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Neboj�sa Gvozdenovi� �Monique LaurentSemide�nite Bounds for the Stability Number ofa Graph via Sums of Squares of Polynomialsthe date of reeipt and aeptane should be inserted laterAbstrat. Lov�asz and Shrijver [13℄ have onstruted semide�nite relaxations for the stableset polytope of a graph G = (V;E) by a sequene of lift-and-projet operations; their proedure�nds the stable set polytope in at most �(G) steps, where �(G) is the stability number of G.Two other hierarhies of semide�nite bounds for the stability number have been proposed byLasserre [7℄,[8℄ and by de Klerk and Pasehnik [5℄, whih are based on relaxing nonnegativityof a polynomial by requiring the existene of a sum of squares deomposition. The hierarhy ofLasserre is known to onverge in �(G) steps as it re�nes the hierarhy of Lov�asz and Shrijver,and de Klerk and Pasehnik onjeture that their hierarhy also �nds the stability numberafter �(G) steps. We prove this onjeture for graphs with stability number at most 8 and weshow that the hierarhy of Lasserre re�nes the hierarhy of de Klerk and Pasehnik.
Key words. Stability number of a graph, semide�nite programming, sum ofsquares of polynomials
1. IntrodutionSemide�nite programming plays an essential role for onstruting good relax-ations for hard ombinatorial optimization problems, in partiular, for the max-imum stable set problem whih will be onsidered in the present paper (see, e.g.,[11℄ for a detailed aount). Lov�asz [12℄ introdued the theta number #(G) asan upper bound for the stability number �(G) of a graph G = (V;E). The thetanumber an be formulated via the semide�nite program:#(G) := max Tr(JX) s.t. Tr(X) = 1; Xij = 0 (ij 2 E); X � 0; (1)and thus omputed eÆiently (to any arbitrary preision) using, e.g., interiorpoint methods (f. [2,25℄). It is also known that #(G) oinides with �(G) whenG is a perfet graph (see [6℄). Lov�asz and Shrijver [13℄ onstrut a hierarhyof semide�nite relaxations for the stable set polytope of G by a sequene oflift-and-projet operations; their proedure is �nite and it �nds the stable setpolytope in at most �(G) steps.Two other hierarhies of semide�nite bounds for the stability number havebeen proposed by Lasserre [7,8℄ and by de Klerk and Pasehnik [5℄. They usethe following notions about sums of squares of polynomials. Given a polynomialf 2 R [x1 ; :::; xn℄, one says that f is a sum of squares of polynomials if it an beN. Gvozdenovi�, M. Laurent: Centrum voor Wiskunde en Informatia, Kruislaan 413, 1098 SJAmsterdam, The Netherlands



2 Neboj�sa Gvozdenovi�, Monique Laurentwritten as f = g21 + g22 + :::+ g2m, where g1,..., gm 2 R [x1 ; :::; xn℄. Obviously, f isnonnegative on Rn if it an be written as a sum of squares of polynomials. Thehierarhies of Lasserre and of de Klerk and Pasehnik are based on the followingparadigm: While testing nonnegativity of a polynomial is a hard problem, onean test eÆiently whether a polynomial an be written as a sum of squares ofpolynomials via semide�nite programming. As was already proved by Hilbert in1888 not every nonnegative multivariate polynomial an be written as a sum ofsquares (see Reznik [19℄ for a nie survey on this topi). However, some repre-sentation theorems have been proved ensuring the existene of ertain sums ofsquares deompositions under some assumption, like positivity of the polynomialon a ompat basi losed semi-algebrai set (see, e.g., [24℄ for an exposition ofsuh results). An early suh result is due to P�olya [18℄ who showed that, if p(x)is a homogeneous polynomial whih is positive on Rn+ nf0g, then (Pni=1 xi)rp(x)has only nonnegative oeÆients (and thus (Pni=1 x2i )rp(x21; : : : ; x2n) is a sum ofsquares) for some suÆiently large integer r.The starting point for Lasserre's onstrution is that the stability number�(G) of a graph G = (V;E) an be expressed as the smallest salar t for whihthe polynomial t�Pi2V xi is nonnegative on the set fx 2 RV j xixj = 0 (ij 2E); x2i = xi (i 2 V )g. Requiring the weaker ondition that the polynomialt �Pi2V xi an be written as a sum of squares modulo the ideal generated byxixj (ij 2 E) and x2i � xi (i 2 V ) with given degree bounds, yields a hierarhyof semide�nite upper bounds for �(G). The dual approah (in terms of momentmatries) yields the hierarhy of Lasserre [7,8℄ of semide�nite relaxations for thestable set polytope. This hierarhy re�nes the hierarhy of Lov�asz and Shrijver(see [9℄) and thus it also �nds the stable set polytope in �(G) steps.By a result of Motzkin and Straus [15℄, one may alternatively express �(G) asthe smallest salar t for whih the matrix M := t(I+AG)�J (with entries t�1on the diagonal and at positions orresponding to edges and �1 elsewhere) isopositive, meaning that the polynomial pM (x) :=Pi;j2V x2ix2jMij is nonnega-tive on Rn . Following Parrilo [16℄, de Klerk and Pasehnik [5℄ propose to relax thenonnegativity ondition on pM (x) and to require instead that (Pi2V x2i )rpM (x)be a sum of squares for some integer r � 0. In this way they de�ne a hierar-hy of bounds #(r)(G) (for r � 0). The onvergene of these bounds to �(G)is guaranteed by the above mentioned result of P�olya. The �rst bound in thehierarhy oinides with the strengthening #0(G) of the theta number introduedby MEliee, Rodemih and Rumsey [14℄ and Shrijver [21℄ (see (8) below). Itis however not lear how the next bounds relate to the bounds provided by theonstrution of Lasserre. It is onjetured in [5℄ that the stability number isfound after �(G) steps. In this paper we study this onjeture and develop aproof tehnique whih enables us to show that the onjeture holds for graphswith stability number at most 8. Moreover, we show that the hierarhy of boundsof Lasserre (enhaned by adding some nonnegativity onstraint) re�nes the hi-erarhy of bounds of de Klerk and Pasehnik, answering another open questionof [5℄.The paper is organized as follows. In Setion 2, we �rst reall some de�nitionsand results related to the hierarhies of bounds of Lasserre and of de Klerk and



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 3Pasehnik. Next we introdue a dual formulation for the latter bounds, as well asa weighted analogue and new semide�nite relaxations of the stable set polytope.We omplete the setion with our main results. The proofs are delayed till Setion3, where we prove the onjeture for graphs with stability number at most 8,till Setion 4, where we prove a partial result for the weighted analogue of theonjeture, and till Setion 5, where we prove the relation between the hierarhiesof Lasserre and of de Klerk and Pasehnik. Setion 6 ontains some variationsand new interpretations of the bounds #(r)(G). Finally some variations of themain onjeture about the onvergene to the stability number in �(G) stepsare given.Some notation. Throughout, G = (V;E) denotes a graph with node setV = f1; : : : ; ng. For a node i 2 V , N(i) denotes the set of nodes adjaent toi and we set i? := i [ N(i). Similarly for S � V , N(S) denotes the set ofnodes adjaent to some node in S and we set S? := S [ N(S). For two nodesu; v 2 V , write u ' v if u = v or uv 2 E, and u 6' v otherwise. Let �(G)denote the stability number of G, i.e., the largest ardinality of a stable setin G. The matrix AG denotes the adjaeny matrix of G, i.e., AG is the 0=1matrix indexed by V whose (i; j)-th entry is 1 when ij 2 E. All matries areassumed to be symmetri and I, J , e, ei (i = 1; : : : ; n) denote, respetively, theidentity matrix, the all-ones matrix, the all-ones vetor, and the standard unitvetors of suitable sizes. A matrix M is opositive if xTMx � 0 for all x 2 Rn+and Cn denotes the opositive one, onsisting of the n� n opositive matries.For a symmetri matrix M , we write M � 0 if all entries are nonnegative, andM � 0 if M is positive semide�nite. The trae of M is denoted by Tr(M), whilediag(M) denotes the vetor ontaining the diagonal entries ofM . Given a vetorv 2 Rn , we let Diag(v) denote the diagonal matrix whose diagonal entries arethe omponents of v. Next, 1v denotes the vetor with entries 1vi (i = 1; :::; n). Fora sequene � 2 Zn+ , we set j�j :=Pni=1 �i, �! := �1! � � ��n!, S(�) := fi j �i 6= 0g,and Sodd(�) := fi j �i is oddg. One says that � is even when Sodd(�) = ;. Wealso set I(n; r) := f� 2 Zn+ j j�j = rg and Pr(V ) := fS � V j jSj � rg. Forx 2 Rn and � 2 I(n; r) we write x� := �ni=1x�ii . A polynomial p 2 R [x1 ; : : : ; xn℄of the form p(x) = P�2I(n;r) p�x� is said to be homogeneous of degree r, andwe let p = (p�) 2 R I(n;r) denote the vetor ontaining its oeÆients. For aone of symmetri matries K � Rn�n , K� denote the dual one de�ned byK� = fM 2 Rn�n jTr(MN) � 0; 8N 2 Kg. It is well known that the oneof positive semide�nite matries is self-dual (i.e., oinides with its dual one),while the dual one of the opositive one Cn is the one of ompletely positivematries, a matrix M being ompletely positive if M � 0 and M � 0.
2. Semide�nite bounds for the stability number2.1. The semide�nite bounds of LasserreGiven an integer r � 1 and a vetor x = (xI)I2P2r(V ), onsider the matrix:Mr(x) := (xI[J )I;J2Pr(V )



4 Neboj�sa Gvozdenovi�, Monique Laurentknown as the moment matrix of x of order r. By setting:las(r)(G) := maxPi2V xi s.t. Mr(x) � 0; xI � 0 (I � V; jIj = r + 1);x; = 1; xij = 0 (ij 2 E) (2)one obtains a hierarhy of semide�nite bounds for the stability number, knownas Lasserre's hierarhy [8,9℄. Indeed, if S is a stable set, the vetor x 2 RP2r (V )with xI = 1 if I � S and xI = 0 otherwise, is feasible for (2) with objetive valuejSj, showing �(G) � las(r)(G). For any �xed r, the parameter las(r)(G) an beomputed in polynomial time (to an arbitrary preision) sine the semide�niteprogram (2) involves matries of size O(nr) with O(n2r) variables.We note that las(1)(G) = #0(G) (see (8) below for the de�nition of #0(G)).Equality �(G) = las(r)(G) holds for r � �(G). This result remains valid if weremove the nonnegativity onstraint xI � 0 (jIj = r + 1) in (2) ([9℄). However,with this nonnegativity ondition, we will be able to ompare the hierarhies ofLasserre and of de Klerk and Pasehnik (see Theorem 4 below1). Note that theonditions xI � 0 for jIj � r are implied by Mr(x) � 0.
2.2. The semide�nite bounds of de Klerk and PasehnikThe starting point in [5℄ is the following formulation for �(G) found by Motzkinand Straus [15℄:1�(G) = min xT (I +AG)x subjet to x � 0; nXi=1 xi = 1: (3)
In other words, �(G) = min t subjet to t(I +AG)� J 2 Cn: (4)Therefore, upper bounds for �(G) an be obtained by replaing the opositiveone Cn in program (4) by a smaller subone of it. Following [5,16℄, given aninteger r � 0, K(r)n denotes the one of n�nmatriesM for whih the polynomial

p(r)M (x) :=  nXi=1 x2i!r0� nXi;j=1Mijx2ix2j1A (5)
an be written as a sum of squares of polynomials. Parrilo [16℄ shows thatK(0)n = fP +N j P � 0; N � 0g: (6)1 Theorem 4 asserts that las(r)(G) � #(r�1)(G) (see (7) for the de�nition of #(r)(G)). Ifwe omit the ondition xI � 0 (jIj = r + 1) in (2), for r = 1 we would have las(1)(G) =#(G) � #0(G) = #(0)(G). However there exist graphs with #(G) > #0(G) (see, e.g., [22, vol. B,p. 1173℄), whih shows that the statement of Theorem 4 is wrong without the nonnegativityondition.



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 5A haraterization of K(1)n an be found in [1,16℄ (see also Lemma 14 and theomment thereafter). Obviously, K(r)n � K(r+1)n � : : : � Cn. The result of P�olyamentioned in the Introdution shows that the interior of the one Cn is ontainedin Sr�0K(r)n : Setting#(r)(G) := min t subjet to t(I + AG)� J 2 K(r)n ; (7)one obtains a hierarhy of upper bounds for �(G). The �rst bound #(0)(G) isequal to#0(G) = max Tr(JX) s.t. Tr(X) = 1; Xij = 0 (ij 2 E); X � 0; X � 0 (8)(see [5℄). Thus, #(0)(G) � #(G), sine program (8) without the nonnegativityondition is the formulation (1) of the theta number.The problem of �nding a sum of squares deomposition for a polynomial ofdegree 2d an be formulated as a semide�nite program involving matries ofsize O(nd) and O(n2d) variables (see, e.g., [16℄). Therefore, for �xed r, program(7) an be reformulated as a semide�nite program of polynomial size and thus#(r)(G) an be omputed in polynomial time (to any preision).Let us observe that, for the matrix M := �(I + AG) � J , the polynomialp(r)M (x) has a negative oeÆient for any r � 0 when � = �(G) � 2. To see it,reall from [1, p. 169, Thm. 2.2℄ thatp(r)M (x) = X�2I(n;r+2) r!�!�x2� ; where � := �TM� � �Tdiag(M): (9)
If S(�) is a stable set, then � = �Pi �i(�i�1)�(r+1)(r+2). Write r+2 = q�+swith q; s 2 Z+ , 0 � s < �; then � < 0 for � = (q+ 1; : : : ; q + 1; q; : : : ; q; 0; : : : 0)with s entries equal to q + 1, � � s entries equal to q, and S(�) being a stableset.On the other hand the matrix M := �(1 + �)(I + AG) � J with � = �(G)and � = ��1�2��+1 , belongs to the one K(r)n for r � �2 sine all the oeÆients ofthe polynomial p(r)M (x) are nonnegative [5℄. Indeed, by (9), for � 2 I(n; r + 2),the oeÆient � is equal to�TM� � �Tdiag(M) � (r + 2)2minx2� xTMx� (r + 2)(�(1 + �)� 1)= (r + 2)2�� (r + 2)(�(1 + �)� 1) � 0for r � �2 by the hoie of �. (We used here the fat that minx2� xTMx = �whih is a diret onsequene of (3).) Therefore,�(G) � #(r)(G) � �(G)(1 + �) < �(G) + 1;whih gives the following result of de Klerk and Pasehnik [5℄:�(G) = b#(r)(G) for r � �(G)2:



6 Neboj�sa Gvozdenovi�, Monique LaurentIt is also shown in [5℄ that#(1)(G) � 1 + maxi2V #(0)(Gni?): (10)Therefore, #(1)(G) = �(G) when �(G) � 2. More generally, de Klerk and Paseh-nik [5℄ onjeture:Conjeture 1. #(r)(G) = �(G) for r � �(G)� 1.
2.3. Dual formulationUsing oni duality, the bound #(r)(G) from (7) an be reformulated as#(r)(G) = max Tr(JX) subjet to Tr((I +AG)X) = 1; X 2 (K(r)n )�: (11)As the programs (7) and (11) are stritly feasible, there is no duality gap andthe optima in (7) and (11) are indeed attained ([5℄). For r = 0, it follows from(6) that (K(0)n )� is the one of ompletely positive (i.e., positive semide�nite andnonnegative) matries. For r � 1, one an give an expliit desription of the dualone (K(r)n )�. As a �rst step we introdue a lass of matries de�ned in (12).De�nition 1. Let y = (yÆ)Æ2I(n;2r+4) be given.(i) De�ne the matrix2 Nr+2(y) indexed by I(n; r + 2), whose (�; �0)-th entry isequal to y�+�0 , for �; �0 2 I(n; r + 2).(ii) For  2 I(n; r), N(y) denotes the prinipal submatrix of Nr+2(y) indexedby +2e1; : : : ; +2en; that is, N(y) is the n�n matrix with (i; j)-th entryy2+2ei+2ej , for i; j = 1; : : : ; n.(iii) De�ne the n� n matrix C(y) := X2I(n;r) r!!N(y): (12)
De�nition 2. De�ne the oneC(r)n := fZ 2 Rn�n j Z = C(y) for some y 2 R I(n;2r+4) with Nr+2(y) � 0g:Notie that the matrix C(y) in (12) involves only entries of y indexed by evensequenes. Therefore in the de�nition of the one C(r)n one an assume w.l.o.g.that yÆ = 0 whenever Æ has an odd omponent.Proposition 1. The ones K(r)n and C(r)n are dual of eah other; that is,C(r)n = (K(r)n )� and K(r)n = (C(r)n )�.2 Suh a matrix is known as a moment matrix; for details see, e.g., Lasserre [7℄.



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 7The proof relies on a known duality relationship between the one of sums ofsquares of polynomials and the one of positive semide�nite moment matries.Nevertheless, the expliit desription of C(r)n , the dual of K(r)n , is new to thebest of our knowledge. Given u = (u�) 2 R I(n;r+2) , onsider the polynomialp(x) := (P� u�x�)2; then the following identity holds:yT p = uTNr+2(y)u for any y 2 R I(n;2r+4) : (13)Indeed, yT p =PÆ yÆpÆ =PÆ yÆ(P�;�jÆ=�+� u�u�) =P�;� u�u�y�+� ; whih isequal to uTNr+2(y)u: De�ne the two ones:�2r+4 := fp = (p�) 2 R I(n;2r+4) jX� p�x� is a sum of squares of polynomialsg;
N2r+4 := fy 2 R I(n;2r+4) j Nr+2(y) � 0g:Lemma 1. The two ones N2r+4 and �2r+4 are dual of eah other; that is,N2r+4 = (�2r+4)� and �2r+4 = (N2r+4)�.Proof. The equality N2r+4 = (�2r+4)� follows as a diret appliation of (13)and it implies the equality �2r+4 = (N2r+4)� sine �2r+4 is a losed one (see[20, p. 37, Prop. 3.6℄). utProof. (of Proposition 1). Let C(y) 2 C(r)n , let M be a symmetri n� n matrixand let p(r)M be the assoiated polynomial via (5). Using (9), one an verify thatTr(M C(y)) = yT p(r)M for any y 2 R I(n;2r+4) : (14)Indeed, Tr(M C(y)) = nXi;j=1MijC(y)ij = nXi;j=1Mij X2I(n;r) r!!y2+2ei+2ej

= X�2I(n;r+2)
0� Xij�i�2 r!(� � 2ei)!Miiy2� + Xi6=jj�i;�j�1 r!(� � ei � ej)!Mijy2�1A

= X�2I(n;r+2)
0�Xi r!�i(�i � 1)�! Miiy2� +Xi6=j r!�i�j�! Mijy2�1A= X�2I(n;r+2) r!�!y2� ��TM� � �Tdiag(M)� = yT p(r)M :

Using (14) and the equality (N2r+4)� = �2r+4, one an immediately onludethatK(r)n = (C(r)n )�. The one C(r)n is losed sine it onsists of linear ombinationsof positive semide�nite matries and the positive semide�nite one is losed.Hene C(r)n = (K(r)n )�. ut



8 Neboj�sa Gvozdenovi�, Monique LaurentLet us note for further referene the following identities whih follow using(9) and (14):
Tr(J C(y)) = X�2I(n;r+2) (r + 2)!�! y2� ; (15)

Tr(C(y)) = X�2I(n;r+2) r!�!y2�  nXi=1 �2i � �i! : (16)
2.4. Semide�nite relaxations of the stable set polytopeLet Pstab(G) denote the stable set polytope of G, de�ned as the onvex hull ofthe inidene vetors of the stable sets in G. For an integer r � 0, de�ne the setP (r)(G) := fx 2 Rn j x = diag(X) for some X 2 C(r)n satisfyingTr(AGX) = 0; X � xxT � 0gand de�ne the parameter: ~#(r)(G) := maxx2P (r)(G)Xi2V xi: (17)
Lemma 2. Pstab(G) � P (r)(G) and �(G) � ~#(r)(G) � #(r)(G) for any integerr � 0.Proof. Given a stable set S with inidene vetor x := �S , de�ne the vetory 2 R I(n;2r+4) with yÆ = 1jSjr if Æ is even and S(Æ) � S, and yÆ = 0 otherwise.Then, jSjrNr+2(y) is a 0/1 blok diagonal matrix, whose bloks are indexed bythe sets OI := f� 2 I(n; r + 2) jS(�) � S; Sodd(�) = Ig for I � S, and the setO := f� 2 I(n; r + 2)jS(�) * Sg. Eah OI � OI blok is the all-ones matrix,and the O �O blok is zero. Hene Nr+2(y) � 0. For  2 I(n; r),

jSjrN(y) = �S V nSS J 0V nS 0 0 � = xxT
if S() � S, and N(y) = 0 otherwise. Hene C(y) = P2I(n;r) r!!N(y) =P2I(n;r) r!! 1jSjr xxT = xxT . Setting X := C(y) = xxT , we have Tr(AGX) = 0,and x = diag(X), whih shows that x 2 P (r)(G). This shows the inlusionPstab(G) � P (r)(G) whih in turn implies the inequality �(G) � ~#(r)(G). Theinequality ~#(r)(G) � #(r)(G) follows from Lemma 3 below. ut



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 9The sets P (r)(G) provide a hierarhy of semide�nite relaxations for Pstab(G).It is known that Pstab(G) = P (0)(G) when G is a perfet graph (see [6℄). A nat-ural question to ask is whether the analogue of Conjeture 1 may hold, assertingthat Pstab(G) = P (r)(G) for r � �(G)� 1. We are able to give a positive answeronly in the ase r = 1; see Corollary 2 below.For this, given positive node weights w 2 RV+ , we have to ompare theweighted stability number �w(G) := maxx2Pstab(G)wTx and the weighted parame-ter: ~#(r)w (G) := maxx2P (r)(G)wTx: (18)
Busygin [3℄ shows the following extension to the weighted ase of the Motzkin-Straus theorem.Theorem 1. [3℄ Given wi > 0 (i 2 V ), set wmin := mini2V wi. Then,wmin�w(G) = minx2� xT �Diag �wminw �+AG�x:
In other words, the matrix �w(G)�Diag( 1w ) + 1wminAG�� J is opositive or,equivalently, the matrix �w(G) (Diag(w) +AG;w) � wwT is opositive, whereAG;w is the matrix whose ij-th entry is wiwjwmin if ij 2 E and 0 otherwise. Set

wmax := maxi2V wi; WG := (wmax)2wmin : (19)The matrix �w(G) (Diag(w) +WGAG)�wwT is also opositive, sine the entriesof AG;w are at most WG. This leads us to de�ne the following weighted analogueof the parameter #(r)(:):#(r)w (G) := min t subjet to t(Diag(w) +WGAG)� wwT 2 K(r)n : (20)This de�nition redues to the original de�nition (7) when all weights are equalto 1.Lemma 3. The parameters (18) and (20) satisfy: ~#(r)w (G) � #(r)w (G):Proof. Assume M := t(Diag(w) +WGAG) � wwT 2 K(r)n and let x = diag(X)where X 2 C(r)n , Tr(AGX) = 0, X � xxT � 0. Then, 0 � Tr(MX) = twTx �wTXw, yielding twTx � wTXw � (wTx)2 and thus t � wTx. This gives thedesired inequality. utLemma 4. For r = 0, ~#(0)w (G) = #(0)w (G): Therefore, #(0)w (G) = �w(G) when Gis a perfet graph.



10 Neboj�sa Gvozdenovi�, Monique LaurentProof. It remains to show the inequality: #(0)w (G) � ~#(0)w (G): For this, we �rstobserve that#(0)w (G) � �(G) := min t subjet to tDiag(w) + yAG � wwT 2 K(0)n : (21)Our argument is similar to the one used by de Klerk and Pasehnik [5℄ in theunweighted ase. Assume M := tDiag(w) + yAG � wwT 2 K(0)n . Then, M =P +N , where P � 0, N � 0, diag(N) = 0. Hene, t(Diag(w)+WGAG)�wwT =M + (tWG � y)AG = P + N + (tWG � y)AG. It suÆes now to verify thatN 0 := N + (tWG � y)AG � 0. For this pik an edge, say 12 2 E. As P � 0, wehave P11 + P22 � 2P12, yielding t(w1 + w2)� 2(y �N12) � (w1 � w2)2. Finally,2N 012 = 2N12 + 2tw2maxwmin � 2y � t(w1 + w2)� 2(y �N12) � 0 proves (21).Next, using oni duality, we obtain that�(G) = max wTXw subjet to Tr(Diag(w)X) = 1; T r(AGX) = 0; X 2 C(0)n :Set u := (pwi)ni=1. Resaling X by Y = Diag(u)XDiag(u), we �nd that�(G) = max uTY u subjet to Tr(Y ) = 1; T r(AGY ) = 0; Y 2 C(0)n :(As C(0)n onsists of the nonnegative positive semide�nite matries, it is losedunder the above resaling.) We an now onlude that �(G) � ~#(0)w (G); this isthe same proof as for Theorem 67.11 in [22℄ (whih gives the result with the oneC(0)n being replaed by the one of positive semide�nite matries). ut
2.5. The main resultsIn this paper we prove the following results.Theorem 2. For a graph G and a positive integer r � min(�(G)� 1; 6),#(r)(G) � r + maxS�V stable; jSj=r #(0)(GnS?); (22)Moreover, (22) holds for r = 7 = �(G)� 1.Corollary 1. Conjeture 1 holds for �(G) � 8; that is,#(�(G)�1)(G) = �(G) if �(G) � 8:Theorem 3. For a graph G with positive node weights w 2 RV ,#(1)w (G) � maxi2V (wi + #(0)w (Gni?)): (23)Corollary 2. Pstab(G) = P (1)(G) if Gni? is perfet for all i 2 V ; this holds inpartiular if �(G) = 2.



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 11Theorem 4. For r � 1, the parameters from (2),(11) and (17) satisfy:las(r)(G) � ~#(r�1)(G) � #(r�1)(G): (24)Corollary 1 follows diretly from Theorem 2. Analogously, Corollary 2 followsfrom Theorem 3 together with Lemma 4. The proofs for Theorems 2, 3, 4 aregiven in Setions 3, 4, 5, respetively.Our proof tehnique for Theorem 2 does not apply to the ase when �(G) � 9.It is muh more ompliated than the proof of onvergene in �(G) steps forthe Lov�asz-Shrijver and the Lasserre semide�nite hierarhies. One of the maindiÆulties (as pointed out later in the proof) omes from the fat that, forr � 1, the one K(r)n is not invariant under some simple matrix operations,like extending a matrix by adding a zero row and olumn to it, or resalingit by positive multipliers (whih obviously preserve opositivity and positivesemide�niteness). For instane, when G is a iruit of length 5, the matrix M :=2(I + AG) � J belongs to K(1)5 , but adding a zero row and olumn yields amatrix that does not belong to K(1)6 . We thank E. de Klerk for ommuniatingthis example to us.As Theorem 4 shows, the bound las(r)(G) is at least as good as ~#(r�1)(G).There exist in fat graphs for whih strit inequality: las(2)(G) < ~#(1)(G) holds.For this, given integers 2 � d � n, onsider the graph G(n; d) with node setP(V ) (jV j = n) where I; J 2 P(V ) are onneted by an edge if jI�J j 2f1; : : : ; d � 1g. Then �(G(n; d)) is the maximum ardinality of a binary odeof word length n with minimum distane d. Delsarte [4℄ introdued a linear pro-gramming bound whih oinides with the parameter #0(G(n; d)) ([21℄). Shrijver[23℄ introdued a stronger semide�nite bound whih roughly3 lies between thebounds las(1)(G(n; d)) and las(2)(G(n; d)) ([10℄). While G(n; d) has 2n verties,Shrijver's bound an be omputed via a semide�nite program of size O(n3)(using a blok diagonalization of the underlying Terwilliger algebra). It turnsout that the same algebrai property holds for the bound #(1)(G(n; d)); thuswe ould ompute this bound as well as Shrijver's bound for the parameters(n; d) = (17; 4); (17; 6); (17; 8), and we found:las(2)(G(17; 4)) � 3276 < 3607 � #(1)(G(17; 4))las(2)(G(17; 6)) � 352 < 395 � #(1)(G(17; 6))las(2)(G(17; 8)) � 41 < 42 � #(1)(G(17; 8)):
3. Proof of Theorem 2Let G = (V;E) be a graph with stability number �(G), V = f1; : : : ; ng and1 � r � �(G)� 1 an integer. Sett := r + maxS�V stable;jSj=r#(0)(GnS?):3 Indeed, the formulation of Shrijver's bound has an additional onstraint, namely, xijk �xij for all i; j; k 2 V , whih does not appear in the de�nition of the bound las(r)(G) used inthe present paper.



12 Neboj�sa Gvozdenovi�, Monique LaurentThen, t � r + 1. As t� r � #(0)(GnS?), we dedue that(t� r)(I +AGnS?)� J 2 K(0)n�jS?j for any stable set S in G of size r: (25)In order to prove Theorem 2, we have to show that, for 1 � r � min(�(G)�1; 6),M := t(I +AG)� J 2 K(r)n : (26)We need some notation. Let B be an m � n matrix. We say that B is aq� s blok matrix if the set f1; : : : ;mg indexing its rows an be partitioned intoQ1[ : : :[Qq and the set f1; : : : ; ng indexing its olumns an be partitioned intoS1[: : :[Ss in suh a way that, for any h 2 f1; : : : ; qg, h0 2 f1; : : : ; sg, the entriesBij for i 2 Qh; j 2 Sh0 are all equal to the same value, say ~bhh0 . In other words,B is obtained from the matrix ~B := (~bhh0) h2f1;:::;qgh02f1;:::;sg by suitably dupliating rowsand olumns. We all ~B the skeleton of the blok matrix B. Obviously, B � 0 ifand only if ~B � 0 (assuming m = n, q = s); moreover, B 2 K(r)n if and only if~B 2 K(r)q (see Lemma 15 below).Finally, for x 2 Rn , set v(x) := (x2i )ni=1.The following observation plays a entral role in the proof.Lemma 5. Let X(i) (i 2 V ) be symmetri matries satisfying the ondition:X(i)jk +X(j)ik +X(k)ij � 0 for all i; j; k 2 V; (27)then the polynomial Pi2V x2i v(x)TX(i)v(x) = Pi;j;k2V x2ix2jx2kX(i)jk is a sumof squares.Proof. The polynomial Pi;j;k2V x2ix2jx2kX(i)jk is equal toP (i;j;k)2V 3i6=j 6=k 6=i x2ix2jx2k[X(i)jk +X(i)jk +X(i)jk℄+P (i;j)2V 2i6=j x2ix4j [X(i)jj + 2X(j)ij ℄ +Pi2V x6iX(i)ii;
whih is a sum of squares, sine all oeÆients are nonnegative by (27). utOur strategy will be to onstrut matries X(fi1; :::; ikg; i) (i 2 V ) satisfying(27) when fi1; :::; ikg is a stable set of size k � r. We will use them to reursivelydeompose M into M �X(i1)�X(i1; i2)� : : :�X(i1; : : : ; ik) in suh way thatat the last level k = r we obtain matries in K(0)n . It turns out that this lastproperty holds for r � 7, but not for r = 8. This is why we are able to prove theonjeture only for graphs with stability number at most 8.



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 133.1. De�ning sets of matries satisfying the linear ondition (27)Let S be a stable set of ardinality k, 0 � k � r. We de�ne a set of matriesX(S; i) (for i 2 V ) indexed by V that satisfy the ondition (27). Set m0 := 1and mk := tk(t�1)���(t�k) for k = 1; : : : ; r. (Reall that t � r + 1 > k.)For i 2 S?, X(S; i) is the symmetri matrix whose entry at position (u; v) isde�ned as follows:
mk times 8<:0 if u or v 2 S?t� k � 1 if u; v 2 V n S? and u ' v�1 if u; v 2 V n S? and u 6' v:For i 62 S?, X(S; i) is the symmetri matrix whose entry at position (u; v) isde�ned as follows:

mk times
8>>>>>>>>>>>><>>>>>>>>>>>>:

0 if u; v 2 S?� t�k�12 if u 2 S?; v 2 i? n S?12 if u 2 S?; v 2 V n (S? [ i?)0 if u; v 2 i? n S? and u ' v�(t� k) if u; v 2 i? n S? and u 6' vt� k2 if u 2 i? n S?; v 2 V n (S? [ i?) and u ' vk2 if u 2 i? n S?; v 2 V n (S? [ i?) and u 6' v�k if u; v 2 V n (S? [ i?) and u ' v0 if u; v 2 V n (S? [ i?) and u 6' v:If S = fi1; : : : ; ikg, we also denote X(S; i) as X(i1; : : : ; ik; i). When S = ;, weset X(;; i) =: X(i). Given an ordering (S) = (i1; : : : ; ik) of the elements of S,de�ne the matrixM((S)) := M �X(i1)�X(i1; i2)� : : :�X(i1; : : : ; ik): (28)Lemma 6. Given a stable set S of size 0 � k � r, the matries X(S; i) (i 2 V )satisfy (27).Proof. We prove X(S; i)jk +X(S; j)ki +X(S; k)ij � 0 for all possible ombina-tions of i; j and k. Indeed, omitting the salar fator mk, we �nd:{ For i; j; k 2 S?: 0 + 0 + 0 = 0;{ For i; j 2 S?, k =2 S?: 0 + 0 + 0 = 0;{ For i 2 S?, j; k =2 S?, j ' k: (t� k � 1) + (� t�k�12 ) + (� t�k�12 ) = 0;{ For i 2 S?, j; k =2 S?, j 6' k: �1 + 12 + 12 = 0;{ For i; j; k =2 S?, i ' j ' k ' i: 0 + 0 + 0 = 0;{ For i; j; k =2 S?, i ' j ' k 6' i: (t� k2 ) + (�t+ k) + (t� k2 ) = t;{ For i; j; k =2 S?, k 6' i ' j 6' k: k2 + k2 � k = 0;{ For i; j; k =2 S?, i 6' j 6' k 6' i: 0 + 0 + 0 = 0. ut



14 Neboj�sa Gvozdenovi�, Monique Laurent3.2. The role of the matries X(S; i) and M((S)) in the proof
Our objetive is to prove that the matrix M from (26) belongs to the one K(r)n ,i.e., that the polynomial p(r)M (x) = �(x)rv(x)TMv(x) is a sum of squares, setting�(x) := Pni=1 x2i . Reall that v(x) = (x2i )ni=1. The basi idea is to deomposep(r)M (x) as

�(x)r�1 nXi=1 x2i v(x)TX(i)v(x) + �(x)r�1 nXi=1 x2i v(x)TM((i))v(x): (29)
The �rst sum is a sum of squares by Lemmas 5 and 6. Eah matrix M((i)) anbe written as

M((i)) =M �X(i) = � i? V n i?i? (t� 1)J �JV n i? �J t(I +AGni?)� J � (30)
= tt� 1 �0 00 (t� 1)(I +AGni?)� J�+ �(t� 1)J �J�J 1t�1J� : (31)When r = 1, (30),(31) together with assumption (25) imply that M � X(i) 2K(0)n and thus p(1)M (x) is a sum of squares; therefore, (10) holds. Assume nowr � 2. The last matrix in (31) is positive semide�nite. Suppose our assumptionwould be that (t � 1)(I � AGni?) � J 2 K(r�1)n�ji?j, then it would be temptingto onlude from (30) and (31) that M((i)) 2 K(r�1)n (whih would then im-ply that M 2 K(r)n and thus onlude the proof). This would be orret ifwe would work with ones of matries whih are losed under adding a zerorow and olumn, but this is not the ase for the ones K(r) and thus thisargument does not work. To go around this diÆulty, we proeed as follows.If a vertex i is adjaent to all other verties (i.e., i? = V ), then M((i)) =(t � 1)J � 0 and thus �(x)r�1x2i v(x)TM((i))v(x) is a sum of squares. Oth-erwise, we further deompose this quantity as �(x)r�1x2i v(x)TM((i))v(x) =�(x)r�2Pnj=1 x2ix2jv(x)TM((i))v(x), whih is then equal to

�(x)r�2 nXj=1 x2ix2jv(x)TX(i; j)v(x) + �(x)r�2 nXj=1 x2ix2jv(x)TM((i; j))v(x)
(reall the de�nition of M((i; j)) from (28)). In the next step we further de-ompose the quantity �(x)r�2x2ix2jv(x)TM((i; j))v(x) in a similar manner ifi? [ j? 6= V , et. Generally, we have the following `inlusion-exlusion' formula



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 15for the matrix �(x)rM :�(x)rM = rXh=1�(x)r�h Xi12V; i2 62i?1 ;:::;ih�1 62i?1 [:::[i?h�2ih2V x2i1 � � �x2ihX(i1; : : : ; ih)
+ rXh=2�(x)r�h Xi12V; i2 62i?1 ;:::;ih�1 62i?1 [:::[i?h�2ih2i?1 [:::[i?h�1 x2i1 � � �x2ihM((i1; : : : ; ih))

+ Xi12V; i2 62i?1 ;:::;ir�1 62i?1 [:::[i?r�2ir 62i?1 [:::[i?r�1 x2i1 � � �x2irM((i1; : : : ; ir)):
(32)Therefore, in order to show that M 2 K(r)n , it suÆes to show thatM((i1; : : : ; ik; ik+1)) 2 K(0)n for S := fi1; : : : ; ikg stable,ik+1 2 S?; 1 � k � r � 1; (33)and M((i1; : : : ; ir)) 2 K(0)n for fi1; : : : ; irg stable. (34)For this we need to study the struture of the matries M((S)).

3.3. The struture of the matries M((S))Given an ordered stable set (S) = (i1; i2; :::; ik) with k = 1; : : : ; r, onsider thematrix M((S)) from (28) and write
M((S)) := � S? V n S?S? Ck(S) Dk(S)V n S? Dk(S)T Ek(S) �: (35)Lemma 7. The matrix M((S)) from (35) has the following properties.(i) Ck(S) is a k � k blok matrix whose rows and olumns are indexed by thepartition of S? into i?1 [ (i?2 n i?1 ) [ : : : [ (i?k n fi1; : : : ; ik�1g?): Let Ck bethe skeleton of Ck(S) (Ck is a k � k matrix) and set dk := Cke 2 R k . Then,eTCke = kXh=1 dk(h) = (mk � 1)(t� k)2:(ii) The matrix Dk(S) is a k � 1 blok matrix, with the same partition as abovefor the set S? indexing its rows. Given h 2 f1; : : : ; kg, all entries in the(h; 1)-blok take the same value, whih is equal to �dk(h)t�k .(iii) For u; v 2 V nS?, the (u; v)-th entry of Ek(S) is equal to tmk�1� 1 if u ' vand to �1 if u 6' v:



16 Neboj�sa Gvozdenovi�, Monique LaurentProof. The blok struture of the matries Ck and Dk is determined by theonstrution of the matrix M((S)) in (28) and the shape of the matries X(:)de�ned in Setion 3.1. We show the lemma by indution on k � 1. For k = 1,the matrix M((S)) = M � X(i1) has the shape given in (30) and the desiredproperties hold. Assume (i),(ii),(iii) hold for a stable set S of size k � 1. Leti 2 V n S?. We show that (i),(ii),(iii) hold for the stable set S [ fig. Let D0k(S)(resp., D00k(S)) be the submatries of Dk(S) whose olumns are indexed by i?nS(resp., V n (S [ i?)) and with the same row indies as Dk(S). Then Ck+1(S; i)and Dk+1(S; i) have the following blok struture:Ck+1(S; i) = � Ck(S) D0k(S) + t�k�12 mkJD0k(S)T + t�k�12 mkJT (tmk�1 � 1)J � (36)
Dk+1(S; i) = �D00k(S)� 12mkJ(�1�mk k2 )J � ; (37)where J denotes the all-ones matrix of the appropriate size. By the indutionassumption, the entries in the h-th row of D0k(S) and D00k(S) are equal to �dk(h)t�k(for h = 1; : : : ; k), and eT dk = eTCke = (mk � 1)(t� k)2.We �rst show that Ck+1(S; i) satis�es (i). Indeed,eTCk+1e = eTCke+ 2�� eT dkt�k +mk t�k�12 �+ tmk�1 � 1= (mk � 1)(t� k)2 � 2(mk � 1)(t� k) +mk(t� k � 1)k +mk(t� k)� 1= mk(t� k � 1)t� (t� k � 1)2 = (mk+1 � 1)(t� k � 1)2:We now show that Dk+1(S; i) satis�es (ii). Setting dk+1 := Ck+1e, for h =1; : : : ; k, we have:dk+1(h) = dk(h)� dk(h)t� k + t� k � 12 mk = (t� k � 1)�dk(h)t� k + mk2 � :This yields: �dk+1(h)t�k�1 = �dk(h)t�k � mk2 , whih is indeed equal to the entries ofDk+1(S; i) in its h-th row. The entries of Dk+1(S; i) in its (k + 1)-th row areequal to �1�mk k2 , thus equal to �dk+1(k+1)t�k�1 sinedk+1(k + 1) =Pkh=1 ��dk(h)t�k + k(t�k�1)2 mk�+ tmk�1 � 1= � eTCket�k + k t�k�12 mk + tmk�1 � 1 = (t� k � 1) �1 + kmk2 � :We �nally show that Ek+1(S; i) satis�es (iii). Indeed, its (u; v)-th entry re-mains the same as in Ek(S), i.e., equal to �1, if u 6' v and, for u ' v, it is equalto tmk�1 � 1 + kmk = (t� k)mk � 1 + kmk = tmk � 1. utCorollary 3. Let S be a stable set of size k = 1; : : : ; r. Then,G((S)) := � Ck(S) Dk(S)Dk(S)T (mk � 1)J� � 0() Ck(S) � 0; (38)

M((S)) = G((S)) +mk �0 00 (t� k)(I +AGnS?)� J� ; (39)M((S; i)) = G((S)) if i 2 S?: (40)



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 17Proof. By Lemma 7, Ck(S), Dk(S) are blok matries; hene G((S)) � 0 if andonly if its skeleton G := � Ck � 1t�kCke� 1t�keTCk mk � 1 � is positive semide�nite. Now,G � 0() Ck � 0 sine the last olumn of G is a linear ombination of the �rstk olumns; thus (38) holds. Relations (39), (40) follow using the de�nitions. utTherefore, (33), (34) hold (and thusM 2 K(r)n ) if we an show that Ck(S) � 0for any stable set S of size k � r. As Ck(S) is a blok matrix, it suÆes to showthat its skeleton Ck is positive semide�nite. Moreover, it suÆes to show thatCr � 0 sine, in view of (36), the matries Ck (1 � k � r) are in fat the leadingprinipal submatries of Cr.
3.4. The matrix Cr is positive semide�nite for r � min(�(G)� 1; 6)Reall that the entries of Cr depend on the parameter t; thus one may alterna-tively write Cr as Cr(t). Our task is now to show that Cr(t) � 0 for all t � r+1and r � min(�(G)� 1; 6). We ahieve this by proving thatdetCk(t) > 0 for t � r + 1; k = 1; : : : ; r: (41)The proof of (41) relies on establishing a reurrene relationship among thedeterminants of Ck(t). We need the following lemma.Lemma 8. Assume Ck+1 is nonsingular for k � 1. Then,eT (Ck+1)�1e = t2(t� k)2 detCkdetCk+1 : (42)
Proof. Write Ck+1 := �Ck xxT a� ; (Ck+1)�1 := �A yyT b� : Then,(a) ACk+yxT = I; (b) Cky+bx = 0; () Ax+ay = 0; (d) xT y+ab = 1: (43)By Lemma 7 and (36), a = tmk�1 � 1 = (t� k)mk � 1 and x = �ke� 1t�kCke,setting �k := mk t�k�12 . Moreover, eTCke = (mk � 1)(t� k)2, implyingeTx = k�k � (t� k)(mk � 1); eTxt� k + a = �k � kt� k + 2� : (44)Taking the inner produt of relation () with the all-ones vetor and using (43)(a)and (44), we �nd:0 = eTAx+ aeT y = eTA(�ke� 1t�kCke) + aeT y= �keTAe� 1t�keT (I � yxT )e+ aeT y = �keTAe� kt�k + eT y(xT et�k + a)= �k(eTAe+ 2eT y) + kt�k (�keT y � 1);that is, eTAe+ 2eT y = kt� k � 1�k � eT y� : (45)



18 Neboj�sa Gvozdenovi�, Monique LaurentUsing relations (43)(d),(b) and (44), we �nd:1 = xT y + ab = (�ke� 1t�kCke)T y + ab= �keT y + bt�keTx+ ab = �keT y + b�k( kt�k + 2);that is, eT y = 1�k � b� kt� k + 2� : (46)Relations (45) and (46) imply that eT (Ck+1)�1e = eTAe+ 2eT y + b = b t2(t�k)2 :By the ofator rule, b = detCkdetCk+1 , and the lemma follows. utCorollary 4. Let k � 2 and assume that Ck(t) is nonsingular. Then,detCk+1(t) = 2t�kt� k detCk(t)� t2�2k(t� k + 1)2 detCk�1(t); (47)after setting �k := mk t�k�12 .Proof. Setting P := �I � 1t�ke0 1 �, we �nd that PTCk+1P = � Ck �ke�keT � �, aftersetting � := mk t(t�k�1)t�k . Set u := (Ck)�1e and let v1; : : : ; vk+1 denote theolumns of PTCk+1P . Then, vk+1 � �k(Pki=1 uivi) has all zero entries exeptthe last (k+1)-th entry equal to �� �2k(Pki=1 ui) = mk t(t�k�1)t�k � �2keT (Ck)�1e.Therefore, we an onlude thatdetCk+1 = detPTCk+1P = � 2t�kt� k � �2keT (Ck)�1e� detCk: (48)Relation (47) now follows diretly from Lemma 8 and (48). utLemma 9. Consider the rational funtions f1(t) = t � 1, f2(t) := t2(t�2)(3t�2)4(t�1)2and, for h = 2; : : : ; k,fh+1(t) = 2t�ht� hfh(t)� t2�2h(t� h+ 1)2 fh�1(t);and the polynomials g1(t) := 1, g2(t) := 3t� 2 and, for h = 2; : : : ; k,gh+1(t) = �h(t� h)gh(t)� t(t� h� 1)gh�1(t);with �h = 1 if h is even and �h = 4 otherwise. As before, �h := mh t�h�12 .(i) For h = 2; : : : ; k + 1, fh(t) = t(h+12 )�1(t�h)4bh=2(t�1)h(t�2)h�1���(t�h+1)2 gh(t):(ii) For 1 � k � 6, gk(t) > 0 for all t � k. Moreover, g7(8) > 0.



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 19Proof. The proof for (i) is by indution on k. For (ii), setting Gk(t) := gk(t+k),one has to show that Gk(t) > 0 for t � 0, k � 6. This follows from the fat thatG2(t) = 4 + 3t, G3(t) = 7 + 7t + 2t2, G4(t) = 64 + 68t + 30t2 + 5t3, G5(t) =167+165t+84t2+25t3+3t4, G6(t) = 1776+1296t+540t2+248t3+70t4+7t5.Moreover, g7(8) = 1024. utWe an now onlude the proof of Theorem 2. Let t � r + 1. Consider�rst the ase when 1 � r � min(�(G) � 1; 6). We show that (41) holds usingCorollary 4 and Lemma 9. First note that detCh(t) = fh(t) for h = 1; 2 (diretveri�ation). Let k 2 f1; : : : ; rg. If k = 1; 2, then detCk(t) > 0. Assume k � 3and Ck�1(t) � 0. By Corollary 4, detC1(t); : : : ; detCk(t) are related via (47);that is, detCh(t) = fh(t) for h = 1; : : : ; k. We now dedue from Lemma 9 thatdetCk(t) > 0. This shows that Cr(t) � 0 for t � r + 1, whih onludes theproof of the �rst part of Theorem 2.Consider now the ase when r = 7 = �(G) � 1. We have to show that thematrix M = t(I + AG) � J from (26) with t := �(G) = 8 belongs to K(7)n . Asbefore we are left with the task of proving that detC1(t); : : : ; detC7(t) > 0 fort = 8, whih follows from the assertions g1(8); : : : ; g6(8); g7(8) > 0 in Lemma 9.This onludes the proof of Theorem 2.Note that the same argument annot be used for proving Conjeture 1 in thease �(G) = 9, sine g1(9); : : : ; g6(9) > 0 while g7(9) < 0 whih implies that thematrix C7(9) is not positive semide�nite.
4. Proof of Theorem 3The proof is along the same lines as in the preeding setion. Sett := maxi2V wi + #(0)w (Gni?):
For i 2 V , de�ne w(i) := (wj)j2V ni? , the vetor of node weights restrited to thegraph Gni?. The matrix Pi := (t � wi)(Diag(w(i)) +WGAGni?) � w(i)(w(i))Tbelongs to the one K(0)jV ni?j (sine WGni? � WG). De�ne a := (1=wj)j2V and,for i 2 V , let a(i) be the restrition of a to Gni?. Moreover, set BGni? :=WGDiag(a(i))AGni?Diag(a(i)) and Mi := Diag(a(i))PiDiag(a(i)). Then,Mi = (t� wi)(Diag(a(i)) +BGni?)� J 2 K(0)jV ni?j:Our goal is to show that P := t(Diag(w) +WGAG)�wwT 2 K(1)n ; equivalently,setting M := Diag(a)PDiag(a), we have to show thatthe polynomial p(x) := (Xi aix2i )v(x)TMv(x) is a SOS.



20 Neboj�sa Gvozdenovi�, Monique LaurentWe follow the same strategy as in the proof of Theorem 2: We introdue a set ofsymmetri matries X(i) (i 2 V ) satisfying (27). Namely, given i 2 V , all entriesof X(i) are equal to 0, exeptX(i)ij = � 12aj(ai � aj)t; X(i)jj = ai(aj � ai)t for j 2 N(i);X(i)jk = �aiajakWGt for j; k 2 N(i); j 6' k;X(i)jk = aiajakWGt for j 2 N(i); k 2 V n i?; j ' k:Then, X(i)jk +X(j)ik +X(k)ij � 0 sine it takes the values:{ For i = j = k: 0;{ For i = j ' k: 2(� 12ak(ai � ak)t) + ak(ai � ak)t = 0;{ For i = j 6' k: 2�0+0=0;{ For i ' j ' k ' i: 0+0+0=0;{ For i ' j 6' k ' i: �aiajakWGt+ aiajakWGt+ aiajakWGt = aiajakWGt;{ For i 6' j ' k 6' i: 0+0+0=0;{ For i 6' j 6' k 6' i: 0+0+0=0.One an deompose the polynomial p(x) asXi x2i v(x)T (aiM �X(i))v(x) +Xi x2i v(x)TX(i)v(x):The seond summation is a SOS by Lemma 5. To onlude the proof, it suÆesto show that the matrix aiM � X(i) belongs to K(0)n . For this, note that thematrix A := wi(aiM �X(i)) =M � wiX(i) an be deomposed asA = �(tai � 1)J �J�J 1tai�1J�+ �N 00 0�+ �0 00 taitai�1Mi�where N � 0, whih shows that A 2 K(0)n and onludes the proof of Theorem3. (When all weights are equal to 1, N = 0 and we �nd the deomposition from(30), (31).) Indeed, one an verify thatAjj = tai � 1 for j 2 i?Aij = tWGaiaj � 1 + aj2ai (ai � aj)t for j 2 N(i)Ajk = tWGajak � 1 for j 6= k 2 N(i)Ajk = �1 for j 2 i?; k 2 V n i?Ajj = taj � 1 for j 2 V n i?Ajk = tWGajak � 1 for j 6= k 2 V n i?; j ' kAjk = �1 for j; k 2 V n i?; j 6' k:The prinipal submatrix of A indexed by V ni? is thus equal to 1tai�1J+ taitai�1Mi.Moreover, tWGajak � 1 � tai � 1 sine WG � aiajak = wjwkwi : Finally, we havetWGaiaj � 1 + aj2ai (ai � aj)t � tai � 1 sine WG � a2j+2a2i�aiaj2a2iaj = w2i+2w2j�wiwj2wj ;indeed, if wi � wj , then w2i+2w2j�wiwj2wj � wj � wmax �WG and, if wi � wj , thenw2i+2w2j�wiwj2wj � wi(wi+wj)2wj � (wmax)2wmin =WG: ut



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 215. Proof of Theorem 4Obviously, las(1) = #(0)(G). In view of Lemma 2, we have to show that las(r) �~#(r�1)(G) for any positive integer r. For this, let x 2 RP2r (V ) be feasible for (2),i.e., x; = 1, xI � 0 (jIj = r+1), xij = 0 (ij 2 E), and Mr(x) � 0. Then, xI = 0for any I 2 P2r(V ) ontaining an edge. We may assume that Pni=1 xi > 0. Forp = 1; : : : ; r + 1, de�ne `p := X�2I(n;p�1) (p� 1)!�! xS(�):Then, `1 = 1, `p � `2 = Pni=1 xi > 0 for p � 2. For p = 1; : : : ; r, de�ney = (yÆ)Æ2I(n;2p+2) as follows: yÆ = 0 if Sodd(Æ) 6= ;, yÆ := 1̀pxS(Æ) otherwise(then jS(Æ)j � p+ 1 � r + 1).Lemma 10. Np+1(y) � 0.Proof. For I � V , set OI := f� 2 I(n; p + 1) j Sodd(�) = Ig and NI :=(y�+�0)�;�02OI . Then, Np+1(y) is a blok diagonal matrix with the matries NI(I � V ) as diagonal bloks. As `pNI = (xS(�)[S(�0))�;�02OI ,NI � 0 sine it is ob-tained from a prinipal submatrix ofMr(x) by dupliating ertain rows/olumns(unless jIj = r + 1 in whih ase NI is the 1 � 1 matrix with entry xjIj � 0,implying again NI � 0). utTherefore, the matrix Z(p) := C(y) = P2I(n;p�1) (p�1)!! N(y) belongs tothe one C(p�1)n . Moreover, Z(p)ij = 0 if ij 2 E. De�ne the matrix
~Z(p) := 0BBB� 1 Z(p)11 : : : Z(p)nnZ(p)11... Z(p)Z(p)nn

1CCCA : (49)
Lemma 11. ~Z(p) � 0:Proof. The matrix:

`p ~Z(p) = X2I(n;p�1) (p� 1)!!
0BBB� xS() y2+4e1 : : : y2+4eny2+4e1... (y2+2ej+2ek)nj;k=1y2+4en

1CCCA
= X2I(n;p�1) (p� 1)!!

0BBB� xS() xS(+e1) : : : xS(+en)xS(+e1)... (xS(+ej+ek))nj;k=1xS(+en)
1CCCA

is positive semide�nite, sine the matries in the above summation are prinipalsubmatries of Mr(x). ut



22 Neboj�sa Gvozdenovi�, Monique LaurentLemma 12. Tr(JZ(p)) = `p+2`p and Tr(Z(p)) = `p+1`p :Proof. As Z(p) = C(y) 2 C(p�1)n , one an use (15) and (16). Namely,Tr(JZ(p)) = X�2I(n;p+1) (p+ 1)!�! y2� = 1̀p X�2I(n;p+1) (p+ 1)!�! xS(�) = `p+2`p :Moreover, Tr(Z(p)) = X�2I(n;p+1) (p� 1)!�! y2� nXi=1(�2i � �i)
= 1̀p nXi=1 X�2I(n;p+1) (p� 1)!�! �i(�i � 1)xS(�):We an restrit the inner summation to � with �i � 2. Then, Æ := � � ei hasthe same support as � andTr(Z(p)) = 1̀p nXi=1 XÆ2I(n;p) (p� 1)!Æ! ÆixS(Æ) = 1̀p XÆ2I(n;p) (p� 1)!Æ! jÆjxS(Æ) = `p+1`p :utLemma 13. `p+2`p+1 � `p+1`p :Proof. By Lemma 11, ~Z(p) � 0, implying Z(p) � diag(Z(p))diag(Z(p))T �0. Therefore, eT (Z(p) � diag(Z(p))diag(Z(p))T )e � 0, yielding Tr(JZ(p)) �(Tr(Z(p)))2. The result now follows using Lemma 12. utFrom Lemmas 12 and 13, we dedue that Pni=1 Z(r)ii = `r+1`r � `2`1 =Pni=1 xi: The vetor z := diag(Z(r)) is feasible for the program (17) de�ningthe parameter ~#(r�1)(G). Hene, ~#(r�1)(G) � Pni=1 zi = Tr(Z(r)) � Pni=1 xi.This shows that ~#(r�1)(G) � las(r)(G).

6. Conluding remarks6.1. Some variations of the bound #(r)(G)Given a polynomial q 2 R [x1 ; : : : ; xn℄, de�ne the even polynomial ~q(x) :=q(x21; : : : ; x2n); a polynomial being even when eah variable ours with an evendegree in any nonzero term. One an express the ondition that ~q be a SOSdiretly in terms of the polynomial q.Proposition 2. ([26℄) Given a homogeneous polynomial q of degree d, the as-soiated even polynomial ~q(x) := q(x21; : : : ; x2n) is a SOS if and only if the poly-nomial q admits a deomposition:q(x) = XI�f1;:::;ngjIj�d; jIj�d (mod 2) �I(x)Yi2I xi (50)
where �I is a form of degree d� jIj whih is SOS.



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 23The ondition (50) an obviously be reformulated asq(x) = X�2Zn+;j�j�d;j�j�d mod 2��x� (51)
where �� is a form of degree d� j�j whih is SOS. As the polynomial p(r)M from(5) is an even polynomial, we an apply the above riterion for haraterizingwhether an n� n matrix M belongs to the one K(r)n . Namely, M 2 K(r)n if andonly if  nXi=1 xi!r xTMx = X�2Zn+;j�j�r+2;j�j�r+2 mod 2��x� (52)where �� is a form of degree r + 2� j�j whih is SOS.Pe~na, Vera and Zuluaga [17℄ onsider the set Q(r)n onsisting of the matriesM for whih suh a deomposition (52) exists involving only the two highestorder terms with j�j = r + 2, r. Therefore, Q(r)n is a subone of the one K(r)nwith equality Q(r)n = K(r)n for r = 0; 1, and the bound:�(r)(G) := min t suh that t(I +AG)� J 2 Q(r)n (53)satis�es: �(G) � #(r)(G) � �(r)(G):For r � �(G)� 1, Pe~na, Vera and Zuluaga [17℄ show that�(r)(G) � r + maxS�V; S stable; jSj=r �(0)(GnS?) (54)for r = 1; 2; 3, and for r = 4; 5 if �(G) � 6, whih implies �(r)(G) = �(G) if�(G) � 6, thus proving Conjeture 1 for graphs with �(G) � 6.For r � �(G) � 1, our proof of Theorem 2 shows in fat that relation (54)holds for r � 6, and for r = 7 if �(G) = 8. Indeed, the deomposition (32)shows that the matrix M from (26) belongs to the one Q(r)n . This implies�(�(G)�1)(G) = �(G) if �(G) � 8.It is known (see [5℄) that, for the iruit C5 on 5 nodes, �(C5) = 2 =#(1)(C5) < #(0)(C5). Pe~na, Vera and Zuluaga [17℄ onstrut graphs G8, G11,G14 with, respetively, 5,8,11,14 nodes, that satisfy: �(Gn) = #(2)(Gn) forn = 8; 11; 14, �(G8) = 3 < �(1)(G8), �(G11) = 4 < �(2)(G11), and �(G14) = 5 <�(3)(G14). Therefore, the inlusion Q(r)n � K(r)n is strit for r = 2.Let us mention a onsequene of the strit inlusion Q(2)n � K(2)n for thedesription of the one K(2)n . The following suÆient ondition for membershipin K(r)n has already been impliitly mentioned earlier in the paper (e.g., in Setion3.2).Lemma 14. Let M be a symmetri n� n matrix and r � 1 an integer. If thereexist matries X(1); : : : ; X(n) satisfying (27) and for whih M �X(i) 2 K(r�1)n(for i = 1; : : : ; n), then M 2 K(r)n .



24 Neboj�sa Gvozdenovi�, Monique LaurentProof. Diretly from the deomposition (29). utFor r = 1, K(1)n = Q(1)n and the impliation of Lemma 14 holds as an equivalene,whih gives the haraterization of the one K(1)n from [1,16℄. For r = 2 however,the reverse impliation does not hold sine Q(2)n is a strit subset of K(2)n .In order to prove relation (22) for any r and thus Conjeture 1, one shouldprobably obtain a deomposition (52) for the polynomial (Pi xi)rxTMx involv-ing also terms with j�j < r (while our proof in this paper involves only termswith j�j = r; r + 2).Note �nally that one an formulate the following sharpening of the bound#(r)(G): #(r)(G) := mins;t2R t subjet to tI + sAG � J 2 K(r)n (55)whose dual formulation reads:max Tr(JX) subjet to Tr(X) = 1; T r(AGX) = 0; X 2 C(r)n = (K(r)n )� (56)and is obtained by splitting the onstraint Tr((I + AG)X) = 1 into Tr(X) = 1and Tr(AGX) = 0. The bounds ~#(r)(G) (from (17)), #(r)(G) (from (55)) and#(r)(G) (from (7), (11)) satisfy:~#(r)(G) � #(r)(G) � #(r)(G):The seond inequality is obvious. For the �rst one take a matrix X that or-responds to x feasible for (17). Then XTr(X) is feasible for (56) and Tr(JX)Tr(X) =Tr(JX)Pni=1 xi �Pni=1 xi sine X � xxT � 0.For r = 0, the three bounds oinide ([5℄, see also Lemma 4). It is not learwhether they oinide for r � 1.
6.2. Some variations of Conjeture 1The next lemma shows that a blok matrix belongs to the one K(r) if and onlyif its skeleton does. Combined with arguments in our proof of Theorem 2, it willenable us to derive Proposition 3 below.Lemma 15. Consider the matries:

M = �A bbT � ; M 0 = 0�A b bbT  bT  
1A

with respetive sizes n and n+ 1. Then, M 2 K(r)n () M 0 2 K(r)n+1:



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 25Proof. Assume that M 2 K(r)n . Then, the polynomial (Pni=1 yi)ryTMy (in thevariables y1; : : : ; yn) has a deomposition of the form (52). In view of the shapeof the matrixM 0, the polynomial (Pn+1i=1 xi)rxTM 0x (in the variables x1; : : : ; xn,xn+1) an be written as (Pni=1 yi)ryTMy, after setting yi = xi for i � n � 1and yn = xn+ xn+1. Therefore, (Pn+1i=1 xi)rxTM 0x also admits a deompositionof the form (52), whih shows that M 0 2 K(r)n+1. The reverse impliation is easy(simply set the additional variable to zero). utProposition 3. For a graph G = (V;E) and an integer r � 1, we have:#(r)(G) � maxi2V #(r�1)(GnN(i)): (57)Proof. Set t := maxi2V #(r�1)(GnN(i)). Then, for any i 2 V , the matrix
t(I +AGnN(i))� J = � i V n i?i t� 1 �eTV n i? �e t(I +AGni?)� J �belongs to the one K(r�1)jV nN(i)j. Lemma 15 implies that the matrix

M �X(i) = � i? V n i?i? (t� 1)J �JV n i? �J t(I + AGni?)� J �from (30) belongs to K(r�1)n . In view of (29), this implies that M 2 K(r)n . utWe an now formulate some strengthenings of Conjeture 1.Conjeture 2. For any r � 1,#(r)(G) � r + maxS�V; S stable; jSj=r #(0)(GnS?): (58)
Conjeture 3. For any r � 1,#(r)(G) � 1 + maxi2V #(r�1)(Gni?): (59)
Conjeture 4. If i is an isolated node in G, i.e., N(i) = ;, then for any r � 0,#(r)(G) � #(r)(Gni) + 1: (60)Lemma 16. Conjeture 4 =) Conjeture 3 =) Conjeture 2 =) Conjeture 1.Proof. The impliation: Conj. 4 =) Conj. 3 follows using Proposition 3, and theimpliations: Conj. 3 =) Conj. 2 =) Conj. 1 are obvious.



26 Neboj�sa Gvozdenovi�, Monique LaurentHene the whole question boils down to showing that the parameter #(r)(:)behaves well on a graph with an isolated node. Note that the ondition (60) is anatural requirement whih holds, e.g., for the parameter �(:) in plae of #(r)(:), orfor the parameter las(r)(:) (easy to hek). A reason why the parameter las(r)(:)is muh easier to handle than the new bound #(r)(:) might lie in the fat thatthe formulation of the Lasserre bound inorporates in an expliit way the 0/1ondition, while the formulation of #(r)(:) does not.Theorem 2 laims that Conjeture 2 holds for r � min(6; �(G)�1). For r = 1Conjetures 2 and 3 are idential and hold; reall (10) whih was �rst provedby de Klerk and Pasehnik [5℄. Conjeture 4 is true for r = 0. Indeed set t :=1+#(0)(Gni). Then (t�1)(I+AGni)�J 2 K(0)n�1 and M := t(I+AG)�J an bedeomposed as in (30),(31) (with i? = fig as i is isolated). The �rst matrix in thisdeomposition (31) belongs to K(0)n (sine adding a zero row/olumn to a matrixin K(0)n�1 yields a matrix in K(0)n ), the seond matrix is positive semide�nite,whih shows M 2 K(0)n and thus #(0)(G) � t. Conjeture 4 appears to failfor r = 1. Indeed, J. Pe~na, J Vera, and L. Zuluaga (personal ommuniation)veri�ed numerially that #(1)(G) > 11 while #(1)(Gni) = 10, where G is thegraph obtained by adding 9 isolated nodes to the iruit C5 and i is one of theisolated nodes.
6.3. Another interpretation of the bound #(r)(G)We �nally observe that the dual formulation (11) for #(r)(G) an be interpretedas the Shor relaxation of a polynomial optimization program giving yet anotherformulation of �(G). For a graph G = (V;E) and an integer r � 0, onsider theprogram:max  Xi2V x2i!r+2 subjet to  Xi2V x2i!r v(x)T (I +AG)v(x) = 1: (61)Lemma 17. For any integer r � 0, �(G) is equal to the optimum value of (61).Proof. Let � denote the maximum value of (61). Given a stable set S � V ,the vetor x := t�S where t := jSj� r+12(r+2) , is feasible for (61) with objetivevalue jSj, whih shows �(G) � �. Conversely, if x is feasible for (61), thenv(x)T (�(G)(I+AG)�J)v(x) � 0, sine the matrix �(G)(I+AG)�J is opositive.This implies that � � �(G). utFollowing Lasserre [7℄, one an de�ne a hierarhy of relaxations for the poly-nomial optimization problem (61). As the degree of the polynomials involved in(61) is 2r + 4, the Shor relaxation of the problem (i.e., the relaxation of lowestorder in the hierarhy; see [7℄ for details) reads:max P�2I(n;r+2) (r+2)!�! y2�subjet to Nr+2(y) � 0P�2I(n;r+2) r!�! (�T (I +AG)� � �T e)y2� = 1: (62)



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 27(Reall the de�nition of the matrix Nr+2(y) from De�nition 1.) In view of (9)and (15), the objetive funtion reads: Tr(J C(y)) and the onstraint reads:Tr((I +AG) C(y)) = 1. Therefore, the program (62) is idential to the program(11) giving the dual formulation of #(r)(G).
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