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The problem

Given polynomialsh1, . . . , hm ∈ R[x] = R[x1, . . . , xn]

• Compute all commonreal roots (assuming finitely many), i.e.
compute thereal variety VR(I) of the idealI := (h1, . . . , hm)

• Find a basis of thereal radical ideal R
√

I

VR(I) := {v ∈ R
n | f(v) = 0 ∀f ∈ I}

R
√

I := {f ∈ R[x] | ∃m ∈ N sj ∈ R[x] f2m +
∑

j s2
j ∈ I}

I(VR(I)) := {f ∈ R[x] | f(v) = 0 ∀v ∈ VR(I)}
Real Nullstellensatz: R

√
I=I(VR(I))
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A small example

Let I = ((x2
1 + x2

2)
2) ⊆ R[x1, x2]

VR(I) = {(0, 0)}
Real radical ideal: I(VR(I)) = (x1, x2)

VC(I) = {(x1,±ix1) | x1 ∈ C}
Radical ideal: I(VC(I)) = (x2

1 + x2
2)

Hilbert Nullstellensatz:

I(VC(I)) =
√

I := {f ∈ R[x] | ∃m ∈ N fm ∈ I}
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Our contribution

1. A semidefinite characterizationof R
√

I
[as the kernel of some positive semidefinitemoment matrix]

2. Assuming|VR(I)| < ∞, an algorithm for finding:
• a generating set (border or Gröbner basis) of R

√
I

• thereal variety VR(I)

Remarks about the method:
• real algebraicin nature: no complex roots computed
• works if VR(I) is finite (even ifVC(I) is not)
• no preliminary Gröbner basis ofI is needed
• numerical, based on semidefinite programming (SDP)
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Plan of the talk

1. The moment-matrix method forVR(I)

2. Adapt the moment-matrix method forVC(I) [drop PSD]

3. Relate to the ‘prolongation-projection’ algorithm of
Zhi and Reid forVC(I)

4. Adapt the prolongation-projection algorithm forVR(I)
[add PSD]

5. Extensions?
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The complex case is well understood

Problem: Given an idealI ⊆ R[x] with |VC(I)| < ∞
• Compute the(complex) varietyVC(I)

• Find a basis of theradical ideal
√

I

VC(I) can be computed e.g. with:

• Homotopy methods[Sommese, Verschelde, Wampler, ...]

• Elimination methods: Find polynomials inI in ‘ triangular
form’ f1 ∈ R[x1], f2 ∈ R[x1, x2], . . . , fn ∈ R[x1, . . . , xn] (via a
Gröbner basis for a lexicographic monomial ordering
[Buchberger,...])
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• Linear algebra methods:Find the multiplication matrices
in R[x]/I and compute their eigenvalues
 Theeigenvalue method[Stetter, Möller, Stickelberger,...]

Theorem [Seidenberg 1974]:
√

I = (I ∪ {q1, . . . , qn}), where
qi is the square-free part ofpi, the monic generator ofI ∩R[xi].

Linear algebra in the finite dimensional spaceR[x]/I

 Need a linear basis ofR[x]/I

Basic fact: dim R[x]/I < ∞ ⇐⇒ |VC(I)| < ∞
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The eigenvalue method: The univariate case

• Let h = xd − ad−1x
d−1 − . . . − a1x − a0 andI = (h)

• B = {1, x, . . . , xd−1} is a linear basis ofR[x]/I

• The matrix of the ‘multiplication (byx) operator’ in R/I is:

Mx =








x . . . xd−1 xd

1 0 . . . 0 a0

x 1 a1
...

...
...

xd−1 1 ad−1








det(Mx − tI) = (−1)dh(t)

Hence:The eigenvalues ofMx are theroots of h.
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The eigenvalue method: The multivariate case [for|VC(I)| < ∞]

mf : R[x]/I → R[x]/I

[p] 7→ [fp]
is the‘multiplication byf ’

linear operator inR[x]/I and letMf be the matrix ofmf in a
baseB of R[x]/I.

1. Theeigenvaluesof Mf are{f(v) | v ∈ VC(I)}.

2. Theeigenvectorsof MT
f give the pointsv ∈ VC(I):

MT
f ζv = f(v)ζv ∀ v ∈ VC(I) whereζv := (b(v))b∈B

3. WhenB is a monomial basis ofR[x]/I with 1 ∈ B, a
(border) basisof I can be read directly from the
multiplication matricesMx1

, . . . ,Mxn
.
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Finding a linear basisB of R[x]/I and a basisG of the ideal I

• Typically,B is the set ofstandard monomialsandG is a
Gröbner basisfor a given monomial ordering (e.g. via
Buchberger’s algorithm)

• More generally: AssumeB = {b1 = 1, b2, . . . , bN} is a set of
monomials withborder ∂B := (x1B ∪ . . . ∪ xnB) \ B.
Write any border monomial

xibj = r(ij)
︸︷︷︸

∈Span(B)

+ g(ij)

︸︷︷︸

∈I

Then G := {g(ij) | xibj ∈ ∂B} is a (border) basis ofI and
carries thesame informationas the multiplication matrices
Mx1

, . . . ,Mxn
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To remember:

To findVR(I) and a basis ofR
√

I ...

... it suffices to have alinear basisB of R[x]/ R
√

I and the
multiplication matrices in R[x]/ R

√
I !
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Counting real roots with the Hermite quadratic form

Forf ∈ R[x]

Hermite bilinear form:
Hf : R[x]/I × R[x]/I → R

(g, h) 7→ Tr(Mfgh)

Theorem: Forf = 1

rank(H1) = |VC(I)|, Sign(H1) = |VR(I)|, Ker (H1) =
√

I

• rank(Hf ) = |{v ∈ VC(I) | f(v) 6= 0}|
• Sign(Hf )

= |{v ∈ VR(I) | f(v) > 0}| − |{v ∈ VR(I) | f(v) < 0}|
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Idea: Work on the dual (moment) side

v ∈ VR(I) Lv ∈ R[x]∗ [set of linear functionals onR[x]]

Lv is theevaluation atv, defined byLv(p) := p(v) ∀p ∈ R[x]

Properties ofLv:

• Lv vanishes onI: Lv(hjx
α) = 0 ∀j ∀α

• Lv is positive on squares: Lv(p
2) ≥ 0 ∀p ∈ R[x]

Themoment matrix M(Lv) := (Lv(x
αxβ))α,β is positive semidefinite

Note: KerM(Lv) = I(v)
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Work with truncated moment matrices

For t ∈ N andL ∈ R[x]∗t , consider the ‘truncated’ conditions:

(LC) L vanishes onHt, where

Ht := {hjx
α with degree at mostt} ⊆ I ∩ R[x]t

(PSD)L is positive on the squares of degree at mostt, i.e.

M⌊t/2⌋(L) � 0

Kt := {L ∈ R[x]∗t | L(p) = 0 ∀p ∈ Ht, M⌊t/2⌋(L) � 0}

Obviously,Kt ⊇ cone{Lv | v ∈ VR(I)}
Theorem: ∃t ≥ s ≥ D πs(Kt) = cone{πs(Lv) | v ∈ VR(I)}
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A geometric property of the coneKt

Lemma: The following are equivalent forL ∈ Kt:

(1) L lies in the relative interior ofKt (L is generic)

(2) rankM⌊t/2⌋(L) is maximum

(3) KerM⌊t/2⌋(L) is minimum, i.e.

KerM⌊t/2⌋(L)
︸ ︷︷ ︸

=: Nt generic kernel

⊆ KerM⌊t/2⌋(L
′) ∀L′ ∈ Kt

Lemma: Nt ⊆ Nt+1 ⊆ . . . ⊆ R
√

I

Proof: Nt ⊆ KerM⌊t/2⌋(Lv) ⊆ I(v) ∀v ∈ VR(I)

Computing real radical ideals and real roots of polynomial equations with semidefinite programming – p.15



Semidefinite characterization of R
√

I

Theorem 1: R
√

I = (Nt) for t large enough.

Idea of proof: Show that, fort large enough,Nt contains a
given basis{g1, . . . , gL} of R

√
I

• Real Nullstellensatz:g2m
l +

∑

i s
2
i =

∑m
j=1 ujhj

• Nt is “real ideal like": g2m
l +

∑

i s
2
i ∈ Nt =⇒ gl ∈ Nt

Question: How to recognize whenNt generatesR
√

I ?

Next: An answer in the case|VR(I)| < ∞
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Stopping criterion when |VR(I)| < ∞

Theorem 2: Let L be agenericelement ofKt, D := max deg(hj).
Assume one of the following twoflatness conditionsholds:

(F1) rankMs(L) = rankMs−1(L) for someD ≤ s ≤ ⌊t/2⌋

(Fd) rankMs(L) = rankMs−d(L) for somed = ⌈D/2⌉ ≤ s ≤ ⌊t/2⌋.

Then: • R
√

I = (KerMs(L))

• Any column baseB of Ms−1(L) is a base ofR[x]/ R
√

I

• The multiplication matrices can be constructed fromMs(y)

• π2s(Kt) = cone{π2s(Lv) | v ∈ VR(I)}
= cone{(vα)|α|≤2s | v ∈ VR(I)}.
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Properties of moment matrices

Lemma: Let L ∈ R[x]∗.

• KerM(L) is an ideal.

• If M(L) � 0, thenKerM(L) is real radical.

Flat Extension theorem[Curto-Fialkow 1996]
Let L ∈ R[x]∗2s.
If rankMs(L) = rankMs−1(L), then
there exists aflat extensioñL ∈ R[x]∗ of L,
i.e., satisfyingrankM(L̃) = rankMs(L).

Idea of proof: We know how to construct the extension using

the polynomials in(KerMs(L)).
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Finite Rank Moment Matrix theorem [Curto-Fialkow 1996]
Let L ∈ R[x]∗. If M(L) � 0 and rankM(L) = r < ∞,
thenL has afinite r-atomic representing measure, i.e.
L =

∑r
i=1 λiLvi

, whereλi > 0 and
{v1, . . . , vr} = V (KerM(L)) ⊆ R

n.

Proof: • I := KerM(L) is a real radical ideal

• I is 0-dimensional, asdim R[x]/I = r

• V (I) = {v1, . . . , vr} ⊆ R
n

Then, L =
∑r

i=1 L(p2
i )Lvi

, wherepi are interpolation polyno-

mials atvi.
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Proof of the stopping criterion

Assume rankMs(L) = rankMs−1(L).
Show(KerMs(L)) = R

√
I.

• By the Flat Extension theorem,π2s(L) has aflat extension
L̃ ∈ R[x]∗, i.e. rankM(L̃) = rankMs(L).

• KerM(L̃) = (KerMs(L)).

• As M(L̃) � 0, KerM(L̃) is areal radical ideal.

We have: I ⊆
︸︷︷︸

(LC)

(KerMs(L)) ⊆
︸︷︷︸

L generic

R
√

I

This implies: (KerMs(L)) = R
√

I
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Remains to show:π2s(Kt) = cone{Lv | v ∈ VR(I)}.

Let L ∈ Kt.

• (F1) holds: rankMs(L) = rankMs−1(L) =: r′ (≤ r).

• Thusπ2s(L) has a flat extensioñL.

• By the Finite Rank Moment Matrix theorem,L̃ has a finite
r′-atomic measure:

L̃ =
∑r′

i=1 λiLvi
, whereλi > 0 and

{v1, . . . , vr′} = V (KerMs(L)) ⊆ VR(I).

Thus, π2s(L) ∈ cone{Lv | v ∈ VR(I)}.
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The moment-matrix algorithm for VR(I)

Input: h1, . . . , hm ∈ R[x]

Output: B base ofR[x]/ R
√

I

The multiplication matricesMxi
in R[x]/ R

√
I

Algorithm: For t ≥ D

Step 1: Compute a generic elementL ∈ Kt.

Step 2: Check if(F1)or (Fd)holds.

If yes, return a column basisB of Ms−1(L) andMxi
= M−1

B Pi,
• MB:= principal submatrix ofMs−1(L) indexed byB
• Pi:= submatrix ofMs(L) with rows inB and columns inxiB.

If no, go to Step 1 witht → t + 1.

Theorem: The algorithm terminates.
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The algorithm terminates: (F1) holds for t large enough.

• For t ≥ t0, KerM⌊t/2⌋(L) contains a Gröbner base

{g1, . . . , gL} of R
√

I for a total degree ordering.

• B := {b1, . . . , bN}: set of standard monomials
 base ofR[x]/ R

√
I.

Set: s := 1 + maxb∈B deg(b) and assumet ≥ t0, ⌊t/2⌋ > s.

For |α| ≤ s, write xα =
N∑

i=1

λibi

︸ ︷︷ ︸

deg≤s−1

+
L∑

l=1

ulgl

︸ ︷︷ ︸

deg≤|α|≤s<⌊t/2⌋

Thus: xα − ∑N
i=1 λibi ∈ KerM⌊t/2⌋(L).

That is: rankMs(L) = rankMs−1(L).
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A small example

ConsiderI = (x2
1 + x2

2).

Thus,|VC(I)| = ∞, VR(I) = {(0, 0)}, R
√

I = (x1, x2).

Any L ∈ K2 satisfies:

(LC) L(x2
1 + x2

2) = 0.

(PSD)M1(L) =





1 x1 x2

1 L(1) L(x1) L(x2)

x1 L(x2
1) L(x1x2)

x2 L(x2
2)



 � 0

Thus, L(x2
1) = L(x2

2) = 0 L(x1) = L(x2) = L(x1x2) = 0

Hence,KerM1(L) is spanned byx1, x2 for genericL ∈ K2.
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Some algorithmic issues

How to find a genericL ∈ Kt ?

Solve the SDP program:minL∈Kt
1 with an interior-point

algorithm using the ‘extended self-dual embedding property’.

Then the central path converges to a solution in the relative
interior of the optimum face, i.e., to agenericpointL ∈ Kt.

How to compute ranks of matrices ?

We use SVD decomposition, but this is a sensitive numerical
issue ...
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Some remarks

• Try to extract roots as soon as a setB of independent
columns is found for whichrankMB(L) = rankMB+(L),
whereB+ = B ∪ x1B ∪ . . . ∪ xnB.

• If the multiplication matrices commute, one can extract
V (J), whereJ is a 0-dimensional ideal withI ⊆ J ⊆ R

√
I.

• If B is connected to 1, thenJ = R
√

I
(and commutativity is for free).

Generalized flat extension theorem[La-Mourrain 09]
If rankMB(L) = rankMB+(L), whereB is connected to 1,
thenL has a flat extension toR[x]∗.
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Extension of the moment-matrix algorithm to VC(I)

Omit the PSD conditionand work with thelinear space:

Kt = H⊥
t = {L ∈ R[x]t

∗ | L(hjx
α) = 0 if deg(hjx

α) ≤ t}

Thesamealgorithm applies: Fort ≥ D

• PickgenericL ∈ Kt [i.e. rankMs(L) max. ∀s ≤ ⌊t/2⌋]
[chooseL ∈ Kt randomly]

• Check if the flatness condition(F1) or (Fd)holds.

• If yes, find a basis ofR[x]/J whereJ := (KerMs(L))

satisfiesI ⊆ J ⊆
√

I and thusVC(J) = VC(I).

• If not, iterate witht + 1.

Note: EqualityJ = I whenR[x]/I is a Gorenstein algebra.
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Equality (KerMs(L)) = I in the Gorenstein case

The inclusionI ⊆ (KerMs(L)) ⊆
√

I may be strict for any
genericL.

Example: For I = (x2
1, x

2
2, x1x2), VC(I) = {0},

√
I = (x1, x2),

dim R[x]/I = 3, dim R[x]/
√

I = 1, while
dim R[x]/(KerMs(y)) = 2 for any genericy and anys ≥ 1 !

Recall: The algebraA := R[x]/I is Gorensteinif there exists a
non-degenerate bilinear form onA satisfying(f, gh) = (fg, h)
∀f, g, h ∈ A, i.e. if there existsL ∈ K∞ with I = KerM(L)

Hence:∃L ∈ Kt s.t. rankMs(L) = rankMs−1(L) and
I = (KerMs(L)) iff A is Gorenstein.
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Example 1: the moment-matrix algorithm for real/complex roots

I = (x2
1
− 2x1x3 + 5, x1x2

2
+ x2x3 + 1, 3x2

2
− 8x1x3), D = 3, d = 2

Ranks ofMs(y) for generic y ∈ Kt, Kt :

t = 2 3 4 5 6 7 8 9

s = 0 1 1 1 1 1 1 1 1

s = 1 4 4 4 4 4 4 4 4

s = 2 8 8 8 8 8 8

s = 3 11 10 9 8

s = 4 12 10

no PSD 8 complexroots

t = 2 3 4 5 6

s = 0 1 1 1 1 1

s = 1 4 4 4 2 2

s = 2 8 8 2

s = 3 10

with PSD 2 realroots
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8 complexroots /2 realroots:

v1 =
h

−1.101,−2.878,−2.821
i

v2 =
h

0.07665 + 2.243i, 0.461 + 0.497i, 0.0764 + 0.00834i
i

v3 =
h

0.07665 − 2.243i, 0.461 − 0.497i, 0.0764 − 0.00834i
i

v4 =
h

−0.081502 − 0.93107i, 2.350 + 0.0431i,−0.274 + 2.199i
i

v5 =
h

−0.081502 + 0.93107i, 2.350 − 0.0431i,−0.274 − 2.199i
i

v6 =
h

0.0725 + 2.237i,−0.466 − 0.464i, 0.0724 + 0.00210i
i

v7 =
h

0.0725 − 2.237i,−0.466 + 0.464i, 0.0724 − 0.00210i
i

v8 =
h

0.966,−2.813, 3.072
i
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Another example for real roots

I = (5x9
1
− 6x5

1
x2 + x1x4

2
+ 2x1x3,−2x6

1
x2 + 2x2

1
x3
2

+ 2x2x3, x2
1

+ x2
2
− 0.265625)

D = 9, d = 5, |VR(I)| = 8, |VC(I)| = 20

order rank sequence of extract. orders accuracy comm. error

t Ms(y) (0 ≤ s ≤ ⌊t/2⌋)

10 1 4 8 16 25 34 — — —

12 1 3 9 15 22 26 32 — — —

14 1 3 8 10 12 16 20 24 3 0.12786 0.00019754

16 1 48 8 812 16 20 24 4 4.6789e-5 4.7073e-5

Linear basis:B = {1, x1, x2, x3, x2
1
, x1x2, x1x3, x2x3} border basisG of size10

Real solutions:

8

>

>

>

>

>

<

>

>

>

>

>

:

x1 = (−0.515,−0.000153,−0.0124) x2 = (−0.502, 0.119, 0.0124)

x3 = (0.502, 0.119, 0.0124) x4 = (0.515,−0.000185,−0.0125)

x5 = (0.262, 0.444,−0.0132) x6 = (−2.07e-5, 0.515,−1.27e-6)

x7 = (−0.262, 0.444,−0.0132) x8 = (−1.05e-5,−0.515,−7.56e-7)
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Link with the prolongation-projection algorithm of Zhi-Re id

Theorem: If (F1)holds, i.e.

rankMs(L) = rankMs−1(L) for genericL ∈ Kt, D ≤ s ≤ ⌊t/2⌋

then dim π2s(Kt) = dim π2s−1(Kt) = dim π2s(Kt+1)

Theorem (based on [Zhi-Reid 2004]):If for someD ≤ s ≤ t

(D) dim πs(Kt) = dim πs−1(Kt) = dim πs(Kt+1)

then one can construct the multiplication matrices ofR[x]/I
and extractVC(I).

Hence:The stopping criterion(D) is satisfied earlier than(F1).
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Example 1: I = (x2
1 − 2x1x3 + 5, x1x

2
2 + x2x3 + 1, 3x2

2 − 8x1x3)

t = 2 3 4 5 6 7 8 9

s = 0 1 1 1 1 1 1 1 1

s = 1 4 4 4 4 4 4 4 4

s = 2 8 8 8 8 8 8

s = 3 11 10 9 8

s = 4 12 10

Complex roots

rankM3(L)=rankM2(L)

for L ∈ K9

t = 3 4 5 6 7 8 9

s = 1 4 4 4 4 4 4 4

s = 2 8 8 8 8 8 8 8

s = 3 11 10 9 8 8 8 8

s = 4 12 10 9 8 8 8

s = 5 12 10 9 8 8

s = 6 12 10 9 8

dim π3(K6)

=dim π2(K6)

=dim π3(K7)
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Extension to the real case

• In thecomplexcase,(D) compares the dimensions of
πs(H⊥

t ), πs−1(H⊥
t ), andπs((H+

t )⊥).

Notation: H+
t := Ht ∪ x1Ht ∪ . . . ∪ xnHt=Ht+1

• In thereal case,dim(Kt) = dim(G⊥
t ), where

Gt := Ht ∪ {fxα | f ∈ Nt, deg(xα) ≤ ⌊t/2⌋}

Theorem: If for someD ≤ s ≤ t

(D+) dim πs(G⊥
t ) = dim πs−1(G⊥

t ) = dim πs((G+
t )⊥)

then one can construct the multiplication matrices ofR[x]/J ,
whereI ⊆ J ⊆ R

√
I , and extractVR(I) = VC(J) ∩ R

n.
Moreover,J = R

√
I if dim πs(G⊥

t ) = |VR(I)|.
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Link with the flatness criterion

Theorem: The flatness criterion(F1):

rankMs(L) = rankMs−1(L) for genericL ∈ Kt

is equivalent to the strong version of the(D+) criterion:

(D++) dim π2s(G⊥
t ) = dim πs−1(G⊥

t ) = dim π2s((G+
t )⊥)

Thus: the stopping criterion(D+) is satisfied earlier than(F1).

But: the algorithm still needs to be improved ... as it handles
large matrices (indexed by the full set of degreet monomials)
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Example 1: I = (x2
1 − 2x1x3 + 5, x1x

2
2 + x2x3 + 1, 3x2

2 − 8x1x3)

t = 3 4 5 6

s = 0 1 1 1 1

s = 1 4 4 2 2

s = 2 8 8 2

s = 3 10

Real roots

rankM2(L)=rankM1(L)

for L ∈ K6

G3 G+

3
G4 G+

4
G5 G+

5
G6 G+

6

s = 1 4 4 4 4 2 2 2 2

s = 2 8 8 8 8 2 2 2 2

s = 3 11 10 10 9 2 2 2 2

s = 4 12 10 3 3 2 2

dim π2(G⊥

5
)

=dim π1(G⊥

5 )

=dim π2((G+

5
)⊥)
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Extensions ?

• Inspect ‘sparse’ sets of monomials instead of full degree sets.

• Use a better stopping criterion - e.g. use the sparse flatness
condition.

• Adapt other known efficient algorithms for complex roots to
real roots by incorporating SDP conditions.

For instance, combine with Gröbner/border bases methods:
add polynomials ofR

√
I (coming from kernels) on the fly...

• Extension to the positive dimensional case ?
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