Computing real radical ideals and real roots of polynomial equations with semidefinite programming

Jean Bernard Lasserre - Monique Laurent - Philipp Rostalski

LAAS, Toulouse - CWI, Amsterdam - UC Berkeley

Convex Algebraic geometry, Optimization, and Applications AIM, September 2009 Given polynomials $h_1, \ldots, h_m \in \mathbb{R}[x] = \mathbb{R}[x_1, \ldots, x_n]$

- Compute all common real roots (assuming finitely many), i.e. compute the real variety $V_{\mathbb{R}}(I)$ of the ideal $I := (h_1, \ldots, h_m)$
- Find a basis of the **real radical ideal** $\sqrt[\mathbb{R}]{I}$

 $V_{\mathbb{R}}(I) := \{ v \in \mathbb{R}^n \mid f(v) = 0 \ \forall f \in I \}$ $\bigvee \overline{I} := \{ f \in \mathbb{R}[x] \mid \exists m \in \mathbb{N} \ s_j \in \mathbb{R}[x] \ f^{2m} + \sum_j s_j^2 \in I \}$ $I(V_{\mathbb{R}}(I)) := \{ f \in \mathbb{R}[x] \mid f(v) = 0 \ \forall v \in V_{\mathbb{R}}(I) \}$ Real Nullstellensatz: $\bigvee \overline{I} = I(V_{\mathbb{R}}(I))$

A small example

Let
$$I = ((x_1^2 + x_2^2)^2) \subseteq \mathbb{R}[x_1, x_2]$$

 $V_{\mathbb{R}}(I) = \{(0,0)\}$ Real radical ideal: $\mathcal{I}(V_{\mathbb{R}}(I)) = (x_1, x_2)$

 $V_{\mathbb{C}}(I) = \{(x_1, \pm ix_1) \mid x_1 \in \mathbb{C}\}$ Radical ideal: $\mathcal{I}(V_{\mathbb{C}}(I)) = (x_1^2 + x_2^2)$

Hilbert Nullstellensatz:

$$\mathcal{I}(V_{\mathbb{C}}(I)) = \sqrt{I} := \{ f \in \mathbb{R}[x] \mid \exists m \in \mathbb{N} \ f^m \in I \}$$

1. A semidefinite characterization of $\sqrt[\mathbb{R}]{I}$ [as the kernel of some positive semidefinite *moment matrix*]

- **2.** Assuming $|V_{\mathbb{R}}(I)| < \infty$, an algorithm for finding:
- a generating set (**border** or **Gröbner basis**) of $\sqrt[\mathbb{R}]{I}$
- the real variety $V_{\mathbb{R}}(I)$

Remarks about the method:

- *real algebraic* in nature: no complex roots computed
- works if $V_{\mathbb{R}}(I)$ is finite (even if $V_{\mathbb{C}}(I)$ is not)
- no preliminary Gröbner basis of I is needed
- *numerical*, based on semidefinite programming (SDP)

1. The moment-matrix method for $V_{\mathbb{R}}(I)$

- **2.** Adapt the moment-matrix method for $V_{\mathbb{C}}(I)$ [drop PSD]
- **3.** Relate to the 'prolongation-projection' algorithm of Zhi and Reid for $V_{\mathbb{C}}(I)$

- **4.** Adapt the prolongation-projection algorithm for $V_{\mathbb{R}}(I)$ [add PSD]
- **5.** Extensions?

The complex case is well understood

Problem: Given an ideal $I \subseteq \mathbb{R}[x]$ with $|V_{\mathbb{C}}(I)| < \infty$

- Compute the (complex) variety $V_{\mathbb{C}}(I)$
- Find a basis of the **radical ideal** \sqrt{I}

 $V_{\mathbb{C}}(I)$ can be computed e.g. with:

• Homotopy methods [Sommese, Verschelde, Wampler, ...]

• Elimination methods: Find polynomials in *I* in '*triangular* form' $f_1 \in \mathbb{R}[x_1], f_2 \in \mathbb{R}[x_1, x_2], \ldots, f_n \in \mathbb{R}[x_1, \ldots, x_n]$ (via a Gröbner basis for a lexicographic monomial ordering [Buchberger,...]) Linear algebra methods: Find the multiplication matrices in ℝ[x]/I and compute their eigenvalues
 → The *eigenvalue method* [Stetter, Möller, Stickelberger,...]

Theorem [Seidenberg 1974]: $\sqrt{I} = (I \cup \{q_1, \dots, q_n\})$, where q_i is the square-free part of p_i , the monic generator of $I \cap \mathbb{R}[x_i]$.

Linear algebra in the finite dimensional space $\mathbb{R}[x]/I$ \rightsquigarrow Need a linear basis of $\mathbb{R}[x]/I$

Basic fact:

 $\dim \mathbb{R}[x]/I < \infty \iff |V_{\mathbb{C}}(I)| < \infty$

The eigenvalue method: The univariate case

- Let $h = x^d a_{d-1}x^{d-1} \ldots a_1x a_0$ and I = (h)
- $\mathcal{B} = \{1, x, \dots, x^{d-1}\}$ is a linear basis of $\mathbb{R}[x]/I$
- The matrix of the *'multiplication (by x) operator'* in \mathbb{R}/I is:

$$M_{x} = \begin{cases} x & \dots & x^{d-1} & x^{d} \\ 1 & & 0 & a_{0} \\ 1 & & & a_{1} \\ \vdots & x^{d-1} \begin{pmatrix} 0 & \dots & 0 & a_{0} \\ 1 & & & a_{1} \\ & \ddots & & \vdots \\ & & 1 & a_{d-1} \end{pmatrix}$$

$$\det(M_x - tI) = (-1)^d h(t)$$

Hence: The eigenvalues of M_x are the **roots** of h.

The eigenvalue method: The multivariate case [for $|V_{\mathbb{C}}(I)| < \infty$]

$$\begin{array}{cccc} m_f : & \mathbb{R}[x]/I & \to & \mathbb{R}[x]/I \\ & & [p] & \mapsto & [fp] \end{array} & \text{ is the `multiplication by f'} \end{array}$$

linear operator in $\mathbb{R}[x]/I$ and let M_f be the matrix of m_f in a base \mathcal{B} of $\mathbb{R}[x]/I$.

- **1.** The eigenvalues of M_f are $\{f(v) \mid v \in V_{\mathbb{C}}(I)\}$.
- **2.** The eigenvectors of M_f^T give the points $v \in V_{\mathbb{C}}(I)$:

$$M_f^T \zeta_v = f(v) \zeta_v \quad \forall v \in V_{\mathbb{C}}(I) \quad \text{where } \zeta_v := (b(v))_{b \in \mathcal{B}}$$

3. When \mathcal{B} is a monomial basis of $\mathbb{R}[x]/I$ with $1 \in \mathcal{B}$, a **(border) basis** of *I* can be read directly from the multiplication matrices M_{x_1}, \ldots, M_{x_n} .

Finding a linear basis \mathcal{B} of $\mathbb{R}[x]/I$ and a basis G of the ideal I

• Typically, \mathcal{B} is the set of **standard monomials** and G is a **Gröbner basis** for a given monomial ordering (e.g. via Buchberger's algorithm)

• More generally: Assume $\mathcal{B} = \{b_1 = 1, b_2, \dots, b_N\}$ is a set of monomials with **border** $\partial \mathcal{B} := (x_1 \mathcal{B} \cup \dots \cup x_n \mathcal{B}) \setminus \mathcal{B}$. Write any border monomial

$$x_i b_j = \underbrace{r^{(ij)}}_{\in \operatorname{Span}(\mathcal{B})} + \underbrace{g^{(ij)}}_{\in I}$$

Then $G := \{g^{(ij)} \mid x_i b_j \in \partial \mathcal{B}\}$ is a (border) basis of I and carries the *same information* as the multiplication matrices M_{x_1}, \ldots, M_{x_n}

To find $V_{\mathbb{R}}(I)$ and a basis of $\sqrt[\mathbb{R}]{I}$...

... it suffices to have a linear basis \mathcal{B} of $\mathbb{R}[x]/\sqrt[\mathbb{R}]{I}$ and the **multiplication matrices** in $\mathbb{R}[x]/\sqrt[\mathbb{R}]{I}$!

Counting real roots with the Hermite quadratic form

For
$$f \in \mathbb{R}[x]$$

Hermite bilinear form:

Theorem: For f = 1

 $\operatorname{rank}(H_1) = |V_{\mathbb{C}}(I)|, \operatorname{Sign}(H_1) = |V_{\mathbb{R}}(I)|, \operatorname{Ker}(H_1) = \sqrt{I}$

- rank $(H_f) = |\{v \in V_{\mathbb{C}}(I) \mid f(v) \neq 0\}|$
- Sign(H_f) = $|\{v \in V_{\mathbb{R}}(I) \mid f(v) > 0\}| - |\{v \in V_{\mathbb{R}}(I) \mid f(v) < 0\}|$

 $v \in V_{\mathbb{R}}(I) \rightsquigarrow L_v \in \mathbb{R}[x]^*$ [set of linear functionals on $\mathbb{R}[x]$] L_v is the evaluation at v, defined by $L_v(p) := p(v) \quad \forall p \in \mathbb{R}[x]$ **Properties of** L_v :

- L_v vanishes on I: $L_v(h_j x^{\alpha}) = 0 \quad \forall j \; \forall \alpha$
- L_v is positive on squares:

 $L_v(p^2) \ge 0 \ \forall p \in \mathbb{R}[x]$

The moment matrix $M(L_v) := (L_v(x^{\alpha}x^{\beta}))_{\alpha,\beta}$ is positive semidefinite

Note: $\operatorname{Ker} M(L_v) = I(v)$

Work with truncated moment matrices

For $t \in \mathbb{N}$ and $L \in \mathbb{R}[x]_t^*$, consider the 'truncated' conditions: (LC) L vanishes on \mathcal{H}_t , where

$$\mathcal{H}_t := \{h_j x^\alpha \text{ with degree at most } t\} \subseteq I \cap \mathbb{R}[x]_t$$

(**PSD**) L is positive on the squares of degree at most t, i.e.

 $M_{\lfloor t/2 \rfloor}(L) \succeq 0$

$$\mathcal{K}_t := \{ L \in \mathbb{R}[x]_t^* \mid L(p) = 0 \ \forall p \in \mathcal{H}_t, \ M_{\lfloor t/2 \rfloor}(L) \succeq 0 \}$$

Obviously, $\mathcal{K}_t \supseteq \operatorname{cone} \{ L_v \mid v \in V_{\mathbb{R}}(I) \}$

Theorem: $\exists t \geq s \geq D \quad \pi_s(\mathcal{K}_t) = \operatorname{cone}\{\pi_s(L_v) \mid v \in V_{\mathbb{R}}(I)\}$

A geometric property of the cone \mathcal{K}_t

Lemma: The following are equivalent for $L \in \mathcal{K}_t$:

- (1) L lies in the relative interior of \mathcal{K}_t (L is generic)
- (2) rank $M_{\lfloor t/2 \rfloor}(L)$ is maximum
- (3) $\operatorname{Ker} M_{\lfloor t/2 \rfloor}(L)$ is minimum, i.e.

$$\underbrace{\operatorname{Ker} M_{\lfloor t/2 \rfloor}(L)}_{=: \mathcal{N}_t \text{ generic kernel}} \subseteq \operatorname{Ker} M_{\lfloor t/2 \rfloor}(L') \quad \forall L' \in \mathcal{K}_t$$

Lemma:

$$f_t \subseteq \mathcal{N}_{t+1} \subseteq \ldots \subseteq \sqrt[\mathbb{R}]{I}$$

Proof: $\mathcal{N}_t \subseteq \operatorname{Ker} M_{\lfloor t/2 \rfloor}(L_v) \subseteq I(v) \quad \forall v \in V_{\mathbb{R}}(I)$

Semidefinite characterization of $\sqrt[\mathbb{R}]{I}$

Theorem 1: $\sqrt[\mathbb{R}]{I} = (\mathcal{N}_t)$ for t large enough.

Idea of proof: Show that, for t large enough, \mathcal{N}_t contains a given basis $\{g_1, \ldots, g_L\}$ of $\sqrt[\mathbb{R}]{I}$

- Real Nullstellensatz: $g_l^{2m} + \sum_i s_i^2 = \sum_{j=1}^m u_j h_j$
- \mathcal{N}_t is "real ideal like": $g_l^{2m} + \sum_i s_i^2 \in \mathcal{N}_t \Longrightarrow g_l \in \mathcal{N}_t$

Question: How to recognize when \mathcal{N}_t generates $\sqrt[\mathbb{R}]{I}$?

Next: An answer in the case $|V_{\mathbb{R}}(I)| < \infty$

Stopping criterion when $|V_{\mathbb{R}}(I)| < \infty$

Theorem 2: Let *L* be a *generic* element of \mathcal{K}_t , $D := \max \deg(h_j)$. Assume one of the following two **flatness conditions** holds:

(F1) rank $M_s(L) = \operatorname{rank} M_{s-1}(L)$ for some $D \le s \le \lfloor t/2 \rfloor$

(Fd) rank $M_s(L) = \operatorname{rank} M_{s-d}(L)$ for some $d = \lceil D/2 \rceil \leq s \leq \lfloor t/2 \rfloor$.

Then: • $\sqrt[\mathbb{R}]{I} = (\operatorname{Ker} M_s(L))$

- Any column base \mathcal{B} of $M_{s-1}(L)$ is a base of $\mathbb{R}[x]/\sqrt[\mathbb{R}]{I}$
- The multiplication matrices can be constructed from $M_s(y)$

•
$$\pi_{2s}(\mathcal{K}_t) = \operatorname{cone}\{\pi_{2s}(L_v) \mid v \in V_{\mathbb{R}}(I)\}\$$

= $\operatorname{cone}\{(v^{\alpha})_{|\alpha| \leq 2s} \mid v \in V_{\mathbb{R}}(I)\}.$

Properties of moment matrices

Lemma: Let $L \in \mathbb{R}[x]^*$.

- $\operatorname{Ker} M(L)$ is an ideal.
- If $M(L) \succeq 0$, then $\operatorname{Ker} M(L)$ is real radical.

Flat Extension theorem [Curto-Fialkow 1996] Let $L \in \mathbb{R}[x]_{2s}^*$. If $\operatorname{rank} M_s(L) = \operatorname{rank} M_{s-1}(L)$, then there exists a *flat extension* $\tilde{L} \in \mathbb{R}[x]^*$ of L, i.e., satisfying $\operatorname{rank} M(\tilde{L}) = \operatorname{rank} M_s(L)$.

Idea of proof: We know how to construct the extension using the polynomials in $(\text{Ker}M_s(L))$. Finite Rank Moment Matrix theorem [Curto-Fialkow 1996] Let $L \in \mathbb{R}[x]^*$. If $M(L) \succeq 0$ and $\operatorname{rank} M(L) = r < \infty$, then *L* has a *finite r-atomic representing measure*, i.e. $L = \sum_{i=1}^r \lambda_i L_{v_i}$, where $\lambda_i > 0$ and $\{v_1, \ldots, v_r\} = V(\operatorname{Ker} M(L)) \subseteq \mathbb{R}^n$.

Proof: • I := KerM(L) is a real radical ideal

• *I* is 0-dimensional, as dim $\mathbb{R}[x]/I = r$

•
$$V(I) = \{v_1, \dots, v_r\} \subseteq \mathbb{R}^n$$

Then, $L = \sum_{i=1}^{r} L(p_i^2) L_{v_i}$, where p_i are interpolation polynomials at v_i .

Proof of the stopping criterion

Assume $\operatorname{rank} M_s(L) = \operatorname{rank} M_{s-1}(L)$. Show $(\operatorname{Ker} M_s(L)) = \sqrt[\mathbb{R}]{I}$.

• By the Flat Extension theorem, $\pi_{2s}(L)$ has a flat extension $\tilde{L} \in \mathbb{R}[x]^*$, i.e. rank $M(\tilde{L}) = \operatorname{rank} M_s(L)$.

•
$$\operatorname{Ker} M(\tilde{L}) = (\operatorname{Ker} M_s(L)).$$

• As $M(\tilde{L}) \succeq 0$, $\operatorname{Ker} M(\tilde{L})$ is a real radical ideal.

We have:
$$I \underbrace{\subseteq}_{(LC)} (\operatorname{Ker} M_s(L)) \underbrace{\subseteq}_{L \text{ generic}} \sqrt[\mathbb{R}]{I}$$

This implies: $(\text{Ker}M_s(L)) = \sqrt[\mathbb{R}]{I}$

Remains to show: $\pi_{2s}(\mathcal{K}_t) = \operatorname{cone}\{L_v \mid v \in V_{\mathbb{R}}(I)\}.$

Let $L \in \mathcal{K}_t$.

- (F1) holds: $\operatorname{rank} M_s(L) = \operatorname{rank} M_{s-1}(L) =: r' (\leq r).$
- Thus $\pi_{2s}(L)$ has a flat extension \tilde{L} .
- By the Finite Rank Moment Matrix theorem, \tilde{L} has a finite r'-atomic measure:

$$\tilde{L} = \sum_{i=1}^{r'} \lambda_i L_{v_i}$$
, where $\lambda_i > 0$ and
 $\{v_1, \dots, v_{r'}\} = V(\operatorname{Ker} M_s(L)) \subseteq V_{\mathbb{R}}(I).$

Thus, $\pi_{2s}(L) \in \operatorname{cone}\{L_v \mid v \in V_{\mathbb{R}}(I)\}.$

The moment-matrix algorithm for $V_{\mathbb{R}}(I)$

Input: $h_1, \ldots, h_m \in \mathbb{R}[x]$ **Output:** \mathcal{B} base of $\mathbb{R}[x]/\sqrt[\mathbb{R}]{I}$ The multiplication matrices M_{x_i} in $\mathbb{R}[x]/\sqrt[\mathbb{R}]{I}$

Algorithm: For $t \ge D$

Step 1: Compute a generic element $L \in \mathcal{K}_t$.

Step 2: Check if (F1) or (Fd) holds.

If yes, return a column basis \mathcal{B} of $M_{s-1}(L)$ and $M_{x_i} = M_{\mathcal{B}}^{-1}P_i$,

- $M_{\mathcal{B}}$:= principal submatrix of $M_{s-1}(L)$ indexed by \mathcal{B}
- P_i := submatrix of $M_s(L)$ with rows in \mathcal{B} and columns in $x_i\mathcal{B}$.

If no, go to Step 1 with $t \rightarrow t + 1$.

Theorem: The algorithm terminates.

The algorithm terminates: (F1) holds for t large enough.

- For $t \ge t_0$, $\operatorname{Ker} M_{\lfloor t/2 \rfloor}(L)$ contains a Gröbner base $\{g_1, \ldots, g_L\}$ of $\sqrt[\mathbb{R}]{I}$ for a total degree ordering.
- $\mathcal{B} := \{b_1, \dots, b_N\}$: set of standard monomials ~> base of $\mathbb{R}[x]/\sqrt[\mathbb{R}]{I}$.
- Set: $s := 1 + \max_{b \in \mathcal{B}} \deg(b)$ and assume $t \ge t_0$, $\lfloor t/2 \rfloor > s$. For $|\alpha| \le s$, write $x^{\alpha} = \sum_{\substack{i=1 \ deg \le s-1}}^{N} \lambda_i b_i + \sum_{\substack{l=1 \ deg \le |\alpha| \le s < \lfloor t/2 \rfloor}}^{L} u_l g_l$ Thus: $x^{\alpha} - \sum_{i=1}^{N} \lambda_i b_i \in \operatorname{Ker} M_{\lfloor t/2 \rfloor}(L)$. That is: $\operatorname{rank} M_s(L) = \operatorname{rank} M_{s-1}(L)$.

A small example

Consider $I = (x_1^2 + x_2^2)$. Thus, $|V_{\mathbb{C}}(I)| = \infty$, $V_{\mathbb{R}}(I) = \{(0,0)\}, \sqrt[\mathbb{R}]{I} = (x_1, x_2).$ Any $L \in \mathcal{K}_2$ satisfies: (LC) $L(x_1^2 + x_2^2) = 0.$ 1 x_1 x_2 (PSD) $M_1(L) = \begin{array}{c} 1\\ x_1\\ x_2 \end{array} \begin{pmatrix} L(1) & L(x_1) & L(x_2)\\ & L(x_1^2) & L(x_1x_2)\\ & & L(x_2^2) \end{pmatrix} \succeq 0$

Thus, $L(x_1^2) = L(x_2^2) = 0 \rightsquigarrow L(x_1) = L(x_2) = L(x_1x_2) = 0$

Hence, Ker $M_1(L)$ is spanned by x_1, x_2 for generic $L \in \mathcal{K}_2$.

How to find a generic $L \in \mathcal{K}_t$?

Solve the SDP program: $\min_{L \in \mathcal{K}_t} 1$ with an interior-point algorithm using the 'extended self-dual embedding property'. Then the central path converges to a solution in the relative interior of the optimum face, i.e., to a **generic** point $L \in \mathcal{K}_t$.

How to compute ranks of matrices ?

We use SVD decomposition, but this is a sensitive numerical issue ...

Some remarks

• Try to extract roots as soon as a set \mathcal{B} of independent columns is found for which $\operatorname{rank} M_{\mathcal{B}}(L) = \operatorname{rank} M_{\mathcal{B}^+}(L)$, where $\mathcal{B}^+ = \mathcal{B} \cup x_1 \mathcal{B} \cup \ldots \cup x_n \mathcal{B}$.

- If the multiplication matrices commute, one can extract V(J), where J is a 0-dimensional ideal with $I \subseteq J \subseteq \sqrt[\mathbb{R}]{I}$.
- If \mathcal{B} is connected to 1, then $J = \sqrt[\mathbb{R}]{I}$ (and commutativity is for free).

Generalized flat extension theorem [La-Mourrain 09] If rank $M_{\mathcal{B}}(L) = \operatorname{rank} M_{\mathcal{B}^+}(L)$, where \mathcal{B} is connected to 1, then L has a flat extension to $\mathbb{R}[x]^*$. **Extension of the moment-matrix algorithm to** $V_{\mathbb{C}}(I)$

Omit the PSD condition and work with the linear space:

$$K_t = \mathcal{H}_t^{\perp} = \{ L \in \mathbb{R}[x]_t^* \mid L(h_j x^\alpha) = 0 \text{ if } \deg(h_j x^\alpha) \le t \}$$

The *same* algorithm applies: For $t \ge D$

- Pick generic $L \in K_t$ [i.e. rank $M_s(L)$ max. $\forall s \leq \lfloor t/2 \rfloor$] [choose $L \in K_t$ randomly]
- Check if the flatness condition (F1) or (Fd) holds.
- If yes, find a basis of $\mathbb{R}[x]/J$ where $J := (\text{Ker}M_s(L))$ satisfies $I \subseteq J \subseteq \sqrt{I}$ and thus $V_{\mathbb{C}}(J) = V_{\mathbb{C}}(I)$.
- If not, iterate with t + 1.

Note: Equality J = I when $\mathbb{R}[x]/I$ is a Gorenstein algebra.

Equality $(Ker M_s(L)) = I$ in the Gorenstein case

The inclusion $I \subseteq (\text{Ker}M_s(L)) \subseteq \sqrt{I}$ may be strict for any generic L.

Example: For $I = (x_1^2, x_2^2, x_1x_2)$, $V_{\mathbb{C}}(I) = \{0\}$, $\sqrt{I} = (x_1, x_2)$, dim $\mathbb{R}[x]/I = 3$, dim $\mathbb{R}[x]/\sqrt{I} = 1$, while dim $\mathbb{R}[x]/(\text{Ker}M_s(y)) = 2$ for any generic y and any $s \ge 1$!

Recall: The algebra $\mathcal{A} := \mathbb{R}[x]/I$ is *Gorenstein* if there exists a non-degenerate bilinear form on \mathcal{A} satisfying (f, gh) = (fg, h) $\forall f, g, h \in \mathcal{A}$, i.e. if there exists $L \in K_{\infty}$ with I = KerM(L)

Hence: $\exists L \in K_t$ s.t. rank $M_s(L) = \text{rank}M_{s-1}(L)$ and $I = (\text{Ker}M_s(L))$ iff \mathcal{A} is Gorenstein.

Example 1: the moment-matrix algorithm for real/complex roots

$$I = (x_1^2 - 2x_1x_3 + 5, x_1x_2^2 + x_2x_3 + 1, 3x_2^2 - 8x_1x_3), D = 3, d = 2$$

	t = 2	3	4	5	6	7	8	9	
s = 0	1	1	1	1	1	1	1	1	-
s = 1	4	4	4	4	4	4	4	4	no PSD \rightsquigarrow 8 complex roots
s = 2			8	8	8	8	8	8	
s = 3					11	10	9	8	
s = 4							12	2 10	
		t =	: 2	3	4	5	6		
-	s = 0	1		1	1	1	1		
	s = 1	4		4	4	2	2	wi	th PSD \rightsquigarrow 2 real roots
	s = 2				8	8	2		
	s = 3						10		

Ranks of $M_s(y)$ **for generic** $y \in K_t$, \mathcal{K}_t :

8 complex roots / 2 real roots:

$$v_{1} = \begin{bmatrix} -1.101, -2.878, -2.821 \end{bmatrix}$$

$$v_{2} = \begin{bmatrix} 0.07665 + 2.243i, 0.461 + 0.497i, 0.0764 + 0.00834i \end{bmatrix}$$

$$v_{3} = \begin{bmatrix} 0.07665 - 2.243i, 0.461 - 0.497i, 0.0764 - 0.00834i \end{bmatrix}$$

$$v_{4} = \begin{bmatrix} -0.081502 - 0.93107i, 2.350 + 0.0431i, -0.274 + 2.199i \end{bmatrix}$$

$$v_{5} = \begin{bmatrix} -0.081502 + 0.93107i, 2.350 - 0.0431i, -0.274 - 2.199i \end{bmatrix}$$

$$v_{6} = \begin{bmatrix} 0.0725 + 2.237i, -0.466 - 0.464i, 0.0724 + 0.00210i \end{bmatrix}$$

$$v_{7} = \begin{bmatrix} 0.0725 - 2.237i, -0.466 + 0.464i, 0.0724 - 0.00210i \end{bmatrix}$$

$$v_{8} = \begin{bmatrix} 0.966, -2.813, 3.072 \end{bmatrix}$$

Another example for real roots

 $I = (5x_1^9 - 6x_1^5x_2 + x_1x_2^4 + 2x_1x_3, -2x_1^6x_2 + 2x_1^2x_2^3 + 2x_2x_3, x_1^2 + x_2^2 - 0.265625)$ $D = 9, d = 5, |V_{\mathbb{R}}(I)| = 8, |V_{\mathbb{C}}(I)| = 20$

order	rank sequence of	extract. order s	accuracy	comm. error
t	$M_s(y) \ (0 \le s \le \lfloor t/2 \rfloor)$			
10	1 4 8 16 25 34			_
12	1 3 9 15 22 26 32			—
14	1 3 8 10 12 16 20 24	3	0.12786	0.00019754
16	1 4 <mark>8 8 8</mark> 12 16 20 24	4	4.6789e-5	4.7073e-5

Linear basis: $\mathcal{B} = \{1, x_1, x_2, x_3, x_1^2, x_1x_2, x_1x_3, x_2x_3\} \rightsquigarrow$ border basis G of size 10

Real solutions:
$$\begin{cases} x_1 = (-0.515, -0.000153, -0.0124) & x_2 = (-0.502, 0.119, 0.0124) \\ x_3 = (0.502, 0.119, 0.0124) & x_4 = (0.515, -0.000185, -0.0125) \\ x_5 = (0.262, 0.444, -0.0132) & x_6 = (-2.07e-5, 0.515, -1.27e-6) \\ x_7 = (-0.262, 0.444, -0.0132) & x_8 = (-1.05e-5, -0.515, -7.56e-7) \end{cases}$$

Link with the prolongation-projection algorithm of Zhi-Reid

Theorem: If (F1) holds, i.e.

 $\operatorname{rank} M_s(L) = \operatorname{rank} M_{s-1}(L)$ for generic $L \in K_t$, $D \leq s \leq \lfloor t/2 \rfloor$

then
$$\dim \pi_{2s}(K_t) = \dim \pi_{2s-1}(K_t) = \dim \pi_{2s}(K_{t+1})$$

Theorem (based on [Zhi-Reid 2004]): If for some $D \le s \le t$

(D)
$$\dim \pi_s(K_t) = \dim \pi_{s-1}(K_t) = \dim \pi_s(K_{t+1})$$

then one can construct the multiplication matrices of $\mathbb{R}[x]/I$ and extract $V_{\mathbb{C}}(I)$.

Hence: The stopping criterion (D) is satisfied earlier than (F1).

Example 1: $I = (x_1^2 - 2x_1x_3 + 5, x_1x_2^2 + x_2x_3 + 1, 3x_2^2 - 8x_1x_3)$

	t = 2	2 3	4	5	6	7	8	9	Complex reats
s = 0	0 1	1	1	1	1	1	1	1	- Complex roots
s = 1	1 4	4	4	4	4	4	4	4	
s = 2	2		8	8	8	8	8	8	$\operatorname{rank} M_3(L) = \operatorname{rank} M_2(L)$
s = 3	3				11	10	9	8	for $L \in K_9$
s = 4	4						12	10	
	t = 3	4	5	6	7	8	9		
s = 1	4	4	4	4	4	4	4		
s = 2	8	8	8	8	8	8	8		$\dim \pi_3(K_6)$
s = 3	11	10	9	8	8	8	8	=	$= \dim \pi_2(K_6)$
s = 4		12	10	9	8	8	8	=	$= \dim \pi_3(K_7)$
s = 5			12	10	9	8	8		
s = 6				12	10	9	8		

• In the complex case, (D) compares the dimensions of $\pi_s(\mathcal{H}_t^{\perp}), \pi_{s-1}(\mathcal{H}_t^{\perp}), \text{ and } \pi_s((\mathcal{H}_t^+)^{\perp}).$

Notation: $\mathcal{H}_t^+ := \mathcal{H}_t \cup x_1 \mathcal{H}_t \cup \ldots \cup x_n \mathcal{H}_t = \mathcal{H}_{t+1}$

• In the real case, $\dim(\mathcal{K}_t) = \dim(\mathcal{G}_t^{\perp})$, where

$$\mathcal{G}_t := \mathcal{H}_t \cup \{ fx^\alpha \mid f \in \mathcal{N}_t, \deg(x^\alpha) \le \lfloor t/2 \rfloor \}$$

Theorem: If for some $D \le s \le t$

(D+) dim
$$\pi_s(\mathcal{G}_t^{\perp})$$
 = dim $\pi_{s-1}(\mathcal{G}_t^{\perp})$ = dim $\pi_s((\mathcal{G}_t^+)^{\perp})$

then one can construct the multiplication matrices of $\mathbb{R}[x]/J$, where $I \subseteq J \subseteq \sqrt[\mathbb{R}]{I}$, and extract $V_{\mathbb{R}}(I) = V_{\mathbb{C}}(J) \cap \mathbb{R}^n$. Moreover, $J = \sqrt[\mathbb{R}]{I}$ if dim $\pi_s(\mathcal{G}_t^{\perp}) = |V_{\mathbb{R}}(I)|$. Link with the flatness criterion

Theorem: The flatness criterion (F1):

 $\operatorname{rank} M_s(L) = \operatorname{rank} M_{s-1}(L)$ for generic $L \in \mathcal{K}_t$

is **equivalent** to the strong version of the (D+) criterion:

(D++) dim
$$\pi_{2s}(\mathcal{G}_t^{\perp}) = \dim \pi_{s-1}(\mathcal{G}_t^{\perp}) = \dim \pi_{2s}((\mathcal{G}_t^{\perp})^{\perp})$$

Thus: the stopping criterion (D+) is satisfied earlier than (F1).

But: the algorithm still needs to be improved ... as it handles large matrices (indexed by the full set of degree *t* monomials)

Example 1: $I = (x_1^2 - 2x_1x_3 + 5, x_1x_2^2 + x_2x_3 + 1, 3x_2^2 - 8x_1x_3)$

	t = 3	4	5	6	
s = 0		1	1	1	
s = 1	4	4	2	2	
s = 2		8	8	2	$\mathrm{rank}M$
s = 3				10	

rank
$$M_2(L) = \operatorname{rank} M_1(L)$$

for $L \in \mathcal{K}_6$

Real roots

	\mathcal{G}_3	\mathcal{G}_3^+	\mathcal{G}_4	\mathcal{G}_4^+	\mathcal{G}_5	\mathcal{G}_5^+	\mathcal{G}_6	\mathcal{G}_6^+	
s = 1	4	4	4	4	2	2	2	2	$\dim \pi_2(\mathcal{G}_5^{\perp})$
s = 2	8	8	8	8	2	2	2	2	$= \dim \pi_1(\mathcal{G}_5^{\perp})$
s = 3	11	10	10	9	2	2	2	2	$=\!\dim \pi_2((\mathcal{G}_5^+)^\perp)$
s = 4			12	10	3	3	2	2	

- Inspect 'sparse' sets of monomials instead of full degree sets.
- Use a better stopping criterion e.g. use the sparse flatness condition.
- Adapt other known efficient algorithms for complex roots to *real* roots by incorporating SDP conditions.

For instance, combine with Gröbner/border bases methods: add polynomials of $\sqrt[\mathbb{R}]{I}$ (coming from kernels) on the fly...

• Extension to the positive dimensional case ?