Optimization over Polynomials with Sums of Squares and Moment Matrices

Monique Laurent

Centrum Wiskunde \& Informatica (CWI), Amsterdam and University of Tilburg

Positivity, Valuations and Quadratic Forms
Konstanz, October 2009

Polynomial optimization problem

(P) Minimize a polynomial function \boldsymbol{p} over a basic closed semi-algebraic set \boldsymbol{K}

$$
p_{\min }:=\inf _{x \in K} p(x)
$$

where

$$
K:=\left\{x \in \mathbb{R}^{n} \mid h_{1}(x) \geq 0, \ldots, h_{m}(x) \geq 0\right\}
$$

$p, h_{1}, \ldots, h_{m} \in \mathbb{R}[x]$ are multivariate polynomials

Unconstrained polynomial minimization: $K=\mathbb{R}^{n}$

$$
\begin{gathered}
p_{\min }:=\inf _{x \in \mathbb{R}^{n}} p(x) \\
p_{\min } \geq 0 \Longleftrightarrow p \geq 0 \text { on } \mathbb{R}^{n}
\end{gathered}
$$

Example: The partition problem.
A sequence $a_{1}, \ldots, a_{n} \in \mathbb{N}$ can be partitioned if $\sum_{i \in I} a_{i}=\sum_{i \in[n] \backslash I} a_{i}$ for some $I \subseteq[n]$, i.e. if $p_{\text {min }}=0$, where $p(x)=\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{2}+\sum_{i=1}^{n}\left(x_{i}^{2}-1\right)^{2}$
E.g., the sequence $1,1,2,2,3,4,5$ can be partitioned.
\rightsquigarrow NP-complete problem

Example: Testing matrix copositivity

$M \in \mathbb{R}^{n \times n}$ is copositive if $\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{M} \boldsymbol{x} \geq 0 \quad \forall x \in \mathbb{R}_{+}^{\boldsymbol{n}}$ i.e. if $p_{\text {min }}=0$, where $p(x)=\sum_{i, j=1}^{n} M_{i j} x_{i}^{2} x_{j}^{2}$
\rightsquigarrow co-NP-complete problem

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right) \text { is copositive } \\
& \left(\begin{array}{ccccc}
1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 \\
-1 & 1 & 1 & 1 & -1 \\
-1 & -1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 & 1
\end{array}\right) \text { is copositive }
\end{aligned}
$$

0/1 Linear programming

$$
\min c^{T} x \text { s.t. } A x \leq b, x_{i}^{2}=x_{i}(i=1, \ldots, n)
$$

Example: The stability number $\alpha(\boldsymbol{G})$ of a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ can be computed via any of the programs:
$\alpha(G)=\max \sum_{i \in V} x_{i}$ s.t. $x_{i}+x_{j} \leq \mathbf{1}(i j \in E), x_{i}^{2}=x_{i}(i \in V)$
$\frac{1}{\alpha(G)}=\min x^{T}\left(I+A_{G}\right) x$ s.t. $\sum_{i \in V} x_{i}=1, x_{i} \geq 0(i \in V)$
$\rightsquigarrow(\mathrm{P})$ is NP-hard for linear objective and quadratic constraints, or for quadratic objective and linear constraints

Approximate (P) by a hierarchy of convex (semidefinite) relaxations

Shor (1987), Nesterov, Lasserre, Parrilo (2000-)

Such relaxations can be constructed using
representations of nonnegative polynomials as sums of squares of polynomials
and
the dual theory of moments

Underlying paradigm

Testing whether a polynomial \boldsymbol{p} is nonnegative is hard

> but
one can test whether p is a sum of squares of polynomials efficiently via semidefinite programming

Plan of the talk

- Role of semidefinite programming in sums of squares
- SOS/Moment relaxations for (P)
- Main properties:
(1) Asymptotic/finite convergence via SOS representation results for positive polynomials
(2) Optimality criterion
via results for the moment problem
(3) Extract global minimizers
by solving polynomial equations
- Application to unconstrained polynomial optimization

A beautiful monograph about positive polynomials ...

Alexander Prestel Charles N. Delzell

Positive Polynomials

From Hilbert's 17th Problem
to Real Algebra

Some notation

$\bullet \mathbb{R}[\boldsymbol{x}]=\mathbb{R}\left[\boldsymbol{x}_{\boldsymbol{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right]$: ring of polynomials in \boldsymbol{n} variables
$\bullet \mathbb{R}[\boldsymbol{x}]_{\boldsymbol{d}}:$ all polynomials with degree $\leq \boldsymbol{d}$

$$
\begin{aligned}
p \in \mathbb{R}[x]_{d} & \rightsquigarrow p(x)=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\
|\alpha| \leq d}} p_{\alpha} \underbrace{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}}_{x^{\alpha}}=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\
|\alpha| \leq d}} p_{\alpha} x^{\alpha} \\
& \rightsquigarrow p(x)=\vec{p}^{T}[x]_{d}
\end{aligned}
$$

after setting $\quad \vec{p}=\left(p_{\alpha}\right)_{\alpha}$: vector of coefficients and

$$
[x]_{d}=\left(x^{\alpha}\right)_{\alpha}: \text { vector of monomials }
$$

What is semidefinite programming?

Semidefinite programming (SDP) is linear optimization over the cone of positive semidefinite matrices

LP
vector variable \rightsquigarrow matrix variable

$$
\begin{array}{ccl}
x \in \mathbb{R}^{n} & X \in \operatorname{Sym}_{n} & \text { [symmetric matrix] } \\
x \geq 0 & \boldsymbol{X} \succeq 0 & \text { [positive semidefinite] }
\end{array}
$$

SDP

$$
\begin{array}{cl}
\sup _{X} & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{j}, X\right\rangle=b_{j} \quad(j=1, \ldots, m) \\
& X \succeq 0
\end{array}
$$

There are efficient algorithms to solve semidefinite programs

A small example of SDP

$\max \left(X_{13}+X_{31}\right) / 2$ such that $X \succeq 0, X \in \mathbb{R}^{3 \times 3}$

$$
\begin{aligned}
& X_{11}=1, X_{12}=1 \\
& X_{23}=1, X_{33}=2 \\
& 2 X_{13}+X_{22}=3
\end{aligned}
$$

$$
\max c \quad \text { such that } X=\left(\begin{array}{ccc}
1 & 1 & c \\
1 & 3-2 c & 1 \\
c & 1 & 2
\end{array}\right) \succeq 0
$$

One can check that max $c=1$ and $\min c=-1$

Powers-Wörmann 1998]

Write $\boldsymbol{p}(x)=\sum_{|\alpha| \leq 2 d} p_{\alpha} x^{\alpha} \in \mathbb{R}[x]_{2 d}$ as a sum of squares:

$$
\begin{aligned}
p(x) & =\sum_{j=1}^{k}\left(u_{j}(x)\right)^{2}=\sum_{j=1}^{k}[x]_{d}^{T} \vec{u}_{j} \vec{u}_{j}^{T}[x]_{d} \\
& =[x]_{d}(\underbrace{\sum_{j=1}^{k} \overrightarrow{u_{j}} \vec{u}_{j}^{T}}_{=: U \succeq 0})[x]_{d}=\sum_{|\beta|,|\gamma| \leq d} x^{\beta} x^{\gamma} U_{\beta, \gamma} \\
& =\sum_{|\alpha| \leq 2 d} x^{\alpha}(\underbrace{\sum_{\substack{|\beta|,|\gamma| \leq d}} U_{\beta, \gamma}}_{=p_{\alpha}})
\end{aligned}
$$

Recognize sums of squares via SDP

$$
p(x)=\sum_{|\alpha| \leq 2 d} p_{\alpha} x^{\alpha} \text { is a sum of squares of polynomials }
$$

I

The following semidefinite program is feasible:

$$
\left\{\begin{array}{r}
U \succeq 0 \\
\sum_{\substack{|\beta \beta|, \gamma \mid \leq d \\
\beta+\gamma=\alpha}} U_{\beta, \gamma}=p_{\alpha} \quad(|\alpha| \leq 2 d)
\end{array}\right.
$$

Example: Is $p=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4}$ SOS ?

Solution: Try to write

$$
p(x, y) \equiv\left(\begin{array}{lll}
x^{2} & x & y
\end{array} y^{2}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{U}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right) \text { with } U \succeq 0
$$

Equating coefficients:

$$
\begin{array}{ll}
x^{4}=x^{2} \cdot x^{2} & 1=a \\
x^{3} y=x^{2} \cdot x y & 2=2 b \\
x^{2} y^{2}=x y \cdot x y=x^{2} \cdot y^{2} & 3=d+2 c \\
x y^{3}=x y \cdot y^{2} & 2=2 e \\
y^{4}=y^{2} \cdot y^{2} & 2=f
\end{array}
$$

Example continued

Hence $U=\left(\begin{array}{ccc}1 & 1 & c \\ 1 & 3-2 c & 1 \\ c & 1 & 2\end{array}\right) \succeq 0 \Longleftrightarrow-1 \leq c \leq 1$

- For $c=-1, U=\left(\begin{array}{cc}1 & 0 \\ 1 & 2 \\ -1 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 2 & 1\end{array}\right)$
$\rightsquigarrow p=\left(x^{2}+x y-y^{2}\right)^{2}+\left(y^{2}+2 x y\right)^{2}$
- For $c=0, U=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & \sqrt{\frac{3}{2}} & \sqrt{\frac{1}{2}} \\ 0 & \sqrt{\frac{3}{2}} & -\sqrt{\frac{1}{2}}\end{array}\right)\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{2}} \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}}\end{array}\right)$
$\rightsquigarrow p=\left(x^{2}+x y\right)^{2}+\frac{3}{2}\left(x y+y^{2}\right)^{2}+\frac{1}{2}\left(x y-y^{2}\right)^{2}$

Which nonnegative polynomials are SOS ?

Hilbert [1888] classified the pairs $(\boldsymbol{n}, \boldsymbol{d})$ for which every nonnegative polynomial of degree \boldsymbol{d} in \boldsymbol{n} variables is SOS:

- $n=1$
- $d=2$
- $n=2, d=4$
$\Sigma_{n, d} \subset \mathcal{P}_{n, d}$ for all other (n, d)

Motzkin polynomial: $x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1$ lies in $\mathcal{P}_{2,6} \backslash \boldsymbol{\Sigma}_{\mathbf{2 , 6}}$

How many nonnegative polynomials are sums of squares ?

[Blekherman 2003]: Very few !

At fixed degree $2 \boldsymbol{d}$ and large number \boldsymbol{n} of variables, there are significantly more nonnegative polynomials than sums of squares:

$$
\begin{gathered}
c \cdot n^{\frac{d-1}{2}} \leq\left(\frac{\operatorname{vol}\left(\widehat{\mathcal{P}}_{n, 2 d}\right)}{\operatorname{vol}\left(\widehat{\Sigma}_{n, 2 d}\right)}\right)^{\frac{1}{D}} \leq C \cdot n^{\frac{d-1}{2}} \\
\widehat{\mathcal{P}}_{n, 2 d}:=\left\{p \in \mathcal{P}_{n, 2 d} \left\lvert\, \begin{array}{l}
p \text { homogeneous, } \operatorname{deg}(p)=2 d, \\
\\
\left.\int_{S^{n-1}} p(x) \mu(d x)=1\right\}
\end{array}\right.\right.
\end{gathered}
$$

$D:=\binom{n+2 d-1}{2 d}-1$, the dimension of the ambient space

How many nonnegative polynomials are sums of squares?

Many!

The SOS cone is dense in the cone of nonnegative polynomials (allowing variable degrees):
[Lasserre 2004]: If $\boldsymbol{p} \geq 0$ on $\mathbb{R}^{\boldsymbol{n}}$, then

$$
\forall \epsilon>0 \exists k \in \mathbb{N} \text { s.t. } p+\epsilon\left(\sum_{h=0}^{k} \sum_{i=1}^{n} \frac{x_{i}^{2 h}}{h!}\right) \text { is SOS }
$$

[Lasserre-Netzer 2006]: If $\boldsymbol{p} \geq \mathbf{0}$ on $[-1,1]^{n}$, then

$$
\forall \epsilon>0 \exists k \in \mathbb{N} \text { s.t. } p+\epsilon\left(1+\sum_{i=1}^{n} x_{i}^{2 k}\right) \text { is SOS }
$$

Artin [1927] solved Hilbert's 17th problem [1900]

$\boldsymbol{p} \geq 0$ on $\mathbb{R}^{n} \Longrightarrow \boldsymbol{p}=\sum_{i}\left(\frac{\boldsymbol{p}_{i}}{\boldsymbol{q}_{i}}\right)^{2}$, where $\boldsymbol{p}_{i}, \boldsymbol{q}_{i} \in \mathbb{R}[\boldsymbol{x}]$

That is, $\quad \boldsymbol{p} \cdot \boldsymbol{q}^{2}$ is SOS for some $\boldsymbol{q} \in \mathbb{R}[\boldsymbol{x}]$

Sometimes, the shape of the common denominator is known:
Pólya [1928] + Reznick [1995]: For \boldsymbol{p} homogeneous
$p>0$ on $\mathbb{R}^{n} \backslash\{0\} \Longrightarrow p \cdot\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{r}$ SOS for some $r \in \mathbb{N}$

An example [Parrilo 2000]

$$
\begin{gathered}
M:=\left(\begin{array}{ccccc}
1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 \\
-1 & 1 & 1 & 1 & -1 \\
-1 & -1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 & 1
\end{array}\right) \\
p:=\sum_{i, j=1}^{5} M_{i j} x_{i}^{2} x_{j}^{2}
\end{gathered}
$$

p is not SOS
But $\left(\sum_{i=1}^{5} x_{i}^{2}\right) p$ is SOS
This is a certificate that $\boldsymbol{p} \geq 0$ on \mathbb{R}^{5}, i.e., that \boldsymbol{M} is copositive

SOS certificates for positivity on a semi-algebraic set K

Let $K=\left\{x \in \mathbb{R}^{n} \mid h_{1}(x) \geq 0, \ldots, h_{m}(x) \geq 0\right\}$
Set $\boldsymbol{h}_{\mathbf{0}}:=\mathbf{1}$
Quadratic module: $M(h):=\left\{\sum_{j=0}^{m} s_{j} h_{j} \mid s_{j} \in \Sigma_{n}\right\}$
Preordering: $T(h):=\left\{\sum_{e \in\{0,1\}^{m}} s_{e} h_{1}^{e_{1}} \cdots h_{m}^{e_{m}} \mid s_{e} \in \Sigma_{n}\right\}$

$$
p \in M(h) \Longrightarrow p \in T(h) \Longrightarrow p \geq 0 \text { on } K
$$

The Positivstellensatz [Krivine 1964] [Stengle 1974]

Not an equivalence:
$K=\left\{x \in \mathbb{R} \mid\left(1-x^{2}\right)^{3} \geq 0\right\}$
$p=1-x^{2}$
Then, $p \geq 0$ on K, but $p \notin T(h)$

The Positivstellensatz characterizes equivalence:

$$
\begin{array}{ll}
p \geq 0 \text { on } K \Longleftrightarrow p f=p^{2 m}+g \quad \text { for some } f, g \in T(h) \\
& \text { and some } m \in \mathbb{N}
\end{array}
$$

But this does not yield tractable relaxations for (P)!

The Positivstellensatz [Krivine 1964] [Stengle 1974]

$$
K=\left\{x \in \mathbb{R}^{n} \mid h_{1}(x) \geq 0, \ldots, h_{m}(x) \geq 0\right\}
$$

(1) $p>0$ on $K \Longleftrightarrow p f=1+g$ for some $f, g \in T(h)$
(2) $p \geq 0$ on $K \Longleftrightarrow p f=p^{2 m}+g$ for some $f, g \in T(h), m \in$ I
(3) $\quad p=0$ on $K \Longleftrightarrow-p^{2 m} \in T(h)$ for some $\boldsymbol{m} \in \mathbb{N}$
$(2) \Longrightarrow$ solution to Hilbert's 17th problem
$(3) \Longrightarrow$ Real Nullstellensatz
But this does not yield tractable relaxations for (P)!!!

SOS certificates of positivity on K compact

Schmüdgen [1991]: Assume \boldsymbol{K} is compact.

$$
p>0 \text { on } K \Longrightarrow p \in T(h)
$$

Putinar [1993]:

Assume the following Archimedean condition holds:
(A) $\forall \boldsymbol{p} \in \mathbb{R}[\boldsymbol{x}] \exists \boldsymbol{N} \in \mathbb{N} \boldsymbol{N} \pm \boldsymbol{p} \in M(h)$

Equivalently: $\exists N \in \mathbb{N} \quad N-\sum_{i=1}^{n} x_{i}^{2} \in M(h)$

$$
p>0 \text { on } K \Longrightarrow p \in M(h)
$$

$$
p_{\min }=\inf _{x \in K} p(x)=\sup \lambda \text { s.t. } p-\lambda \geq 0 \text { on } K
$$

Relax $\quad p-\lambda \geq 0$ on K by $\quad p-\lambda \in M(h)$
by $\quad p-\lambda \in M(h)_{2 t}$
[hard condition] [SOS but unbounded degrees ...]
[tractable SDP!]

$$
M(h)_{2 t}:=\left\{\sum_{j=0}^{m} s_{j} h_{j} \mid s_{j} \in \Sigma_{n}, \operatorname{deg}\left(s_{j} h_{j}\right) \leq 2 t\right\}
$$

\rightsquigarrow Relaxation (SOSt):

$$
p_{t}^{\mathrm{sos}}:=\sup \boldsymbol{\lambda} \text { s.t. } p-\lambda \in M(h)_{2 t} \mid \leq p_{t+1}^{\mathrm{sos}} \leq p_{\min }
$$

Asymptotic convergence

If (A) holds for K, then $\lim _{t \rightarrow \infty} p_{t}^{\text {sos }}=p_{\text {min }}$

Proof: $p-p_{\min }+\epsilon>0$ on K
$\Longrightarrow \exists t p-p_{\text {min }}+\epsilon \in M(h)_{2 t}$
$\Longrightarrow \boldsymbol{p}_{t}^{\mathrm{sos}} \geq \boldsymbol{p}_{\text {min }}-\epsilon$

Note: A representation result valid for " $p \geq 0$ on \boldsymbol{K} " gives finite convergence: $p_{t}^{\text {sos }}=p_{\text {min }}$ for some t
[Nie-Schweighofer 2007]: $\boldsymbol{p}_{\min }-\boldsymbol{p}_{t}^{\mathrm{sos}} \leq \frac{c^{\prime}}{\sqrt[c]{\log (t / c)}}$ for \boldsymbol{t} big, where $c=c(h)$ and $c^{\prime}=c(p, h)$
$p_{\min }=\inf _{x \in K} p(x)=\inf _{\substack{\mu \text { probability } \\ \text { measure on } K}} \int_{K} p(x) d \mu(x)$
$=\inf _{L \in \mathbb{R}[x]^{*}} L(\boldsymbol{p})$ s.t. L comes from a probability measure $\boldsymbol{\mu}$ on \boldsymbol{K}
$=\inf _{L \in \mathbb{R}[x]^{*}} L(p)$ s.t. $L(f) \geq 0 \forall f \geq 0$ on K
[Haviland] The following are equivalent for $L \in \mathbb{R}[x]^{*}$:

- L comes from a nonnegative measure on \boldsymbol{K}, i.e.,

$$
L(f)=\int_{K} f(x) d \mu(x) \forall f \in \mathbb{R}[x]
$$

- $L(p) \geq 0$ if $p \geq 0$ on K

$$
p_{\min }=\inf _{L \in \mathbb{R}[x]^{*}} L(p) \text { s.t. } L(f) \geq 0 \forall f \geq 0 \text { on } K
$$

Relax $L(f) \geq 0 \quad \forall f \geq 0$ on K
by $\quad L(f) \geq 0 \quad \forall f \in M(h)$
by $\quad L(f) \geq 0 \quad \forall f \in M(h)_{2 t}$
\rightsquigarrow Relaxation (MOMt):

$$
p_{t}^{\text {mom }}:=\inf _{L \in \mathbb{R}[x]_{2 t}^{*}} L(p) \text { s.t. } L \geq 0 \text { on } M(h)_{2 t}
$$

Weak duality: $\quad p_{t}^{\mathrm{sos}} \leq p_{t}^{\mathrm{mom}} \leq p_{\min }$
Equality: $\boldsymbol{p}_{t}^{\text {sos }}=\boldsymbol{p}_{t}^{\text {mom }} \quad$ e.g. if $\operatorname{int}(\boldsymbol{K}) \neq \emptyset$

The dual relaxation (MOMt) is again an SDP

$L \in \mathbb{R}[\boldsymbol{x}]_{2 t}^{*} \rightsquigarrow M_{t}(L):=\left(L\left(\boldsymbol{x}^{\alpha} \boldsymbol{x}^{\boldsymbol{\beta}}\right)\right)_{|\alpha|,|\beta| \leq t}$
$M_{t}(L)$ is the moment matrix of L (of order \boldsymbol{t})

Lemma: $L\left(f^{2}\right) \geq 0 \forall f \in \mathbb{R}[x]_{t} \Longleftrightarrow M_{t}(L) \succeq 0$
Proof: $L\left(f^{2}\right)=\vec{f}^{T} M_{t}(L) \vec{f}$
\rightsquigarrow Can express $L \geq 0$ on $M(h)_{2 t,}$
i.e., $L\left(f^{2} h_{j}\right) \geq 0 \forall f \forall j$ with $\operatorname{deg}\left(f^{2} h_{j}\right) \leq 2 t$
as SDP conditions

Optimality criterion

Observation: Let \boldsymbol{L} be an optimum solution to (MOMt).
If \boldsymbol{L} comes from a probability measure $\boldsymbol{\mu}$ on \boldsymbol{K}, then (MOMt) is exact: $p_{t}^{\text {mom }}=p_{\text {min }}$.

Question: How to recognize whether L has a representing measure on \boldsymbol{K} ?

Next: Sufficient condition of Curto-Fialkow for the moment problem

A sufficient condition for the moment problem

Theorem [Curto-Fialkow 1996] Let $L \in \mathbb{R}[x]_{2 t}^{*}$.
If $M_{t}(L) \succeq 0$ and $(\mathrm{RC}) \operatorname{rank} M_{t}(L)=\operatorname{rank} M_{t-1}(L)$, then L has a representing measure.

Corollary [Curto-Fialkow 2000] + [Henrion-Lasserre 2005]
Set $d:=\max _{j}\left\lfloor\operatorname{deg}\left(\boldsymbol{h}_{j}\right) / 2\right\rfloor$.
Let L be an optimum solution to (MOMt) satisfying
$\operatorname{rank} M_{t}(L)=\operatorname{rank} M_{t-d}(L)$. Then, $p_{t}^{\operatorname{mom}}=p_{\min }$ and
$V\left(\operatorname{Ker} M_{t}(L)\right) \subseteq\{$ global minimizers of \boldsymbol{p} on $\boldsymbol{K}\}$
with equality if $\operatorname{rank} M_{t}(L)$ is maximum.

Remarks

- Compute $V\left(\operatorname{Ker} M_{t}(L)\right)$ with the eigenvalue method.
- If the rank condition holds at a maximum rank solution, then (P) has finitely many global minimizers.

But the reverse is not true !

- The rank condition holds in the finite variety case:

$$
\boldsymbol{K}=\{x \in \mathbb{R}^{n} \mid \underbrace{h_{1}(x)=0, \ldots, h_{k}(x)=0}_{\text {ideal } I}, h_{k+1}(x) \geq 0, \ldots\}
$$

with $\left|V_{\mathbb{R}}(I)\right|<\infty$

Finite convergence in the finite variety case

$$
K=\{x \in \mathbb{R}^{n} \mid \underbrace{h_{1}(x)=0, \ldots, h_{k}(x)=0}_{\text {ideal } I}, h_{k+1}(x) \geq 0, \ldots\}
$$

Theorem: [La 2002] [Lasserre/La/Rostalski 2007]
(i) If $\left|V_{\mathbb{C}}(I)\right|<\infty, \quad p_{t}^{\text {sos }}=p_{t}^{\text {mom }}=p_{\text {min }}$ for some t
(ii) If $\left|V_{\mathbb{R}}(I)\right|<\infty, \quad p_{t}^{\text {mom }}=p_{\text {min }} \quad$ for some t

The flat extension theorem

Theorem [Curto-Fialkow 1996] Let $L \in \mathbb{R}[x]_{2 t}^{*}$.

$$
\begin{aligned}
& \text { If } \operatorname{rank} M_{t}(L)=\operatorname{rank} M_{t-1}(L) \text {, } \\
& \text { then there is an extension } \tilde{L} \in \mathbb{R}[x]^{*} \text { of } L \\
& \text { for which } \operatorname{rank} M(\tilde{L})=\operatorname{rank} M_{t}(L) .
\end{aligned}
$$

Main tool: $\operatorname{Ker} M(\tilde{L})$ is an ideal.

[La-Mourrain 2009] The flat extension theorem can be generalized to matrices indexed by a set \mathcal{C} of monomials (connected to 1) and its closure $\mathcal{C}^{+}=\mathcal{C} \cup x_{1} \mathcal{C} \cup \ldots \cup x_{n} \mathcal{C}$, satisfying rank $M_{\mathcal{C}}=\operatorname{rank} M_{\mathcal{C}^{+}}$.

The finite rank moment matrix theorem

Theorem: [Curto-Fialkow 1996] Let $L \in \mathbb{R}[x]^{*}$.

$$
M(L) \succeq 0 \text { and } \operatorname{rank} M(L)=: r<\infty
$$

$\Longleftrightarrow L$ has a (unique) r-atomic representation measure $\boldsymbol{\mu}$.
[La 2005] Simple proof for \Longrightarrow :

- $I:=\operatorname{Ker} M(L)$ is a real radical ideal
- \boldsymbol{I} is 0 -dimensional, as $\operatorname{dim} \mathbb{R}[\boldsymbol{x}] / \boldsymbol{I}=\boldsymbol{r}$

Hence: $V(I)=\left\{x_{1}, \ldots, x_{r}\right\} \subseteq \mathbb{R}^{n}$
Verify: L is represented by $\mu=\sum_{i=1}^{r} L\left(p_{i}^{2}\right) \delta_{x_{i}}$, where the p_{i} 's are interpolation polynomials at the $\boldsymbol{x}_{\boldsymbol{i}}$'s

Implementations of the SOS/moment relaxation method

GloptiPoly by Henrion, Lasserre
 (incorporates the optimality stopping criterion and the extraction procedure for global minimizers)

SOSTOOLS by Prajna, Papachristodoulou, Seiler, Parrilo

YALMIP by Löfberg

SparsePOP by Waki, Kim, Kojima, Muramatsu

Example 1

$$
\begin{array}{ll}
\min & p=-25\left(x_{1}-2\right)^{2}-\left(x_{2}-2\right)^{2}-\left(x_{3}-1\right)^{2} \\
& -\left(x_{4}-4\right)^{2}-\left(x_{5}-1\right)^{2}-\left(x_{6}-4\right)^{2} \\
\text { s.t. } & \left(x_{3}-3\right)^{2}+x_{4} \geq 4,\left(x_{5}-3\right)^{2}+x_{6} \geq 4 \\
& x_{1}-3 x_{2} \leq 2,-x_{1}+x_{2} \leq 2, x_{1}+x_{2} \leq 6 \\
& x_{1}+x_{2} \geq 2,1 \leq x_{3} \leq 5,0 \leq x_{4} \leq 6 \\
& 1 \leq x_{5} \leq 5,0 \leq x_{6} \leq 10, x_{1}, x_{2} \geq 0
\end{array}
$$

order \boldsymbol{t}	rank sequence	bound $\boldsymbol{p}_{t}^{\text {mom }}$	solution extracted
1	17	unbounded	none
2	1121	-310	$(5, \mathbf{1}, 5, \mathbf{0}, 5, \mathbf{1 0})$
$\boldsymbol{d}=1$			

The global minimum is found at the relaxation of order $\boldsymbol{t}=\mathbf{2}$

Example 2

$$
\begin{array}{ll}
\min & p=-x_{1}-x_{2} \\
\text { s.t. } & x_{2} \leq 2 x_{1}^{4}-8 x_{1}^{3}+8 x_{1}^{2}+2 \\
& x_{2} \leq 4 x_{1}^{4}-32 x_{1}^{3}+88 x_{1}^{2}-96 x_{1}+36 \\
& 0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 4
\end{array}
$$

order \boldsymbol{t}	rank sequence	bound $\boldsymbol{p}_{\boldsymbol{t}}^{\mathrm{mom}}$	solution extracted
2	114	-7	none
3	1224	$-\mathbf{6 . 6 6 6 7}$	none
4	11116	$\mathbf{- 5 . 5 0 8 0}$	$\mathbf{(2 . 3 2 9 5 , 3 . 1 7 8 5)}$
$\boldsymbol{d}=\mathbf{2}$			

The global minimum is found at the relaxation of order $t=4$

An example where (RC) cannot hold

Perturbed Motzkin form:
$p=x_{1}^{2} x_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}-3 x_{3}^{2}\right)+x_{3}^{6}+\epsilon\left(x_{1}^{6}+x_{2}^{6}+x_{3}^{6}\right)$
$K=\left\{x \mid \sum_{i=1}^{3} x_{i}^{2} \leq 1\right\} \rightsquigarrow(0,0)$ is the unique minimizer
But (RC) never holds
as $\boldsymbol{p} \notin \boldsymbol{M}(\boldsymbol{h})$ and $\boldsymbol{p}_{t}^{\mathrm{sos}}=\boldsymbol{p}_{t}^{\mathrm{mom}}<\boldsymbol{p}_{\min }=\mathbf{0}$

order \boldsymbol{t}	rank sequence	bound $\boldsymbol{p}_{\boldsymbol{t}}^{\text {mom }}$	val. moment vect.
3	14913	-2.1110^{-5}	1.6710^{-44}
4	14102035	-1.9210^{-9}	4.4710^{-60}
5	1410203556	2.9410^{-12}	1.2610^{-44}
6	141020355684	3.5410^{-12}	1.510^{-44}
7	141020355684120	4.0910^{-12}	2.8310^{-43}

Application to Unconstrained Polynomial Minimization

$$
p_{\min }=\inf _{x \in \mathbb{R}^{n}} p(x)
$$

where $\operatorname{deg}(p)=2 d$

As there is no constraint, the relaxation scheme just gives one bound:

$$
\boldsymbol{p}_{t}^{\mathrm{sos}}=\boldsymbol{p}_{t}^{\mathrm{mom}}=p_{d}^{\mathrm{sos}}=p_{d}^{\mathrm{mom}} \leq \boldsymbol{p}_{\min } \quad \text { for all } t \geq \boldsymbol{d}
$$

with equality iff $p(x)-p_{\min }$ is SOS

How to get better bounds ?

Idea: Transform the Unconstrained Problem into a Constrained

Problem

If p has a minimum:

$$
p_{\min }=p_{\mathrm{grad}}^{*}:=\inf _{x \in V_{\mathrm{grad}}^{\mathbb{R}}} p(x)
$$

$$
\text { where } \quad V_{\text {grad }}^{\mathbb{R}}:=\left\{x \in \mathbb{R}^{n} \mid \nabla p(x)=0(i=1, \ldots, n)\right\}
$$

If, moreover, a bound R is known on the norm of a global minimizer:

$$
p_{\min }=p_{\text {ball }}^{*}:=\inf _{R^{2}-\sum_{i} x_{i}^{2} \geq 0} p(x)
$$

When p attains its minimum

The 'ball approach':

- Convergence of the SOS/MOM bounds to $\boldsymbol{p}_{\text {min }}=p_{\text {ball }}^{*}$

The 'gradient variety' approach:

$$
\begin{gathered}
\operatorname{p}^{2}>0 \text { on } V_{\mathrm{grad}}^{\mathbb{R}} \Longrightarrow p \in M_{\mathrm{grad}} \\
p \geq 0 \text { on } V_{\mathrm{grad}}^{\mathbb{R}} \Longrightarrow p \in M_{\mathrm{grad}} \text { if } I_{\mathrm{grad}} \text { radical } \\
\boldsymbol{M}_{\mathrm{grad}}:=\boldsymbol{M}\left(\pm \boldsymbol{\partial} \boldsymbol{p} / \boldsymbol{\partial} \boldsymbol{x}_{\boldsymbol{i}}\right)=\Sigma_{n}+\underbrace{\sum_{i=1}^{n} \mathbb{R}[\boldsymbol{x}] \boldsymbol{\partial} \boldsymbol{p} / \boldsymbol{\partial} \boldsymbol{x}_{\boldsymbol{i}}}_{I_{\text {grad }}}
\end{gathered}
$$
\]

Convergence Result [Demmel, Nie, Sturmfels 2004](%5B)

Asymptotic convergence of the SOS/MOM bounds to $p_{\text {grad }}^{*}$

Finite Convergence to $\boldsymbol{p}_{\text {grad }}^{*}$ when the gradient ideal $I_{\text {grad }}$ is radical

Hence: When \boldsymbol{p} attains its minimum, we have a converging hierarchy of SDP bounds to $\boldsymbol{p}_{\text {min }}$

Example: $p=x^{2}+(x y-1)^{2}$ does not attain its minimum
$p_{\text {min }}=0<p_{\mathrm{g} r a d}^{*}=1$

What if p is not known to have a minimum?

Strategy 1: Perturb the polynomial p

[Hanzon-Jibetean 2003] [Jibetean-Laurent 2004]

$$
p_{\epsilon}(x):=p(x)+\epsilon\left(\sum_{i=1}^{n} x_{i}^{2 d+2}\right) \quad \text { for small } \epsilon>0
$$

- p_{ϵ} has a minimum and $\quad \lim _{\epsilon \rightarrow 0}\left(p_{\epsilon}\right)_{\text {min }}=p_{\text {min }}$
- The global minimizers of $\boldsymbol{p}_{\epsilon}$ converge to global minimizers of \boldsymbol{p} as $\boldsymbol{\epsilon} \longrightarrow \mathbf{0}$
- The gradient variety of $\boldsymbol{p}_{\epsilon}$ is finite
\rightsquigarrow finite convergence of $\left(\boldsymbol{p}_{\epsilon}\right)_{t}^{\mathrm{sos}},\left(\boldsymbol{p}_{\epsilon}\right)_{t}^{\mathrm{mom}}$ to $\left(\boldsymbol{p}_{\epsilon}\right)_{\text {min }}$

Example: Perturb the polynomial $p=(x y-1)^{2}+x^{2}$

$$
\inf p(x) \text { s.t. } \partial p_{\epsilon} / \partial x_{1}=0, \partial p_{\epsilon} / \partial x_{2}=0
$$

ϵ	order \boldsymbol{t}	rank sequence	$\boldsymbol{p}_{t}^{\text {mom }}$	extracted solutions
10^{-2}	3	268	0.00062169	
10^{-2}	4	2227	0.33846	
10^{-2}	5	2222 -	0.33846	$\pm(0.4729,1.3981)$
10^{-3}	5	2222 -	0.20824	$\pm(0.4060,1.9499)$
10^{-4}	5	2222 -	0.12323	$\pm(0.3287,2.6674)$
10^{-5}	5	2222 -	0.07132	$\pm(0.2574,3.6085)$
10^{-6}	5	2222 -	0.040761	$\pm(0.1977,4.8511)$
10^{-7}	5	2222 -	0.023131	$\pm(0.1503,6.4986)$
10^{-8}	5	2222 -	0.013074	$\pm(0.1136,8.6882)$
10^{-9}	5	2222 -	0.0073735	$\pm(0.0856,11.6026)$
10^{-10}	5	2222 -	0.0041551	$\pm(0.0643,15.4849)$

Algebraic/analytical approach of Schweighofer [2005]

Strategy 2: Minimize p over its 'gradient tentacle’

$$
\begin{aligned}
& \text { If } p_{\min }>-\infty, \text { then } \\
& p_{\min }=\inf _{x \in K_{\text {grad }}} p(x)
\end{aligned}
$$

where

$$
K_{\text {grad }}:=\left\{x \in \mathbb{R}^{n} \mid\|\nabla p(x)\|^{2}\|x\|^{2} \leq 1\right\} \supseteq V_{\text {grad }}^{\mathbb{R}}
$$

$$
\nabla p=\left(\partial p / \partial x_{i}\right)_{i=1}^{n}
$$

Representation result on the gradient tentacle $\boldsymbol{K}_{\text {grad }}$

[Schweighofer 2005]: Assume $p_{\min }>-\infty$ and p has only isolated singularities at infinity (${ }^{(}$) (e.g. $n=2$). Then,

$$
\begin{aligned}
& p \geq 0 \text { on } \mathbb{R}^{n} \Longleftrightarrow p \geq 0 \text { on } K_{\text {grad }} \\
& \Longleftrightarrow \forall \epsilon>0 \quad p+\epsilon \in M\left(1-\|\nabla p(x)\|^{2}\|x\|^{2}\right)
\end{aligned}
$$

\rightsquigarrow Convergent SOS/moment bounds to $p_{\min }=\inf _{K_{\text {grad }}} p(x)$
(*): The system $\nabla p_{d}(x)=0, p_{d-1}(x)=0$ has finitely many projective zeros, where $p=p_{d}+p_{d-1}+\ldots+p_{0}$ and p_{i} is the homogeneous component of degree i

Tools: Algebra (extension of Schmüdgen's theorem) + analysis (Parusinski's results on behaviour of polynomials at infinity)

The 'tangency variety' approach of Vui-Son [2008]

Strategy 3: Minimize p over its 'truncated tangency variety':

$$
\begin{aligned}
\Gamma_{p} & :=\left\{x \in \mathbb{R}^{n} \left\lvert\, \operatorname{rank}\binom{\nabla p(x)}{x} \leq 1\right.\right\} \\
& =\left\{x \mid g_{i j}:=x_{i} \partial p / \partial x_{j}-x_{j} \partial p / \partial x_{i}=0 \forall i, j \leq n\right\} \\
\Gamma_{p}^{0} & :=\Gamma_{p} \cap\{x \mid p(x) \leq p(0)\}
\end{aligned}
$$

[Vui-Son 2008]: For $\boldsymbol{p} \in \mathbb{R}[\boldsymbol{x}]$ such that $\boldsymbol{p}_{\text {min }}>-\infty$

$$
\begin{aligned}
p & \geq 0 \text { on } \mathbb{R}^{n} \Longleftrightarrow p \geq 0 \text { оп } \Gamma_{p}^{0} \\
& \Longleftrightarrow \forall \epsilon>0 \quad p+\epsilon \in M\left(p(0)-p, \pm g_{i j}\right)
\end{aligned}
$$

\rightsquigarrow Convergent SOS/moment bounds to $p_{\text {min }}=\inf _{\Gamma_{p}^{0}} p(x)$

Further directions

- Exploit structure (equations, sparsity, symmetry, convexity, ...) to get smaller SDP programs
[Kojima, Grimm, Helton, Lasserre, Netzer, Nie, Riener, Schweighofer, Theobald, Parrilo, ...]
- Application to the generalized problem of moments, to approximating integrals over semi-algebraic sets, ... [Henrion, Lasserre, Savorgnan, ...]
- Extension to NC variables
[Helton, Klep, McCullough, Schmüdgen, Schweighofer,...]

