Computing real radical ideals and real roots of polynomial equations with semidefinite programming

Jean Bernard Lasserre - Monique Laurent - Philipp Rostalski

LAAS, Toulouse - CWI, Amsterdam - UC Berkeley

Convex Algebraic geometry, Optimization, and Applications AIM, September 2009

The problem

Given polynomials $h_{1}, \ldots, h_{m} \in \mathbb{R}[x]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

- Compute all common real roots (assuming finitely many), i.e. compute the real variety $V_{\mathbb{R}}(I)$ of the ideal $I:=\left(h_{1}, \ldots, h_{m}\right)$
- Find a basis of the real radical ideal $\sqrt[\mathbb{R}]{I}$

$$
\begin{array}{ll}
V_{\mathbb{R}}(I) & :=\left\{v \in \mathbb{R}^{n} \mid f(v)=0 \forall f \in I\right\} \\
\sqrt[\mathbb{R}]{I} & :=\left\{f \in \mathbb{R}[x] \mid \exists m \in \mathbb{N} s_{j} \in \mathbb{R}[x] f^{2 m}+\sum_{j} s_{j}^{2} \in I\right\} \\
I\left(V_{\mathbb{R}}(I)\right) & :=\left\{f \in \mathbb{R}[x] \mid f(v)=0 \forall v \in V_{\mathbb{R}}(I)\right\}
\end{array}
$$

Real Nullstellensatz: $\sqrt[R]{I}=I\left(V_{\mathbb{R}}(I)\right)$

Let $I=\left(\left(x_{1}^{2}+x_{2}^{2}\right)^{2}\right) \subseteq \mathbb{R}\left[x_{1}, x_{2}\right]$
$V_{\mathbb{R}}(I)=\{(0,0)\}$
Real radical ideal: $\mathcal{I}\left(V_{\mathbb{R}}(I)\right)=\left(x_{1}, x_{2}\right)$
$V_{\mathbb{C}}(I)=\left\{\left(x_{1}, \pm i x_{1}\right) \mid x_{1} \in \mathbb{C}\right\}$
Radical ideal: $\mathcal{I}\left(V_{\mathbb{C}}(I)\right)=\left(x_{1}^{2}+x_{2}^{2}\right)$

Hilbert Nullstellensatz:

$$
\mathcal{I}\left(V_{\mathbb{C}}(I)\right)=\sqrt{I}:=\left\{f \in \mathbb{R}[x] \mid \exists m \in \mathbb{N} f^{m} \in I\right\}
$$

1. A semidefinite characterization of $\sqrt[R]{I}$
[as the kernel of some positive semidefinite moment matrix]
2. Assuming $\left|V_{\mathbb{R}}(I)\right|<\infty$, an algorithm for finding:

- a generating set (border or Gröbner basis) of $\sqrt[\mathbb{R}]{I}$
- the real variety $V_{\mathbb{R}}(I)$

Remarks about the method:

- real algebraic in nature: no complex roots computed
- works if $V_{\mathbb{R}}(I)$ is finite (even if $V_{\mathbb{C}}(I)$ is not)
- no preliminary Gröbner basis of I is needed
- numerical, based on semidefinite programming (SDP)

Plan of the talk

1. The moment-matrix method for $V_{\mathbb{R}}(I)$
2. Adapt the moment-matrix method for $V_{\mathbb{C}}(I) \quad$ [drop PSD]
3. Relate to the 'prolongation-projection' algorithm of Zhi and Reid for $V_{\mathbb{C}}(I)$
4. Adapt the prolongation-projection algorithm for $V_{\mathbb{R}}(I)$
[add PSD]
5. Extensions?

Problem: Given an ideal $I \subseteq \mathbb{R}[x]$ with $\left|V_{\mathbb{C}}(I)\right|<\infty$

- Compute the (complex) variety $V_{\mathbb{C}}(I)$
- Find a basis of the radical ideal \sqrt{I}
$V_{\mathbb{C}}(I)$ can be computed e.g. with:
- Homotopy methods [Sommese, Verschelde, Wampler, ...]
- Elimination methods: Find polynomials in I in 'triangular form' $f_{1} \in \mathbb{R}\left[x_{1}\right], f_{2} \in \mathbb{R}\left[x_{1}, x_{2}\right], \ldots, f_{n} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ (via a Gröbner basis for a lexicographic monomial ordering [Buchberger,...])
- Linear algebra methods: Find the multiplication matrices in $\mathbb{R}[x] / I$ and compute their eigenvalues
\rightsquigarrow The eigenvalue method [Stetter, Möller, Stickelberger,...]
Theorem [Seidenberg 1974]: $\sqrt{I}=\left(I \cup\left\{q_{1}, \ldots, q_{n}\right\}\right)$, where q_{i} is the square-free part of p_{i}, the monic generator of $I \cap \mathbb{R}\left[x_{i}\right]$.

Linear algebra in the finite dimensional space $\mathbb{R}[x] / I$
 \rightsquigarrow Need a linear basis of $\mathbb{R}[x] / I$

$$
\text { Basic fact: } \quad \operatorname{dim} \mathbb{R}[x] / I<\infty \Longleftrightarrow\left|V_{\mathbb{C}}(I)\right|<\infty
$$

The eigenvalue method: The univariate case

- Let $h=x^{d}-a_{d-1} x^{d-1}-\ldots-a_{1} x-a_{0} \quad$ and $I=(h)$
- $\mathcal{B}=\left\{1, x, \ldots, x^{d-1}\right\}$ is a linear basis of $\mathbb{R}[x] / I$
- The matrix of the 'multiplication (by x) operator' in \mathbb{R} / I is:

$$
\begin{array}{r}
\\
M_{x}=\begin{array}{cccc}
x & \ldots & x^{d-1} & x^{d} \\
1 \\
x \\
\vdots \\
x^{d-1}
\end{array}\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right. \\
\\
\\
\\
\\
\\
\operatorname{det}\left(M_{x}-t I\right)=(-1)^{d} h(t)
\end{array}
$$

Hence: The eigenvalues of M_{x} are the roots of h.

$$
\begin{array}{rlll}
m_{f}: & \mathbb{R}[x] / I & \rightarrow & \mathbb{R}[x] / I \\
& {[p]} & \mapsto & {[f p]}
\end{array}
$$

is the 'multiplication by f '
linear operator in $\mathbb{R}[x] / I$ and let M_{f} be the matrix of m_{f} in a base \mathcal{B} of $\mathbb{R}[x] / I$.

1. The eigenvalues of M_{f} are $\left\{f(v) \mid v \in V_{\mathbb{C}}(I)\right\}$.
2. The eigenvectors of M_{f}^{T} give the points $v \in V_{\mathbb{C}}(I)$:

$$
M_{f}^{T} \zeta_{v}=f(v) \zeta_{v} \quad \forall v \in V_{\mathbb{C}}(I) \quad \text { where } \zeta_{v}:=(b(v))_{b \in \mathcal{B}}
$$

3. When \mathcal{B} is a monomial basis of $\mathbb{R}[x] / I$ with $1 \in \mathcal{B}$, a (border) basis of I can be read directly from the multiplication matrices $M_{x_{1}}, \ldots, M_{x_{n}}$.

Finding a linear basis \mathcal{B} of $\mathbb{R}[x] / I$ and a basis G of the ideal I

- Typically, \mathcal{B} is the set of standard monomials and G is a Gröbner basis for a given monomial ordering (e.g. via Buchberger's algorithm)
- More generally: Assume $\mathcal{B}=\left\{b_{1}=1, b_{2}, \ldots, b_{N}\right\}$ is a set of monomials with border $\partial \mathcal{B}:=\left(x_{1} \mathcal{B} \cup \ldots \cup x_{n} \mathcal{B}\right) \backslash \mathcal{B}$. Write any border monomial

$$
x_{i} b_{j}=\underbrace{r^{(i j)}}_{\in \operatorname{Span}(\mathcal{B})}+\underbrace{g^{(i j)}}_{\in I}
$$

Then $G:=\left\{g^{(i j)} \mid x_{i} b_{j} \in \partial \mathcal{B}\right\}$ is a (border) basis of I and carries the same information as the multiplication matrices $M_{x_{1}}, \ldots, M_{x_{n}}$

To remember:

To find $V_{\mathbb{R}}(I)$ and a basis of $\sqrt[\mathbb{R}]{I} \ldots$
... it suffices to have a linear basis \mathcal{B} of $\mathbb{R}[x] / \sqrt[R]{I}$ and the multiplication matrices in $\mathbb{R}[x] / \sqrt[\mathbb{R}]{I}$!

Counting real roots with the Hermite quadratic form

For $f \in \mathbb{R}[x]$

Hermite bilinear form:

$$
\begin{aligned}
H_{f}: \quad \mathbb{R}[x] / I & \times \mathbb{R}[x] / I \rightarrow \mathbb{R} \\
(g, h) & \mapsto \operatorname{Tr}\left(M_{f g h}\right)
\end{aligned}
$$

Theorem: For $f=1$

$$
\operatorname{rank}\left(H_{1}\right)=\left|V_{\mathbb{C}}(I)\right|, \operatorname{Sign}\left(H_{1}\right)=\left|V_{\mathbb{R}}(I)\right|, \operatorname{Ker}\left(H_{1}\right)=\sqrt{I}
$$

- $\operatorname{rank}\left(H_{f}\right)=\left|\left\{v \in V_{\mathbb{C}}(I) \mid f(v) \neq 0\right\}\right|$
- $\operatorname{Sign}\left(H_{f}\right)$

$$
=\left|\left\{v \in V_{\mathbb{R}}(I) \mid f(v)>0\right\}\right|-\left|\left\{v \in V_{\mathbb{R}}(I) \mid f(v)<0\right\}\right|
$$

Idea: Work on the dual (moment) side

$v \in V_{\mathbb{R}}(I) \rightsquigarrow L_{v} \in \mathbb{R}[x]^{*} \quad$ [set of linear functionals on $\left.\mathbb{R}[x]\right]$
L_{v} is the evaluation at v, defined by $L_{v}(p):=p(v) \quad \forall p \in \mathbb{R}[x]$

Properties of L_{v} :

- L_{v} vanishes on I :

$$
L_{v}\left(h_{j} x^{\alpha}\right)=0 \quad \forall j \forall \alpha
$$

- L_{v} is positive on squares:

$$
L_{v}\left(p^{2}\right) \geq 0 \quad \forall p \in \mathbb{R}[x]
$$

The moment matrix $M\left(L_{v}\right):=\left(L_{v}\left(x^{\alpha} x^{\beta}\right)\right)_{\alpha, \beta}$ is positive semidefinite

Note: $\operatorname{Ker} M\left(L_{v}\right)=I(v)$

Work with truncated moment matrices

For $t \in \mathbb{N}$ and $L \in \mathbb{R}[x]_{t}^{*}$, consider the 'truncated' conditions:
(LC) L vanishes on \mathcal{H}_{t}, where

$$
\mathcal{H}_{t}:=\left\{h_{j} x^{\alpha} \text { with degree at most } t\right\} \subseteq I \cap \mathbb{R}[x]_{t}
$$

(PSD) L is positive on the squares of degree at most t, i.e.

$$
M_{\lfloor t / 2\rfloor}(L) \succeq 0
$$

$$
\mathcal{K}_{t}:=\left\{L \in \mathbb{R}[x]_{t}^{*} \mid L(p)=0 \forall p \in \mathcal{H}_{t}, M_{\lfloor t / 2\rfloor}(L) \succeq 0\right\}
$$

Obviously, $\mathcal{K}_{t} \supseteq \operatorname{cone}\left\{L_{v} \mid v \in V_{\mathbb{R}}(I)\right\}$
Theorem: $\exists t \geq s \geq D \quad \pi_{s}\left(\mathcal{K}_{t}\right)=\operatorname{cone}\left\{\pi_{s}\left(L_{v}\right) \mid v \in V_{\mathbb{R}}(I)\right\}$

Lemma: The following are equivalent for $L \in \mathcal{K}_{t}$:
(1) L lies in the relative interior of \mathcal{K}_{t} (L is generic)
(2) $\operatorname{rank} M_{\lfloor t / 2\rfloor}(L)$ is maximum
(3) $\operatorname{Ker} M_{\lfloor t / 2\rfloor}(L)$ is minimum, i.e.

$$
\underbrace{\operatorname{Ker} M_{\lfloor t / 2\rfloor}(L)}_{=: \mathcal{N}_{t} \text { generic kernel }} \subseteq \operatorname{Ker} M_{\lfloor t / 2\rfloor}\left(L^{\prime}\right) \quad \forall L^{\prime} \in \mathcal{K}_{t}
$$

Lemma: $\quad \mathcal{N}_{t} \subseteq \mathcal{N}_{t+1} \subseteq \ldots \subseteq \sqrt[\mathbb{R}]{I}$

Proof: $\mathcal{N}_{t} \subseteq \operatorname{Ker} M_{\lfloor t / 2\rfloor}\left(L_{v}\right) \subseteq I(v) \quad \forall v \in V_{\mathbb{R}}(I)$

Semidefinite characterization of $\sqrt[\mathbb{R}]{I}$

Theorem 1: $\sqrt[\mathbb{R}]{I}=\left(\mathcal{N}_{t}\right)$ for t large enough.

Idea of proof: Show that, for t large enough, \mathcal{N}_{t} contains a given basis $\left\{g_{1}, \ldots, g_{L}\right\}$ of $\sqrt[\mathbb{R}]{I}$

- Real Nullstellensatz: $g_{l}^{2 m}+\sum_{i} s_{i}^{2}=\sum_{j=1}^{m} u_{j} h_{j}$
- \mathcal{N}_{t} is "real ideal like": $g_{l}^{2 m}+\sum_{i} s_{i}^{2} \in \mathcal{N}_{t} \Longrightarrow g_{l} \in \mathcal{N}_{t}$

Question: How to recognize when \mathcal{N}_{t} generates $\sqrt[\mathbb{R}]{I}$?
Next: An answer in the case $\left|V_{\mathbb{R}}(I)\right|<\infty$

Theorem 2: Let L be a generic element of $\mathcal{K}_{t}, D:=\max \operatorname{deg}\left(h_{j}\right)$.
Assume one of the following two flatness conditions holds:
(F1) $\operatorname{rank} M_{s}(L)=\operatorname{rank} M_{s-1}(L)$ for some $D \leq s \leq\lfloor t / 2\rfloor$
$(\mathrm{Fd}) \operatorname{rank} M_{s}(L)=\operatorname{rank} M_{s-d}(L)$ for some $d=\lceil D / 2\rceil \leq s \leq\lfloor t / 2\rfloor$.

Then: $\bullet \sqrt[\mathbb{R}]{I}=\left(\operatorname{Ker} M_{s}(L)\right)$

- Any column base \mathcal{B} of $M_{s-1}(L)$ is a base of $\mathbb{R}[x] / \sqrt[\mathbb{R}]{I}$
- The multiplication matrices can be constructed from $M_{s}(y)$
- $\pi_{2 s}\left(\mathcal{K}_{t}\right)=\operatorname{cone}\left\{\pi_{2 s}\left(L_{v}\right) \mid v \in V_{\mathbb{R}}(I)\right\}$

$$
=\operatorname{cone}\left\{\left(v^{\alpha}\right)_{|\alpha| \leq 2 s} \mid v \in V_{\mathbb{R}}(I)\right\} .
$$

Properties of moment matrices

Lemma: Let $L \in \mathbb{R}[x]^{*}$.

- $\operatorname{Ker} M(L)$ is an ideal.
- If $M(L) \succeq 0$, then $\operatorname{Ker} M(L)$ is real radical.

Flat Extension theorem [Curto-Fialkow 1996]
Let $L \in \mathbb{R}[x]_{2 s}^{*}$.
If $\operatorname{rank} M_{s}(L)=\operatorname{rank} M_{s-1}(L)$, then
there exists a flat extension $\tilde{L} \in \mathbb{R}[x]^{*}$ of L, i.e., satisfying $\operatorname{rank} M(\tilde{L})=\operatorname{rank} M_{s}(L)$.

Idea of proof: We know how to construct the extension using the polynomials in $\left(\operatorname{Ker} M_{s}(L)\right)$.

Finite Rank Moment Matrix theorem [Curto-Fialkow 1996]

Let $L \in \mathbb{R}[x]^{*}$. If $M(L) \succeq 0$ and $\operatorname{rank} M(L)=r<\infty$, then L has a finite r-atomic representing measure, i.e.
$L=\sum_{i=1}^{r} \lambda_{i} L_{v_{i}}$, where $\lambda_{i}>0$ and $\left\{v_{1}, \ldots, v_{r}\right\}=V(\operatorname{Ker} M(L)) \subseteq \mathbb{R}^{n}$.

Proof: • $I:=\operatorname{Ker} M(L)$ is a real radical ideal

- I is 0 -dimensional, as $\operatorname{dim} \mathbb{R}[x] / I=r$
- $V(I)=\left\{v_{1}, \ldots, v_{r}\right\} \subseteq \mathbb{R}^{n}$

Then, $L=\sum_{i=1}^{r} L\left(p_{i}^{2}\right) L_{v_{i}}$, where p_{i} are interpolation polynomials at v_{i}.

Proof of the stopping criterion

Assume $\operatorname{rank} M_{s}(L)=\operatorname{rank} M_{s-1}(L)$.
Show $\left(\operatorname{Ker} M_{s}(L)\right)=\sqrt[\mathbb{R}]{I}$.

- By the Flat Extension theorem, $\pi_{2 s}(L)$ has a flat extension $\tilde{L} \in \mathbb{R}[x]^{*}$, i.e. $\operatorname{rank} M(\tilde{L})=\operatorname{rank} M_{s}(L)$.
- $\operatorname{Ker} M(\tilde{L})=\left(\operatorname{Ker} M_{s}(L)\right)$.
- As $M(\tilde{L}) \succeq 0, \quad \operatorname{Ker} M(\tilde{L})$ is a real radical ideal.

We have: $I \underbrace{\subseteq}_{(L C)}\left(\operatorname{Ker} M_{s}(L)\right) \underbrace{\subseteq}_{L \text { generic }} \sqrt[\mathbb{R}]{I}$
This implies: $\left(\operatorname{Ker} M_{s}(L)\right)=\sqrt[\mathbb{R}]{I}$

Remains to show: $\pi_{2 s}\left(\mathcal{K}_{t}\right)=\operatorname{cone}\left\{L_{v} \mid v \in V_{\mathbb{R}}(I)\right\}$.
Let $L \in \mathcal{K}_{t}$.

- (F1) holds: $\operatorname{rank} M_{s}(L)=\operatorname{rank} M_{s-1}(L)=: r^{\prime}(\leq r)$.
- Thus $\pi_{2 s}(L)$ has a flat extension \tilde{L}.
- By the Finite Rank Moment Matrix theorem, \tilde{L} has a finite r^{\prime}-atomic measure:
$\tilde{L}=\sum_{i=1}^{r^{\prime}} \lambda_{i} L_{v_{i}}$, where $\lambda_{i}>0$ and $\left\{v_{1}, \ldots, v_{r^{\prime}}\right\}=V\left(\operatorname{Ker} M_{s}(L)\right) \subseteq V_{\mathbb{R}}(I)$.

Thus, $\pi_{2 s}(L) \in \operatorname{cone}\left\{L_{v} \mid v \in V_{\mathbb{R}}(I)\right\}$.

Input: $\quad h_{1}, \ldots, h_{m} \in \mathbb{R}[x]$
Output: \mathcal{B} base of $\mathbb{R}[x] / \sqrt[\mathbb{R}]{I}$
The multiplication matrices $M_{x_{i}}$ in $\mathbb{R}[x] / \sqrt[\mathbb{R}]{I}$
Algorithm: For $t \geq D$
Step 1: Compute a generic element $L \in \mathcal{K}_{t}$.
Step 2: Check if (F1) or (Fd) holds.
If yes, return a column basis \mathcal{B} of $M_{s-1}(L)$ and $M_{x_{i}}=M_{\mathcal{B}}^{-1} P_{i}$,

- $M_{\mathcal{B}}$: $=$ principal submatrix of $M_{s-1}(L)$ indexed by \mathcal{B}
- $P_{i}:=$ submatrix of $M_{s}(L)$ with rows in \mathcal{B} and columns in $x_{i} \mathcal{B}$.

If no, go to Step 1 with $t \rightarrow t+1$.
Theorem: The algorithm terminates.

The algorithm terminates: (F1) holds for t large enough.

- For $t \geq t_{0}, \operatorname{Ker} M_{\lfloor t / 2\rfloor}(L)$ contains a Gröbner base $\left\{g_{1}, \ldots, g_{L}\right\}$ of $\sqrt[\mathbb{R}]{I}$ for a total degree ordering.
- $\mathcal{B}:=\left\{b_{1}, \ldots, b_{N}\right\}$: set of standard monomials
\rightsquigarrow base of $\mathbb{R}[x] / \sqrt[\mathbb{R}]{I}$.
Set: $s:=1+\max _{b \in \mathcal{B}} \operatorname{deg}(b)$ and assume $t \geq t_{0},\lfloor t / 2\rfloor>s$.
For $|\alpha| \leq s$, write $x^{\alpha}=\underbrace{\sum_{i=1}^{N} \lambda_{i} b_{i}}_{\operatorname{deg} \leq s-1}+\underbrace{\sum_{l=1}^{L} u_{l} g_{l}}_{\operatorname{deg} \leq|\alpha| \leq s<\lfloor t / 2\rfloor}$
Thus: $x^{\alpha}-\sum_{i=1}^{N} \lambda_{i} b_{i} \in \operatorname{Ker} M_{\lfloor t / 2\rfloor}(L)$.
That is: $\operatorname{rank} M_{s}(L)=\operatorname{rank} M_{s-1}(L)$.

Consider $I=\left(x_{1}^{2}+x_{2}^{2}\right)$.
Thus, $\left|V_{\mathbb{C}}(I)\right|=\infty, V_{\mathbb{R}}(I)=\{(0,0)\}, \sqrt[\mathbb{R}]{I}=\left(x_{1}, x_{2}\right)$.
Any $L \in \mathcal{K}_{2}$ satisfies:
(LC) $L\left(x_{1}^{2}+x_{2}^{2}\right)=0$.
(PSD) $M_{1}(L)=\begin{aligned} & 1 \\ & x_{1}\left(\begin{array}{ccc}1 & x_{1} & x_{2} \\ x_{2}\end{array}\left(\begin{array}{ccc}L(1) & L\left(x_{1}\right) & L\left(x_{2}\right) \\ & L\left(x_{1}^{2}\right) & L\left(x_{1} x_{2}\right) \\ & & L\left(x_{2}^{2}\right)\end{array}\right) \succeq 0\right.\end{aligned}$
Thus, $L\left(x_{1}^{2}\right)=L\left(x_{2}^{2}\right)=0 \rightsquigarrow L\left(x_{1}\right)=L\left(x_{2}\right)=L\left(x_{1} x_{2}\right)=0$
Hence, $\operatorname{Ker} M_{1}(L)$ is spanned by x_{1}, x_{2} for generic $L \in \mathcal{K}_{2}$.

Some algorithmic issues

How to find a generic $L \in \mathcal{K}_{t}$?
Solve the SDP program: $\min _{L \in \mathcal{K}_{t}} 1$ with an interior-point algorithm using the 'extended self-dual embedding property'.

Then the central path converges to a solution in the relative interior of the optimum face, i.e., to a generic point $L \in \mathcal{K}_{t}$.

How to compute ranks of matrices?

We use SVD decomposition, but this is a sensitive numerical issue ...

Some remarks

- Try to extract roots as soon as a set \mathcal{B} of independent columns is found for which $\operatorname{rank} M_{\mathcal{B}}(L)=\operatorname{rank} M_{\mathcal{B}^{+}}(L)$, where $\mathcal{B}^{+}=\mathcal{B} \cup x_{1} \mathcal{B} \cup \ldots \cup x_{n} \mathcal{B}$.
- If the multiplication matrices commute, one can extract $V(J)$, where J is a 0 -dimensional ideal with $I \subseteq J \subseteq \sqrt[\mathbb{R}]{I}$.
- If \mathcal{B} is connected to 1 , then $J=\sqrt[\mathbb{R}]{I}$ (and commutativity is for free).

Generalized flat extension theorem [La-Mourrain 09]

If $\operatorname{rank} M_{\mathcal{B}}(L)=\operatorname{rank} M_{\mathcal{B}^{+}}(L)$, where \mathcal{B} is connected to 1 , then L has a flat extension to $\mathbb{R}[x]^{*}$.

Extension of the moment-matrix algorithm to $V_{\mathbb{C}}(I)$

Omit the PSD condition and work with the linear space:

$$
K_{t}=\mathcal{H}_{t}^{\perp}=\left\{L \in \mathbb{R}[x]_{t}{ }^{*} \mid L\left(h_{j} x^{\alpha}\right)=0 \text { if } \operatorname{deg}\left(h_{j} x^{\alpha}\right) \leq t\right\}
$$

The same algorithm applies: For $t \geq D$

- Pick generic $L \in K_{t}$ [i.e. $\left.\operatorname{rank} M_{s}(L) \max . \forall s \leq\lfloor t / 2\rfloor\right]$ [choose $L \in K_{t}$ randomly]
- Check if the flatness condition (F1) or (Fd) holds.
- If yes, find a basis of $\mathbb{R}[x] / J$ where $J:=\left(\operatorname{Ker} M_{s}(L)\right)$ satisfies $I \subseteq J \subseteq \sqrt{I}$ and thus $V_{\mathbb{C}}(J)=V_{\mathbb{C}}(I)$.
- If not, iterate with $t+1$.

Note: Equality $J=I$ when $\mathbb{R}[x] / I$ is a Gorenstein algebra.

Equality $\left(\operatorname{Ker} M_{s}(L)\right)=I$ in the Gorenstein case

The inclusion $I \subseteq\left(\operatorname{Ker} M_{s}(L)\right) \subseteq \sqrt{I}$ may be strict for any generic L.

Example: For $I=\left(x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right), V_{\mathbb{C}}(I)=\{0\}, \sqrt{I}=\left(x_{1}, x_{2}\right)$, $\operatorname{dim} \mathbb{R}[x] / I=3, \operatorname{dim} \mathbb{R}[x] / \sqrt{I}=1$, while $\operatorname{dim} \mathbb{R}[x] /\left(\operatorname{Ker} M_{s}(y)\right)=2$ for any generic y and any $s \geq 1$!

Recall: The algebra $\mathcal{A}:=\mathbb{R}[x] / I$ is Gorenstein if there exists a non-degenerate bilinear form on \mathcal{A} satisfying $(f, g h)=(f g, h)$ $\forall f, g, h \in \mathcal{A}$, i.e. if there exists $L \in K_{\infty}$ with $I=\operatorname{Ker} M(L)$

Hence: $\exists L \in K_{t}$ s.t. $\operatorname{rank} M_{s}(L)=\operatorname{rank} M_{s-1}(L)$ and $I=\left(\operatorname{Ker} M_{s}(L)\right)$ iff \mathcal{A} is Gorenstein.

Example 1: the moment-matrix algorithm for real/complex roots

$$
I=\left(x_{1}^{2}-2 x_{1} x_{3}+5, x_{1} x_{2}^{2}+x_{2} x_{3}+1,3 x_{2}^{2}-8 x_{1} x_{3}\right), D=3, d=2
$$

Ranks of $M_{s}(y)$ for generic $y \in K_{t}, \mathcal{K}_{t}$:

	$t=2$	3	4	5	6	7	8	9
$s=0$	1	1	1	1	1	1	1	1
$s=1$	4	4	4	4	4	4	4	4
$s=2$			8	8	8	8	8	$\mathbf{8}$
$s=3$					11	10	9	$\mathbf{8}$
$s=4$							12	10

	$t=2$	3	4	5	6
$s=0$	1	1	1	1	1
$s=1$	4	4	4	2	2
$s=2$			8	8	2
$s=3$					10

8 complex roots / 2 real roots:

$$
\begin{aligned}
v_{1} & =[-1.101,-2.878,-2.821] \\
v_{2} & =[0.07665+2.243 i, 0.461+0.497 i, 0.0764+0.00834 i] \\
v_{3} & =[0.07665-2.243 i, 0.461-0.497 i, 0.0764-0.00834 i] \\
v_{4} & =[-0.081502-0.93107 i, 2.350+0.0431 i,-0.274+2.199 i] \\
v_{5} & =[-0.081502+0.93107 i, 2.350-0.0431 i,-0.274-2.199 i] \\
v_{6} & =[0.0725+2.237 i,-0.466-0.464 i, 0.0724+0.00210 i] \\
v_{7} & =[0.0725-2.237 i,-0.466+0.464 i, 0.0724-0.00210 i] \\
v_{8} & =[0.966,-2.813,3.072]
\end{aligned}
$$

Another example for real roots

$$
\begin{aligned}
& I=\left(5 x_{1}^{9}-6 x_{1}^{5} x_{2}+x_{1} x_{2}^{4}+2 x_{1} x_{3},-2 x_{1}^{6} x_{2}+2 x_{1}^{2} x_{2}^{3}+2 x_{2} x_{3}, x_{1}^{2}+x_{2}^{2}-0.265625\right) \\
& D=9, d=5,\left|V_{\mathbb{R}}(I)\right|=8,\left|V_{\mathbb{C}}(I)\right|=20
\end{aligned}
$$

order t	rank sequence of $M_{s}(y)(0 \leq s \leq\lfloor t / 2\rfloor)$	extract. order s	accuracy	comm. error
10	148162534	-	-	-
12	13915222632	-	-	-
14	1381012162024	3	0.12786	0.00019754
16	1488812162024	4	$4.6789 \mathrm{e}-5$	$4.7073 \mathrm{e}-5$

Linear basis: $\mathcal{B}=\left\{1, x_{1}, x_{2}, x_{3}, x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\} \rightsquigarrow$ border basis G of size 10
Real solutions: $\begin{cases}x_{1}=(-0.515,-0.000153,-0.0124) & x_{2}=(-0.502,0.119,0.0124) \\ x_{3}=(0.502,0.119,0.0124) & x_{4}=(0.515,-0.000185,-0.0125) \\ x_{5}=(0.262,0.444,-0.0132) & x_{6}=(-2.07 \mathrm{e}-5,0.515,-1.27 \mathrm{e}-6) \\ x_{7}=(-0.262,0.444,-0.0132) & x_{8}=(-1.05 \mathrm{e}-5,-0.515,-7.56 \mathrm{e}-7)\end{cases}$

Link with the prolongation-projection algorithm of Zhi-Reid

Theorem: If (F1) holds, i.e.
$\operatorname{rank} M_{s}(L)=\operatorname{rank} M_{s-1}(L)$ for generic $L \in K_{t}, D \leq s \leq\lfloor t / 2\rfloor$
then $\quad \operatorname{dim} \pi_{2 s}\left(K_{t}\right)=\operatorname{dim} \pi_{2 s-1}\left(K_{t}\right)=\operatorname{dim} \pi_{2 s}\left(K_{t+1}\right)$

Theorem (based on [Zhi-Reid 2004]): If for some $D \leq s \leq t$

$$
\text { (D) } \operatorname{dim} \pi_{s}\left(K_{t}\right)=\operatorname{dim} \pi_{s-1}\left(K_{t}\right)=\operatorname{dim} \pi_{s}\left(K_{t+1}\right)
$$

then one can construct the multiplication matrices of $\mathbb{R}[x] / I$ and extract $V_{\mathbb{C}}(I)$.

Hence: The stopping criterion (D) is satisfied earlier than (F1).

Example 1: $I=\left(x_{1}^{2}-2 x_{1} x_{3}+5, x_{1} x_{2}^{2}+x_{2} x_{3}+1,3 x_{2}^{2}-8 x_{1} x_{3}\right)$

	$t=2$	3	4	5	6	7	8	9	
$s=0$	1	1	1	1	1	1	1	1	Complex roots
$s=1$	4	4	4	4	4	4	4	4	
$s=2$			8	8	8	8	8	$\mathbf{8}$	$\operatorname{rank} M_{3}(L)=\operatorname{rank} M_{2}(L)$
$s=3$					11	10	9	$\mathbf{8}$	for $L \in K_{9}$
$s=4$							12	10	

	$t=3$	4	5	6	7	8	9	
$s=1$	4	4	4	4	4	4	4	
$s=2$	8	8	8	8	8	8	8	$\operatorname{dim} \pi_{3}\left(K_{6}\right)$
$s=3$	11	10	9	8	8	8	8	$=\operatorname{dim} \pi_{2}\left(K_{6}\right)$
$s=4$		12	10	9	8	8	8	$=\operatorname{dim} \pi_{3}\left(K_{7}\right)$
$s=5$			12	10	9	8	8	
$s=6$				12	10	9	8	

Extension to the real case

- In the complex case, (D) compares the dimensions of $\pi_{s}\left(\mathcal{H}_{t}^{\perp}\right), \pi_{s-1}\left(\mathcal{H}_{t}^{\perp}\right)$, and $\pi_{s}\left(\left(\mathcal{H}_{t}^{+}\right)^{\perp}\right)$.
Notation: $\mathcal{H}_{t}^{+}:=\mathcal{H}_{t} \cup x_{1} \mathcal{H}_{t} \cup \ldots \cup x_{n} \mathcal{H}_{t}=\mathcal{H}_{t+1}$
- In the real case, $\operatorname{dim}\left(\mathcal{K}_{t}\right)=\operatorname{dim}\left(\mathcal{G}_{t}^{\perp}\right)$, where

$$
\mathcal{G}_{t}:=\mathcal{H}_{t} \cup\left\{f x^{\alpha} \mid f \in \mathcal{N}_{t}, \operatorname{deg}\left(x^{\alpha}\right) \leq\lfloor t / 2\rfloor\right\}
$$

Theorem: If for some $D \leq s \leq t$
$(\mathrm{D}+) \operatorname{dim} \pi_{s}\left(\mathcal{G}_{t}^{\perp}\right)=\operatorname{dim} \pi_{s-1}\left(\mathcal{G}_{t}^{\perp}\right)=\operatorname{dim} \pi_{s}\left(\left(\mathcal{G}_{t}^{+}\right)^{\perp}\right)$
then one can construct the multiplication matrices of $\mathbb{R}[x] / J$, where $I \subseteq J \subseteq \sqrt[\mathbb{R}]{I}$, and extract $V_{\mathbb{R}}(I)=V_{\mathbb{C}}(J) \cap \mathbb{R}^{n}$.
Moreover, $J=\sqrt[\mathbb{R}]{I}$ if $\operatorname{dim} \pi_{s}\left(\mathcal{G}_{t}^{\perp}\right)=\left|V_{\mathbb{R}}(I)\right|$.

Link with the flatness criterion

Theorem: The flatness criterion (F1):
$\operatorname{rank} M_{s}(L)=\operatorname{rank} M_{s-1}(L) \quad$ for generic $L \in \mathcal{K}_{t}$
is equivalent to the strong version of the ($\mathrm{D}+$) criterion:
$(\mathrm{D}++) \operatorname{dim} \pi_{2 s}\left(\mathcal{G}_{t}^{\perp}\right)=\operatorname{dim} \pi_{s-1}\left(\mathcal{G}_{t}^{\perp}\right)=\operatorname{dim} \pi_{2 s}\left(\left(\mathcal{G}_{t}^{+}\right)^{\perp}\right)$

Thus: the stopping criterion (D+) is satisfied earlier than (F1).

But: the algorithm still needs to be improved ... as it handles large matrices (indexed by the full set of degree t monomials)

Example 1: $I=\left(x_{1}^{2}-2 x_{1} x_{3}+5, x_{1} x_{2}^{2}+x_{2} x_{3}+1,3 x_{2}^{2}-8 x_{1} x_{3}\right)$

	$t=3$	4	5	6
$s=0$	1	1	1	1
$s=1$	4	4	2	2
$s=2$		8	8	2
$s=3$				10

Real roots

$\operatorname{rank} M_{2}(L)=\operatorname{rank} M_{1}(L)$
for $L \in \mathcal{K}_{6}$

	\mathcal{G}_{3}	\mathcal{G}_{3}^{+}	\mathcal{G}_{4}	\mathcal{G}_{4}^{+}	\mathcal{G}_{5}	\mathcal{G}_{5}^{+}	\mathcal{G}_{6}	\mathcal{G}_{6}^{+}	
$s=1$	4	4	4	4	2	2	2	2	
$s=2$	8	8	8	8	2	2	2	2	
$s=3$	11	10	10	9	2	2	2	2	$=\operatorname{dim} \pi_{2}\left(\mathcal{G}_{5}^{\perp}\right)$
$s=4$			12	10	3	3	2	2	$=\operatorname{dim} \pi_{2}\left(\left(\mathcal{G}_{5}^{\perp}\right)\right.$
$\left.\left.s \mathcal{G}_{5}^{+}\right)^{\perp}\right)$									

Extensions?

- Inspect 'sparse' sets of monomials instead of full degree sets.
- Use a better stopping criterion - e.g. use the sparse flatness condition.
- Adapt other known efficient algorithms for complex roots to real roots by incorporating SDP conditions.

For instance, combine with Gröbner/border bases methods: add polynomials of $\sqrt[\mathbb{R}]{I}$ (coming from kernels) on the fly...

- Extension to the positive dimensional case ?

