]

⎫⎬
⎭ .

Here d is the maximum degree of the polynomials f0, f1, . . . , fm.

Thus we may consider the set of all possible truncated moments sequences:

{(
mμ

α(K)
)
α∈Nn

d
: μ ∈ M(K)+

}
,

and describe the inner and outer approximations for M(K)+ in terms of this set.
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1.4 Inner and Outer Approximations

We will consider two types of approximations of the cone M(K)+, namely inner
and outer conic approximations.

Inner Approximations
The underlying idea, due to Lasserre [35], is to consider a subset of measures μ in
M(K)+ of the form

dμ = h · dμ0,

where h is a polynomial sum-of-squares density function, and μ0 ∈ M(K)+ is a
fixed reference measure with Supp(μ0) = K .

To obtain a finite dimensional subset of measures, we will limit the total degree
of h to some value 2r where r ∈ N is fixed. The cone of sum-of-squares polynomials
of total degree at most 2r will be denoted by �r , hence

�r =
{

k∑
i=1

p2
i : k ∈ N, pi ∈ R[x]r , i ∈ [k]

}
.

In this way one obtains the cones

Mr
μ0

:= {μ ∈ M(K)+ : dμ = h · dμ0, h ∈ �r} (r = 1, 2, . . .) (5)

which provide a hierarchy of inner approximations for the set M(K)+:

Mr
μ0

⊆ Mr+1
μ0

⊆ M(K)+.

Outer Approximations
The dual GPM (4) involves the nonnegativity constraint

f0(x) −
m∑

i=1

yifi(x) ≥ 0 ∀x ∈ K,

which one may relax to a sufficient condition that guarantees the nonnegativity of
the polynomial f0 −∑m

i=1 yifi on K . Lasserre [31] suggested to use the following
sufficient condition in the case when K is a basic closed semi-algebraic set, i.e.,
when we have a description of K as the intersection of the level sets of polynomials
gj (j ∈ [k]):

K = {x ∈ R
n : gj (x) ≥ 0 ∀j ∈ [k]} .
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Namely, consider the condition

f0 −
m∑

i=1

yifi = σ0 +
k∑

j=1

σjgj ,

where each σj is a sum-of-squares polynomial and the degree of each term σjgj

(0 ≤ j ≤ k) is at most 2r , so that the degree of the right-hand-side polynomial is at
most 2r . Here we set g0 ≡ 1 for notational convenience. Thus we replace the cone
C(K)+ by a cone of the type:

Qr (g1, . . . , gk) :=
⎧⎨
⎩f : f = σ0 +

k∑
j=1

σjgj , σj ∈ �rj , j = 0, 1, . . . , k

⎫⎬
⎭ ,

(6)

where we set rj := r − ⌈deg(gj )/2
⌉

for all j ∈ {0, . . . , k}.
The cone Qr (g1, . . . , gk) is known as the truncated quadratic module generated

by the polynomials g1, . . . , gk . By definition, its dual cone consists of the signed
measures μ supported on K such that

∫
K

f dμ ≥ 0 for all f ∈ Qr (g1, . . . , gk):

(Qr (g1, . . . , gk))
∗ =

{
μ ∈ M(K) :

∫
K

f (x)dμ(x) ≥ 0 ∀f ∈ Qr (g1, . . . , gk)

}
.

(7)

This provides a hierarchy of outer approximations for the cone M(K)+:

M(K)+ ⊆ (Qr+1(g1, . . . , gk))
∗ ⊆ (Qr (g1, . . . , gk))

∗.

We will also briefly consider the tighter outer approximations for the cone M(K)+
obtained by replacing the truncated quadratic module Qr (g1, . . . , gk) by the larger

cone Qr
(∏

j∈J gj : J ⊆ [k]
)

, thus the truncated quadratic module generated by all

pairwise products of the gj ’s (also known as the pre-ordering generated by the gj ’s).
Then we have

M(K)+ ⊆
⎛
⎝Qr

⎛
⎝∏

j∈J

gj : J ⊆ [k]
⎞
⎠
⎞
⎠

∗
⊆ (Qr (g1, . . . , gk))

∗.

2 Examples of GPM

The GPM (1) has many applications. Below we will list some examples that are
directly relevant to this survey; additional examples in control theory, option pricing
in finance, and others, can be found in [32, 33, 36].
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Global Minimization of Polynomials on Compact Sets

Consider the global optimization problem:

val = min
x∈K

p(x) (8)

where p is a polynomial and K a compact set. This corresponds to the GPM (1)
with m = 1, f0 = p, f1 = 1 and b1 = 1, i.e.:

val = min
μ∈M(K)+

{∫
K

p(x)dμ(x) :
∫

K

dμ(x) = 1

}
.

In the following sections we will focus on deriving error bounds for this problem
when using the inner and outer approximations of M(K)+.

Global Minimization of Rational Functions on Compact Sets

We may generalize the previous example to rational objective functions. In
particular, we now consider the global optimization problem:

val = min
x∈K

p(x)

q(x)
, (9)

where p, q are polynomials such that q(x) > 0 ∀ x ∈ K , and K ⊆ R
n is compact.

This problem has applications in many areas, including signal recovery [5] and
finding minimal energy configurations of point charges in a field with polynomial
potential [53].

It is simple to see that we may reformulate this problem as the GPM with m = 1
and f0 = p, f1 = q, and b1 = 1, i.e.:

val = min
μ∈M(K)+

{∫
K

p(x)dμ(x) :
∫

K

q(x)dμ(x) = 1

}
.

Indeed, one may readily verify that if x∗ is a global minimizer of the rational
function p(x)/q(x) over K then an optimal solution of the GPM is given by
μ∗ = 1

q(x∗) δx∗ .
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Polynomial Cubature Rules

Positive cubature (also known as multivariate quadrature) rules for numerical
integration of a function f with respect to a measure μ0 over a set K take the form

∫
K

f (x)dμ0(x) ≈
N∑

�=1

w�f (x(�)),

where the points x(�) ∈ K and the weights w� ≥ 0 (� ∈ [N ]) are fixed. The points
(also known as the nodes of the cubature rule) and weights are typically chosen so
that the approximation is exact for polynomials up to a certain degree, say d.

The problem of finding the points x(�) ∈ K and weights w� (� ∈ [N ]) giving a
cubature rule exact at degree d may then be written as the following GPM:

val := inf
μ∈M(K)+

{∫
K

1dμ(x) :
∫

K

xαdμ(x) =
∫

K

xαdμ0(x) ∀α ∈ N
n
d

}
.

The key observation is that, by Theorem 3, this problem has an atomic solution
supported on at most N = |Nn

d | = (
n+d
d

)
points in K , say μ∗ = ∑N

�=1 w�δx(�) , and
this yields the cubature weights and points. This result is known as Tchakaloff’s
theorem [58]; see also [3, 57]. (In fact, our running assumption that K is compact
may be relaxed somewhat in Tchakaloff’s theorem—see, e.g. [46]).

Here we have chosen the constant polynomial 1 as objective function so that the
optimal value is val = μ0(K). Other choices of objective functions are possible as
discussed, e.g., in [49]. The GPM formulation of the cubature problem was used for
the numerical calculation of cubature schemes for various sets K in [49].

3 Semidefinite Programming Reformulations
of the Approximations

The inner and outer approximations of the cone M(K)+ discussed in Sect. 1.4
lead to upper and lower bounds for the GPM (1), which may be reformulated as
finite-dimensional, convex optimization problems, namely semidefinite program-
ming (SDP) problems. These are conic linear programs over the cone of positive
semidefinite matrices, formally defined as follows.

Semidefinite Programming (SDP) Problem

Assume we are given symmetric matrices A0, . . . , Am (all of the same size) and
scalars bi ∈ R (i ∈ [m]). The semidefinite programming problem in standard primal
form is then defined as
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p∗ := inf
X�0

{〈A0, X〉 : 〈Ai,X〉 = bi ∀i ∈ [m]} ,

where 〈·, ·〉 now denotes the trace inner product, i.e., the Euclidean inner product in
the space of symmetric matrices, and X � 0 means that X is a symmetric positive
semidefinite matrix (corresponding to the Löwner partial ordering of the symmetric
matrices).

The dual semidefinite program reads

d∗ := sup
y∈Rm

{
m∑

i=1

biyi : A0 −
m∑

i=1

yiAi � 0

}
.

Weak duality holds: p∗ ≥ d∗. Moreover, strong duality: p∗ = d∗ holds, e.g., if the
primal problem is bounded and admits a positive definite feasible solution X (or if
the dual is bounded and has a feasible solution y for which A0 −∑i yiAi is positive
definite) (see, e.g., [2, 4]).

Next we recall how one can test whether a polynomial can be written as a sum
of squares of polynomials using semidefinite programming. This well known fact
plays a key role for reformulating the inner and outer approximations of M(K)+
using semidefinite programs.

Checking Sums of Squares with SDP

Given an integer r ∈ N let [x]r = {xα : α ∈ N
n
r } consist of all monomials with

degree at most r , thus the monomial basis of R[x]r .

Proposition 1 For a given n-variate polynomial h, one has h ∈ �r , if and only if
the following polynomial identity holds:

h(x) = [x]�r M[x]r
⎛
⎝=

∑
α,β∈Nn

r

Mα,βxα+β

⎞
⎠ ,

for some positive semidefinite matrix: M = (
Mα,β

)
α,β∈Nn

r
� 0. The above identity

can be equivalently written as

hγ =
∑

α,β∈Nn
r : α+β=γ

Mα,β ∀γ ∈ N
n
2r . (10)
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Example 1

To illustrate the above algorithmic procedure for finding sums of squares, consider
the following univariate polynomial

f (x) = 1 − 2x + 3x2 − 2x3 + x4.

In order to check whether f can be written as a sums of squares we have to check
the feasibility of the following semidefinite program, where the matrix variable M

is a 3 × 3 symmetric matrix (indexed by the monomials 1, x, x2):

1 − 2x + 3x2 − 2x3 + x4 = [x]�2 M[x]2, M � 0.

By equating coefficients in the polynomials at both sides of the above identity we
arrive at the following form for the matrix variable:

Ma =
⎛
⎝ 1 −1 a

−1 3 − 2a −1
a −1 1

⎞
⎠ for some scalar a.

One can check that the matrix Ma is positive semidefinite if and only if a satisfies
−1/2 ≤ a ≤ 1. Hence, any value a in this interval provides a sum of squares
decomposition for the polynomial f . For instance, the values a = 1 and a = −1/2
provide, respectively, the following factorizations for the matrix Ma :

M1 =
⎛
⎜⎝

1
−1
1

⎞
⎟⎠
⎛
⎜⎝

1
−1
1

⎞
⎟⎠

�

and M−1/2 = 3

4

⎛
⎜⎝

1
0

−1

⎞
⎟⎠ .

⎛
⎜⎝

1
0

−1

⎞
⎟⎠

�

+ 1

4

⎛
⎜⎝

1
−4
1

⎞
⎟⎠
⎛
⎜⎝

1
−4
1

⎞
⎟⎠

�

,

which in turn correspond to the following two decompositions of the polynomial f ,
respectively, as a single square and as a sum of two squares:

f (x) = (1 − x + x2)2 and f (x) = 3

4
(x − x2)2 + 1

4
(x − 4x + x2)2.

Note that, for any scalar a such that −1/2 < a < 1, the matrix Ma is positive
definite and thus it provides a decomposition of the polynomial f as a sum of three
squares.
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Example 2

The Motzkin polynomial,

h(x1, x2) = x4
1x2

2 + x2
1x4

2 − 3x2
1x2

2 + 1, (11)

is nonnegative on R
2 with roots at (±1,±1) (see Fig. 1), but it is not a sum-

of-squares of polynomials. It is an instructive exercise to show that the Motzkin
polynomial does not satisfy the relations (10) for any M = (

Mα,β

)
α,β∈Nn

3
� 0. For

more details on the history of the Motzkin polynomial, see [47].

SDP Upper Bounds for GPM via the Inner Approximations
Recall that the inner approximations of the cone M(K)+ restrict the measures on K

to the subsets Mr
μ0

in (5), i.e. to those measures μ of the form dμ = h · dμ0, where
μ0 is a fixed reference measure with Supp(μ0) = K and h ∈ �r is a sum-of-squares
polynomial density.

Replacing the cone M(K)+ in the GPM (1) by its subcone Mr
μ0

we obtain the
parameter

val
(r)
inner := inf

μ∈Mr
μ0

{∫
K

f0(x)dμ(x) :
∫

K

fi(x)dμ(x) = bi ∀i ∈ [m]
}

, (12)

which provides a hierarchy of upper bounds for GPM:

val ≤ val
(r+1)
inner ≤ val

(r)
inner .

Fig. 1 Plot of the Motzkin
polynomial
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According to the above discussion these parameters can be reformulated as
semidefinite programs involving the moments of the reference measure μ0. Indeed,
we may write the variable density function as h(x) = [x]Tr M[x]r with M � 0 and
arrive at the following semidefinite program (in standard primal form).

SDP Formulation for the Inner Approximations Based Upper Bounds

val
(r)
inner = inf

M

{〈A0,M〉 : 〈Ai,M〉 = bi ∀i ∈ [m], M = (Mα,β)α,β∈Nn
r

� 0
}
,

(13)
where we set

Ai =
∫

K

fi(x)[x]r [x]Tr dμ0(x) =
(∫

K

fi(x)xα+βdμ0(x)

)
α,β∈Nn

r

(0 ≤ i ≤ m).

Moreover, writing each polynomial fi in the monomial basis as fi = ∑
γ fi,γ xγ

one sees that the entries of the matrix Ai depend linearly on the moments of the
reference measure μ0, since

∫
K

fi(x)xα+βdμ0(x) =∑γ fi,γ m
μ0
α+β+γ (K).

To be able to compute the above SDP one needs the moments of the reference
measure μ0 to be known on the set K . This is a restrictive assumption, since even
computing volumes of polytopes is an NP-hard problem. One is therefore restricted
to specific choices of μ0 and K where the moments are known in closed form (or
can be derived). In Table 1 we therefore give an overview of some known moments
for the Euclidean ball and sphere, the hypercube, and the standard simplex. (See
[25] for an easy derivation of the moments on the ball and the sphere.) There we use
the Gamma function:


(k) = (k − 1)!, 


(
k + 1

2

)
=
(

k − 1

2

)(
k − 1 − 1

2

)
· · · 1

2

√
π for k ∈ N.

Table 1 Examples of known moments for some choices of K ⊆ R
n: �n = {x ∈ R

n+ :∑n
i=1 xi =

1} is the standard simplex and Bn = {x ∈ R
n : ‖x‖ ≤ 1} is the unit Euclidean ball, in which case

μ0 is the Lebesgue measure, and Sn = {x ∈ R
n : ‖x‖ = 1} is the unit Euclidean sphere in which

case μ0 is the (Haar) surface measure on Sn

K m
μ0
α (K)

[0, 1]n ∏n
i=1

1
αi+1

�n
∏n

i=1 αi !
(
∑n

i=1 αi+n)!

Sn

{
2
(β1)···
(βn)

(β1+...+βn)

if α ∈ (2N)n with βi = αi+1
2 for i ∈ [n]

0 otherwise

Bn

{
1

α1+...+αn+n
2
(β1)···
(βn)

(β1+...+βn)

if α ∈ (2N)n with βi = αi+1
2 for i ∈ [n]

0 otherwise
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If K is an ellipsoid, one may obtain the moments of the Lebesgue measure on
K from the moments on the ball by an affine transformation of variables. Also, if
K is a polytope, one may obtain the moments of the Lebesgue measure through
triangulation of K , and subsequently using the formula for the simplex.

Example 2 (Continued)

As an example we illustrate the inner approximation hierarchy for the problem of
minimizing the Motzkin polynomial (11) on [−2, 2]2 with the Lebesgue measure
as reference measure. In Fig. 2, we plot the optimal density functions h ∈ �r for
r = 6, 8, 10, 12. Note that, as r grows, the density functions become increasingly
better approximations of a convex combination of the four the Dirac delta measures,
centered at (±1,±1). The corresponding upper bounds are val

(6)
inner = 0.801069,

val
(8)
inner = 0.565553, val

(10)
inner = 0.507829, and val

(12)
inner = 0.406076. Note that

these upper bounds are monotonically decreasing with increasing r , and recall that
the minimum value of the Motzkin polynomial is zero.
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Fig. 2 Plots of the optimal density functions h ∈ �r for r = 6, 8, 10, 12
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SDP Lower Bounds for GPM via the Outer Approximations
Here we assume that K is basic closed semi-algebraic, of the form

K = {x ∈ R
n : gj (x) ≥ 0 ∀j ∈ [k]}, where g1, . . . , gk ∈ R[x].

Recall that the dual cone of the truncated quadratic module generated by the
polynomials gj describing the set K provides an outer approximation of M(K)+;
we repeat its definition (7) for convenience:

(Qr (g1, . . . , gk)
)∗ =

{
μ ∈ M(K) :

∫
K

f dμ ≥ 0 ∀f ∈ Qr (g1, . . . , gk)

}
,

where the quadratic module Qr (g1, . . . , gk) was defined in (6).

Replacing the cone M(K)+ in the GPM (1) by the above outer approximations
we obtain the following parameters

val
(r)
outer := inf

μ∈(Qr (g1,...,gk))
∗

{∫
K

f0(x)dμ(x) :
∫

K

fi(x)dμ(x) = bi ∀i ∈ [m]
}

,

(14)

which provide a hierarchy of lower bounds for the GPM:

val
(r)
outer ≤ val

(r+1)
outer ≤ val.

Here too these parameters can be reformulated as semidefinite programs. Indeed
a signed measure μ lies in the cone (Qr (g1, . . . , gk))

∗ precisely when it satisfies the
condition

∫
K

gj (x)σj (x)dμ(x) ≥ 0 ∀ σj ∈ �rj , ∀j ∈ {0, . . . , k}, (15)

where rj = r − �deg(gj )/2�. Using Proposition 1, we may represent each sum-of-
squares σj as

σj (x) = [x]�rj M(j)[x]rj

for some matrix M(j) � 0 (indexed by N
n
rj

). Hence we have

∫
K

gj (x)σj (x)dμ(x) =
∫

K

gj (x)[x]Trj M(j)[x]rj dμ(x) = 〈Bμ
j ,M(j)〉,

after setting

B
μ
j =

∫
K

gj (x)[x]rj [x]Trj dμ(x) =
(∫

K

gj (x)xα+βdμ(x)

)
α,β∈Nn

rj

.
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Hence the condition (15) can be rewritten as requiring, for each j ∈ {0, 1, . . . , k},

〈Bμ
j ,M(j)〉 ≥ 0 for all postive semidefinite matrices M(j) indexed by N

n
rj

,

which in turn is equivalent to B
μ
j � 0 (since the cone of positive semidefinite

matrices is self-dual). Summarizing, the condition (15) on the variable measure μ

can be rewritten as

B
μ
j =

(∫
K

gj (x)xα+βdμ(x)

)
α,β∈Nn

rj

� 0 ∀j ∈ {0, 1, . . . , k}.

Finally, observe that only the moments of μ are playing a role in the above
constraints. Therefore we may introduce new variables for these moments, say

yα =
∫

K

xαdμ(x) ∀α ∈ N
n
2r .

Writing the polynomials gj in the monomial basis as gj (x) =∑γ gj,γ xγ we arrive

at the following SDP reformulation for the parameter val
(r)
outer .

SDP Formulation for the Outer Approximations Based Lower Bounds

With rj = r − �deg(gj )/2� for j ∈ {0, 1, . . . , k} and d an upper bound on the
degrees of fi for i ∈ {0, 1, . . . , m} we have

val
(r)
outer = inf

(yα)α∈Nn
2r

{∑
α∈Nn

d
f0,αyα :∑α∈Nn

d
fi,αyα = bi ∀i ∈ [m], (16)

(∑
γ gj,γ yα+β+γ

)
α,β∈Nn

rj

� 0 ∀j ∈ {0, 1, . . . , k}
}
. (17)

Example 2 (Continued)

We now illustrate the hierarchy of outer approximations for the minimization of
the Motzkin polynomial (11) on K = [−2, 2]2. If we represent K by the linear
inequalities

−2 ≤ x1 ≤ 2, −2 ≤ x2 ≤ 2,

then the lower bounds on the zero minimum become

val
(3)
outer = −1.6858, val

(4)
outer = 0.
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In other words, one has convergence in a finite number of steps here, namely already
for r = 4. If one represents K by the quadratic inequalities

x2
1 ≤ 4, x2

2 ≤ 4,

then the convergence is even faster, since one then has val
(3)
outer = 0. It is therefore

interesting to note that the description of K plays an important role for the outer
approximations.

If, in the definition (14) of val
(r)
outer , instead of the truncated quadratic module

Qr (g1, . . . , gk) we use the larger quadratic module Qr (
∏

j∈J gj : J ⊆ [k])
generated by the pairwise products of the gj ’s, then we obtain a stronger bound

on val, which we denote by val
(r)

outer . Thus

val
(r)

outer = inf
μ∈(Qr (

∏
j∈J gj :J⊆[k]))∗

{∫
K

f0(x)dμ(x) :
∫

K

fi(x)dμ(x) = bi (i ∈ [m])
}

(18)

and clearly we have

val
(r)
outer ≤ val

(r)

outer ≤ val.

The parameter val
(r)

outer can also be reformulated as a semidefinite program,
analogous to the program (16)–(17), which however now involves 2k + 1 semidef-
inite constraints instead of k + 1 such constraints in (17) and thus its practical
implementation is feasible only for small values of k. On the other hand, as we

will see later in Sect. 5.2, the bounds val
(r)

outer admit a much sharper error analysis

than the bounds val
(r)
outer for the case of polynomial optimization.

4 Convergence Results for the Inner Approximation
Hierarchy

In the rest of the paper we are interested in the convergence of the respective lower
and upper SDP bounds on the optimal value of the GPM, as introduced in the
previous section. We will first consider in this section the upper bounds for the GPM
arising from the inner approximations, since much more is known about their rate of
convergence than for the lower bounds arising from the outer approximations. We
deal first with the special case of polynomial optimization and then indicate how
some of the results extend to the general GPM.
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4.1 The Special Case of Global Polynomial Optimization

Here we consider a special case of the GPM, namely global optimization of
polynomials on compact sets (i.e., problem (8)) and review the main known results
about the error analysis of the upper bounds val

(r)
inner . After that in the next section

we will explain how to extend this error analysis to the bounds for the general GPM
problem.

Thus we now consider the problem

val = min
x∈K

p(x), (19)

asking to find the minimum value of the polynomial p(x) = ∑
α∈Nn

d
pαxα over a

compact set K .
Recall the definition of the inner approximation based upper bound (12), which

can be rewritten here as

val
(r)
inner = min

h∈�r

{∫
K

p(x)h(x)dμ0(x) :
∫

K

h(x)dμ0(x) = 1

}
,

and its SDP reformulation from (13), which now reads

val
(r)
inner = min

{〈A0,M〉 : 〈A1,M〉 = 1, M = (Mα,β)α,β∈Nn
r

� 0
}
, (20)

with

A0 =
(∫

K

p(x)xα+βdμ0(x)

)
α,β∈Nn

r

, A1 =
(∫

K

xα+βdμ0(x)

)
α,β∈Nn

r

,

where as before μ0 is a fixed reference measure on K .
A first observation made in [35] is that this semidefinite program (20) can in fact

be reformulated as a generalized eigenvalue problem. Indeed, its dual semidefinite
program reads

max{λ : A0 − λA1 � 0},

whose optimal value gives again the parameter val
(r)
inner (since strong duality holds).

Hence val
(r)
inner is equal to the smallest generalized eigenvalue of the system

A0v = λA1v, v �= 0. (21)

Thus one may compute val
(r)
inner without having to solve an SDP problem.

In fact, if instead of the monomial basis {xα : α ∈ R
n
2r} we use a polynomial

basis {bα(x) : α ∈ N
n
2r} of R[x]2r that is orthonormal with respect to the reference
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measure μ0 (i.e., such that
∫
K

bαbβdμ0 = 1 if α = β and 0 otherwise), then in the
above semidefinite program (20) we may set A1 = I to be the identity matrix and

A0 =
(∫

K

p(x)bα(x)bβ(x)dμ0(x)

)
α,β∈Nn

2r

, (22)

whose entries now involve the ‘generalized’ moments
∫
K

bα(x)dμ0(x) of μ0. Then

the parameter val
(r)
inner can be computed as the smallest eigenvalue of the matrix A0:

val
(r)
inner = λmin(A0) where A0 is as in (22). (23)

This fact was observed in [14] and used there to establish a link with the roots
of the orthonormal polynomials, permitting to analyze the quality of the bounds
val

(r)
inner for the case of the hypercube K = [−1, 1]n, see below for details.

In Table 2 we list the known convergence rates of the parameters val
(r)
inner to the

optimal value val of problem (19), i.e., we review the known upper bounds for the
sequence {val

(r)
inner − val}, r = 1, 2, . . .

We will give some details on the proofs of each of the four results listed in
Table 2. After that we will mention an interesting connection with approximations
based on cubature rules.

Asymptotic Convergence
The first result in Table 2 states that limr→∞ val

(r)
inner = val if K is compact and

μ0 ∈ M(K)+. It is a direct consequence of the following result.

Theorem 4 (Lasserre [35]) Let K ⊆ R
n be compact, let μ0 be a fixed, finite,

positive Borel measure with Supp(μ0) = K . and let f be a continuous function on
R

n. Then, f is nonnegative on K if and only if

∫
K

g2f dμ0 ≥ 0 ∀g ∈ R[x].

Table 2 Known rates of convergence for the Lasserre hierarchy of upper bounds on val in (19)
based on inner approximations

K ⊆ R
n val

(r)
inner − val Measure μ0 Reference

Compact o(1) Positive finite Borel measure [35]

Compact, satisfies interior cone
condition

O
(

1√
r

)
Lebesgue measure [18]

Convex body O
(

1
r

)
Lebesgue measure [13]

Hypercube [−1, 1]n �
(

1
r2

) ∏n
i=1(1 − x2

i )−1/2dxi [14]

Unit sphere, p homogeneous O
(

1
r

)
Surface measure [21]
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The asymptotic convergence of the bounds val
(r)
inner to val holds more generally

for the minimization of a rational function p(x)/q(x) over K (assuming q(x) > 0
for all x ∈ K). Indeed, using the above theorem, we obtain

min
x∈K

p(x)

q(x)
= sup

t∈R
t s.t. p(x) ≥ tq(x) ∀x ∈ K

= sup
t∈R

t s.t.
∫

K

p(x)h(x)dμ0(x) ≥ t

∫
K

q(x)h(x)dμ0(x) ∀h ∈ �

= inf
h∈�

∫
K

p(x)h(x)dμ0(x) s.t.
∫

K

q(x)h(x)dμ0(x) = 1.

Error Analysis When K Is Compact and Satisfies an Interior Cone Condition
The second result in Table 2 fixes the reference measure μ0 to the Lebesgue
measure, and restricts the set K to satisfy a so-called interior cone condition.

Definition 1 (Interior Cone Condition) A set K ⊆ R
n satisfies an interior cone

condition if there exist an angle θ ∈ (0, π/2) and a radius ρ > 0 such that, for every
x ∈ K , a unit vector ξ(x) exists such that

{x + λy : y ∈ R
n, ‖y‖ = 1, yT ξ(x) ≥ cos θ, λ ∈ [0, ρ]} ⊆ K.

For example, all full-dimensional convex sets satisfy the interior cone condition
for suitable parameters θ and ρ. This assumption is used in [18] to claim that the
intersection of any ball with the set K contains a positive fraction of the full ball, a
fact used in the error analysis.

The main ingredient of the proof is to approximate the Dirac delta supported on
a global minimizer by a Gaussian density of the form

G(x) = 1

(2πσ 2)n/2 exp

(−‖x − x∗‖2

2σ 2

)
, (24)

where x∗ is a minimizer of p on K , and σ 2 = �(1/r). Then we approximate the
Gaussian density G(x) by a sum-of-squares polynomial gr(x) with degree 2r . For
this we use the fact that the Taylor approximation of the exponential function e−t is
a sum of squares (since it is a univariate polynomial nonnegative on R).

Lemma 1 For any r ∈ N the univariate polynomial
∑2r

k=0
(−1)k

k! tk (in the variable
t ∈ R), defined as the Taylor expansion of the function t ∈ R �→ e−t truncated at
degree 2r , is a sum of squares of polynomials.

Based on this the polynomial

gr(x) = 1

(2πσ 2)n/2

2r∑
k=0

(−1)k

k!
(−‖x − x∗‖2

2σ 2

)k



38 E. de Klerk and M. Laurent

is indeed a sum of squares with degree 2r , which can be used (after scaling) as
feasible solution within the definition of the bound val

(r)
inner . We refer to [18] for the

details of the analysis.

Error Analysis When K Is a Convex Body
The third item in Table 2 assumes that K is now convex, compact and full-
dimensional, i.e., a convex body. The key idea is to use the following concentration
result for the Boltzman density (or Gibbs measure).3

Theorem 5 (Kalai-Vempala [28]) If p is a linear polynomial, K is a convex set,
T > 0 is a fixed ‘temperature’ parameter, and val = minx∈K p(x), then we have

∫
K

p(x)H(x)dx − val ≤ nT ,

where

H(x) = exp(−p(x)/T )∫
K

exp(−p(x)/T )dx

is the Boltzman probability density supported on K .

The theorem still holds if p is convex, but not necessarily linear [13]. The proof of
the third item in Table 2 now proceeds as follows:

1. Construct a sum-of-squares polynomial approximation hr(x) of the Boltzman
density H(x) by again using the fact that the even degree truncated Taylor expan-
sion of e−t is a sum of squares (Lemma 1); namely, consider the polynomial

hr(x) =∑2r
k=0

(−1)k

k!
(−p(x)

T

)k

(up to scaling).

2. Use this construction to bound the difference between val
(r)
inner and the Boltzman

bound when choosing T = O(1/r).
3. Use the extension of the Kalai-Vempala result to get the required result for

convex polynomials p.
4. When p is nonconvex, the key ingredient is to reduce to the convex case by

constructing a convex (quadratic) polynomial p̂ that upper bounds p on K and
has the same minimizer on K , as indicated in the next lemma.

Lemma 2 Assume x∗ is a global minimizer of p over K . Then the following
polynomial

p̂(x) = p(x∗) + ∇p(x∗)T (x − x∗) + Cp‖x − x∗‖2

with Cp = maxx∈K ‖∇2p(x)‖2, is quadratic, convex, and separable. Moreover,
it satisfies: p(x) ≤ p̂(x) for all x ∈ K , and x∗ is a global minimizer of p̂ over K .

3This result is of independent interest in the study of simulated annealing algorithms.
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Then, in view of the inequality
∫

K

p̂hdμ0 ≥
∫

K

phdμ0 ∀h ∈ �r, (25)

it follows that the error analysis in the non-convex case follows directly from the
error analysis in the convex case. The details of the proof are given in [13].

Error Analysis for the Hypercube K = [−1, 1]n
The fourth result in Table 2 deals with the hypercube K = [−1, 1]n. A first key idea
of the proof is that it suffices to show the O(1/r2) convergence rate for a univariate
quadratic polynomial. This follows from Lemma 2 above (and (25)), which implies
that it suffices to analyze the case of a quadratic, separable polynomial. Hence we
may further restrict to the case when K = [−1, 1] and p is a quadratic univariate
polynomial.

In the univariate case, the key idea is to use the eigenvalue reformulation of
the bound val

(r)
inner from (23). There, we use the polynomial basis {bk : k ∈ N}

consisting of the Chebyshev polynomials (of the first kind) which are orthonormal
with respect to the Chebyshev measure dμ0 on K = [−1, 1], indeed the measure
used in Table 2.

Then one may use a connection to the extremal roots of these orthonormal
polynomials. Namely, for the linear polynomial p(x) = x, the parameter val

(r)
inner

coincides with the smallest root of the orthonormal polynomial br+1 (with degree
r +1); this is a well known property of orthogonal polynomials, which follows from
the fact that the matrix A0 in (22) is tri-diagonal and the 3-terms recurrence for the
Chebyshev polynomials (see, e.g., [22, §1.3]). When p is a quadratic polynomial,
the matrix A0 in the eigenvalue problem (23) is now 5-diagonal and ‘almost’
Toepliz, properties that can be exploited to evaluate its smallest eigenvalue. See
[14] for details.

Error Analysis for the Unit Sphere
The last result in Table 2 deals with the minimization of a homogeneous polynomial
p over the unit sphere Sn = {x ∈ R

n : ∑n
i=1 x2

i = 1}, in which case Doherty and
Wehner [21] show a convergence rate in O(1/r). Their construction for a suitable
sum-of-squares polynomial density in �r is in fact closely related to their analysis
of the outer approximation based lower bounds val

(r)
outer . Doherty and Wehner [21]

indeed show the following stronger result: val
(r)
inner − val

(r)
outer = O(1/r), to which

we will come back in Sect. 5.2 below.

Link with Positive Cubature Rules
There is an interesting link between positive cubature formulas and the upper bound

val
(r)
inner = min

h∈�r

{∫
K

phdμ0 :
∫

K

hdμ0 = 1

}
,

which was recently pointed out in [39] and is summarized in the next result.
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Theorem 6 (Martinez et al. [39]) Let x(1), . . . , x(N) ∈ K and weights w1 >

0, . . . , wN > 0 give a positive cubature rule on K for the measure μ0, that is
exact for polynomials of total degree at most d + 2r , where d > 0 and r > 0 are
given integers. Let p be a polynomial of degree d.

Then, if h is a polynomial nonnegative on K and of degree at most 2r , one has

∫
K

phdμ0 ≥ min
�∈[N ] p(x(�)).

In particular, the inner approximation bounds therefore satisfy

val
(r)
inner ≥ min

�∈[N ] p(x(�)).

The proof is an immediate consequence of the definitions, but this result has several
interesting implications.

• First of all, one may derive information about the rate of convergence for the
scheme min�∈[N ] p(x(�)) from the error bounds in Table 2. For example, if K is
a convex body, the implication is that min�∈[N ] p(x(�)) − val = O(1/r).

• Also, if a positive cubature rule is known for the pair (K,μ0), and the number
of points N meets the Tchakaloff bound N = (n+2r+d

2r+d

)
, then there is no point in

computing the parameter val
(r)
inner . Indeed, as

val
(r)
inner ≥ min

�∈[N ] p(x(�)) ≥ val,

the right-hand-side bound is stronger and can be computed more efficiently.
Having said that, positive cubature rules that meet the Tchakaloff bound are only
known in special cases, typically in low dimension and degree; see e.g. [6, 8, 57],
and the references therein.

• Theorem 6 also shows why the last convergence rate in Table 2 is tight for
K = [−1, 1]n. Indeed if we consider the univariate example p(x) = x and
the Chebyshev probability measure dμ0(x) = 1

π
√

1−x2
dx on K = [−1, 1], then

a positive cubature scheme is given by

x(�) = cos

(
2� − 1

2N
π

)
, w� = 1

N
∀� ∈ [N ],

and it is exact at degree 2N − 1. This is known as the Chebyshev-Gauss
quadrature, and the points are precisely the roots of the degree N Chebyshev
polynomial of the first kind. Thus, with N = r + 1, in this case we have

val
(r)
inner ≥ min

�∈[N] p(x(�)) = min
�∈[N] cos

(
(2� − 1)π

2N

)
= cos (−π/(2N)) = −1 + �

(
1

N2

)
.
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This explains that the �(1/r2) result in Table 2 holds for p(x) = x. A different
proof of this result is given in [14], where it is shown that for this example one
actually has equality val

(r)
inner = cos (−π/(2N)).

• Finally, Theorem 6 shows that there is not much gain in using a set of densities
larger than �r in the definition of the inner approximations Mr

μ0
since the

statement of the theorem holds for any nonnegative polynomial h on K . For
example, for the hypercube K = [−1, 1]n, if we use the larger set of densities
h ∈ Qr (

∏
j∈J (1 − x2

j ) : J ⊆ [k]) and the Chebyshev measure as reference
measure μ0 on [−1, 1]n, then we obtain upper bounds with convergence rate in
O(1/r2) [9]. This also follows from the later results in [14] where in addition it
is shown that this convergence result is tight for linear polynomials. By the above
discussion tightness also follows from Theorem 6.

Upper Bounds Using Grid Point Sets
Of course one may also obtain upper bounds on val, the minimum value taken by
a polynomial p over a compact set K , by evaluating p at any suitably selected set
of points in K . This corresponds to restricting the optimization over selected finite
atomic measures in the definition of val.

A first basic idea is to select the grid point sets consisting of all rational points
in K with denominator r for increasing values of r ∈ N. For the standard simplex
K = �n and the hypercube K = [0, 1]n this leads to upper bounds that satisfy:

min
x∈K,rx∈Nn

p(x) − min
x∈K

p(x) ≤ Cd

r

(
max
x∈K

p(x) − min
x∈K

p(x)

)
for all r ≥ d,

(26)

where Cd is a constant that depends only on the degree d of p; see [17] for K =
�n and [12] for K = [0, 1]n. A faster regime in O(1/r2) can be shown when
allowing a constant that depends on the polynomial p (see [19] for �n and [11] for
[0, 1]n). Note that the number of rational points with denominator r in the simplex
�n is

(
n+r−1

r

) = O(nr) and thus the computation time for these upper bounds is
polynomial in the dimension n for any fixed order r . On the other hand, there are
(r+1)n = O(rn) such grid points in the hypercube [0, 1]n and thus the computation
time of the upper bounds grows exponentially with the dimension n.

For a general convex body K some constructions are proposed recently in [44]
for suitable grid point sets (so-called meshed norming sets) Xd(ε) ⊆ K where
d ∈ N and ε > 0. Namely, whenever p has degree at most d, by minimizing p over
Xd(ε) one obtains an upper bound on the minimum of p over K satisfying

min
x∈Xd(ε)

p(x) − min
x∈K

p(x) ≤ ε

(
max
x∈K

p(x) − min
x∈K

p(x)

)
,
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where the computation involves |Xd(ε)| = O

((
d√
ε

)2n
)

point evaluations, thus

exponential in the dimension n for fixed precison ε.
In comparison, the computation of the upper bound val

(r)
outer relies on a semidef-

inite program involving a matrix of size
(
n+r
r

) = O(nr), which is polynomial in the
dimension n for any fixed order r .

4.2 The General Problem of Moments (GPM)

One may extend the results of the last section to the inner approximations for
the general GPM (1). In other words, we now consider the upper bounds (12)
obtained using the inner approximations of the cone M(K)+, which we repeat for
convenience:

val
(r)
inner = inf

h∈�r

{∫
K

f0(x)h(x)dμ0(x) :
∫

K

fi(x)h(x)dμ0(x) = bi ∀i ∈ [m]
}

.

A first observation is that this program may not have a feasible solution, even if the
GPM (1) does. For example, two constraints like

∫ 1

0
xdμ(x) = 0,

∫ 1

0
dμ(x) = 1

admit the Dirac measure μ = δ{0} as solution but they do not admit any solution of
the form dμ = hdx with h ∈ �r for any r ∈ N. Thus any convergence result must
relax the equality constraints of the GPM (1) in some way, or involve additional
assumptions.

We now indicate how one may use the convergence results of the last section to
derive an error analysis for the inner approximations of the GPM when relaxing the
equality constraints.

Theorem 7 (De Klerk-Postek-Kuhn [20]) Assume that f0, . . . , fm are polynomi-
als, K is compact and the GPM (1) has an optimal solution. Let b0 := val denote
the optimal value of (1) and for any integer r ∈ N define the parameter

�(r) := min
h∈�r

max
i∈{0,1,...,m}

∣∣∣∣
∫

K

fi(x)h(x)dμ0(x) − bi

∣∣∣∣ .
Then the following assertions hold:

(1) lim
r→∞ �(r) = 0.

(2) �(r) = O
(

1
r1/4

)
if K satisfies an interior cone assumption and μ0 is the

Lebesgue measure;
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(3) �(r) = O
(

1
r1/2

)
if K is a convex body and μ0 is the Lebesgue measure;

(4) �(r) = O
(

1
r

)
if K = [−1, 1]n and dμ0(x) =∏i (1 − x2

i )−1/2dxi .

We will derive this from the convergence results for global polynomial opti-
mization in Table 2. By assumption, problem (1) has an optimal solution and by
Theorem 3 we may assume it has an atomic optimal solution μ∗ = ∑

� λ�δx∗
�

with
λ� > 0 and x∗

� ∈ K . We now sketch the proof.

1. For each atom x∗
� of the optimal measure μ∗ consider the polynomial

p�(x) =
m∑

i=0

(
fi(x) − fi(x

∗
� )
)2

,

whose minimum value over K is equal to 0 (attained at x∗
� ).

2. We apply the error analysis of the previous section to the problem of minimizing
the polynomial p� over K . In particular, the asymptotic convergence of the upper
bounds implies that for any given ε > 0

∃r ∈ N ∃h� ∈ �r s.t.
∫

K

p�(x)h�(x)dμ0(x) ≤ ε2,

∫
K

h�(x)dμ0(x) = 1

and, therefore,

∫
K

(fi(x) − fi(x
∗
� ))2h�(x)dμ0(x) ≤ ε2 ∀i ∈ {0, . . . , m}. (27)

3. Using the Jensen inequality, one obtains

∣∣∣∣
∫

K

fi(x)h�(x)dμ0(x) − fi(x
∗
� )

∣∣∣∣ =
∣∣∣∣
∫

K

(fi(x) − fi(x
∗
� ))h�(x)dμ0(x)

∣∣∣∣ ≤ ε

for each i ∈ {0, . . . , m}.
4. We now consider the sum-of-squares density h :=∑� λ�h� ∈ �r . Then we have

bi = ∫
K

fi(x)dμ∗(x) = ∑
� λ�fi(x

∗
� ) for each i ∈ {0, . . . , m}. Moreover, the

above argument shows that for any i ∈ {0, . . . , m}
∣∣∣∣
∫
K

fi(x)h(x)dμ0(x) − bi

∣∣∣∣ =
∣∣∣∣∣∣
∑
�

λ�

(∫
K

fi(x)h�(x)dμ0(x) − fi(x
∗
� )

)∣∣∣∣∣∣ ≤ εμ∗(K)

with μ∗(K) = ∑
� λ�. This shows that �(r) ≤ εμ∗(K) and thus the desired

asymptotic result (1).
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5. The additional three claims (2)–(4) follow in the same way using the results in
Table 2. For instance, in case (1) when K satisfies an interior cone condition and
μ0 is the Lebesgue measure, we replace the estimate (27) by

∣∣∣∣
∫

K

(fi(x) − fi(x
∗
� ))2h�(x)dμ0(x)

∣∣∣∣ = O

(
1√
r

)
,

which leads to �(r) = O
(

1
r1/4

)
(since we ‘lose a square root’ when applying

Jensen inequality).

We may also use the relation with positive cubature rules discussed in the previ-
ous section (Theorem 6) to obtain the following cubature-based approximations for
the GPM (1).

Corollary 2 Assume the GPM (1) admits an optimal solution and let d denote the
maximum degree of the polynomials f0, . . . , fm. For any integer r ∈ N assume we
have a cubature rule for (K,μ0) that is exact for degree d + 2r , consisting of the
points x(�) ∈ K and weights w� > 0 for � ∈ [N ], and define the parameter

�
(r)
cub := min

ν
max

i∈{0,1,...,m}

∣∣∣∣
∫

K

fi(x)dν − bi

∣∣∣∣ ,
where in the outer minimization we minimize over all atomic measures ν whose
atoms all belong to the set {x(�) : � ∈ [N ]}. Then the following assertions hold:

(1) lim
r→∞ �

(r)
cub = 0;

(2) �
(r)
cub = O

(
1

r1/4

)
if K satisfies an interior cone assumption and μ0 is the

Lebesgue measure;

(3) �
(r)
cub = O

(
1√
r

)
if K is a convex body and μ0 is the Lebesgue measure;

1. �
(r)
cub = O

(
1
r

)
if K = [−1, 1]n and dμ0(x) =∏i (1 − x2

i )−1/2dxi .

This result follows from Theorem 7. Indeed, for any polynomial h ∈ �r , the
polynomials fih have degree at most d + 2r so that using the cubature rule we
obtain

∫
K

fi(x)h(x)dμ0(x) =
N∑

�=1

w�fi(x
(�))h(x(�)) =

∫
K

fi(x)dν(x),

where ν is the atomic measure with atoms x(�) and weights α� := w�h(x(�)) for
� ∈ [N ]. Therefore, the parameter �

(r)
cub in Corollary 2 is upper bounded by the

parameter �(r) in Theorem 7. The claims (1)-(4) now follow directly from the
corresponding claims in Theorem 7.
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Note that, for any fixed r ∈ N, in order to find the best atomic measure ν in the
definition of �

(r)
cub we need to find the best weights α� (� ∈ [N ]) giving the measure

ν =∑N
�=1 α�δx(�) . This can be done by solving the following linear program:

�
(r)
cub = min

t,α�∈R
t s.t. α� ≥ 0 (� ∈ [N ]),

∣∣∣∣∣
N∑

�=1

α�fi(x
(�)) − bi

∣∣∣∣∣ ≤ t ∀i ∈ {0, 1, . . . , m}.

(This is similar to an idea used in [49].)

5 Convergence Results for the Outer Approximations

In this last section we consider the convergence of the lower bounds for the GPM (1),
that are obtained by using outer approximations for the cone of positive measures.
We first mention properties dealing with asymptotic and finite convergence for the
general GPM and after that we mention some known results on the error analysis in
the special case of polynomial optimization.

Here we assume K is a compact semi-algebraic set, defined as before by

K = {x ∈ R
n : gj (x) ≥ 0 ∀j ∈ [k]},

where g1, . . . , gk ∈ R[x]. We will consider the following (Archimedean) condition:

∃r ∈ N ∃u ∈ Qr (g1, . . . , gk) s.t. the set {x ∈ R
n : u(x) ≥ 0} is compact. (28)

This condition clearly implies that K is compact. Moreover, it does not depend on
the set K but on the choice of the polynomials used to describe K . Note that it is
easy to modify the presentation of K so that the condition (28) holds. Indeed, if we
know the radius R of a ball containing K then, by adding to the description of K the
(redundant) polynomial constraint gk+1(x) := R2 −∑n

i=1 x2
i ≥ 0, we can ensure

that assumption (28) holds for this enriched presentation of K .
For convenience we recall the definition of the bounds val

(r)
outer from (14):

val
(r)
outer = inf

μ∈(Qr (g1,...,gk))
∗

{∫
K

f0(x)dμ(x) :
∫

K

fi(x)dμ(x) = bi ∀i ∈ [m]
}

,

where we refer to (6) and (7) for the definitions of the truncated quadratic module
Qr (g1, . . . , gk) and of its dual cone (Qr (g1, . . . , gk))

∗.

We also recall the stronger bounds val
(r)

outer , introduced in (18), and obtained by

replacing in the definition of val
(r)
outer the cone Qr (g1, . . . , gk) by the larger cone

Qr (
∏

j∈J gj : J ⊆ [k])), so that we have

val
(r)
outer ≤ val

(r)

outer ≤ val.
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5.1 Asymptotic and Finite Convergence

Here we present some results on the asymptotic and finite convergence of the lower
bounds on val obtained by considering outer approximations of the cone M(K)+.

Asymptotic Convergence
The parameters val

(r)
outer form a non-decreasing sequence of lower bounds for the

optimal value val of problem (1), which converge to it under assumption (28).
This asymptotic convergence result relies on the following representation result of
Putinar [45] for positive polynomials.

Theorem 8 (Putinar) Assume K is compact and assumption (28) holds. Any
polynomial f that is strictly positive on K (i.e., f (x) > 0 for all x ∈ K) belongs to
Qr (g1, . . . , gk) for some r ∈ N.

The following result can be found in [32, 33] for the general GPM and in [31]
for the case of global polynomial optimization.

Asymptotic Convergence for the Bounds val
(r)
outer

Theorem 9 Assume K is compact and assumption (28) holds. Then we have

val∗ ≤ limr→∞val
(r)
outer ≤ val,

with equality: val∗ = limr→∞val
(r)
outer = val if, in addition, there exists z ∈ R

m+1

such that
∑m

i=0 zifi(x) > 0 for all x ∈ K .

This result follows using Theorem 8. Observe that it suffices to show the
inequality: val∗ ≤ supr val

(r)
outer (as the rest follows using Corollary 1). For this

let ε > 0 and let y ∈ R
m be feasible for val∗, i.e., f0(x) − ∑m

i=1 yifi(x) ≥ 0

for all x ∈ K; we will show the inequality bT y ≤ supr val
(r)
outer + εμ(K).

Then, letting ε tend to 0 gives bT y ≤ supr val
(r)
outer and thus the desired result:

val∗ ≤ supr val
(r)
outer = limr→∞ val

(r)
outer .

As the polynomial f0 + ε − ∑
i yifi is strictly positive on K , it belongs to

Qr (g1, . . . , gk) for some r ∈ N in view of Theorem 8. Then, for any measure
μ feasible for val

(r)
outer , we have

∫
K

(f0 + ε − ∑
i yifi)dμ ≥ 0, which implies

bT y ≤ ∫
K

f0dμ + εμ(K) and thus the desired inequality:

bT y ≤ val
(r)
outer + εμ(K) ≤ sup

r
val

(r)
outer + εμ(K).
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When assuming only K compact (thus not assuming condition (28)), the
following representation result of Schmüdgen [50] permits to show the asymptotic

convergence of the stronger bounds val
(r)

outer to val (in the same way as Theorem 9
follows from Putinar’s theorem).

Theorem 10 (Schmüdgen) Assume K is compact. Any polynomial f that is
strictly positive on K (i.e., f (x) > 0 for all x ∈ K) belongs to Qr (

∏
j∈J gj :

J ⊆ [k]) for some r ∈ N.

Asymptotic Convergence for the Bounds val
(r)

outer

Theorem 11 Assume K is compact. Then we have

val∗ ≤ limr→∞val
(r)

outer ≤ val,

with equality: val∗ = limr→∞val
(r)

outer = val if, in addition, there exists z ∈ R
m+1

such that
∑m

i=0 zifi(x) > 0 for all x ∈ K .

Finite Convergence
A remarkable property of the lower bounds val

(r)
outer is that they often exhibit finite

convergence. Indeed, there is an easily checkable criterion, known as the flatness
condition, that permits to conclude that the bound is exact: val

(r)
outer = val, and

to extract an (atomic) optimal solution to the GPM. This is condition (29) below,
which permits to claim that a given truncated sequence is indeed the sequence of
moments of a positive measure; it goes back to work of Curto and Fialkow ([7], see
also [33, 37] for details). To expose it we use the SDP formulation (16)–(17) for the
parameter val

(r)
outer .

Finite Convergence

Theorem 12 (See [33, Theorem 4.1]) Set dK := max{�deg(gj /2� : j ∈ [k]} and
let r ∈ N such that 2r ≥ max{deg(fi) : i ∈ {0, . . . , m}} and r ≥ dK . Assume
the program (16)-(17) defining the parameter val

(r)
outer has an optimal solution y =

(yα)α∈Nn
2r

that satisfies the following (flatness) condition:

rankMs(y) = rankMs−dK
(y) for some integer s s.t. dK ≤ s ≤ r, (29)
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where

Ms(y) = (yα+β)α,β∈Nn
s

and Ms−dK
(y) = (yα+β)α,β∈Nn

s−dK
.

Then equality val
(r)
outer = val holds and the GPM problem (1) has an optimal

solution μ ∈ M(K)+ which is atomic and supported on rankMs(y) points in K .

Under the flatness condition (29) there is an algorithmic procedure to find the
atoms and weights of the optimal atomic measure (see, e.g., [33, 37] for details).

In addition, for the special case of the polynomial optimization problem (8),
Nie [42] shows that the flatness condition is a generic property, so that finite
convergence of the lower bounds val

(r)
outer to the minimum of a polynomial over

K holds generically.

Note that analogous results also hold for the stronger bounds val
(r)

outer on val.

5.2 Error Analysis for the Case of Polynomial Optimization

We now consider the special case of global polynomial optimization, i.e., problem
(8), which is the case of GPM with only one affine constraint, requiring that μ is a
probability measure on K:

val = min
x∈K

p(x) = min
μ∈M(K)+

∫
K

p(x)dμ(x) s.t.
∫

K

dμ(x) = 1.

Recall the definition of the bound val
(r)
outer from (14), which now reads

val
(r)
outer = inf

μ∈(Qr (g1,...,gk))
∗

{∫
K

p(x)dμ(x) :
∫

K

dμ(x) = 1

}
.

It can be reformulated via an SDP as in (16)–(17), whose dual SDP reads

sup
λ∈R

{λ : p − λ ∈ Qr (g1, . . . , gk)}. (30)

By weak duality val
(r)
outer is at least the optimal value of (30). Strong duality holds

for instance if the set K has a non-empty interior (since then the primal SDP is
strictly feasible), or if there is a ball constraint present in the description of the set
K (as shown in [27]). Then, val

(r)
outer is also given by the program (30), which is the

case, e.g., when K is a simplex, a hypercube, or a sphere.
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As we saw above, the bounds val
(r)
outer converge asymptotically to the minimum

value val taken by the polynomial p over the set K when condition (28) holds. We
now indicate some known results on the rate of convergence of these bounds.

For a polynomial p =∑α pαxα ∈ R[x]d , we set

Lp := max
α

|pα|α1! · · · αn!
|α|! .

Error Analysis for the Bounds val
(r)
outer

Theorem 13 ([43]) Assume K ⊆ (−1, 1)n. There exists a constant c > 0
(depending only on K) such that, for any polynomial p with degree d, we have

val − val
(r)
outer ≤ 6d3n2dLp

1(
log r

c

)1/c
for all integers r ≥ c exp

(
(2d2nd)c

)
.

Note that this result displays a very slow convergence rate, which does not reflect
the good behaviour of the bounds often observed in practice.

On the other hand, a sharper error analysis holds for the stronger bounds val
(r)

outer ,
obtained by using the larger set Qr (

∏
j∈J gj : J ⊆ [k]) instead of Qr (g1, . . . , gk).

Error Analysis for the Bounds val
(r)

outer

Theorem 14 ([52]) Assume K ⊆ (−1, 1)n. There exists a constant c > 0
(depending only on K) such that, for any polynomial p with degree d, we have

val − val
(r)

outer ≤ cd4n2dLp

1

r1/c
for all integers r ≥ cdcncd .

We now recap some known sharper results for the case of polynomial opti-
mization over special sets K like the simplex, the hypercube and the sphere.
As motivation recall that this already captures well known hard combinatorial
optimization problems such as the maximum independence number in a graph.

Given a graph G = (V = [n], E) let α(G) denote the largest cardinality of an
independent set in G, i.e., of a set I ⊆ V that does not contain any edge of E.
In fact the parameter α(G) can be reformulated via polynomial optimization over
the simplex �n, the hypercube [0, 1]n, or the unit sphere Sn. Indeed the following
results are known:
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1

α(G)
= min

x∈�n

xT (In + AG)x, α(G) = max
x∈[0,1]n

∑
i∈V

xi −
∑

{i,j}∈E

xixj ,

2
√

2

3
√

3

√
1 − 1

α(G)
= max

y∈Rn,z∈Rm

⎧⎨
⎩2

∑
{i,j}∈E

zij yiyj : (y, z) ∈ Sn+m

⎫⎬
⎭

(see [40, 41]). Here In is the identity matrix of size n, AG is the adjacency matrix of
G (with entries Aij = Aji = 1 if {i, j} ∈ E and 0 otherwise), E is the set of pairs
of distinct elements i, j ∈ V such that {i, j} �∈ E and m = |E|.
Error Analysis for the Sphere
We first consider the case of the sphere K = Sn = {x ∈ R

n : ∑n
i=1 x2

i = 1}.
Then an error analysis for the bounds val

(r)
outer is known when p is a homogeneous

polynomial.

First, one may reduce to the case when p has even degree. Indeed, as shown in
[21], if p has odd degree d then we have

max

{
p(x) :

n∑
i=1

x2
i = 1

}
= dd/2

(d + 1)(d+1)/2
max

{
xn+1p(x) :

n+1∑
i=1

x2
i = 1

}
.

Another useful observation is that, for a homogeneous polynomial q of even degree
d, q belongs to the truncated quadratic module of the sphere:

Qr

(
±
(

1 −
n∑

i=1

x2
i

))
= �r +

(
1 −

n∑
i=1

x2
i

)
R[x]

if and only if the polynomial q(x)
(∑n

i=1 x2
i

)r
is a sum of squares of polynomials

(see [16]). Therefore, when p is a homogeneous polynomial of even degree d = 2a,
the parameter val

(r)
outer can be reformulated as

val
(r)
outer = min

{
t : t ∈ R, t

(
n∑

i=1

x2
i

)r

−
(

n∑
i=1

x2
i

)r−a

p(x) ∈ �r

}
. (31)

Based on this, the following error bounds for the parameters val
(r)
outer are shown in

[21, 24] (for general polynomials) and in [17] (for even polynomials).
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Theorem 15 Let p be a homogeneous polynomial of even degree d.

(i) ([21, 24]) There exist constants Cn,d and rn,d (depending on n and d) such that

min
x∈Sn

p(x) − val
(r)
outer ≤ Cn,d

r
for all integers r ≥ rn,d .

(ii) ([17]) If p is an even polynomial (i.e., of the form p = ∑
α∈Nn

d/2
pαx2α), then

the above holds where the constant Cn,d depends only on d and rn,d = d.

We briefly discuss the approach in [21], which in fact provides an error analysis
for the larger range val

(r)
inner − val

(r)
outer .

For an integer a let MSym((Rn)⊗a) denote the set of matrices acting on (Rn)⊗a

that are maximally symmetric, which means the associated 2a-tensor is fully
symmetric (i.e., invariant under the action of the symmetric group Sym(2a)). Any
homogeneous polynomial p of degree 2a can be written as p(x) = (x⊗a)T Zpx⊗a

for a (unique) Zp ∈ MSym((Rn)⊗a). Then, defining the polynomial pr(x) =
(
∑

i x2
i )r−ap(x), the program (31) can be reformulated as

val
(r)
outer = min

{〈Zpr ,M〉 : M � 0, Tr(M) = 1, M ∈ MSym((Rn)⊗r )
}
.

Let M be an optimal solution to this program. As M � 0 the polynomial
(x⊗r )T Mx⊗r is a sum of squares. One can scale it to obtain h ∈ �r which provides
a probability density function on Sn, i.e.,

∫
Sn

h(x)dμ0(x) = 1 (with μ0 the surface

measure on Sn), and thus val
(r)
inner ≤ ∫

Sn
h(x)dμ0. Using the orthogonal polynomial

basis with respect to μ0 (consisting of spherical harmonic polynomials), Doherty
and Wehner [21] show a de Finetti type result, which permits to upper bound the
range

∫
Sn

h(x)dμ0 − 〈Zpr ,M〉 and thus val
(r)
inner − val

(r)
outer .

Error Analysis for the Simplex and the Hypercube
For the simplex K = �n = {x ∈ R

n : xi ≥ 0 (i ∈ [n]), 1 −∑n
i=1 xi = 0} and the

hypercube K = [0, 1]n = {x ∈ R
n : xi ≥ 0, 1 − xi ≥ 0 (i ∈ [n])}, a refined error

analysis is known only for the stronger bounds val
(r)

outer , where we use the larger
quadratic module generated by all pairwise products of the constraints defining K .

Error Analysis for the Simplex

Theorem 16 ([17]) Assume K = �n and p is a homogeneous polynomial with
degree d. Then we have

min
x∈�n

p(x) − val
(r)

outer ≤ Cd

r

(
max
x∈�n

p(x) − min
x∈�n

p(x)

)
for all r ≥ d,

where Cd > 0 is an absolute constant depending only on d.
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Error Analysis for the Hypercube

Theorem 17 ([12]) Assume K = [0, 1]n. For any polynomial p with degree d we
have

min
x∈[0,1]n p(x) − val

(r)

outer ≤ nd

(
d + 1

3

)
Lp

1

r
for all r ≥ d.

The above results show that in Theorem 14 one may choose the unknown
constant to be c = 1 (roughly) if K is a hypercube or simplex. In both cases the
proof relies on showing this error analysis for a weaker bound, which is obtained by
using only nonnegative scalar multipliers (instead of sum-of-squares multipliers) in
the definition of the quadratic module. See [12, 17] for details.

6 Concluding Remarks

We conclude with a few remarks on available software and future research direc-
tions.

Software
The bounds based on the outer approximations (14) described here have been
implemented in the software Gloptipoly3 [26]. The software can in fact deal with a
more general version of the GPM (1) than presented here. Namely it can deal with
the problem

val = inf
μi∈M(Ki)+ ∀i∈{0}∪[m]

{∫
K0

f0(x)dμ0(x) :
∫

Ki

fi(x)dμi(x) = bi ∀i ∈ [m]
}

,

where we have a variable measure μi ∈ M(Ki)+ for each index i ∈ {0, . . . , m},
with Ki ⊆ R

n being basic closed semi-algebraic sets defined by (possibly different)
sets of polynomial inequalities.

Due to the sizes of the resulting semidefinite programs that are solved, appli-
cability is typically limited to n ≤ 20 variables and low order, say r ≤ 4. This
is due to the fact the matrix variables in the semidefinite programs are roughly of
order

(
n+r
r

)
. Solving larger instances requires exploiting additional structure (like

sparsity) leading to more economical semidefinite programs. We refer, e.g., to [33]
and references therein for further details.
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Error Bounds for the Inner Approximation Hierarchy
The known error bounds for the inner approximation, presented earlier in Table 2,
are for specific choices of the set K and reference measure μ0 ∈ M(K)+. More
work is required to understand the role of the reference measure in the convergence
analysis, and to extend the regime in O(1/r2) to more classes of sets K . In
particular, an obvious choice is whether one can sharpen the analysis of the the
convergence rate for the Euclidean unit sphere. As explained, such results would
also have implications for grid search on cubature points on the sphere. Cubature
on the sphere is a vast research topic (see, e.g., [8, Chapter 6]), even in the
special case of spherical t-designs [8, §6.5], where all cubature weights are equal
and positive. Moreover, the complexity of polynomial optimization on spheres is
not fully understood; indeed the problem is NP-hard, but allows polynomial-time
approximation schemes in special cases (see [10, 17]). Sharpening the analysis of
the inner approximations for polynomial optimization over spheres may help to gain
a more complete understanding.

Error Bounds for the Outer Approximation Hierarchy
The bounds based on the outer approximation presented here are more practically
suited for computation, in particular since they (sometimes) enjoy finite convergence
and permit to extract the global minimizers; moreover, as mentioned above, the
dedicated software Gloptipoly3 is available for this purpose. On the other hand,
the known results on the rate of convergence are somewhat disappointing (as
discussed in Sect. 5.2), and in general much weaker than those known for the
inner approximation. There is certainly room for a breakthrough here; new ideas are
needed to obtain convergence rates that match the performance observed in practice.
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Note Added in Proof Some of the above mentioned questions have been recently addressed.
In particular, the results in Table 2 for the inner approximation bounds have been sharpened.
Namely, the convergence rate in O(1/r2) has been extended for the sphere in [15] and for the
hypercube equipped with more measures in [55]. A sharper rate in O(log2 r/r2) for convex bodies
and in O(log r/r) for compact sets with an interior condition is shown in [55]. In addition, the
convergence rate O(1/r2) is shown in [23] for the outer approximation bounds in the case of the
unit sphere.
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