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Polynomial optimization problem

(P) Minimize a polynomial functiop over a basic closed
semi-algebraic sek

Pmin «— azlgff p(w)

where

K= {2z € R" | hy(z) > 0,...,hp(x) > 0}

p,hi,...,h, € Rlx]are multivariate polynomials
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DPmin +—

inf
Jnf, p(@)

Pmin = 0 <= p > 00OnR"

Example: The partition problem.
A sequencer, ..., a, € N can bepartitioned

It D icr @i = > icing @i forsomel C [n], L.e. If
Pmin = 0, Wwherep(z) = (Z?:l a;x;)?® + Z?:l(wzz — 1)

E.g., the sequence 1, 2, 2,

~~ NP-complete problem

3, 4, 5 can be partitioned.
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M € R"*"iscopositiveif «'Mx >0 Ve € R"
l.e. If pmin = 0, Where p(x) = szzl MZJCI}ZZZI}JZ

~ CO-NP-complete problem

(1 -1 1 1\ (1 -1 0o o) (o 0o 1 1)
1 1 1 1 1 1 0 o0 0o 0 1 1] 3
— + is copositive
1 1 1 -1 o o0 1 —1 1 1 0 0
\1 1 -1 1 ) \0 0 -1 1 ) \1 1 0 0)
( 1 1 -1 -1 1 \
1 1 1 -1 -1
—1 1 1 1 —1 | Iiscopositive
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min cf'z s.t. Az < b, a:zz =x; (t=1,...,n)

Example: Thestability number «(G) of a graphG = (V, E)
can be computed via any of the programs:

a(G) = max Z z; Staxi+z; <1(ij € E), z7 = x; (i € V)
eV
1

Q) = min 2'(I+Ag)z sty xi=1,2; >0( €V)

1€V

~ (P) iIsNP-hard for linearobjective andjuadraticconstraints,
or for quadraticobjective andinearconstraints
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Strategy

Approximate (P) by a hierarchy of
convex (semidefiniteelaxations

Shor (1987), Nesterov, Lasserre, Parrilo (2000-)

Such relaxations can be constructed using

representations of nonnegative polynomials as sums of
sguares of polynomials

and

the dual theory of moments
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Testing whether a polynomial is nonnegativas hard
but

one can test whetheris a sum of squares of polynomialg
efficiently via semidefinite programming
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e Role of semidefinite programming in sums of squares
e SOS/Moment relaxations for (P)

e Main properties:

(1) Asymptotic/finite convergence
via SOS representation results for positive polynomials

(2) Optimality criterion
via results for the moment problem

(3) Extract global minimizers
by solving polynomial equations

e Application to unconstrained polynomial optimization
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A beautiful monograph about positive polynomials ...

.l.LE!tJ..I'iIlI-!;I :E:ltﬂ!l'll.l..
t:i-l.l.n'r.:nﬁ-mn'ili: L

Pulynumlals

% Springes

Springer Monographs in Mathematics

Alexander Prestel
Charles N. Delzell

Positive
Polynomials

From Hilbert’s 17th Problem
to Real Algebra
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o Rlx| = R[xy,...,xy]: ring of polynomials inn variables

e R[x]4 : all polynomials with degree&l d

p € Rlx]g ~ p(x) = Z pagctfl--°$gi= Z Do

aeNM . aeNN
|| <d €L | <d

~ p(x) =P [z]q

after setting p = (pa)e«: vVector of coefficients
and [x]qg = (%)  Vector of monomials
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Semidefinite programming (SDP) is linear optimization awner
cone of positive semidefinite matrices

LP SDP
vector variable ~ matrix variable
r € R" X € Sym,, [symmetric matrix]
x>0 X >0 [positive semidefinite]
supx (C, X)
S.1. (Aj, X) =b; (j=1,...,m)
X >0

There are efficient algorithms to solve semidefinite program
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max (X153 + X31)/2 suchthat X > 0, X € R3*3
X11 =1, X122 =1
Xo23 =1, Xgg = 2
2X13 + X22 =3

1 1 C
max ¢ suchthatX = |1 3—2¢c 1| >0
c 1 2

One can check thahax ¢ = 1 andmin ¢ = —1
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The Gram-matrix method to recognize sums of squares [cf.

Powers-Wormann 1998]

Write p(xz) = )_ 4 |<24 Pa®® € Rlz]24 as asum of squares:

p(x) =i (uj(x)? = Y5, [=]5a; a0 [z]q

ol Y @ el = Y afar0,

=1 1Bl,|y|<d

= ¥ «( X U
|a|§2d 1Bl,|vI<d
\ﬁ+’7=a

N

:pC\’,
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p(z) = » pax™ isasum of squares of polynomials
|| <2d

i

The following semidefinite program is feasible:

( U >0
T 2 Usy=pa (laf <24d)
1Bl,1vI<d
\ Bt+rv=«a
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Solution: Try to write

a b x>
plx,y) = (x?zyy?) | b d zy | with U > 0
e f) \y*
N - _
Equating coefficients:
xt = x? . 22 1 =a
iy = x? - zy 2=2b
2y’ =zy-zy=x2?-y* 3 =d+ 2c
ry> = zy - y* 2 = 2e
4 2 .2

Yy =9y 2=1f
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1 1 C
Hence U = |1 3—2¢c 1| 0« —-1<c¢<1

C 1 2
10 1 1 1

eForc=—1, U = 1 2
0 2 1

—1 1

(1 1 0
eForc=0, U= |1 /3 L 0 \/g \/g
IR VAU ey

wp = (2 + zy)? + S(xy + )% + 3(zy — y?)°
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Which nonnegative polynomials are SOS ?

Hilbert [1888] classified the pair3:, d) for which
every nonnegative polynomial of degréen n variables is SOS

o n—=1
o d—=2
oen—=—2,d=414

3n.d C Pnp,q forall other(n, d)

Motzkin polynomial: z*y? + z?y* — 3z2%y? + 1 liesin
P26 \ 226
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[Blekherman 2003]Very few !

At fixed degree2d and large numben of variables, there are
significantly more nonnegative polynomials than sums oasest

1

= D

B < VOI(and) < O ni
vol(3X,,,24)

Prz2ai={p € Puza | phomogeneousdeg(p) = 2d,
[sns P(@)p(d) = 1}

D := ("*2971) — 1, the dimension of the ambient space
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Many !

The SOS cone is dense In the cone of nonnegative polynomials
(allowing variable degrees:

[Lasserre 2004]: Ip > 0 onR"™, then

2h

E n
€I i
Ve >0 3k € N s.t.p+e<h§:§: };) is SOS
=01:1=1

[Lasserre-Netzer 2006]: p > 0 on[—1,1]™, then

Ve >0 Jdk e N s.t.p+e<1+2w§’“> IS SOS

1=1
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2
p>00NR" —> p = Z (%) ’ Wherepia q; € R[QB]
1

)

Thatis| P - ¢?is SOS for somg € R[z]

Sometimes, the shape of the common denominator is known:

Polya [1928] + Reznick [1995]: Fg¥ homogeneous

p>00nR"\ {0} —=p- (me) SOS forsome € N
1=1
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(1 1 -1 —1 1)
1 1 -1 —1
M:=1-1 1 1 1 -1
-1 -1 1 1 1

\1 -1 -1 1 1)

E U:B w

1,7=1

p IS not SOS
But (320_, x2)p is SOS

This is acertificate thatp > 0 onRR?, i.e., thatM is copositive
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SOS certificates for positivity on a semi-algebraic sei

let K = {x € R" | hi(x) > 0,...,hy(x) > 0}
Sethg :=1

m
Quadratic moduleM (h) := { Y sjhj | sj € Zn}
7=0

PreorderingT'(h) := { Z seh{' +++hi™ | s¢ € En}
ec{0,1}™

p€ M(h)=>p€T(h) = p >0 onk
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Not an equivalence:
K={zeR|(1-=z%’2>0}
p=1—x?

Then,p > 0on K, butp & T'(h)

The Positivstellensatz characterizes equivalence:

p>00nK < pf =p*™ 4+ g forsomef,g € T(h)
and somem € N

Butthis does not yield tractable relaxations for (P)!
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K = {x €R" | hy(x) > 0,..., hp(z) > 0}

(1) p>00nK <= pf =1+ g forsomef,g € T'(h)

(2) p>00nK < pf = p*™ + g forsomef,g € T'(h), m €1

(3) p=00nK <= —p?™ € T'(h) forsomem € N

(2) — solution toH]
(3) — Real Nullste
Butthis does not yie

bert’s 17th problem
lensatz

d tractable relaxations for (P)!!!
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Schmidgen [1991]: AssumeK Is compact.

p>00nK — peT(h)

Putinar [1993]:

Assume the followingArchimedean conditioholds:
(A) Vp e Rle] AN €N N +pe M(h)
Equivalenty:3I N e N N — Y " a2 € M(h)

p>00nK — pé& M(h)
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Pmin = inf p(x) =sup A St.p — A >0 on K
reK

Relax p— A >00nK [hard condition]
by p— A€ M(h) [SOS but unbounded degrees ...]
by P— A€ M(h)o [tractable SDP!]

M (h)g; := {Z;."’:O sjh; | s; € ¥y, deg(sjh;) < 2t}

~ Relaxation(SOSt)
pg’OS:: sup A S.t. D — A€ M(h)2t S pfisl S Pmin
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If (A) holds for K, then lim p;°° = pmin

t— o0

Proof: p — pmin + € > 0 on K
—> dt p_pmin‘l'GEM(h)%
—> P;>° > Pmin — €

Note: A representation result valid fop*> 0 on K" gives

finite convergence| P; = Pmin [OF SOMet

Nie-Schweighofer 2007] pyin — p:°° < ¢ for t big,
[ g |p Pt S st g

wherec = ¢(h) andc’ = c¢(p, h)
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pnin. = inf p(e)= inf, | »@du)

=infrcpp,- L(p) s.t. L comes from a probability measugeon K

[Haviland] The following are equivalent fob. € R[x]*:
e L. comes from a nonnegative measareK, I.e.,

L(f) = [x f(z)du(z) Vf € Rla]

e L(p) >0ifp>00nK
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Pmin= infrcpp- L(p) SLL(f) >0Vf>00nK

Relax L(f) >0 Vf > 00onK
by  L(f) >0 Vfe M(h)
by  L(f) 20 Vfe& M(h)s

~ Relaxation(MOM?):
p?‘om = infLeR[w]gt L(p) st. L 2 0 on M(h)zt

Weak duality] Pi > < Py < Pmin
Equality: p;°° = pi"™™ e.g. ifint(K) # 0

Optimization over Polynomials with Sums of Squares and Murivatrices — p.



L € Rlz]3, ~ M(L) := (L(z*@P)) a1 <t

M (L) is themoment matribof L (of ordert)
Lemma: L(f?) > 0 Vf € R[z]; <= M;(L) = 0
Proof: L(f2) = fTMy(L)f

~ Can expressL > 0 on M (h)aq,

i.e.,L(fzhj) >0 VfVsy with deg(f2hj) < 2t
as SDP conditions
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Observation: Let L be an optimum solution to (MOMt).
If L comes from a probability measugeon K,
then (MOML) is exactp}™™ = pin.

Question: How to recognize whethdl has a representing
measure odg ?

Next: Sufficient condition of Curto-Fialkow for the moment
problem
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Theorem[Curto-Fialkow 1996] LetL € R|x]3,.

If M¢(L) >~ 0and(RC) rankM;(L) = rankM;_;(L),
thenL has a representing measure.

Corollary [Curto-Fialkow 2000] + [Henrion-Lasserre 2005]
Setd := max;|deg(h;)/2].

Let L be an optimum solution to (MOMt) satisfying

rank M;(L) = rankM;_g4(L). Then,p"™ = pmyin and

V (KerM(L)) C { global minimizers ofp on K }

with equality if rank My (L) Is maximum.
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e ComputeV (KerM; (L)) with theeigenvalue method

e If the rank condition holds at a maximum rank solution, then
(P) hadfinitely many global minimizers

But the reverse Is not true !

e The rank conditiorholdsin thefinite variety case

K ={xeR" |IL1(£13) =0,...,hg(x) :Q,hk_H(w) >0,...}

ideal I

with |V (I)] < oo
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K ={xeR" |fL1(:IJ) =0,...,hr(x) :Q,hk+1(a:) >0,...}

ideal I

Theorem: [La 2002] [Lasserre/La/Rostalski 2007]

SOS

() If [Ve(I)] < oo,| P =P¢" " = Pmin fOr somet

(i) If [VR(I)| < oo,| Pt " = Pmin fOr somet
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Theorem[Curto-Fialkow 1996] LetL € R|x]3,.

If rank M;(L) = rank M;_;(L),
then there is an extensidn € R[z]* of L
for whichrank M (L) = rank M;(L).

Main tool: KerM (L) is an ideal.

[La-Mourrain 2009] The flat extension theorem can be
generalized to matrices indexed by aGeatf monomials

(connected to land itsclosureCT = C U x1C U ... U z,C,
satisfyingrank M = rank M .
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Theorem: [Curto-Fialkow 1996] Let, € R[x]*.

M(L) > 0 and rank M (L) =: r < oo
<= L has a (uniguejy-atomic representation measuyre

La 2005]Simple proof for —:

e ] := KerM (L) Is areal radical ideal
e I is O-dimensional, adim R[x|/I = r
Hence:V(I) = {x1,..., 2.} CR"

Verify: L isrepresented by = >°._, L(p?)dz,, where thep;’s
are interpolation polynomials at thg's
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GloptiPoly by Henrion, Lasserre
(incorporates the optimality stopping criterion and theastion
procedure for global minimizers)

SOSTOOLSby Prajna, Papachristodoulou, Seller, Parrilo

YALMIP by Lofberg

SparsePOPhy Waki, Kim, Kojima, Muramatsu
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min p = —25(x1 — 2)% — (z2 — 2)? — (3 — 1)?
(4 — 4)? — (25 — 1) — (g — 4)?
st. (x3—3)24+x4>4, (x5 —3)2+x6 >4
) —3x2 <2, —x1+x2 <2, z1 +x2 <6,
ry +ax2 > 2,1 <x3 <5,0< x4 <6,
1< x5<5,0< x6 <10, 1,2 > 0

ordert | rank sequence boundp°™ | solution extractec
1 17 unbounded none
2 1121 —310 (5,1,5,0,5,10)
d=1

The global minimum is found at the relaxation of orde& 2

Optimization over Polynomials with Sums of Squares and Murivatrices — p.



min p = —x1 — I3

St x9< 2:13‘11—8w:{—|—8:13%—|—2
Ty < 4z — 32x% + 88xF — 961 + 36
0<21<3,0<x25<4

ordert | rank sequence boundp™™ | solution extractec
2 114 —7 none
3 1224 —6.6667 none
4 11116 —5.5080 | (2.3295,3.1785)
d=2

The global minimum is found at the relaxation of ordex 4
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Perturbed Motzkin form

p = w%wg(w% + x% — Swg) + xg + e(azgj + xg + wg)
K= {z|Y;_,x? <1} ~ (0,0) is theunigue minimizer
But (RC) never holds

asp € M (h) andp;*®> = pi"™ < pmin =0

ordert rank sequence boundp}™©™ | val. moment vect.
3 14913 —2.1110—° 1.67 10— 44
4 14102035 —1.9210° 4.47 1060
5 1410203556 2.94 1012 1.26 10— 44
6 141020355684 | 3.5410 12 1.510—44
7 141020355684 120 4.09 10— 12 2.83 1043

d=3,e=0.01
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DPmin — :BIEHI[{" p(CC)

wheredeg(p) = 2d

As there isno constraint, the relaxation scheme just givese
bound:

SOS

Py

mom SOS m

=pi" =py"=py"" < Pmin forallt > d

with equality Iff p(x) — pmin 1S SOS

How to get better bounds ?
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ldea: Transform the Unconstrained Problem into a Constrained

Problem

If p has a minimum:

pmin:pgrad = in£ p(:c)

we‘/gra,d

where V;;HrQad:: {:I3 c R" | Vp(il?) =0 (’L — 19 IR 7”’)}

If, moreover, a bound R is known on the norm of a global
minimizer:

pmin:p;au = Rz_gfwg >0 p(m)

(4 1 —
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The ‘ball approach’:
e Convergence of the SOS/MOM boundgigin = pi,

The ‘gradient variety’ approach:
[Demmel, Nie, Sturmfels 2004]:

1=1
N __J/

v a

1 grad
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Asymptotic convergenceof the SOS/MOM bounds tpy .

Finite Convergenceto p;,,qwhen the gradient idedlaq 1S
radical

Hence: Whenp attains its minimum, we have a converging
hierarchy of SDP bounds @,in

Example: p = z? + (zy — 1)? doesnot attain its minimum
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Strategy 1: Perturb the polynomial p

[Hanzon-Jibetean 2003] [Jibetean-Laurent 2004]

pe(x) := p(x) + € (Z w?d+2> for smalle > 0

1=1

e p. has a minimunand M (Pe)min = Pmin

e—0

e The global minimizers op. converge to global minimizers of
ase — 0

e Thegradient variety op. Is finite
~ finite convergencef (pe);* (pe)y™" tO (Pe)min
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inf p(x) S.1.9Ope/0x1 = 0, Opc/Ox2 = 0

€ ordert | rank sequence pyom extracted solutions
10— 2 3 268 0.00062169
10— 2 4 2227 0.33846
10— 2 5 2222- 0.33846 +(0.4729,1.3981)
10—3 5 2222- 0.20824 +(0.4060, 1.9499)
10—4 5 2222- 0.12323 +(0.3287, 2.6674)
10—° 5 2222- 0.07132 +(0.2574, 3.6085)
10—96 5 2222- 0.040761 +(0.1977,4.8511)
10— 7 5 2222- 0.023131 +(0.1503, 6.4986)
10—8 5 2222- 0.013074 +(0.1136, 8.6882)
10—° 5 2222- 0.0073735 | +(0.0856,11.6026)
10— 10 5 2222- 0.0041551 | +(0.0643,15.4849)
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When p does not have a minimum:

Algebraic/analytical approach of Schweighofer [2005]

Strategy 2: Minimize p over its ‘gradient tentacle’

|f Pmin > —0OQ, then

where

Kga¢= {z € R" | [[Vp(2)||?||z|* < 1} 2 Vg
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[Schweighofer 2005] Assumep,in, > —oo andp hasonly
Isolated singularities at infinity (*je.g.n = 2). Then,

p > 00NR"™ <= p > 0 0on Kyaq
<=Ve>0 pt+ec M1~ ||Vp()|?|=]?)

~ Convergent SOS/moment boundspg,;, = infg ., p(x)

(*): The systenWpq(x) = 0, pg_1(x) = 0 hasfinitely many
projective zeroswherep = pg + pa—1 + - - - + po andp; is the
homogeneous component of degiee

Tools: Algebra (extension of Schmudgen’s theorem) + analysis
(Parusinski’s results on behaviour of polynomials at itini
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Strategy 3. Minimize p over its ‘truncated tangency variety’:

I, := {a: € R™ | rank (Vp(w)) <1}

£r
= {z | gij := x; Op/0x; — x; Op/dx; = 0 Vi,j < n}

9 :=T,n{z | p(z) < p(0)}

Vui-Son 2008} Forp € Rx| such thapm,in > —oo

p>00NR" <= p >o0o0nT)
<=Ve>0 p+e€ M(p(0) —p,Lgi;)

~ Convergent SOS/moment boundspg,in = infro p(x)
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e EXxploit structure (equations, sparsity, symmetry, conyex.)
to get smaller SDP programs

[Kojima, Grimm, Helton, Lasserre, Netzer, Nie, Riener,
Schweighofer, Theobald, Parrilo, ...]

e Application to the generalized problem of moments,
to approximating integrals over semi-algebraic sets, ...
[Henrion, Lasserre, Savorgnan, ...]

e Extension to NC variables
[Helton, Klep, McCullough, Schmudgen, Schweighofer,...]
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