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Polynomial optimization problem

(P) Minimize a polynomial functionp over a basic closed
semi-algebraic setK

pmin := inf
x∈K

p(x)

where

K := {x ∈ R
n | h1(x) ≥ 0, . . . , hm(x) ≥ 0}

p, h1, . . . , hm ∈ R[x] are multivariate polynomials
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Unconstrained polynomial minimization: K = R
n

pmin := inf
x∈Rn

p(x)

pmin ≥ 0 ⇐⇒ p ≥ 0 onR
n

Example: The partition problem.
A sequencea1, . . . , an ∈ N can bepartitioned
if
∑

i∈I ai =
∑

i∈[n]\I ai for someI ⊆ [n], i.e. if

pmin = 0, wherep(x) = (
∑n

i=1 aixi)
2 +

∑n
i=1(x

2
i − 1)2

E.g., the sequence1, 1, 2, 2, 3, 4, 5 can be partitioned.

 NP-complete problem
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Example: Testing matrix copositivity

M ∈ R
n×n is copositiveif xT Mx ≥ 0 ∀x ∈ R

n
+

i.e. if pmin = 0, where p(x) =
∑n

i,j=1 Mijx
2
i x2

j

 co-NP-complete problem
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0/1 Linear programming

min cT x s.t.Ax ≤ b, x2
i = xi (i = 1, . . . , n)

Example: Thestability number α(G) of a graphG = (V, E)
can be computed via any of the programs:

α(G) = max
∑

i∈V

xi s.t.xi+xj ≤ 1 (ij ∈ E), x2
i = xi (i ∈ V )

1

α(G)
= min xT (I + AG)x s.t.

∑

i∈V

xi = 1, xi ≥ 0 (i ∈ V )

 (P) isNP-hard for linearobjective andquadraticconstraints,
or for quadraticobjective andlinearconstraints
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Strategy

Approximate (P) by a hierarchy of
convex (semidefinite)relaxations

Shor (1987), Nesterov, Lasserre, Parrilo (2000-)

Such relaxations can be constructed using

representations of nonnegative polynomials as sums of
squares of polynomials

and

the dual theory of moments
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Underlying paradigm

Testing whether a polynomialp is nonnegativeis hard

but

one can test whetherp is a sum of squares of polynomials
efficiently via semidefinite programming
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Plan of the talk

• Role of semidefinite programming in sums of squares

• SOS/Moment relaxations for (P)

• Main properties:

(1) Asymptotic/finite convergence
via SOS representation results for positive polynomials

(2) Optimality criterion
via results for the moment problem

(3) Extract global minimizers
by solving polynomial equations

• Application to unconstrained polynomial optimization
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A beautiful monograph about positive polynomials ...

Alexander Prestel
Charles N. Delzell

Positive
Polynomials

From Hilbert’s 17th Problem
to Real Algebra
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Some notation

• R[x] = R[x1, . . . , xn]: ring of polynomials inn variables

• R[x]d : all polynomials with degree≤ d

p ∈ R[x]d  p(x) =
∑

α∈Nn

|α|≤d

pα xα1

1 · · · xαn

n︸ ︷︷ ︸
xα

=
∑

α∈Nn

|α|≤d

pαxα

 p(x) = ~p T [x]d

after setting ~p = (pα)α: vector of coefficients

and [x]d = (xα)α: vector of monomials
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What is semidefinite programming?

Semidefinite programming (SDP) is linear optimization overthe
cone of positive semidefinite matrices

LP SDP
vector variable  matrix variable

x ∈ R
n X ∈ Symn [symmetric matrix]

x ≥ 0 X � 0 [positive semidefinite]

supX 〈C, X〉
s.t. 〈Aj , X〉 = bj (j = 1, . . . , m)

X � 0

There are efficient algorithms to solve semidefinite programs
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A small example of SDP

max (X13 + X31)/2 such that X � 0, X ∈ R
3×3

X11 = 1, X12 = 1

X23 = 1, X33 = 2

2X13 + X22 = 3

max c such thatX =




1 1 c

1 3 − 2c 1

c 1 2



 � 0

One can check thatmax c = 1 andmin c = −1
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The Gram-matrix method to recognize sums of squares [cf.

Powers-Wörmann 1998]

Write p(x) =
∑

|α|≤2d pαxα ∈ R[x]2d as a sum of squares:

p(x) =
∑k

j=1(uj(x))2 =
∑k

j=1 [x]Td ~uj ~uj
T [x]d

= [x]d

( k∑

j=1

~uj ~uj
T

︸ ︷︷ ︸
=: U�0

)
[x]d =

∑

|β|,|γ|≤d

xβxγUβ,γ

=
∑

|α|≤2d

xα
( ∑

|β|,|γ |≤d

β+γ=α

Uβ,γ

︸ ︷︷ ︸
=pα

)

Optimization over Polynomials with Sums of Squares and Moment Matrices – p. 13



Recognize sums of squares via SDP

p(x) =
∑

|α|≤2d

pαxα is a sum of squares of polynomials

m

The following semidefinite program is feasible:






U � 0∑

|β|,|γ |≤d

β+γ=α

Uβ,γ = pα (|α| ≤ 2d)
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Example: Is p = x4 + 2x3y + 3x2y2 + 2xy3 + 2y4 SOS ?

Solution: Try to write

p(x, y) ≡ (x2 xy y2)




a b c

b d e

c e f





︸ ︷︷ ︸
U




x2

xy

y2



 with U � 0

Equating coefficients:

x4 = x2 · x2 1 = a

x3y = x2 · xy 2 = 2b

x2y2 = xy · xy = x2 · y2 3 = d + 2c

xy3 = xy · y2 2 = 2e

y4 = y2 · y2 2 = f
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Example continued

Hence U =




1 1 c

1 3 − 2c 1

c 1 2



 � 0 ⇐⇒ −1 ≤ c ≤ 1

• Forc = −1, U =




1 0

1 2

−1 1





(
1 1 −1

0 2 1

)

 p = (x2 + xy − y2)2 + (y2 + 2xy)2

• Forc = 0, U =





1 0 0

1
√

3
2

√
1
2

0
√

3
2 −

√
1
2









1 1 0

0
√

3
2

√
3
2

0
√

1
2 −

√
1
2





 p = (x2 + xy)2 + 3
2(xy + y2)2 + 1

2(xy − y2)2
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Which nonnegative polynomials are SOS ?

Hilbert [1888] classified the pairs(n, d) for which
every nonnegative polynomial of degreed in n variables is SOS:

• n = 1

• d = 2

• n = 2, d = 4

Σn,d ⊂ Pn,d for all other(n, d)

Motzkin polynomial: x4y2 + x2y4 − 3x2y2 + 1 lies in
P2,6 \ Σ2,6
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How many nonnegative polynomials are sums of squares ?

[Blekherman 2003]:Very few !

At fixed degree2d and large numbern of variables, there are
significantly more nonnegative polynomials than sums of squares:

c · n
d−1

2 ≤
(

vol(P̂n,2d)

vol(Σ̂n,2d)

) 1
D

≤ C · n
d−1

2

P̂n,2d := {p ∈ Pn,2d | p homogeneous, deg(p) = 2d,∫
Sn−1 p(x)µ(dx) = 1}

D :=
(n+2d−1

2d

)
− 1, the dimension of the ambient space
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How many nonnegative polynomials are sums of squares ?

Many !

The SOS cone is dense in the cone of nonnegative polynomials
(allowing variable degrees):

[Lasserre 2004]: Ifp ≥ 0 onR
n, then

∀ǫ > 0 ∃k ∈ N s.t. p + ǫ

(
k∑

h=0

n∑

i=1

x2h
i

h!

)
is SOS

[Lasserre-Netzer 2006]: Ifp ≥ 0 on [−1, 1]n, then

∀ǫ > 0 ∃k ∈ N s.t. p + ǫ

(
1 +

n∑

i=1

x2k
i

)
is SOS
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Artin [1927] solved Hilbert’s 17th problem [1900]

p ≥ 0 onR
n =⇒ p =

∑

i

(
pi

qi

)2

, wherepi, qi ∈ R[x]

That is, p · q2 is SOS for someq ∈ R[x]

Sometimes, the shape of the common denominator is known:

Pólya [1928] + Reznick [1995]: Forp homogeneous

p > 0 onR
n \ {0} =⇒ p ·

(
n∑

i=1

x2
i

)r

SOS for somer ∈ N
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An example [Parrilo 2000]

M :=





1 1 −1 −1 1

1 1 1 −1 −1

−1 1 1 1 −1

−1 −1 1 1 1

1 −1 −1 1 1





p :=
5∑

i,j=1

Mijx
2
i x2

j

p is not SOS

But (
∑5

i=1 x2
i )p is SOS

This is acertificate thatp ≥ 0 onR
5, i.e., thatM is copositive
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SOS certificates for positivity on a semi-algebraic setK

Let K = {x ∈ R
n | h1(x) ≥ 0, . . . , hm(x) ≥ 0}

Seth0 := 1

Quadratic module:M(h) :=
{ m∑

j=0

sjhj | sj ∈ Σn

}

Preordering:T (h) :=
{ ∑

e∈{0,1}m

seh
e1

1 · · · hem

m | se ∈ Σn

}

p ∈ M(h) =⇒ p ∈ T (h) =⇒ p ≥ 0 onK
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The Positivstellensatz [Krivine 1964] [Stengle 1974]

Not an equivalence:

K = {x ∈ R | (1 − x2)3 ≥ 0}
p = 1 − x2

Then,p ≥ 0 onK, butp 6∈ T (h)

The Positivstellensatz characterizes equivalence:

p ≥ 0 onK ⇐⇒ pf = p2m + g for somef, g ∈ T (h)

and somem ∈ N

But this does not yield tractable relaxations for (P)!
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The Positivstellensatz [Krivine 1964] [Stengle 1974]

K = {x ∈ R
n | h1(x) ≥ 0, . . . , hm(x) ≥ 0}

(1) p > 0 onK ⇐⇒ pf = 1 + g for somef, g ∈ T (h)

(2) p ≥ 0 onK ⇐⇒ pf = p2m + g for somef, g ∈ T (h), m ∈ N

(3) p = 0 onK ⇐⇒ −p2m ∈ T (h) for somem ∈ N

(2) =⇒ solution toHilbert’s 17th problem

(3) =⇒ Real Nullstellensatz

But this does not yield tractable relaxations for (P)!!!
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SOS certificates of positivity onK compact

Schmüdgen [1991]:AssumeK is compact.

p > 0 onK =⇒ p ∈ T (h)

Putinar [1993]:

Assume the followingArchimedean conditionholds:

(A) ∀p ∈ R[x] ∃N ∈ N N ± p ∈ M(h)

Equivalently:∃ N ∈ N N −∑n
i=1 x2

i ∈ M(h)

p > 0 onK =⇒ p ∈ M(h)
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SOS relaxations for (P) [Lasserre 2001, Parrilo 2000]

pmin = inf
x∈K

p(x) = sup λ s.t.p − λ ≥ 0 onK

Relax p − λ ≥ 0 onK [hard condition]
by p − λ ∈ M(h) [SOS but unbounded degrees ...]
by p − λ ∈ M(h)2t [tractable SDP!]

M(h)2t :=
{∑m

j=0 sjhj | sj ∈ Σn, deg(sjhj) ≤ 2t
}

 Relaxation(SOSt):

psos
t := sup λ s.t. p − λ ∈ M(h)2t ≤ psos

t+1 ≤ pmin

Optimization over Polynomials with Sums of Squares and Moment Matrices – p. 26



Asymptotic convergence

If (A) holds forK, then lim
t→∞

psos
t = pmin

Proof: p − pmin + ǫ > 0 on K
=⇒ ∃t p − pmin + ǫ ∈ M(h)2t

=⇒ psos
t ≥ pmin − ǫ

Note: A representation result valid for “p ≥ 0 onK" gives

finite convergence: psos
t = pmin for somet

[Nie-Schweighofer 2007]: pmin − psos
t ≤ c′

c
√

log(t/c)
for t big,

wherec = c(h) andc′ = c(p, h)
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Dual moment relaxations for (P) [Lasserre 2001]

pmin = inf
x∈K

p(x)= inf
µ probability
measure onK

∫

K
p(x)dµ(x)

= infL∈R[x]∗ L(p) s.t. L comes from a probability measureµ onK

= infL∈R[x]∗ L(p) s.t. L(f) ≥ 0 ∀f ≥ 0 onK

[Haviland] The following are equivalent forL ∈ R[x]∗:

• L comes from a nonnegative measureonK, i.e.,

L(f) =
∫
K f(x)dµ(x) ∀f ∈ R[x]

• L(p) ≥ 0 if p ≥ 0 onK
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Dual moment relaxations for (P) [continued]

pmin= infL∈R[x]∗ L(p) s.t. L(f) ≥ 0 ∀f ≥ 0 onK

Relax L(f) ≥ 0 ∀f ≥ 0 onK
by L(f) ≥ 0 ∀f ∈ M(h)
by L(f) ≥ 0 ∀f ∈ M(h)2t

 Relaxation(MOMt):

pmom
t := infL∈R[x]∗2t

L(p) s.t. L ≥ 0 on M(h)2t

Weak duality: psos
t ≤ pmom

t ≤ pmin

Equality:psos
t = pmom

t e.g. if int(K) 6= ∅

Optimization over Polynomials with Sums of Squares and Moment Matrices – p. 29



The dual relaxation (MOMt) is again an SDP

L ∈ R[x]∗2t  Mt(L) := (L(xαxβ))|α|,|β|≤t

Mt(L) is themoment matrixof L (of ordert)

Lemma: L(f2) ≥ 0 ∀f ∈ R[x]t ⇐⇒ Mt(L) � 0

Proof: L(f2) = ~fT Mt(L)~f

 Can expressL ≥ 0 onM(h)2t,

i.e.,L(f2hj) ≥ 0 ∀f ∀j with deg(f2hj) ≤ 2t

as SDP conditions
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Optimality criterion

Observation: Let L be an optimum solution to (MOMt).
If L comes from a probability measureµ onK,
then (MOMt) is exact:pmom

t = pmin.

Question: How to recognize whetherL has a representing
measure onK ?

Next: Sufficient condition of Curto-Fialkow for the moment
problem
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A sufficient condition for the moment problem

Theorem [Curto-Fialkow 1996] LetL ∈ R[x]∗2t.

If Mt(L) � 0 and(RC) rankMt(L) = rankMt−1(L),
thenL has a representing measure.

Corollary [Curto-Fialkow 2000] + [Henrion-Lasserre 2005]
Setd := maxj⌊deg(hj)/2⌋.

Let L be an optimum solution to (MOMt) satisfying
rankMt(L) = rankMt−d(L). Then,pmom

t = pmin and

V (KerMt(L)) ⊆ { global minimizers ofp onK}

with equality if rankMt(L) is maximum.
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Remarks

• ComputeV (KerMt(L)) with theeigenvalue method.

• If the rank condition holds at a maximum rank solution, then
(P) hasfinitely many global minimizers.

But the reverse is not true !

• The rank conditionholdsin thefinite variety case:

K = {x ∈ R
n | h1(x) = 0, . . . , hk(x) = 0︸ ︷︷ ︸

idealI

, hk+1(x) ≥ 0, . . .}

with |VR(I)| < ∞
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Finite convergence in the finite variety case

K = {x ∈ R
n | h1(x) = 0, . . . , hk(x) = 0︸ ︷︷ ︸

idealI

, hk+1(x) ≥ 0, . . .}

Theorem: [La 2002] [Lasserre/La/Rostalski 2007]

(i) If |VC(I)| < ∞, psos
t = pmom

t = pmin for somet

(ii) If |VR(I)| < ∞, pmom
t = pmin for somet
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The flat extension theorem

Theorem [Curto-Fialkow 1996] LetL ∈ R[x]∗2t.

If rank Mt(L) = rank Mt−1(L),
then there is an extensioñL ∈ R[x]∗ of L

for which rank M(L̃) = rank Mt(L).

Main tool: KerM(L̃) is an ideal.

[La-Mourrain 2009] The flat extension theorem can be
generalized to matrices indexed by a setC of monomials
(connected to 1) and itsclosureC+ = C ∪ x1C ∪ . . . ∪ xnC,
satisfyingrank MC = rank MC+.
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The finite rank moment matrix theorem

Theorem: [Curto-Fialkow 1996] LetL ∈ R[x]∗.

M(L) � 0 and rank M(L) =: r < ∞
⇐⇒ L has a (unique)r-atomic representation measureµ.

[La 2005]Simple proof for =⇒:

• I := KerM(L) is a real radical ideal

• I is 0-dimensional, asdim R[x]/I = r

Hence:V (I) = {x1, . . . , xr} ⊆ R
n

Verify: L is represented byµ =
∑r

i=1 L(p2
i )δxi

, where thepi’s
are interpolation polynomials at thexi’s
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Implementations of the SOS/moment relaxation method

GloptiPoly by Henrion, Lasserre
(incorporates the optimality stopping criterion and the extraction

procedure for global minimizers)

SOSTOOLSby Prajna, Papachristodoulou, Seiler, Parrilo

YALMIP by Löfberg

SparsePOPby Waki, Kim, Kojima, Muramatsu
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Example 1

min p = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2

−(x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2

s.t. (x3 − 3)2 + x4 ≥ 4, (x5 − 3)2 + x6 ≥ 4

x1 − 3x2 ≤ 2, −x1 + x2 ≤ 2, x1 + x2 ≤ 6,

x1 + x2 ≥ 2, 1 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 6,

1 ≤ x5 ≤ 5, 0 ≤ x6 ≤ 10, x1, x2 ≥ 0

ordert rank sequenceboundpmom
t solution extracted

1 1 7 unbounded none
2 1 121 −310 (5, 1, 5, 0, 5, 10)

d = 1

The global minimum is found at the relaxation of ordert = 2
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Example 2

min p = −x1 − x2

s.t. x2 ≤ 2x4
1 − 8x3

1 + 8x2
1 + 2

x2 ≤ 4x4
1 − 32x3

1 + 88x2
1 − 96x1 + 36

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4

ordert rank sequenceboundpmom
t solution extracted

2 1 1 4 −7 none
3 1 2 2 4 −6.6667 none
4 1 1 1 16 −5.5080 (2.3295, 3.1785)

d = 2

The global minimum is found at the relaxation of ordert = 4
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An example where (RC) cannot hold

Perturbed Motzkin form:
p = x2

1x
2
2(x

2
1 + x2

2 − 3x2
3) + x6

3 + ǫ(x6
1 + x6

2 + x6
3)

K = {x | ∑3
i=1 x2

i ≤ 1} (0, 0) is theunique minimizer

But (RC) never holds

asp 6∈ M(h) andpsos
t = pmom

t < pmin = 0

ordert rank sequence boundpmom
t val. moment vect.

3 1 4 9 13 −2.11 10−5 1.67 10−44

4 1 4 10 20 35 −1.92 10−9 4.47 10−60

5 1 4 10 20 35 56 2.94 10−12 1.26 10−44

6 1 4 10 20 35 56 84 3.54 10−12 1.5 10−44

7 1 4 10 20 35 56 84 120 4.09 10−12 2.83 10−43

d = 3, ǫ = 0.01
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Application to Unconstrained Polynomial Minimization

pmin = inf
x∈Rn

p(x)

wheredeg(p) = 2d

As there isno constraint, the relaxation scheme just givesone
bound:

psos
t = pmom

t = psos
d = pmom

d ≤ pmin for all t ≥ d

with equality iff p(x) − pmin is SOS

How to get better bounds ?
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Idea: Transform the Unconstrained Problem into a Constrained

Problem

If p has a minimum:

pmin=p∗
grad := inf

x∈V R

grad

p(x)

where V R
grad := {x ∈ R

n | ∇p(x) = 0 (i = 1, . . . , n)}

If, moreover, a boundR is known on the norm of a global
minimizer:

pmin=p∗
ball := inf

R2−P

i x2
i ≥0

p(x)
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When p attains its minimum

The ‘ball approach’:
• Convergence of the SOS/MOM bounds topmin = p∗

ball

The ‘gradient variety’ approach:

[Demmel, Nie, Sturmfels 2004]:

p > 0 onV R
grad =⇒ p ∈ Mgrad

p ≥ 0 onV R
grad =⇒ p ∈ Mgrad if Igrad radical

Mgrad := M(±∂p/∂xi) = Σn +
n∑

i=1

R[x]∂p/∂xi

︸ ︷︷ ︸
Igrad
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Convergence Result [Demmel, Nie, Sturmfels 2004]

Asymptotic convergenceof the SOS/MOM bounds top∗
grad

Finite Convergenceto p∗
grad when the gradient idealIgrad is

radical

Hence: Whenp attains its minimum, we have a converging
hierarchy of SDP bounds topmin

Example: p = x2 + (xy − 1)2 doesnot attain its minimum

pmin = 0 < p∗
grad = 1
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What if p is not known to have a minimum?

Strategy 1: Perturb the polynomial p

[Hanzon-Jibetean 2003] [Jibetean-Laurent 2004]

pǫ(x) := p(x) + ǫ

(
n∑

i=1

x2d+2
i

)

for smallǫ > 0

• pǫ has a minimumand lim
ǫ→0

(pǫ)min = pmin

• The global minimizers ofpǫ converge to global minimizers ofp
asǫ → 0

• Thegradient variety ofpǫ is finite

 finite convergenceof (pǫ)
sos
t , (pǫ)

mom
t to (pǫ)min
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Example: Perturb the polynomial p = (xy − 1)2 + x2

inf p(x) s.t.∂pǫ/∂x1 = 0, ∂pǫ/∂x2 = 0

ǫ ordert rank sequence pmom
t extracted solutions

10−2 3 2 6 8 0.00062169

10−2 4 2 2 2 7 0.33846

10−2 5 2 2 2 2 - 0.33846 ±(0.4729, 1.3981)

10−3 5 2 2 2 2 - 0.20824 ±(0.4060, 1.9499)

10−4 5 2 2 2 2 - 0.12323 ±(0.3287, 2.6674)

10−5 5 2 2 2 2 - 0.07132 ±(0.2574, 3.6085)

10−6 5 2 2 2 2 - 0.040761 ±(0.1977, 4.8511)

10−7 5 2 2 2 2 - 0.023131 ±(0.1503, 6.4986)

10−8 5 2 2 2 2 - 0.013074 ±(0.1136, 8.6882)

10−9 5 2 2 2 2 - 0.0073735 ±(0.0856, 11.6026)

10−10 5 2 2 2 2 - 0.0041551 ±(0.0643, 15.4849)
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When p does not have a minimum:

Algebraic/analytical approach of Schweighofer [2005]

Strategy 2: Minimize p over its ‘gradient tentacle’

If pmin > −∞, then

pmin = inf
x∈Kgrad

p(x)

where

Kgrad:= {x ∈ R
n | ‖∇p(x)‖2‖x‖2 ≤ 1} ⊇ V R

grad

∇p = (∂p/∂xi)
n
i=1

Optimization over Polynomials with Sums of Squares and Moment Matrices – p. 47



Representation result on the gradient tentacleKgrad

[Schweighofer 2005]: Assumepmin > −∞ andp hasonly
isolated singularities at infinity (*)(e.g.n = 2). Then,

p ≥ 0 onR
n ⇐⇒ p ≥ 0 onKgrad

⇐⇒ ∀ǫ > 0 p + ǫ ∈ M(1 − ‖∇p(x)‖2‖x‖2)

 Convergent SOS/moment bounds topmin = infKgrad p(x)

(*) : The system∇pd(x) = 0, pd−1(x) = 0 hasfinitely many
projective zeros, wherep = pd + pd−1 + . . . + p0 andpi is the
homogeneous component of degreei

Tools: Algebra (extension of Schmüdgen’s theorem) + analysis
(Parusinski’s results on behaviour of polynomials at infinity)
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When p does not have a minimum:

The ‘tangency variety’ approach of Vui-Son [2008]

Strategy 3: Minimize p over its ‘truncated tangency variety’:

Γp :=
{
x ∈ R

n | rank

(
∇p(x)

x

)

≤ 1}

= {x | gij := xi ∂p/∂xj − xj ∂p/∂xi = 0 ∀i, j ≤ n}

Γ0
p := Γp ∩ {x | p(x) ≤ p(0)}

[Vui-Son 2008]: Forp ∈ R[x] such thatpmin > −∞

p ≥ 0 onR
n ⇐⇒ p ≥ 0 onΓ0

p

⇐⇒ ∀ǫ > 0 p + ǫ ∈ M(p(0) − p, ±gij)

 Convergent SOS/moment bounds topmin = infΓ0
p
p(x)
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Further directions

• Exploit structure (equations, sparsity, symmetry, convexity, ...)
to get smaller SDP programs
[Kojima, Grimm, Helton, Lasserre, Netzer, Nie, Riener,
Schweighofer, Theobald, Parrilo, ...]

• Application to the generalized problem of moments,
to approximating integrals over semi-algebraic sets, ...
[Henrion, Lasserre, Savorgnan, ...]

• Extension to NC variables
[Helton, Klep, McCullough, Schmüdgen, Schweighofer,...]
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