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Abstract. Minimizing a polynomial function over a region defined by polynomial in-
equalities models broad classes of hard problems from combinatorics, geometry and op-
timization. New algorithmic approaches have emerged recently for computing the global
minimum, by combining tools from real algebra (sums of squares of polynomials) and func-
tional analysis (moments of measures) with semidefinite optimization. Sums of squares
are used to certify positive polynomials, combining an old idea of Hilbert with the recent
algorithmic insight that they can be checked efficiently with semidefinite optimization.
The dual approach revisits the classical moment problem and leads to algorithmic meth-
ods for checking optimality of semidefinite relaxations and extracting global minimizers.
We review some selected features of this general methodology, illustrate how it applies to
some combinatorial graph problems, and discuss links with other relaxation methods.
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1. Introduction

Polynomial optimization. We consider the following polynomial optimization
problem: given multivariate polynomials f, g1, . . . , gm ∈ R[x1, . . . ,xn], compute
the infimum of the polynomial function f over the basic closed semialgebraic set

K = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} (1.1)

defined by the polynomial inequalities gj(x) ≥ 0. That is, compute

fmin := inf
x∈K

f(x) = inf{f(x) : g1(x) ≥ 0, . . . , gm(x) ≥ 0}. (P)

This is a in general hard, nonlinear and nonconvex optimization problem which
models a multitude of problems from combinatorics, geometry, control and many
other areas of mathematics and its applications.

Well established methods from nonlinear optimization can be used to tackle
problem (P), which however can only guarantee to find local minimizers. Exploiting
the fact that the functions f, gj are polynomials, new algorithmic methods have
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emerged in the past decade that may permit to find global minimizers. These
methods rely on using algebraic tools (sums of squares of polynomials) and analytic
tools (moments of measures) combined with semidefinite optimization.

In a nutshell, sums of squares of polynomials are used to certify positive poly-
nomials, the starting point being that finding fmin amounts to finding the largest
scalar λ for which the polynomial f − λ is nonnegative on the set K. The key
insight is that, while it is hard to test whether a polynomial f is nonnegative,
one can test whether f can be written as a sum of squares of polynomials using
semidefinite optimization.

Moments of measures are used to model the nonlinearities arising in polynomial
functions, the starting point being that finding fmin amounts to finding a positive
measure µ on the set K minimizing the integral

∫
K
f(x)dµ =

∑
α fα

∫
K
xαdµ.

These moments are used to build certain positive semidefinite Hankel type matri-
ces. The key feature of these matrices is that they permit to certify optimality and
to find the global minimizers of problem (P) (under certain conditions).

Semidefinite optimization is a wide generalization of the classical tool of linear
optimization, where vector variables are replaced by matrix variables constrained
to be positive semidefinite. In other words semidefinite optimization is linear op-
timization over affine sections of the cone of positive semidefinite matrices. The
crucial property is that there are efficient algorithms for solving semidefinite pro-
grams (to any arbitrary precision).

Sums of squares and moment based methods permit to construct convex relax-
ations for the original problem (P), whose optimal values can be computed with
semidefinite optimization and provide hiearchies of bounds for the global minimum
fmin. Convergence properties rely on real algebraic results (giving sums of squares
certificates for positive polynomials), and optimality conditions and techniques
for extracting global minimizers rely on functional analytic results for moment
sequences combined with commutative algebra. Hence these methods have their
roots in some classical mathematical results, going back to work of Hilbert about
positive polynomials and sums of squares and to work on the classical moment
problem in the early 1900’s. They also use some recent algebraic and functional
analytic developments combined with some modern optimization techniques that
emerged since a few decades.

Some combinatorial examples. When all polynomials in (P) are linear, prob-
lem (P) boils down to linear programming:

min{cTx : Ax ≥ b}, (LP)

well known to be solvable in polynomial time. However, when adding in (LP) the
quadratic conditions x2

i = xi on the variables, we get 0/1 integer linear program-
ming (ILP), which is hard. Instances of polynomial optimization problems arise
naturally from combinatorial problems.

Consider for instance the partition problem, which asks whether a given se-
quence a1, . . . , an of integers can be partitioned into two classes with equal sums,
well known to be NP-complete [31]. This amounts to deciding whether the mini-
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mum over Rn of the polynomial f = (
∑n
i=1 aixi)

2 +
∑n
i=1(x2

i − 1)2 is equal to 0.

We now mention other NP-hard problems, dealing with cuts, stable sets, graph
colorings, and matrix copositivity, to which we will come back later in the paper.

Max-cut. Consider a graph G = (V,E) with edge weights w = (wij) ∈ RE . The
max-cut problem asks for a partition of the vertices of G into two classes in such a
way that the total weight of the edges crossing the partition is maximum. Encoding
partitions by vectors in {±1}V , we obtain the following polynomial optimization
problem:

mc(G,w) = max
x∈RV

{
∑
{i,j}∈E

(wij/2)(1− xixj) : x2
i = 1 (i ∈ V )}, (1.2)

which models the max-cut problem. A basic idea to arrive at a semidefinite relax-
ation of problem (1.2) is to observe that, for any x ∈ {±1}V , the matrix X = xxT

is positive semidefinite and all its diagonal entries are equal to 1. This leads to the
following problem:

sdp(G,w) = max
X∈RV ×V

{
∑
{i,j}∈E

(wij/2)(1−Xij) : Xii = 1 (i ∈ V ), X � 0}, (1.3)

where the notation X � 0 means that X is symmetric positive semidefinite (i.e.,
xTXx ≥ 0 for all x ∈ RV ). Of course if we would add the condition that X must
have rank 1, then this would be a reformulation of the max-cut problem, thus
intractable. The program (1.3) is an instance of semidefinite program and it can
be solved in polynomial time (to any precision) as will be recalled below. This is
the semidefinite program used by Goemans and Williamson [34] in their celebrated
0.878-approximation algorithm for max-cut. They show that for nonnegative edge
weights the integrality gap mc(G,w)/sdp(G,w) is at least 0.878 and they introduce
a novel rounding technique to produce a good cut from an optimal solution to the
semidefinite program (1.3). This is a breakthrough application of semidefinite
optimization to the design of approximation algorithms, which started much of
the research activity in this field (see e.g. [32]).

Stable sets and colorings. A stable set in a graph G = (V,E) is a set of vertices
that does not contain any edge. The stability number α(G) of G is the maximum
cardinality of a stable set in G. It can be computed with any of the following two
programs:

α(G) = max
x∈RV

∑
i∈V

xi s.t. xixj = 0 ({i, j} ∈ E), x2
i = xi (i ∈ V ), (1.4)

1

α(G)
= min
x∈RV

xT (I +AG)x s.t.
∑
i∈V

xi = 1, xi ≥ 0 (i ∈ V ), (1.5)

where AG is the adjacency matrix of G (see [24] for (1.5)). As computing α(G)
is NP-hard, we find again that problem (P) is hard as soon as some nonlinearities
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occur, either in the constraints (as in (1.4)), or in the objective function (as in
(1.5)). Both formulations are useful to construct hierarchies of bounds for α(G).

The chromatic number χ(G) of G is the minimum number of colors needed
to color the vertices so that adjacent vertices receive distinct colors. There is a
classic reduction to the stability number. Consider the cartesian product G2Kk

of G and the complete graph on k nodes, whose edges are the pairs {(i, h), (j, h′)}
with i = j ∈ V and h 6= h′ ∈ [k], or with {i, j} ∈ E and h = h′ ∈ [k]. Then a
stable set in the cartesian product G2Kk corresponds to a subset of vertices of
G that can be properly colored with k colors. Hence k colors suffice to properly
color all the vertices of G precisely when α(G2Kk) = |V |. Therefore, χ(G) is the
smallest integer k for which α(G2Kk) = |V |. This reduction will be useful for
deriving hierarchies of bounds for χ(G) from bounds for α(G).

A well known bound for both α(G) and χ(G) is provided by the celebrated
theta number ϑ(G) of Lovász [70], defined by the following semidefinite program:

ϑ(G) = max
X∈RV ×V

{
∑
i,j∈V

Xij : Tr(X) = 1, Xij = 0 ({i, j} ∈ E), X � 0}. (1.6)

The following inequalities hold, known as Lovász’ sandwich inequalities:

α(G) ≤ ϑ(G) ≤ χ(G) and ω(G) ≤ ϑ(G) ≤ χ(G). (1.7)

Here, G is the complement of G and ω(G) = α(G) is the maximum cardinality of
a clique (a set of pairwise adjacent vertices) in G. The inequality α(G) ≤ ϑ(G)
is easy: any stable set S of G gives a feasible solution X = χS(χS)T/|S| of the
program (1.6), where χS ∈ {0, 1}V is the characteristic vector of S.

A graph G is called perfect if ω(H) = χ(H) for every induced subgraph H
of G. Chudnovsky et al. [14] showed that a graph G is perfect if and only if
it does not contain an odd cycle of length at least five or its complement as an
induced subgraph. In view of (1.7), we have α(G) = ϑ(G) and χ(G) = ϑ(G) for
perfect graphs. Therefore, both parameters α(G) and χ(G) can be computed in
polynomial time for perfect graphs, via the computation of the theta number, using
semidefinite optimization. Moreover, maximum stable sets and minimum graph
colorings can also be found in polynomial time [36]. This is an early breakthrough
application of semidefinite optimization to combinatorial optimization and as of
today no other efficient algorithm is known for these problems.

One can strengthen the theta number toward α(G) by adding in program (1.6)
the nonnegativity constraint X ≥ 0 on the entries of X (leading to the parameter
ϑ′(G)), and toward χ(G) by replacing the constraint Xij = 0 by Xij ≤ 0 for all
edges (leading to the parameter ϑ+(G)). Thus we have:

α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χ(G). (1.8)

We will see how to build hierarchies of bounds toward α(G) and χ(G) strenghtening
the parameters ϑ′ and ϑ+, using the sums of squares and moment approaches.
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Copositive matrices. Another interesting instance of unconstrained polynomial
optimization is testing matrix copositivity, which is a hard problem [74, 27]. Recall
that a symmetric n× n matrix M is called copositive if the quadratic form xTMx
is nonnegative over the nonnegative orthant Rn+ or, equivalently, the polynomial
fM =

∑n
i,j=1Mijx

2
ix

2
j is nonnegative over Rn. Starting with the formulation (1.5)

of the stability number α(G), it follows that α(G) can also be computed with the
following copositive program:

α(G) = min
λ∈R
{λ : λ(I +AG)− J is copositive}, (1.9)

where J is the all-ones matrix. By using sums of squares certificates for certifying
matrix copositivity, one can define a hierarchy of cones approximating the copos-
itive cone, which can also be used to define hierarchies of semidefinite bounds for
the parameters α(G) and χ(G).

This paper. The field of polynomial optimization has grown considerably in the
recent years. It has roots in early work of Shor [97] and later of Nesterov [75],
and the foundations were laid by the groundworks of Lasserre [53, 54] and Parrilo
[82, 83]. The monograph of Lasserre [56], our overview [68] and the handbook [1]
can serve as a general source about polynomial optimization. We also refer to the
monographs [72], [85] and to the overview [91] for an in-depth treatment of real
algebraic aspects, and to the monograph [9] for links to convexity.

In this paper we will discuss only a small selection of results from this field.
Inevitably we cannot make full references to the literature and we apologize for
all omissions. We will treat some subjects where we have done some (modest)
contributions and our choices are biased, in particular, toward properties of the
moment relaxations and toward hierarchies of semidefinite bounds for combinato-
rial problems. Our interest in polynomial optimization was stirred by the work [54]
of Lasserre explaining how his method applies to 0/1 linear programming and we
are grateful to Jean Lasserre for his inspiring work. We realized that his approach
has tight links with lift-and-project methods for combinatorial optimization. This
in turn inspired us to show finite convergence for polynomial optimization over
finite varieties, to give simple real algebraic proofs for several results about flat
extensions of moment matrices, and to investigate hierarchies for combinatorial
graph parameters.

The paper is organized as follows. We begin with preliminaries about semidef-
inite optimization and sums of squares of polynomials. Then we present the sums
of squares and moment approaches for polynomial optimization, with a special
focus on the properties of moment matrices that allow to certify optimality and
extract global optimizers. Then some selected applications are discussed: for com-
puting real roots of polynomial equations, for designing hierarchies of semidefinite
approximations for the stability number and the chromatic number, and for ap-
proximating matrix copositivity, again with application to approximating graph
parameters. We conclude with mentioning some other research directions where
hierarchies of semidefinite relaxations are also being increasingly used.
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2. Preliminaries

Notation. N = {0, 1, 2, . . .} is the set of nonnegative integers, Nnt consists of the
sequences α ∈ Nn with |α| :=

∑n
i=1 αi ≤ t for t ∈ N and, for α ∈ Nn, xα denotes

the monomial xα1
1 · · ·xαn

n with degree |α|. (We use boldface letters x,xi, .. to
denote variables.) R[x1, . . . ,xn] = R[x] is the ring of polynomials in n variables
and R[x]t its subspace of polynomials with degree ≤ t. The vector [x]t = (xα)α∈Nn

t

lists the monomials of degree at most t (in some given order) and, for a polynomial
f ∈ R[x]t, the vector f = (fα)α∈Nn

t
lists the coefficients of f (in the same order),

so that f =
∑
α fαxα = fT[x]t.

Given polynomials g1, . . . , gm, we let I = (g1, . . . , gm) denote the ideal that
they generate and, for an integer t, It denotes its truncation at degree t, which
consists of all polynomials

∑m
j=1 pjgj with pj ∈ R[x] and deg(pjgj) ≤ t.

A polynomial f is a sum of squares (sos) if f = g2
1+. . .+g2

m for some polynomials
g1, . . . , gm. Σ[x] contains all sums of squares of polynomials and we set Σ[x]t =
Σ[x] ∩ R[x]t. P(K) contains all polynomials f that are nonnegative over a given
set K ⊆ Rn, i.e., f(x) ≥ 0 for all x ∈ K, also abbreviated as f ≥ 0 on K.

Ideals and varieties. Consider an ideal I ⊆ R[x]. The sets
√
I := {f ∈ R[x] | fk ∈ I for some integer k ≥ 1},

R
√
I := {f ∈ R[x] | f2k + p2

1 + . . .+ p2
m ∈ I for some k ≥ 1, p1, . . . , pm ∈ R[x]}

are called, respectively, the radical and the real radical of I. Moreover, the sets

V (I) = {x ∈ Cn : f(x) = 0 ∀f ∈ I}, VR(I) = V (I) ∩ Rn

are, respectively, the (complex) variety and the real variety of the ideal I. If
I = (g1, . . . , gm) is the ideal generated by a set of polynomials g1, . . . , gm, then
V (I) consists of all their common complex roots while VR(I) consists of their
common real roots. The vanishing ideal of a set V ⊆ Cn is the set of polynomials

I(V ) = {f ∈ R[x] : f(x) = 0 ∀x ∈ V }.

The sets I(V ),
√
I and R

√
I are all ideals in R[x] and they satisfy the inclusions:

I ⊆
√
I ⊆ I(V (I)) and I ⊆ R

√
I ⊆ I(VR(I)).

The ideal I is called radical if I =
√
I and real radical if I = R

√
I. For instance,

the ideal I = (x2) is not radical since x ∈
√
I \ I, while the ideal I = (x2

1 + x2
2) is

radical but not real radical since x1,x2 ∈ R
√
I \I. The following celebrated results

relate (real) radical and vanishing ideals.

Theorem 2.1. (see [16, 52, 98]) Let I be an ideal in R[x]. Then,
√
I = I(V (I))

(Hilbert’s Nullstellensatz) and R
√
I = I(VR(I)) (Real Nullstellensatz).

As I ⊆ I(V (I)) ⊆ I(VR(I)), I real radical implies I radical and, moreover,
V (I) = VR(I) ⊆ Rn if the real variety VR(I) is finite. Moreover, an ideal I is zero-
dimensional precisely when V (I) is finite. Then there is a well known relationship
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between the cardinality of the variety V (I) and the dimension of the quotient
space R[x]/I (see e.g. [16]).

Proposition 2.2. An ideal I in R[x] is zero-dimensional (i.e., the variety V (I)
is finite) if and only if the vector space R[x]/I is finite dimensional. Moreover, we
have: |V (I)| ≤ dimR[x]/I, with equality if and only if the ideal I is radical.

The eigenvalue method for computing the variety V (I). We now recall
how to find the variety V (I) of a zero-dimensional ideal I by computing the eigen-
values of the multiplication operator in the quotient algebra R[x]/I, since this
technique is used for finding the global minimizers of problem (P) (see [44]). Given
a polynomial h ∈ R[x], consider the ‘multiplication by h’ linear map in R[x]/I:

mh : R[x]/I −→ R[x]/I
f + I 7−→ fh+ I

and let Mh denote its matrix in a given linear basis B = {b1, . . . , bN} of R[x]/I.

Theorem 2.3. Assume N = dimR[x]/I < ∞, let B = {b1, . . . , bN} be a linear
basis of R[x]/I, and let [v]B = (b1(v), . . . , bN (v))T be the vector of evaluations
at v ∈ V (I) of the polynomials in B. For any h ∈ R[x], the eigenvalues of the
multiplication matrix Mh are the evaluations h(v) of h at the points v ∈ V (I),
with corresponding (left) eigenvectors [v]B. That is, MT

h [v]B = h(v)[v]B for all
v ∈ V (I).

If I is radical then |V (I)| = N (by Proposition 2.2) and the matrix Mh has a full
set of linearly independent eigenvectors ([v]B for v ∈ V (I)). These vectors can be
found by computing the eigenvalues of MT

h (assuming the values h(v) are pairwise
distinct which can be achieved e.g. by selecting a random linear polynomial h)
and it is then easy to recover the points v ∈ V (I) from these vectors [v]B.

We illustrate this method applied to the univariate case. Say I = (p), where
p = xd − pd−1x

d−1 − . . . − p0. The set B = {1,x, . . . ,xd−1} is a basis of R[x]/(p)
and with respect to this basis the ‘multiplication by x’ matrix has the form

Mx =

0 . . . 0 p0

Id−1

...
pd−1

 .

Its characteristic polynomial is det(Mx − tI) = (−1)dp(t), hence the eigenvalues
of the matrix Mx are the roots of p and indeed MT

x [v]B = v[v]B holds if p(v) = 0.

Semidefinite optimization. Sn is the set of real symmetric n × n matrices,
equipped with the trace inner product 〈X,Y 〉 = Tr(XTY ) =

∑n
i,j=1XijYij . The

notation X � 0 means that X is positive semidefinite (i.e., xTXx ≥ 0 for all
x ∈ Rn) and Sn+ ⊆ Sn is the cone of positive semidefinite matrices. The cone Sn+ is
self-dual: X ∈ Sn is positive semidefinite if and only if 〈X,Y 〉 ≥ 0 for all Y ∈ Sn+.
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Given matrices C,A1, . . . , Am ∈ Sn and a vector b ∈ Rm, a semidefinite pro-
gram in standard primal form and its dual semidefinite program read:

p∗ = sup
X∈Sn

{〈C,X〉 : 〈Aj , X〉 = bj (j ∈ [m]), X � 0}, (P-SDP)

d∗ = inf
y∈Rm

{bTy :

m∑
j=1

yjAj − C � 0}. (D-SDP)

Weak duality holds: p∗ ≤ d∗ (since X,Y =
∑m
j=1 yjAj−C � 0 implies 〈X,Y 〉 ≥ 0).

Moreover, if (P-SDP) is bounded and has a positive definite feasible solution X,
then strong duality holds: p∗ = d∗. Semidefinite programs can be solved (approx-
imatively) in polynomial time, using the ellipsoid method (since one can test if a
rational matrix is positive semidefinite using Gaussian elimination). However, the
ellipsoid method is not efficient in practice, and efficient algorithms used in prac-
tical implementations rely on interior-point algorithms. (See e.g. [5, 21, 99, 100].)
On the other hand, the exact complexity is not known of the problem of testing
feasibility of a semidefinite program: given integral matrices C,A1, . . . , Am ∈ Sn,

decide whether there exists y ∈ Rn such that C + y1A1 + . . .+ ymAm � 0. (F)

An obvious difficulty is that there might be only irrational solutions. It is known
that (F) belongs to NP if and only if it belongs to co-NP ([88], see also [51]).
Moreover, (F) can be solved in polynomial time when fixing either m or n [46] and,
when fixing m, one can check in polynomial time if (F) has a rational solution [46].

Recognizing sums of squares of polynomials. It turns out that checking
whether a polynomial f =

∑
α∈Nn

2t
fαxα can be written as a sum of squares of

polynomials amounts to checking whether the following semidefinite program:∑
β,γ∈Nn

t :β+γ=α

Xβ,γ = fα (α ∈ Nn2t), X � 0, (2.1)

(in the matrix variable X = (Xβ,γ)β,γ∈Nn
t
) admits a feasible solution. To see this,

assume f =
∑k
j=1 p

2
j . Then each pj has degree at most t and can be written as

pj =
∑
α(pj)αxα = pj

T[x]t, where pj = ((pj)α) is the vector of coefficients of pj in

the monomial basis. Therefore, f =
∑k
j=1 p

2
j = [x]Tt (

∑k
j=1 pjpj

T)[x]t = [x]Tt P [x]t,

where the matrix P =
∑k
j=1 pjpj

T is positive semidefinite. Moreover, by equating

the coefficients of both polynomials f and [x]TdP [x]d in the identity f = [x]Tt P [x]t,
it follows that P satisfies the system (2.1). The argument can be easily reversed:
any feasible solution of (2.1) gives rise to a sum of squares decomposition of f .

More generally, given polynomials f, g1, . . . , gm ∈ R[x], the problem of finding a
decomposition of the form f = σ0+σ1g1+. . .+σmgm, where σ0, σ1, . . . , σm are sums
of squares with a given degree bound: deg(σ0),deg(σjgj) ≤ 2t, can also be cast
as a semidefinite program. This program is analogue to (2.1), but it now involves
m + 1 positive semidefinite matrices X0, X1, . . . , Xm, where X0 is indexed by Nnt
(corresponding to σ0) and Xj by Nnt−ddeg(gj)/2e (corresponding to σj). Of course

one should adequately define the affine constraints in the semidefinite program.
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3. Positive polynomials and sums of squares

3.1. Positivity certificates. Understanding the link between positive poly-
nomials and sums of squares is a classic question which goes back to work of Hilbert
around 1890. Hilbert realized that not every nonnegative polynomial is a sum of
squares of polynomials and he characterized when this happens.

Theorem 3.1 (Hilbert [45]). Every nonnegative polynomial of degree 2d in n
variables is a sum of squares of polynomials if and only if we are in one of the
following three cases: (n = 1, 2d), (n, 2d = 2), and (n = 2, 2d = 4).

In all other cases, Hilbert showed the existence of a nonnegative polynomial
which is not sos. The first explicit construction was found only sixty years later
by Motzkin: the Motzkin polynomial M = x2

1x
2
2(x2

1 + x2
2 − 3) + 1 is nonnegative

but not a sum of squares of polynomials. However, the polynomial (1 +x2
1 +x2

2)M
is a sum of squares of polynomials, which certifies the positivity of M . We refer
to [89] for an historic account and for more examples. We also refer to [7] for an
in-depth study of the two smallest cases (n = 2, 2d = 6) and (n = 3, 2d = 4) when
not all nonnegative polynomials are sums of squares.

If we are not in one of the special three cases of Theorem 3.1, then the inclusion
Σ[x]2d ⊆ P(Rn)∩R[x]2d is strict. Are these two sets far apart or not? That is, are
there few or many sums of squares within nonnegative polynomials? The answer
depends whether the degree and the number of variables are fixed or not.

On the one hand, sums of squares are dense within nonnegative polynomials if
we allow the degree to grow. Lasserre and Netzer [60] show the following explicit
sums of squares approximation: if f is nonnegative over the box [−1, 1]n then for
any ε > 0 there exists k ∈ N such that the perturbed polynomial f+ε(1+

∑n
i=1 x2k

i )
is a sum of squares of polynomials. (See also Lasserre [55]).

On the other hand, if we fix the degree but let the number of variables grow,
then there are significantly more nonnegative polynomials than sums of squares:
Blekherman [6] shows that the ratio of volumes of (sections of) the cone of sums
of squares and the cone of nonnegative polynomials tends to 0 as n goes to ∞.

At the 1900 International Congress of Mathematicians in Paris, Hilbert asked
whether every nonnegative polynomial can be written as a sum of squares of ra-
tional functions. This question, known as Hilbert’s 17th problem, was answered
in the affirmative in 1927 by Artin, whose work led the foundations of the field of
real algebraic geometry.

Sums of squares certificates (also known as Positivstellensätze) are known for
characterizing positivity over a general basic closed semialgebraic set K of the form
(1.1). They involve weighted combinations of the polynomials g1, . . . , gm describing
the set K. The quadratic module generated by g = (g1, . . . , gm) is the set

Q(g) = {σ0 + σ1g1 + . . .+ σmgm : σ0, . . . , σm ∈ Σ[x]} , (3.1)

the truncated quadratic module Qt(g) is its subset obtained by restricting the de-
grees: deg(σjgj) ≤ 2t (setting g0 = 1), and the preordering T (g) is the quadratic
module generated by the 2m polynomials ge = ge11 · · · gemm for e ∈ {0, 1}m.
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Theorem 3.2 (Krivine [52], Stengle [98]). Let f ∈ R[x] and K be as in (1.1).

(i) f > 0 on K if and only if fq = 1 + p for some p, q ∈ T (g).

(ii) f ≥ 0 on K if and only if fq = f2k + p for some p, q ∈ T (g) and k ∈ N.

(iii) f = 0 on K if and only if −f2k ∈ T (g) for some k ∈ N.

In each case it is clear that the ‘if part’ gives a certificate that f is positive (non-
negative, or vanishes) on K, the hard part is showing the existence of such a cer-
tificate. These certificates use polynomials in T (g) and thus they can be checked
with semidefinite optimization, once a bound on the degrees has been set. However
they are not directly useful for our polynomial optimization problem (P). Indeed,
in view of Theorem 3.2 (i), one would need to search for the largest scalar λ for
which there exist p, q ∈ T (g) such that (f−λ)q = 1+p, thus involving a quadratic
term λq which cannot be dealt with directly using semidefinite optimization.

To go around this difficulty one may instead use the simpler “denominator free”
positivity certificates of Schmüdgen and Putinar, which hold in the case when the
semialgebraic set K is compact. The following condition:

∃R > 0 such that R− x2
1 − . . .− x2

n ∈ Q(g), (A)

known as the Archimedean condition, allows easier positivity certificates using the
quadratic module Q(g). Note that K is compact if (A) holds.

Theorem 3.3. (Schmüdgen [92]) Assume that the set K in (1.1) is compact. If
the polynomial f is positive on K (i.e., f(x) > 0 for all x ∈ K), then f ∈ T (g).

Theorem 3.4. (Putinar [86]) Assume that the Archimedean condition (A) holds.
If the polynomial f is positive on K, then f ∈ Q(g).

3.2. Semidefinite relaxations for (P). Motivated by Putinar’s result,
Lasserre [53] introduced the following relaxations for the polynomial optimization
problem (P). For any integer t ≥ df = ddeg(f)/2e, consider the parameters

f sos
t = sup

λ∈R
{λ : f − λ ∈ Qt(g)}, (SOSt)

which form a monotone nondecreasing sequence: f sos
t ≤ f sos

t+1 ≤ . . . ≤ fmin.
Each program (SOSt) can be written as a semidefinite program (recall Sec-

tion 2). Moreover, the dual semidefinite program can be expressed as follows:

fmom
t = inf

L∈R[x]∗2t

{L(f) : L(f) = 1, L(p) ≥ 0 ∀p ∈ Qt(g)}, (MOMt)

where R[x]∗2t denotes the set of linear functionals on R[x]2t. The parameters fmin,
f sos
t and fmom

t satisfy:
f sos
t ≤ fmom

t ≤ fmin. (3.2)

The inequality f sos
t ≤ fmom

t is easy (by weak duality) and fmom
t ≤ fmin is explained

below in Section 4.1. There is no duality gap: f sos
t = fmom

t , for instance if the set
K has an interior point. In the compact case the asymptotic convergence of the
bounds to the infimum of f is guaranteed by Putinar’s theorem.
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Theorem 3.5. (Lasserre [53]) Assume that assumption (A) holds (and thus K is
compact). Then, limt→∞ f sost = limt→∞ fmom

t = fmin.

Proof. For any ε > 0, the polynomial f − fmin + ε is positive on K and thus, by
Theorem 3.4, it belongs to Qt(g) for some t, which implies f sos

t ≥ fmin − ε.

In order to discuss further properties of the dual (moment) programs (MOMt),
we need to go in some detail about the moment problem. This is what we do in
the next sections and we come back to the hierarchies later in Section 4.4.

4. Moment sequences and moment matrices

4.1. The moment problem. Given a (positive Borel) measure µ on a set
K ⊆ Rn, consider the linear functional Lµ ∈ R[x]∗ defined by

Lµ(f) =

∫
K

f(x)dµ =
∑
α

fα

(∫
K

xαdµ

)
for f ∈ R[x], (4.1)

which thus depends linearly on the moments
∫
K
xαdµ of the measure µ. The

classical moment problem asks to characterize the linear functionals L ∈ R[x]∗

admitting such a representing measure µ, i.e., being of the form L = Lµ. The
following result (due to Haviland) makes the link to polynomial positivity: L = Lµ
for some measure µ on K if and only if L is nonnegative on P(K).

Let us go back to problem (P). Following Lasserre [53], we observe that the
infimum of f over the set K can be reformulated as

fmin = inf
µ
{Lµ(f) : µ is a probability measure on K}.

Indeed, as f(x) ≥ fmin for all x ∈ K, by integrating both sides over K for an
arbitrary probability measure µ on K, we obtain that Lµ(f) ≥ fmin. For the
reverse inequality, choose µ to be the Dirac measure at an arbitrary point x ∈ K,
so that Lµ(f) = f(x) and thus infµ Lµ(f) ≤ f(x).

If µ is a probability measure on K, then Lµ is nonnegative on P(K) and thus on
its subset Qt(g), which implies the inequality fmom

t ≤ fmin from (3.2). Moreover,
the relaxation (MOMt) is exact, i.e., fmom

t = fmin, if it has an optimal solution of
the form Lµ where µ is a probability measure on K. This observation motivates
searching for sufficient conditions for existence of a representing measure. This is
treated in the rest of the section.

If L ∈ R[x]∗ has a representing measure then L must be nonnegative on P(K)
and thus on the subcone Σ[x] of all sums of squares. The nonnegativity condition
of L over Σ[x] can be conveniently expressed using the following ‘Hankel type’
matrix M(L):

M(L) = (L(xαxβ))α,β∈Nn ,

which is indexed by Nn and called the moment matrix of L.
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Indeed, note that L(pq) = pTM(L)q for any p, q ∈ R[x]. Therefore, L is
nonnegative over Σ[x] if and only if M(L) � 0. Moreover, for g ∈ R[x], L is
nonnegative on the set gΣ[x] = {gσ : σ ∈ Σ[x]} if and only if M(gL) � 0, where
gL ∈ R[x]∗ is the new linear functional defined by (gL)(p) = L(gp) for p ∈ R[x].

For example, in the univariate case, L has a representing measure on R if and
only if M(L) � 0 (Hamburger’s theorem), L has a representing measure on R+

if and only if M(L),M(xL) � 0 (Stieltjes’ theorem), and L has a representing
measure on [0, 1] if and only if M(xL),M((1− x)L) � 0 (Hausdorff’s theorem).

Both Theorems 3.3-3.4 have counterparts for the moment problem. If K is
compact, then L has a representing measure on K if and only if L ≥ 0 on T (g)
(Schmüdgen [92]) or, equivalently, L ≥ 0 on Q(g) if (A) holds (Putinar [86]).

4.2. Finite rank moment matrices. As we saw above, a necessary con-
dition for L ∈ R[x]∗ to have a representing measure is positive semidefiniteness
of its moment matrix. Although not sufficient in general, it turns out that this
condition is sufficient in the case when M(L) has finite rank ([17], see Theorem 4.1
below). As this result plays a crucial role for studying the finite convergence of the
relaxations (MOMt) for (P), we discuss it in detail.

In what follows, KerM(L) denotes the kernel of M(L), which consists of the
polynomials p ∈ R[x] for which L(pq) = 0 for all q ∈ R[x]. Hence KerM(L) is
an ideal in R[x]. Moreover, KerM(L) is real radical if M(L) � 0 (since, when
M(L) � 0, a polynomial p belongs to KerM(L) if and only if L(p2) = 0).

Consider a measure µ and the corresponding linear functional Lµ as in (4.1).
Its support is contained in the real variety of the polynomials in the kernel of
M(Lµ): Supp(µ) ⊆ VR(KerM(Lµ)). When µ = δv is the Dirac measure at a point
v ∈ Rn, Lµ is the evaluation Lv at v, defined by Lv(p) = p(v) for all p ∈ R[x].
If the suppport of µ is finite (i.e., µ is finite atomic), say Supp(µ) = {v1, . . . , vr},
then Lµ is a conic combination of evaluations at the vi’s: Lµ =

∑r
i=1 λiLvi for

some scalars λi > 0. The following theorem shows that this describes all the linear
functionals L ∈ R[x]∗ with M(L) � 0 and rank M(L) <∞. We present our simple
real algebraic proof from [64] (see also [68]).

Theorem 4.1. (Curto and Fialkow [17]) Let L ∈ R[x]∗. Assume that M(L) � 0
and that M(L) has finite rank r. Then L has a (unique) representing measure µ.
Moreover, µ is finite atomic with r atoms and supported by V (KerM(L)).

Proof. As M(L) � 0, its kernel I := KerM(L) is a real radical ideal in R[x].
Moreover, the quotient space R[x]/I has finite dimension r. This is because

we have rank M(L) = r, and any set of monomials B indexing a maximal lin-
early independent set of columns of M(L) is also maximal linearly independent in
R[x]/I.

Applying Proposition 2.2, we can conclude that the variety of the ideal I is
contained in Rn and has cardinality r. Set V (I) = {v1, . . . , vr} ⊆ Rn.

We consider interpolation polynomials pv1 , . . . , pvr ∈ R[x] at the points of V (I),
i.e., satisfying pvi(vj) = δi,j . As the polynomial pvi − p2

vi vanishes on the variety
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V (I), it belongs to the ideal I(V (I)), which is equal to I (since I is real radical).
Hence, L(pvi) = L(p2

vi), since pvi − p2
vi ∈ I = Ker M(L). Moreover, L(p2

vi) ≥ 0
since M(L) � 0. Furthermore, L(p2

vi) 6= 0, since otherwise pvi would belong to
KerM(L) and thus it would vanish at vi, a contradiction.

We now claim that L =
∑r
i=1 L(pvi)Lvi . Indeed, any p ∈ R[x] can be written

as p =
∑r
i=1 p(vi)pvi + q, where q ∈ I. Hence, L(q) = 0 and thus L(p) =∑r

i=1 p(vi)L(pvi) =
∑r
i=1 Lvi(p)L(pvi). Hence we have shown that L has a finite r-

atomic representing measure: µ =
∑r
i=1 L(pvi)δvi , which concludes the proof.

4.3. Flat extensions of truncated moment matrices. To make
the link with the relaxations (MOMt) for problem (P), we introduce the truncated
moment matrix of L ∈ R[x]∗2t, which is the following matrix indexed by Nnt :

Mt(L) = (L(xαxβ))α,β∈Nn
t
.

Following Curto and Fialkow [17] we say that Mt(L) is a flat extension of (its
principal submatrix) Mt−1(L) if

rank Mt(L) = rank Mt−1(L). (4.2)

The following result claims that any such moment matrix can be extended to an
infinite moment matrix of the same rank.

Theorem 4.2. [17] Let L ∈ R[x]∗2t. If Mt(L) is a flat extension of Mt−1(L), i.e.,
(4.2) holds, then there exists L̃ ∈ R[x]∗ which extends L (i.e., L = L̃ on R[x]2t) and
has the property that M(L̃) is a flat extension of Mt(L): rank M(L̃) = rank Mt(L).

The proof is elementary, exploiting the fact that the kernel of M(L̃) is an ideal.
Indeed the relations expressing the monomials of degree t in terms of polynomials of
degree at most t−1 (modulo the kernel of Mt(L)) can be used to express recursively
any monomial of degree at least t + 1 in terms of polynomials of degree at most
t (modulo the ideal generated by the kernel of Mt(L)). Combining Theorems 4.1
and 4.2, we arrive at the following result.

Theorem 4.3. Let L ∈ R[x]∗2t and assume that Mt(L) � 0 and (4.2) holds. Then
L has a finite atomic representing measure µ, whose support is given by the variety
of the kernel of Mt(L): V (KerMt(L)) = Supp(µ) ⊆ Rn. Moreover, the ideal
generated by the kernel of Mt(L) is equal to the kernel of M(Lµ): (KerMt(L)) =
KerM(Lµ), and it is a real radical ideal.

To be able to claim that the representing measure µ is supported within a
given semialgebraic set K like (1.1), it suffices to add the localizing conditions
Mt−dgj (gjL) � 0 (for j ∈ [m]), where gj are the polynomials defining K and

dgj = ddeg(gj)/2e, and to assume a stronger flatness condition:

rankMt(L) = rankMt−dK (L), where dK = max{dgj : j ∈ [m]}. (4.3)

Theorem 4.4. [18] Assume L ∈ R[x]∗2t satisfies Mt(L) � 0, Mt−dgj (gjL) � 0

for j ∈ [m], and the flatness condition (4.3). Then L has a representing measure
whose support is contained in the set K.
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Proof. We give our simple proof from [64]. We already know that L has a repre-
senting measure µ with Supp(µ) =: {v1, . . . , vr} ⊆ Rn, where r = rankMt(L) and
L =

∑r
i=1 λiLvi with λi = L(pvi) > 0. It suffices now to show that each point

vi ∈ Supp(µ) belongs to K, i.e., that gj(vi) ≥ 0 for all j ∈ [m]. For this, the simple
but crucial observation is that we can choose the interpolation polynomials pvi at
the vi’s in such a way that they all have degree at most t−dK (which follows using
condition (4.3)). As each polynomial pvi has degree at most t− dK ≤ t− dgj and
Mt−dgj (gjL) � 0, we can conclude that 0 ≤ (gjL)(p2

vi) = L(p2
vigj), which implies

directly that gj(vi) ≥ 0.

4.4. The moment relaxations for (P). We now return to the moment
relaxation (MOMt) for problem (P) introduced earlier in Section 3.2. First, using
truncated moment matrices, it can be reformulated as follows:

fmom
t = inf

L∈R[x]∗2t

{L(f) : L(1) = 1, Mt(L) � 0, Mt−dgj (gjL) � 0 (j ∈ [m])},

(MOMt)
(explaining the name ‘moment’ and the notation ‘fmom

t ’). Recall that fmom
t ≤ fmin

from (3.2). Using the preceding results about flat extensions of moment matri-
ces, we can now present the following optimality certificate for the relaxation
(MOMt), which permits to claim that the infimum of f is reached: fmom

t = fmin.

Theorem 4.5. Let Kf denote the set of global minimizers of problem (P) and set
df = ddeg(f)/2e, dgj = ddeg(gj)/2e, dK = max{dgj : j ∈ [m]}. Let L ∈ R[x]∗2t be
an optimal solution of the program (MOMt). Assume that L satisfies the following
flatness condition:

rankMs(L) = rankMs−dK (L) for some s satisfying max{df , dK} ≤ s ≤ t. (4.4)

Then, fmom
t = fmin and V (KerMs(L)) ⊆ Kf . Moreover, if rankMs(L) is maxi-

mum among all optimal solutions of (MOMt), then equality: V (KerMs(L)) = Kf

holds and I(Kf ) = (KerMs(L)).

Proof. Assume s = t (to simplify notation). By Theorem 4.4, L has a representing
measure µ with Supp(µ) ⊆ K. That is, L =

∑r
i=1 λiLvi , where λi > 0,

∑
i λi = 1,

and {v1, . . . , vr} = V (KerMt(L)) ⊆ K. Then, fmom
t = L(f) =

∑r
i=1 λif(vi) ≥

fmin. This implies equality fmom
t = fmin and f(vi) = fmin for all i ∈ [r], and thus

we can conclude that V (KerMt(L)) = {v1, . . . , vr} ⊆ Kf .
Assume now that Mt(L) has maximum rank among the optimal solutions of

(MOMt). As the evaluation Lv at any point v ∈ Kf is also an optimal solu-
tion of (MOMt), we deduce that rank Mt(Lv) ≤ rank Mt(L), which implies
that KerMt(L) ⊆ KerMt(Lv) ⊆ I(v) for all v ∈ Kf . Hence, KerMt(L) is
contained in ∩v∈Kf

I(v) = I(Kf ). By taking the varieties on both sides, we
obtain that Kf ⊆ V (KerMt(L)), which implies Kf = V (KerMt(L)) and thus
I(Kf ) = (KerMs(L)) (since (KerMt(L)) is real radical by Theorem 4.3).

The above result is the theoretical core of the moment approach for problem
(P). It has been implemented in the numerical algorithm GloptiPoly. There are
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several other implementations of the sos/moment approach, including SOSTOOLS,
YALMIP, and SparsePOP (tuned to exploit sparsity structure). We conclude with
some comments and pointers to a few additional results from the growing literature.

• The maximality assumption on the rank of the optimal solution is not restrictive.
On the contrary, most interior point algorithms currently used to solve semidefinite
programs return an optimal solution lying in the relative interior of the optimal
face and thus one with maximum possible rank (see [21]).

• Under the assumptions of Theorem 4.5, problem (P) has finitely many global min-
imizers and they can be found using the eigenvalue method from Section 2. Indeed,
we know that the set of global minimizers is Kf = V (KerMs(L)) and that the quo-
tient space R[x]/(KerMs(L)) has dimension rank Ms(L) = rank Ms−dK (L). Hence
any set of monomials indexing a maximal linearly independent set of columns of
the matrix Mt−dK (L) is a linear basis of R[x]/(KerMs(L)). So we can construct
the multiplication matrices in R[x]/(KerMs(L)) and their eigenvalues/eigenvectors
permit to extract the points in V (KerMs(L)) = Kf .

• The flatness condition (4.4) can be used as a concrete optimality stopping cri-
terion: if it is satisfied at a certain order t then the relaxation is exact and the
algorithm stops after returning the infimum fmin and the set Kf of global mini-
mizers. Otherwise one may compute the next relaxation of order t+ 1.

• In general, information about the global minimizers can be gained asymptotically
from optimal solutions Lt to the relaxations (MOMt). In particular, if (P) has a
unique minimizer x∗, then x∗ can be found asymptotically as limit point as t→∞
of the sequences (Lt(x1), . . . , Lt(xn)) [95]. See [77] for an extension to the case of
finitely many global minimizers.

In the compact case, the bounds f sos
t , fmom

t converge asymptotically to fmin

(Theorem 3.5). What about finite convergence?

• By Theorem 4.5, the flatness condition (4.4) implies the finite convergence of the
moment hierarchy (MOMt). Conversely, if the set of global minimizers is nonempty
and finite, the flatness condition (4.4) is also necessary for finite convergence of
(MOMt) under some genericity assumptions on the polynomials f, gj [77].

• Finite convergence holds in the case when the description of the set K involves
some polynomial equations g1(x) = 0, . . . , gk(x) = 0 which have finitely many
common real roots (since the flatness condition holds) [66, 68, 78].

• Finite convergence also holds in the convex case, when f,−g1, . . . ,−gm are con-
vex, the set K has a Slater point x0 (i.e., gj(x0) > 0 if gj is not linear), and the
Hessian of f is positive definite at the (unique) global minimizer [23].

• Nie [80] shows that, under the Archimedean condition (A), the Lasserre hier-
archy applied to problem (P) has finite convergence generically. More precisely,
finite convergence holds when the classic nonlinear optimality conditions (con-
straint qualification, strict complementarity, and second order sufficient condition)
hold at all global minimizers, and these conditions are satisfied generically.

• Finally we refer to [81] for degree bounds and estimates on the quality of the
moment/sos bounds (see [22] for refined results when K is the hypercube).
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5. Application to real roots and real radical ideals

The above strategy for computing the global minimizers of (P) was developed and
applied by Lasserre, Laurent and Rostalski [57] to the problem of computing the
common real roots of a system of polynomial equations: g1(x) = 0, . . . , gk(x) = 0.

Computing all complex roots is a well studied problem. Several methods exist,
including symbolic-numeric methods, which combine symbolic tools (like Gröbner
or border bases) with numerical linear algebra (like computing eigenvalues, or
univariate root finding), and homotopy continuation methods. As there might
be much less real roots than complex ones it is desirable to have methods able
to extract directly the real roots without dealing with the complex nonreal ones.
This is precisely the feature of the real algebraic method of [57], which can be
summarized as follows.

Consider the following instance of (P):

min{0 : g1(x) = 0, . . . , gk(x) = 0},

which asks to minimize the zero polynomial on the real algebraic variety of the
ideal I = (g1, . . . , gk), so that the set of global minimizers is precisely VR(I).

Consider the moment relaxations (MOMt) for this problem. [57] shows that
the flatness condition (4.4) holds for t large enough, assuming that the set VR(I)
is finite. Hence, by Theorem 4.5, it follows that the real radical ideal of I is
found: R

√
I = (KerMs(L)) and that the variety VR(I) can be computed using the

eigenvalue method applied to the quotient space R[x]/(KerMs(L)) (as explained
in the previous section). The fact that the kernel of Ms(L) generates the vanishing
ideal of VR(I) is crucial, since this is the key property which permits to filter out
all complex nonreal roots.

We point out that the equality R
√
I = (KerMt(L)) holds for t large enough,

even if the variety VR(I) is infinite. The difficulty, however, is to detect when one
has reached such order t, since it is not clear how to detect it algorithmically (as
the flatness condition cannot hold when the real variety is not finite).

We refer to [57, 58], [1, Chap.2] for details and extensions. The recent work [59]
develops a sparse version of the moment method able to work with smaller matrices,
indexed by smaller sets of monomials, rather than the full set of monomials of
degree at most t. This approach combines the border base method from [73] with
the generalized flatness condition from [69].

We conclude with illustrating the method on a small example. Consider the
polynomial equation: x2

1+x2
2 = 0, with a unique real root (0, 0) and infinitely many

complex roots. Then the moment relaxation of order t = 1 has the constraints

M1(y) =

 1 y10 y01

y10 y20 y11

y01 y11 y02

 � 0, y20 + y02 = 0,

which imply yα = 0 whenever α 6= 0. Therefore the flatness condition holds:
rankM1(y) = rankM0(y) = 1. Moreover the kernel of M1(y) is spanned by the two
polynomials x1,x2, which indeed generate the real radical of the ideal (x2

1 + x2
2).
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6. Application to some combinatorial problems

Lift-and-project methods. The polynomial optimization problem (P) contains
the general 0/1 linear programming (ILP), asking to optimize a linear function
over the 0/1 solutions to a linear system Ax ≥ b. Let P denote the integral
polytope defined as the convex hull of all x ∈ {0, 1}n satisfying Ax ≥ b and let
K = {x : Ax ≥ b} denote its linear relaxation, which can be assumed to lie
in the hypercube [0, 1]n. A well studied approach in polyhedral combinatorics is
to find a (partial) linear inequality description of the polytope P , leading to a
new relaxation P ′ nested between P and K: P ⊆ P ′ ⊆ K, strengthening the
initial relaxation K. Several methods have been investigated that construct in
a systematic way hierarchies of relaxations nested between P and K, with the
property that P is found in finitely many steps. For instance, the classic method
in integer programming, which consists of iteratively adding Gomory-Chvátal cuts,
finds the integral polytope P in O(n2 log n) steps [30], but linear optimization over
the first Gomory-Chvátal closure is a hard problem [29]. On the other hand, the
lift-and-project methods of Sherali and Adams [96] and of Lovász and Schrijver [71]
produce hierarchies of LP and SDP relaxations Pt that find the integral polytope
in n steps and with the property that linear optimization over the t-th relaxation
Pt is polynomial time for any fixed t. They are all based on the following basic
strategy:

(a) Generate new polynomial constraints by multiplying the polynomial inequal-
ities aTj x− bj ≥ 0 of the system Ax ≥ b by xi or 1− xi (and their products)

and eliminate all squared variables replacing each x2
i by xi.

(b) Linearize all monomials
∏
i∈I xi by introducing new variables yI , so that the

constraints generated in (a) form a linear system in the variables (x, y).

(c) Project back on the x-variables space, which gives a polyhedron P ′ nested
between P and K.

The construction may allow the addition of positive semidefiniteness constraints,
leading to stronger semidefinite relaxations. This is the case for the construction
of Lovász and Schrijver [71], which we now briefly describe.

Suppose the vector x ∈ {0, 1}n satisfies the system Ax ≥ b. Consider the
new vector x̂ = (1, x) ∈ Rn+1 (where the additionnal entry is indexed by ‘0’)
and the matrix Y = x̂x̂T ∈ Sn+1. Then the matrix Y satisfies the following
conditions: (i) Y � 0, (ii) Y00 = 1, (iii) Y0i = Yii for all i ∈ [n], and (iv) the
vectors Y (i), Y (0) − Y (i) (for i ∈ [n]) satisfy the linear system: Ax − bx0 ≥ 0
(where Y (i) ∈ Rn+1 denotes the i-th column of Y ). Let M+(K) denote the set of
matrices Y ∈ Sn+1 satisfying the above conditions (i)-(iv), define its projection

N+(K) = {x ∈ Rn : ∃Y ∈M+(K) such that xi = Y0i (i ∈ [n])},

and define analogously N(K) by omitting the positive semidefiniteness condition
(i) in the definition of M+(K). Then, P ⊆ N+(K) ⊆ N(K) ⊆ K. For an integer
t ≥ 2, one can iteratively define Nt(K) = N(Nt−1(K)), N+

t (K) = N+(N+
t−1(K))
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(setting N1(K) = N(K) and N+
1 (K) = N+(K)). This leads to hierarchies of linear

and semidefinite relaxations, that find P in n steps: P ⊆ N+
t (K) ⊆ Nt(K), with

equality for t = n. From the optimization point of view, these hierarchies behave
well: if linear optimization over K can be done in polynomial time then the same
holds for linear optimization over Nt(K) and N+

t (K) for any fixed t ≥ 1 [71].

The paper [71] also investigates in detail how the construction applies to the
stable set problem. Given a graph G = (V = [n], E), let K ⊆ Rn be defined by
nonnegativity x ≥ 0 and the edge inequalities xi + xj ≤ 1 ({i, j} ∈ E), so that
the corresponding polytope P = conv(K ∩{0, 1}n) is the stable set polytope of G.
The first linear relaxationN(K) is completely understood: N(K) is the polyhedron
defined by nonnegativity x ≥ 0 and the odd cycle inequalities

∑
i∈O xi ≤ (|O|−1)/2

for all O ⊆ V inducing an odd cycle in G. The relaxation N+(K) is much stronger.
Indeed, for any clique C of G, the corresponding clique inequality

∑
i∈C xi ≤ 1

is valid for N+(K), while the first order t for which it is valid for the linear
relaxation Nt(K) is t = |C| − 2. Moreover the stable set polytope P is found
after α(G) steps of the semidefinite hierarchy, compared to n− α(G)− 1 steps of
the linear hierarchy. These results have motivated much of the interest in these
lift-and-project semidefinite relaxations for combinatorial optimization.

The Lasserre approach. The general moment approach applied to (ILP) also
produces a hierarchy of semidefinite relaxations Lt(K) converging to P [54]. As
explained in [61], the relaxation Lt(K) can easily be described in a direct way
following the above lift-and-project strategy. We just indicate here how to apply
the previously described general moment method. We start with the set K defined
by the polynomial inequalities gj = aTj x − bj ≥ 0 (j ∈ [m]) and the polynomial

equations x2
i − xi = 0 (i ∈ [n]). Then Lt(K) is defined as the set of all vectors

x ∈ Rn of the form x = (L(x1), . . . , L(xn)) for some linear functional L ∈ R[x]∗2t
satisfying the moment relaxation (MOMt), i.e., the conditions (i) L(1) = 1, (ii)
Mt(L) � 0, (ii) Mt−1(gjL) � 0 (j ∈ [m]), and (iii) L(f) = 0 for all polynomials f
in the truncated ideal (x2

1 − x1, . . . ,x
2
n − xn)2t.

What the above condition (iii) says is that one can simplify the Lasserre re-
laxation by eliminating variables and working with smaller moment matrices. In-
deed, instead of considering the moment matrix Mt(L) indexed by all monomials
of degree at most t, it suffices to consider its principal submatrix indexed by all
square-free monomials of degree at most t (of the form

∏
i∈I xi for I ∈

(
V
≤t
)
), and

to consider only variables yJ := L(
∏
i∈J xi) for sets J ∈

(
V
≤2t

)
. Here

(
V
≤t
)

denotes

the collection of subsets of V = [n] with cardinality at most t.

As a direct consequence, the flatness condition (4.3) holds at order t = n + 1:
rank Mn+1(L) = rank Mn(L). Hence the Lasserre relaxation of order n+1 is exact:
Ln+1(K) = P (which follows by applying Theorem 4.5). There is also a simple
direct proof for this claim or, alternatively, this claim follows from the fact that the
Lasserre hierarchy refines the Lovász-Schrijver hierarchy. Namely, for any t ≥ 2, we
have: Lt(K) ⊆ N(Lt−1(K)), which thus implies the inclusion Lt(K) ⊆ Nt−1(K).
Moreover, the Lasserre hierarchy also refines the Sherali-Adams hierarchy. We
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refer to [61] for the above results, and we refer e.g. to the recent work [2] for a
comprehensive treatment and further references, also about other lift-and-project
hierarchies. We now indicate how the Lasserre hierarchy applies to maximum
stable sets, minimum graph colorings and max-cut.

Lasserre hierarchies for α(G) and χ(G). As an illustration, the moment
relaxation (MOMt) for the stable set problem (1.4) reads:

last(G) = max
y∈( V

≤2t)
{
∑
i∈V

yi : (yI∪J)I,J∈( V
≤t)
� 0, yij = 0 ({i, j} ∈ E), y∅ = 1}. (6.1)

For t = 1, we find Lovász’ theta number from (1.6): las1(G) = ϑ(G). Moreover,
the Lasserre bound is exact: last(G) = α(G) for t ≥ α(G). On the dual side,
the sos relaxation (SOSt) asks for the smallest scalar λ for which the polynomial
λ−

∑
i∈V xi can be written as a sum of squares of degree at most 2t modulo the

ideal generated by the polynomials xixj (for {i, j} ∈ E) and x2
i − xi (for i ∈ V ).

We refer to Gouveia et al. [35] for a detailed study of the hierarchies from this
point of view of sums of squares, also in the setting of general polynomial ideals.

In [39] we investigate Lasserre type bounds for the chromatic number χ(G). A
first possibility is to consider the following analogue of the bounds in (6.1):

ψt(G) = min
y∈( V

≤2t)
{y∅ : (yI∪J)I,J∈( V

≤t)
� 0, yij = 0 ({i, j} ∈ E), yi = 1 (i ∈ V )}.

(6.2)
Then, ψ1(G) = ϑ(G) ≤ ψt(G) ≤ χ(G). However, these bounds cannot in general
reach the chromatic number since they all remain below the fractional chromatic
number χf (G): ψt(G) ≤ χf (G), with equality if t ≥ α(G).

To define a hierarchy of semidefinite bounds able to reach the chromatic number
χ(G), one can use the reduction of χ(G) to the stability number of the cartesian
product G2Kk described in the Introduction. Namely, χ(G) is equal to the small-
est integer k for which α(G2Kk) = |V (G)|. This motivates defining the parameter
Last(G) as the smallest integer k for which last(G2Kk) = |V (G)|. Then, we have
the inequality: Last(G) ≤ χ(G), with equality for t = n. Note that, for t = 1, we
find again the (rounded) theta number: Las1(G) = dϑ(G)e.

An easy way to strengthen the various bounds is by adding the nonnegativ-
ity constraint y ≥ 0 to the program (6.1), call las′t(G) the resulting parameter.
Analogously, define Las′t(G) as the smallest integer k for which las′t(G2Kk) = |V |.
Then, we have: α(G) ≤ las′t(G) ≤ last(G) and Last(G) ≤ Las′t(G) ≤ χ(G). It
turns out that the parameters las′1(G) and Las′1(G) coincide, respectively, with the
parameters ϑ′(G) and ϑ+(G) (recall (1.8)).

The bounds last(G) (and las′t(G)) have been used in particular to upper bound
the cardinality of error correcting codes. When dealing with binary codes of length
N , one needs to find the stability number of a Hamming graph G, with vertex
set V = {0, 1}N and where two vertices u, v ∈ V are adjacent if their Hamming
distance does not belong to some prescribed set. Thus this graph G has 2N vertices.
Fortunately it has a large automorphism group which can be used to compute
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the parameter last(G) with a semidefinite program involving smaller matrices of

size O(N2t−1) (polynomial in N for fixed t), while the original formulation (6.1)
involves matrices of size O(|V |t = 2tN ) (exponential in N). This is shown in [67]
using symmetry reduction techniques from [25]. Moreover, Schrijver [93] shows
that the semidefinite bound las′1(G) = ϑ′(G) of order t = 1 coincides with the
well known linear programming bound of Delsarte, which is expressed by a linear
program of size N . Furthermore, Schrijver [94] shows that the semidefinite bound
of the next order 2 (more precisely, some variation in-between the bounds of order
1 and 2) can be computed with a semidefinite program involving (roughly) N/2
matrices of size at most N , which he shows using block-diagonalization techniques
for matrix algebras. Numerical computations using these parameters and some
strengthenings give the currently best known bounds for codes (see [94, 67, 33]
and references therein). Computations for the chromatic number using the bounds
Last(G) (and variations) can be found in [39, 41].

The Lasserre hierarchy for max-cut. As another illustration let us apply the
Lasserre hierarchy to the max-cut problem (1.2). The equations x2

i = 1 permit to
express the relaxation (MOMt) as

max
y∈R( V

≤2t)
{
∑
{i,j}∈E

(wij/2)(1− yij) : (yI∆J)I,J∈( V
≤t)
� 0, y∅ = 1}.

For t = 1 this is the relaxation (1.3) used by Goemans and Williamson [34] for
their 0.878-approximation algorithm for max-cut. More details about geometric
properties of the Lasserre hierarchy for max-cut can be found in [63]. A natural
question is how many steps are needed to solve max-cut using the hierarchy. In
[62] we show that, for the all-ones weight function, the relaxation is exact if and
only if t ≥ tn := dn/2e and we conjecture that tn iterations suffice for arbitrary
weights w. Equivalently, we conjecture that the polynomial fw = mc(G,w) −∑
{i,j}∈E(wij/2)(1 − xixj) can be written as a sum of squares of degree at most

2tn modulo the ideal (x2
i − 1 : i ∈ [n]). Recently, Blekherman et al. [8] show that

this is indeed true when allowing “denominators”, i.e., they show that there exists
a polynomial p such that p2fw has such a decomposition.

Copositive based hierarchies. Let Cn denote the copositive cone, consisting of
all matrices M ∈ Sn for which the polynomial fM =

∑n
i,j=1Mijx

2
ix

2
j is nonneg-

ative over Rn. As mentioned in the Introduction, the stability number α(G) of a
graph G can be obtained from the program (1.9), which is linear optimization over
the copositive cone Cn. As we indicate below this formulation leads to another
type of hierarchies.

Motivated by the fact that testing matrix copositivity is a hard problem, Par-
rilo [82] introduced a hierarchy of sufficient conditions, which can be tested using
semidefinite optimization and leads to the hierarchy of cones Kt considered by de
Klerk and Pasechnik [24]. Namely, Kt consists of the matrices M ∈ Sn for which
the polynomial fM (

∑n
i=1 x2

i )
t is a sum of squares. The cone K0 consists precisely

of the matrices M that can be written as the sum of a positive semidefinite matrix
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and an entrywise nonnegative matrix. Clearly, the cones Kt form a hierarchy of
subcones of Cn: Kt ⊆ Kt+1 ⊆ Cn. Parrilo [82] shows that they cover the interior
of Cn: if fM (x) > 0 for all nonzero x ∈ Rn then M belongs to some Kt. His
proof uses the following result of Pólya: if g ∈ R[x] is a homogeneous polynomial
satisfying g(x) > 0 for all nonzero x ∈ Rn+, then there exists an integer t ∈ N for
which all the coefficients of the polynomial (

∑n
i=1 xi)

tg are nonnegative.

The cones Kt lead to another hierarchy of bounds for the stability number α(G).
Starting from relation (1.9), De Klerk and Pasechnik [24] define the parameter

ϑt(G) = min{λ : λ(I +AG)− J ∈ Kt}. (6.3)

They show that the first bound is the theta number: ϑ0(G) = ϑ′(G), and they
show convergence after rounding: bϑt(G)c = α(G) for t ≥ α(G)2. Moreover, they
conjecture that finite convergence: α(G) = ϑt(G) holds for t ≥ α(G) − 1, which
would mirror the known finite convergence in α(G) steps for the Lasserre bounds
last(G). In [38] we give a partial proof and prove this conjecture for all graphs
with α(G) ≤ 8.

This approach also gives lower bounds Θt(G) for the chromatic number χ(G).
Namely, define Θt(G) as the smallest integer k for which ϑt(G2Kk) = |V (G)|. In
[38] we compare both types of hierarchies and we show that the Lasserre hierarchies
refine these ‘copositive based’ hierarchies. Namely, we show that las′t(G) ≤ ϑt−1(G)
and thus Θt−1(G) ≤ Las′t(G) for any t ≥ 1. Hence, the Lasserre hierarchy may
give better bounds and moreover it seems much easier to handle. For instance its
finite convergence is easy, while the finite convergence of the copositive hierarchy
is still open. A reason might be that the Lasserre construction uses explicitly
the presence of binary variables, while the copositive based construction does not.
Nevertheless copositive based approximations have gained popularity in the recent
years and they open the way to other types of approaches for approximating hard
problems. We refer e.g. to [11, 28] and references therein.

7. Conclusions

We have presented the general approach permitting to construct semidefinite re-
laxations for polynomial optimization problems by using sums of squares represen-
tations for positive polynomials and moment matrices. We reviewed some basic
properties regarding in particular their convergence properties. We also discussed
how the general methodology applies for building hierarchies of semidefinite relax-
ations for combinatorial problems in graphs. We have only discussed a small piece
of this rapidly expanding research area. We now mention a few other research
areas, where this type of methods are also being increasingly used.

Semidefinite optimization and in particular the Lasserre hierarchy are playing
a growing role in theoretical computer science for the design of efficient approxi-
mation algorithms. Understanding the power and limitations of the Lasserre hi-
erarchy is a fundamental question, which has tight links with complexity theory.
For instance, assuming the unique game conjecture [48], Khot et al. [49] show
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that one cannot beat the Goemans-Williamson 0.878-approximation guarantee for
max-cut, which is based on the Lasserre relaxation of smallest order. Yet re-
cent results of Guruswami and Sinop [37] exploit higher order relaxations to give
improved approximation algorithms for graph partition problems, depending on
spectral properties of the graph. We refer e.g. to [32, 65], the recent overview by
Chlemtac and Tulsiani [1, Chap. 6] and references therein.

Semidefinite bounds are also used to attack geometric problems, like the kiss-
ing number problem and the problem of coloring the Euclidean space [3, 4]. These
problems lead to maximum stable set and minimum coloring problems in infinite
graphs. For instance, the kissing number problem is finding a maximum stable set,
where the vertex set is the unit sphere with two points being adjacent depending
on their spherical distance. Bachoc and Vallentin [3] use low order bounds in the
Lasserre hierarchy to give the best known bounds for the kissing number prob-
lem, a crucial ingredient in their approach is exploiting symmetry in order to get
computable semidefinite programs.

Hierarchies of semidefinite relaxations have also been used recently to attack
polynomial optimization problems in noncommutative variables. Such problems
arise when, instead of instantiating variables to scalars, one allows variables to
be matrices (or bounded operators on some Hilbert space) and they have appli-
cations in many areas of quantum phsyics. Given a symmetric polynomial f in
n noncommutative variables, one can consider the following two kinds of positiv-
ity: f is said to be matrix-positive if f(X1, . . . , Xn) � 0 when evaluating f at
arbitrary matrices X1, . . . , Xn ∈ Sd (d ≥ 1), and f is said to be trace-positive if
Tr(f(X1, . . . , Xn)) ≥ 0 for all X1, . . . , Xn ∈ Sd (d ≥ 1). These two notions lead to
different noncommutative polynomial optimization problems. For both problems
analogues of the moment and sums of squares approaches have been investigated,
we refer to [12, 20, 84] and references therein.

By Hilbert’s theorem, not all nonnegative polynomials are sums of squares.
However, Helton [42] shows the following remarkable result: a symmetric polyno-
mial is matrix-positive if and only if it is a sum of Hermitian squares. Moreover,
Helton and McCullough [43] show a result characterizing matrix-positivity on a
compact set which can be seen as an analogue of Putinar’s result (Theorem 3.4).
On the other hand, the analogue result for trace-positive polynomials is still open,
and it is in fact related to a deep conjecture of Connes [15] in operator algebra.
Indeed, Klep and Schweighofer [50] show that Connes’ embedding conjecture is
equivalent to a real algebraic conjecture characterizing the trace-positive polyno-
mials on all contraction matrices.

Problems in quantum information have led in the recent years to some quan-
tum analogues of the classical graph parameters α(G) and χ(G). These quantum
parameters require to find positive semidefinite matrices satisfying certain poly-
nomial conditions and, as in the classical case, the theta number serves also as
bound for them (see [10, 13] and further references therein). Investigating how
to construct hierarchies of stronger semidefinite bounds for these quantum graph
parameters is a natural direction that we are currently investigating.
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