Semidefinite Programming Characterization and Computation of Real Radical Ideals
 MEGA 2011

Monique Laurent, CWI, Amsterdam \& Tilburg University

Joint work with
Jean Lasserre, LAAS-CNRS Toulouse

Philipp Rostalski, UC Berkeley, now Dräger, Lübeck

May 30, 2011

Given polynomials $h_{1}, \ldots, h_{m} \in \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ generating the ideal

$$
I=\left(h_{1}, \ldots, h_{m}\right)
$$

1 Compute a base of the real radical ideal $\sqrt[\mathbb{R}]{I}$ of the ideal I

2 Compute the real variety $V_{\mathbb{R}}(I)$

Assuming that $V_{\mathbb{R}}(I)$ is finite.

■ Homotopy continuation methods
[Sommese, Verschelde, Wampler,..]
■ Elimination methods: Find polynomials in I with special structure that can be used to represent the roots:
\rightsquigarrow Compute polynomials in I in triangular shape: $f_{1} \in \mathbb{R}\left[x_{1}\right]$, $f_{2} \in \mathbb{R}\left[x_{1}, x_{2}\right], \ldots, f_{n} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ (via Gröbner bases)
\rightsquigarrow Compute a rational univariate representation (RUR) of the roots: $x_{i}=h_{i}(t) / h(t), f(t)=0 \quad$ [Rouillier, ...]
\rightsquigarrow Compute a border base and reduce to some eigenvalue computations
[Kehrein-Kreuzer-Robbiano, Mourrain, Möller, Stetter,...]

- Subdivision methods combined with search methods and real root counting [Mourrain-Pavone, ...]

■ Khovanskii-Rolle continuation: exploiting sharp bounds for real roots of fewnomials

Our contribution:

- A characterization of the real radical ideal $\sqrt[\mathbb{R}]{I}$, as kernel of a positive semidefinite moment matrix

■ When $\left|V_{\mathbb{R}}(I)\right|<\infty$, an algorithm for computing a base of $\sqrt[\mathbb{R}]{I}$ and the real variety $V_{\mathbb{R}}(I)$

Remarks about our method:

- Real algebraic in nature: no complex roots are computed
\square Works if $V_{\mathbb{R}}(I)$ is finite (while $V_{\mathbb{C}}(I)$ could be infinite)
- Numerical: uses semidefinite programming (SDP)

Outline

- Recap: (Real) Nullstellensatz, sums of squares of polynomials and semidefinite programming (SDP), eigenvalue method
- Moment matrices and real radical ideals

■ Moment matrix approach for $\sqrt[\mathbb{R}]{I}$

- Extension to the complex case and links to the elimination method of Zhi-Reid
- Polynomial ring: $R=\mathbb{K}[\mathbf{x}] \quad[\mathbb{K}=\mathbb{R}$ or \mathbb{C}, mostly $\mathbb{R}]$
- (Complex) variety of $I \subseteq R$:

$$
V_{\mathbb{C}}(I)=\left\{v \in \mathbb{C}^{n} \mid f(v)=0 \forall f \in I\right\}
$$

- Real variety of I :

$$
V_{\mathbb{R}}(I)=V_{\mathbb{C}}(I) \cap \mathbb{R}^{n}
$$

- Radical ideal of I :

$$
\sqrt{I}=\left\{f \in R \mid \exists m \in \mathbb{N} \quad f^{m} \in I\right\}
$$

■ Real radical of I :

$$
\sqrt[\mathbb{R}]{I}=\left\{f \in R \mid \exists m \in \mathbb{N} \exists s_{i} \in R \quad f^{2 m}+\sum_{i} s_{i}^{2} \in I\right\}
$$

- The ideal I is radical if $I=\sqrt{I}$ and real radical if $I=\sqrt[\mathbb{R}]{I}$.
- Vanishing ideal of $V \subseteq \mathbb{K}^{n}$:

$$
I(V)=\{f \in R \mid f(v)=0 \forall v \in V\}
$$

Consider the ideal $\quad \mathbf{I}=\left(\left(x_{1}^{2}+\mathbf{x}_{2}^{2}\right)^{2}\right) \quad$ in $\mathbb{R}\left[x_{1}, x_{2}\right]$.

- $V_{\mathbb{C}}(I)=\left\{\left(x_{1}, \pm \mathbf{i} x_{1}\right) \mid x_{1} \in \mathbb{C}\right\}$

Radical ideal: $\sqrt{I}=\left(x_{1}^{2}+x_{2}^{2}\right)$.

- $V_{\mathbb{R}}(I)=\{(0,0)\}$

Real radical ideal: $\sqrt[\mathbb{R}]{I}=\left(x_{1}, x_{2}\right)$.
Indeed: $x_{1}^{4}+\underbrace{2 x_{1}^{2} x_{2}^{2}+x_{2}^{4}}_{\text {sum of squares }} \in I \Longrightarrow x_{1} \in \sqrt[\mathbb{R}]{I}$

Feature of this example:
$V_{\mathbb{R}}(I)$ is finite while $V_{\mathbb{C}}(I)$ is infinite.

Consider the ideal $\quad \mathbf{I}=\left(\left(x_{1}^{2}+\mathbf{x}_{2}^{2}\right)^{2}\right) \quad$ in $\mathbb{R}\left[x_{1}, x_{2}\right]$.

$$
■ V_{\mathbb{C}}(I)=\left\{\left(x_{1}, \pm \mathbf{i} x_{1}\right) \mid x_{1} \in \mathbb{C}\right\}
$$

Radical ideal: $\sqrt{I}=\left(x_{1}^{2}+x_{2}^{2}\right)=I\left(V_{\mathbb{C}}(I)\right)$.

- $V_{\mathbb{R}}(I)=\{(0,0)\}$

Real radical ideal: $\sqrt[\mathbb{R}]{I}=\left(x_{1}, x_{2}\right)=I\left(V_{\mathbb{R}}(I)\right)$.

Theorem

1 [Hilbert's Nullstellensatz] For an ideal $I \subseteq \mathbb{C}[\mathbf{x}]$,

$$
\sqrt{I}=I\left(V_{\mathbb{C}}(I)\right)
$$

2 [Real Nullstellensatz, Krivine (1964)]
For an ideal $I \subseteq \mathbb{R}[\mathbf{x}]$,

$$
\sqrt[\mathbb{R}]{I}=I\left(V_{\mathbb{R}}(I)\right)
$$

Hence, for an ideal $I=\left(h_{1}, \ldots, h_{m}\right)$
$1 V_{\mathbb{C}}(I)=\emptyset \Longleftrightarrow 1=\sum_{j=1}^{m} u_{j} h_{j} \in I$ [with LP]
2 $V_{\mathbb{R}}(I)=\emptyset \Longleftrightarrow 1+\sum_{i} s_{i}^{2}=\sum_{j=1}^{m} u_{j} h_{j} \in I \quad$ [with SDP] for some polynomials s_{i}, u_{j}.

Semidefinite programming

Semidefinite programming (SDP) is linear optimization (LP) over the cone of positive semidefinite matrices.

■ LP: vector variable $x \in \mathbb{R}^{n}, x \geq 0$
■ SDP: matrix variable $X \in \mathbb{R}^{n \times n}, X \succeq 0$ (positive semidefinite)

(Semidefinite program)

Given symmetric matrices $C, A_{j} \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{m}$, compute: $\max \operatorname{Tr}(C X)$ such that $\operatorname{Tr}\left(A_{j} X\right)=b_{j}(j=1, \ldots, m), X \succeq 0$

Dual SDP:

$$
\min b^{T} y \text { such that } \sum_{j=1}^{m} y_{j} A_{j}-C \succeq 0
$$

There are efficient (interior-point) algorithms to solve semidefinite programs (to arbitrary precision).

Gram-matrix method of Powers-Wörmann [1998]:

\[

\]

$$
f(x, y)=\left(\begin{array}{lll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{x \succeq 0}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Equating coefficients on both sides:

$$
\begin{aligned}
& x^{4}: a=1 \quad x^{3} y: 2 b=2 \quad x^{2} y^{2}: 2 c+d=3 \\
& x y^{3}: 2 e=2 \quad y^{4}: f=2 \\
& \quad X=\left(\begin{array}{ccc}
1 & 1 & c \\
1 & 3-2 c & 1 \\
c & 1 & 2
\end{array}\right) \succeq 0 \Longleftrightarrow-1 \leq c \leq 1 \\
& c=-1 \rightsquigarrow f=\left(x^{2}+x y-y^{2}\right)^{2}+\left(y^{2}+2 x y\right)^{2} \\
& c=0 \rightsquigarrow f=\left(x^{2}+x y\right)^{2}+\frac{3}{2}\left(x y+y^{2}\right)^{2}+\frac{1}{2}\left(x y-y^{2}\right)^{2}
\end{aligned}
$$

The eigenvalue method: Linear algebra in $\mathcal{A}=R / /$

$I \subseteq R$ ideal $\rightsquigarrow \mathcal{A}=R / I$ its quotient algebra.

Lemma

- $\left|V_{\mathbb{C}}(I)\right|<\infty \Longleftrightarrow \operatorname{dim} \mathcal{A}<\infty$.

■ $\left|V_{\mathbb{C}}(I)\right| \leq \operatorname{dim} \mathcal{A}$, with equality if and only if I is radical.

Theorem (Stickelberger)

For $h \in R$, consider the multiplication operator (by h):

$$
\begin{array}{rlll}
M_{h}: \mathcal{A} & \rightarrow \mathcal{A} \\
& {[f]} & \mapsto & {[h f]}
\end{array}
$$

- The eigenvalues of M_{h} are $\left\{h(v) \mid v \in V_{\mathbb{C}}(I)\right\}$.
- The eigenvectors of M_{h}^{T} give the points $v \in V_{\mathbb{C}}(I)$.
- $\mathcal{B}=\left\{b_{1}=1, b_{2}, \ldots, b_{N}\right\}:$ a monomial base of $\mathcal{A}=R / I$
- Write any (border) monomial: $x_{i} b_{j}=\underbrace{\sum_{k=1}^{N} c_{k}^{(i j)} b_{k}}_{\in \operatorname{Span}(\mathcal{B})}+\underbrace{g_{i} b_{1}}_{\in 1} \quad x_{i} b_{j} \quad x_{i} b_{N} \quad$

- $G=\left\{g^{(i j)} \mid i=1, \ldots, n, j=1, \ldots, N\right\}$: (border) base of I.

Therefore: To find a base of $\sqrt[\mathbb{R}]{I}$, it suffices to compute a base \mathcal{B} of $\mathcal{A}=R / \sqrt[\mathbb{R}]{I}$ and the multiplication matrices $M_{x_{i}}$

Characterizing border bases

Theorem (Mourrain 1999)

Given:

- \mathcal{B} : set of monomials connected to 1 , i.e., $1 \in \mathcal{B}$ and
$\forall m \in \mathcal{B} \quad \exists m^{\prime} \in \mathcal{B} \quad \exists x_{i} \quad m=x_{i} m^{\prime}$
$\mathcal{B}^{+}=\mathcal{B} \cup x_{1} \mathcal{B} \cup \ldots \cup x_{n} \mathcal{B}$: prolongation of \mathcal{B} (by one degree).
$\partial \mathcal{B}=\mathcal{B}^{+} \backslash \mathcal{B}$: border of \mathcal{B}.
- $G \subseteq R$: rewriting family for \mathcal{B}, permitting to express any monomial of $\partial \mathcal{B}$ in $\operatorname{Span}(\mathcal{B})$.

Then:
\mathcal{B} is a base of $\mathcal{A}=R /(G) \quad \rightsquigarrow[G$ is a border base]
i.e., any polynomial can be uniquely written in $\operatorname{Span}(\mathcal{B})$ modulo the ideal (G)
\Longleftrightarrow The (formal) multiplication matrices $M_{x_{1}}, \ldots, M_{x_{n}}$ commute pairwise.

Count (real) roots and compute \sqrt{I} with the Hermite form

Consider the Hermite quadratic form:

$$
\begin{array}{rll}
H: & \mathcal{A} & \rightarrow \mathcal{A} \\
& (f, g) & \mapsto \operatorname{Tr}\left(M_{f g}\right)
\end{array}
$$

Theorem

Let I be a zero-dimensional ideal, i.e., $\left|V_{\mathbb{C}}(I)\right|<\infty$.

- $\operatorname{rank}(H)=\left|V_{\mathbb{C}}(I)\right|$.
- $\operatorname{Sign}(H)=\left|V_{\mathbb{R}}(I)\right|$.
- $\sqrt{I}=\operatorname{Ker}(H)+I$.

Our strategy to compute $\sqrt[\mathbb{R}]{I}$: Work on the dual side

- Goal: Compute the real radical $\sqrt[\mathbb{R}]{I}$ of $I=\left(h_{1}, \ldots, h_{m}\right)$.

■ Strategy: Use the dual space $R^{*}:=$ linear forms Λ on R.
$v \in V_{\mathbb{R}}(I) \rightsquigarrow \Lambda_{v} \in R^{*}$: Evaluation at v, defined by

$$
\Lambda_{v}(f)=f(v) \text { for } f \in R
$$

Properties of Λ_{v} :
$1 \Lambda_{v}$ vanishes on 1 [True for all complex v] Indeed: $\Lambda_{v}\left(h_{j} x^{\alpha}\right)=h_{j}(v) v^{\alpha}=0 \forall j \forall \alpha$
$2 \Lambda_{v}$ is positive on squares: $\Lambda_{v} \succeq 0$
[True only for real v] Indeed: $\Lambda_{v}\left(f^{2}\right)=f(v)^{2} \geq 0 \quad \forall f \in R$

Moment matrices and Hankel operators

Definition

The moment matrix $M(\Lambda)$ of $\Lambda \in R^{*}$ is indexed by all monomials:

$$
M(\Lambda)=\left(\Lambda\left(x^{\alpha} x^{\beta}\right)\right)_{\alpha, \beta \in \mathbb{N}^{n}}
$$

$\rightsquigarrow M(\Lambda)$ is a generalized Hankel matrix.

Lemma

Λ positive on squares $\Longleftrightarrow M(\Lambda) \succeq 0$: positive semidefinite matrix.
Proof: $\Lambda\left(f^{2}\right)=\bar{f}^{T} M(\Lambda) \bar{f} \quad$ where $f=\sum_{\alpha} f_{\alpha} x^{\alpha}, \bar{f}=\left(f_{\alpha}\right)$.

Remark

$M(\Lambda)$ is the matrix (in the monomial/dual bases of R, R^{*}) of the Hankel operator $H_{\Lambda}: f \in R \mapsto f \cdot \Lambda \in R^{*}$, defined by

$$
(f \cdot \Lambda)(g)=\Lambda(f g) \quad \forall g \in R
$$

This lecture: Use the terminology of moment matrices.
$\Lambda \in R^{*} \rightsquigarrow$
Ker $M(\Lambda)=\left\{f \in R \mid \bar{g}^{T} M(\Lambda) \bar{f}=0\right.$, i.e., $\left.\Lambda(f g)=0 \forall g \in R\right\}$

Proposition

$1 \operatorname{Ker} M(\Lambda)$ is an ideal, with $\operatorname{dim} R / \operatorname{Ker} M(\Lambda)=\operatorname{rank} M(\Lambda)$. \mathcal{B} column base of $M($ t.a $) \Longleftrightarrow \mathcal{B}$ is a base of $R / \operatorname{Ker} M(\Lambda)$
$2 \Lambda \succeq 0 \Longrightarrow \operatorname{Ker} M(\Lambda)$ is a real radical ideal.
3 Assume $\Lambda \succeq 0$ and $\operatorname{rank} M(\Lambda)<\infty$. Then, $\Lambda \in \operatorname{cone}\left\{\Lambda_{v} \mid v \in \mathbb{R}^{n}\right\}$

Proof of (2): Assume $\sum_{i} p_{i}^{2} \in \operatorname{Ker} M(\Lambda)$. Then:
$0=\Lambda\left(\sum_{i} p_{i}^{2}\right)=\sum_{i} \underbrace{\Lambda\left(p_{i}^{2}\right)}_{\geq 0} \Longrightarrow \Lambda\left(p_{i}^{2}\right)=0 \Longrightarrow p_{i} \in \operatorname{Ker} M(\Lambda)$
Curto-Fialkow (1996) show (3) with functional analysis
Next: Short proof using the Real Nullstellensatz

Theorem (Finite rank moment matrix thm, Curto-Fialkow 1996)

Let $\Lambda \in R^{*}$. Assume $M(\Lambda) \succeq 0$ and $\operatorname{rank} M(\Lambda)=r<\infty$. Then

$$
\Lambda=\sum_{i=1}^{r} \lambda_{i} \Lambda_{v_{i}}
$$

for some $\lambda_{i}>0$ and $\left\{v_{1}, \ldots, v_{r}\right\}=V(\operatorname{Ker} M(\Lambda)) \subseteq \mathbb{R}^{n}$.
[Λ has a finite atomic representing measure]

Proof:

\square Ker $M(\Lambda)$ is real radical

$$
\text { [as } M(\Lambda) \succeq 0]
$$

\square Ker $M(\Lambda)$ is zero-dimensional $\quad[$ as $\operatorname{dim} R / \operatorname{Ker} M(\Lambda)=r]$

- $V(\operatorname{Ker} M(\Lambda)):=\left\{v_{1}, \ldots, v_{r}\right\} \subseteq \mathbb{R}^{n}$

■ Ker $M(\Lambda)=I\left(\left\{v_{1}, \ldots, v_{r}\right\}\right)$
■ $\Lambda=\sum_{i=1}^{r} \Lambda\left(p_{i}^{2}\right) \Lambda_{v_{i}} \quad$ [with p_{i} interpolation polynomials at $\left.v_{i}\right]$

Given: $I=(\underbrace{h_{1}, \ldots, h_{m}}_{H}), D=\max _{j} \operatorname{deg}\left(h_{j}\right)$
For $t \geq D$, define:

- The prolongation of H up to degree t :

$$
\langle H \mid t\rangle=\left\{h_{j} x^{\alpha} \mid \operatorname{deg}\left(h_{j} x^{\alpha}\right) \leq t\right\} \subseteq I \cap R_{t} .
$$

- The cone of truncated positive linear forms:

$$
\mathcal{L}_{t, \succeq}=\{\Lambda \in R_{t}^{*} \mid \Lambda(f)=0 \forall f \in\langle H \mid t\rangle, \underbrace{\Lambda\left(f^{2}\right) \geq 0 \forall f \in R_{\lfloor t / 2\rfloor}}_{M_{\lfloor t / 2\rfloor}(\Lambda) \succeq 0}\}
$$

Clearly: $\mathcal{L}_{t, \succeq} \supseteq \operatorname{cone}\left\{\Lambda_{v} \mid v \in V_{\mathbb{R}}(I)\right\}$

Lemma (Generic linear form)

The following properties are equivalent for $\Lambda \in \mathcal{L}_{t, \succeq}$:
$1 \wedge$ lies in the relative interior of the cone $\mathcal{L}_{t, \succeq}$ (\wedge is generic).
2 rank $M_{\lfloor t / 2\rfloor}(\Lambda)$ is maximum.
$3 \operatorname{Ker} M_{\lfloor t / 2\rfloor}(\Lambda)$ is minimum, i.e.,

$$
\underbrace{\operatorname{Ker} M_{\lfloor t / 2\rfloor}(\Lambda)}_{\mathcal{N}_{t:} \text { generic kernel }} \subseteq \operatorname{Ker} M_{\lfloor t / 2\rfloor}\left(\Lambda^{\prime}\right) \quad \forall \Lambda^{\prime} \in \mathcal{L}_{t, \succeq} .
$$

Lemma

$\mathcal{N}_{t} \subseteq \mathcal{N}_{t+1} \subseteq \ldots \subseteq \sqrt[\mathbb{R}]{ }$
Proof: For all $v \in V_{\mathbb{R}}(I), \quad \mathcal{N}_{t} \subseteq \operatorname{Ker} M_{\lfloor t / 2\rfloor}\left(\Lambda_{v}\right) \subseteq I(v)$. Hence: $\mathcal{N}_{t} \subseteq I\left(V_{\mathbb{R}}(I)\right)=\sqrt[\mathbb{R}]{ } I$.

Semidefinite characterization of $\sqrt[\mathbb{R}]{I}$

$$
I=\left(h_{1}, \ldots, h_{m}\right), \quad \mathcal{N}_{t} \subseteq \sqrt[\mathbb{R}]{I}
$$

Theorem

$\sqrt[\mathbb{R}]{I}=\left(\mathcal{N}_{t}\right)$ for t large enough.
Sketch of proof: For t large enough, \mathcal{N}_{t} contains a given basis $\left\{g_{1}, \ldots, g_{L}\right\}$ of $\sqrt[\mathbb{R}]{I}$:

- Real Nullstellensatz: $g_{l}^{2 m}+\sum_{i} s_{i}^{2}=\sum_{j=1}^{m} u_{j} h_{j}$
- \mathcal{N}_{t} is "real ideal like": $g_{I}^{2 m}+\sum_{i} s_{i}^{2} \in \mathcal{N}_{t} \Longrightarrow g_{I} \in \mathcal{N}_{t}$

Question

How to recognize when \mathcal{N}_{t} generates $\sqrt[\mathbb{R}]{ }$ I ?

Next: An answer in the case $\left|V_{\mathbb{R}}(I)\right|<\infty$

$$
I=\left(h_{1}, \ldots, h_{m}\right), D=\max _{j} \operatorname{deg}\left(h_{j}\right), d=\lceil D / 2\rceil, t \geq D
$$

Theorem (Stopping criterion)

Let Λ be a generic element of $\mathcal{L}_{t, 乙}$.
Assume one of the following two flatness conditions holds:
(F1) $\operatorname{rank} M_{s}(\Lambda)=\operatorname{rank} M_{s-1}(\Lambda) \quad$ for some $s \in[D,\lfloor t / 2\rfloor]$
$(\mathrm{Fd}) \operatorname{rank} M_{s}(\Lambda)=\operatorname{rank} M_{s-d}(\Lambda) \quad$ for some $s \in[d,\lfloor t / 2\rfloor]$
Then:

- $\sqrt[\mathbb{R}]{I}=\left(\operatorname{Ker} M_{s}(\Lambda)\right)$
- Any column base \mathcal{B} of $M_{s-1}(\Lambda)$ is a base of $R / \sqrt[\mathbb{R}]{I}$
- The multiplication matrices can be constructed from $M_{s}(\Lambda)$

Key tool: Use the Flat extension thm of [Curto-Fialkow 1996]: rank $M_{s}(\Lambda)=\operatorname{rank} M_{s-1}(\Lambda) \Longrightarrow \Lambda$ has a flat extension $\tilde{\Lambda} \in R^{*}$, i.e., $\operatorname{rank} M(\tilde{\Lambda})=\operatorname{rank} M_{s}(\Lambda)$; thus $\operatorname{Ker} M(\tilde{\Lambda})=\left(\operatorname{Ker} M_{s}(\Lambda)\right)$.

Theorem (Termination)

1 If $V_{\mathbb{R}}(I)=\emptyset$, then $1 \in \mathcal{N}_{t}$ for some t.
2 If $1 \leq\left|V_{\mathbb{R}}(I)\right|<\infty$, then the stopping criterion (F1) (or (Fd)) holds for some t.

Sketch of proof:

1 For $t \geq t_{0}, \mathcal{N}_{t}=\operatorname{Ker} M_{\lfloor t / 2\rfloor}(\Lambda)$ contains a Gröbner base $\left\{g_{1}, \ldots, g_{L}\right\}$ of $\sqrt[\mathbb{R}]{I}$ (for total degree ordering)
$\mathcal{B}=\left\{b_{1}, \ldots, b_{N}\right\}:$ standard monomials \rightsquigarrow base of $R / \sqrt[\mathbb{R}]{l}$
2 Let $s:=1+\max _{b \in \mathcal{B}} \operatorname{deg}(b)$ and $t \geq \max \left\{t_{0}, 2 s\right\}$

Small example: $I=(h), h=\left(x_{1}^{2}+x_{2}^{2}\right)^{2}$
1
x_{1}
x_{2}
x_{1}^{2}
$x_{1} x_{2}$
$x_{2}^{2}$$\left(\begin{array}{cccccc}1 & x_{1} & x_{2} & \mathbf{x}_{1}^{2} & x_{1} x_{2} & x_{2}^{2} \\ \Lambda(1) & \Lambda\left(x_{1}\right) & \Lambda\left(x_{2}\right) & \Lambda\left(\mathrm{x}_{1}^{2}\right) & \Lambda\left(x_{1} x_{2}\right) & \Lambda\left(\mathrm{x}_{2}^{2}\right) \\ \Lambda\left(x_{1}\right) & \Lambda\left(\mathrm{x}_{1}^{2}\right) & \Lambda\left(x_{1} x_{2}\right) & \Lambda\left(x_{1}^{3}\right) & \Lambda\left(x_{1}^{2} x_{2}\right) & \Lambda\left(x_{1} x_{2}^{2}\right) \\ \Lambda\left(x_{2}\right) & \Lambda\left(x_{1} x_{2}\right) & \Lambda\left(x_{2}^{2}\right) & \Lambda\left(x_{1}^{2} x_{2}\right) & \Lambda\left(x_{1} x_{2}^{2}\right) & \Lambda\left(\mathrm{x}_{2}^{3}\right) \\ \Lambda\left(\mathrm{x}_{1}^{2}\right) & \Lambda\left(x_{1}^{3}\right) & \Lambda\left(x_{1}^{2} x_{2}\right) & \Lambda\left(x_{1}^{4}\right) & \Lambda\left(x_{1}^{3} x_{2}\right) & \Lambda\left(x_{1}^{2} x_{2}^{2}\right) \\ \Lambda\left(x_{1} x_{2}\right) & \Lambda\left(x_{1}^{2} x_{2}\right) & \Lambda\left(x_{1} x_{2}^{2}\right) & \Lambda\left(x_{1}^{3} x_{2}\right) & \Lambda\left(x_{1}^{2} x_{2}^{2}\right) & \Lambda\left(x_{1} x_{2}^{3}\right) \\ \Lambda\left(x_{2}^{2}\right) & \Lambda\left(x_{1} x_{2}^{2}\right) & \Lambda\left(x_{2}^{3}\right) & \Lambda\left(x_{1}^{2} x_{2}^{2}\right) & \Lambda\left(x_{1} x_{2}^{3}\right) & \Lambda\left(x_{2}^{4}\right)\end{array}\right) \succeq 0$
$\Lambda \in \mathcal{L}_{4, \succeq}$ if $\mathbf{M}_{\mathbf{2}}(\boldsymbol{\Lambda}) \succeq \mathbf{0}$ and $\mathbf{0}=\boldsymbol{\Lambda}(\mathbf{h})=\underbrace{\Lambda\left(x_{1}^{4}\right)}_{\geq 0}+\underbrace{\Lambda\left(x_{2}^{4}\right)}_{\geq 0}+2 \underbrace{\Lambda\left(x_{1}^{2} x_{2}^{2}\right)}_{\geq 0}$
Hence: $\Lambda\left(x_{1}^{4}\right)=\Lambda\left(x_{2}^{4}\right)=\Lambda\left(x_{1}^{2} x_{2}^{2}\right)=0$

Small example: $I=(h), h=\left(x_{1}^{2}+x_{2}^{2}\right)^{2}$
1
x_{1}
x_{2}
\mathbf{x}_{1}^{2}
$x_{1} x_{2}$
$x_{2}^{2}$$\left(\begin{array}{cccccc}1 & x_{1} & x_{2} & \mathbf{x}_{1}^{2} & x_{1} x_{2} & x_{2}^{2} \\ \Lambda(1) & \Lambda\left(x_{1}\right) & \Lambda\left(x_{2}\right) & \Lambda\left(\mathbf{x}_{1}^{2}\right) & \Lambda\left(x_{1} x_{2}\right) & \Lambda\left(x_{2}^{2}\right) \\ \Lambda\left(x_{1}\right) & \Lambda\left(x_{1}^{2}\right) & \Lambda\left(x_{1} x_{2}\right) & \Lambda\left(x_{1}^{3}\right) & \Lambda\left(x_{1}^{2} x_{2}\right) & \Lambda\left(x_{1} x_{2}^{2}\right) \\ \Lambda\left(x_{2}\right) & \Lambda\left(x_{1} x_{2}\right) & \Lambda\left(x_{2}^{2}\right) & \Lambda\left(x_{1}^{2} x_{2}\right) & \Lambda\left(x_{1} x_{2}^{2}\right) & \Lambda\left(x_{2}^{3}\right) \\ \Lambda\left(\mathbf{x}_{1}^{2}\right) & \Lambda\left(x_{1}^{3}\right) & \Lambda\left(x_{1}^{2} x_{2}\right) & 0 & \Lambda\left(x_{1}^{3} x_{2}\right) & \Lambda\left(x_{1}^{2} x_{2}^{2}\right) \\ \Lambda\left(x_{1} x_{2}\right) & \Lambda\left(x_{1}^{2} x_{2}\right) & \Lambda\left(x_{1} x_{2}^{2}\right) & \Lambda\left(x_{1}^{3} x_{2}\right) & 0 & \Lambda\left(x_{1} x_{2}^{3}\right) \\ \Lambda\left(x_{2}^{2}\right) & \Lambda\left(x_{1} x_{2}^{2}\right) & \Lambda\left(x_{2}^{3}\right) & \Lambda\left(x_{1}^{2} x_{2}^{2}\right) & \Lambda\left(x_{1} x_{2}^{3}\right) & 0\end{array}\right) \succeq 0$

Hence: $\Lambda\left(x^{\alpha}\right)=0$ for all $x^{\alpha} \neq 1$
$\rightsquigarrow \operatorname{rank} M_{2}(\Lambda)=\operatorname{rank} M_{0}(\Lambda)=1$
$\rightsquigarrow \sqrt[\mathbb{R}]{I}=\left(\operatorname{Ker} M_{2}(\Lambda)\right)=\left(x_{1}, x_{2}\right)$

Moment matrix algorithm for $\sqrt[\mathbb{R}]{I}$

Input: $h_{1}, \ldots, h_{m} \in R$
[Assume $\left|V_{\mathbb{R}}(I)\right|<\infty$]
Output: base \mathcal{B} of $R / \sqrt[\mathbb{R}]{I}$, multiplication matrices $M_{x_{i}}$ of $R / \sqrt[\mathbb{R}]{I}$ or an infeasibility certificate if $V_{\mathbb{R}}(I)=\emptyset$

Algorithm: For $t \geq D$
1 Compute a generic element $\Lambda \in \mathcal{L}_{t, \succeq}$
2 Check if (F1) or (Fd) holds
3 If yes, return a column base \mathcal{B} of $M_{s-1}(\Lambda), M_{x_{i}}=M_{\mathcal{B}}{ }^{-1} P_{i}$

- $M_{\mathcal{B}}$: principal submatrix of $M_{s-1}(\Lambda)$ indexed by \mathcal{B}
- P_{i} : submatrix of $M_{s}(\Lambda)$ with rows in \mathcal{B} and columns in $x_{i} \mathcal{B}$

4 If no, go to Step 1 with $t \rightarrow t+1$

Theorem (Termination)

If $\left|V_{\mathbb{R}}(I)\right|<\infty$, the algorithm terminates.

Solve the SDP: min 0 s.t. $\begin{cases}\Lambda(f)=0 \forall f \in\langle H \mid t\rangle & \text { (L) } \\ \wedge(1)=1 & \text { (N) }\end{cases}$

Introduce variables $y_{\alpha}=\Lambda\left(x^{\alpha}\right)$ for $|\alpha| \leq t$

- Positive semidefinite condition: $\sum_{|\alpha| \leq t} B_{\alpha} y_{\alpha} \succeq 0$
B_{α} are matrices indexed by monomials of degree $\leq\lfloor t / 2\rfloor$
- Linear condition: $A_{t} y=0$

The coefficient vectors of polynomials in $\langle H \mid t\rangle$ are rows of A_{t}

- Normalization condition: $y_{0}=1$

Interior-point algorithms (with self-dual embedding technique) return an optimal solution in the relative interior of the optimal face \rightsquigarrow generic element of $\mathcal{L}_{t, \succeq}$

$$
\begin{aligned}
& I=\left(5 x_{1}^{9}-6 x_{1}^{5} x_{2}+x_{1} x_{2}^{4}+2 x_{1} x_{3},-2 x_{1}^{6} x_{2}+2 x_{1}^{2} x_{2}^{3}+2 x_{2} x_{3}, x_{1}^{2}+x_{2}^{2}-0.265625\right) \\
& D=9, d=5,\left|V_{\mathbb{R}}(I)\right|=8,\left|V_{\mathbb{C}}(I)\right|=20
\end{aligned}
$$

order	rank sequence of			
t	$M_{s}(\Lambda)(0 \leq s \leq\lfloor t / 2\rfloor)$	extract. order s	accuracy	comm. error
10	148162534	-	-	-
12	13915222632	-	-	-
14	1381012162024	3	0.12786	0.00019754
16	1488812162024	4	$4.6789 \mathrm{e}-5$	$4.7073 \mathrm{e}-5$

$\mathcal{B}=\left\{1, x_{1}, x_{2}, x_{3}, x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\} \rightsquigarrow$ border basis G of size 10 Real solutions:

$$
\begin{cases}x_{1}=(-0.515,-0.000153,-0.0124) & x_{2}=(-0.502,0.119,0.0124) \\ x_{3}=(0.502,0.119,0.0124) & x_{4}=(0.515,-0.000185,-0.0125) \\ x_{5}=(0.262,0.444,-0.0132) & x_{6}=(-2.07 e-5,0.515,-1.27 e-6) \\ x_{7}=(-0.262,0.444,-0.0132) & x_{8}=(-1.05 e-5,-0.515,-7.56 e-7)\end{cases}
$$

The moment matrix approach for \sqrt{I}

Omit the PSD condition and work with the linear space:

$$
\mathcal{L}_{t}:=\left\{\Lambda \in R^{*} \mid \Lambda(f)=0 \forall f \in\langle H \mid t\rangle\right\}
$$

The same algorithm works: For $t \geq d$
1 Compute a generic element $\Lambda \in \mathcal{L}_{t}$

$$
\begin{array}{r}
{\left[\operatorname{rank} M_{s}(\Lambda) \text { maximum } \forall s \leq\lfloor t / 2\rfloor\right]} \\
{\left[\text { choose random element } \Lambda \in \mathcal{L}_{t}\right]}
\end{array}
$$

2 Check if (F1) or (Fd) holds
3 If yes, return a base \mathcal{B} of R / J, where $J=\left(\operatorname{Ker} M_{s}(\Lambda)\right)$ satisfies $I \subseteq J \subseteq \sqrt{I}$ so that $\sqrt{J}=\sqrt{I}$

4 If no, go to Step 1 with $t \rightarrow t+1$

Computing the radical ideal \sqrt{I}

Given: Generic $\Lambda \in \mathcal{L}_{t}$ with rank $M_{s}(\Lambda)=\operatorname{rank} M_{s-1}(\Lambda)$, $J=\left(\operatorname{Ker} M_{s}(\Lambda)\right), \mathcal{B}=\left\{b_{1}, \ldots, b_{N}\right\}$ column base of $M_{s-1}(\Lambda)$
Goal: Find the Hermite matrix H of $J \quad \rightsquigarrow$ description of \sqrt{J}. Inspired by [Janovitz-Freireich, Szántó, Mourrain, Rónyai 2008]:
1 Compute the dual base $\left\{b_{1}^{*}, \ldots, b_{N}^{*}\right\}$ of \mathcal{B} s.t. $\Lambda\left(b_{i} b_{j}^{*}\right)=\delta_{i j}$

$$
\left[b_{1}^{*}, \ldots, b_{N}^{*}\right]^{T}=M_{\mathcal{B}}^{-1}\left[b_{1}, \ldots, b_{N}\right]^{T}
$$

$2 \Delta:=$ residue of $\sum_{i=1}^{N} b_{i} b_{i}^{*}$ in $\operatorname{Span}(\mathcal{B})$ modulo J
3 Claim: Hermite matrix $H=S T$

- $S: N \times \mathcal{M}_{2 s-2}$ matrix with rows the coefficient vectors of $\Delta b_{1}, \ldots, \Delta b_{N}$
- T : submatrix of $M_{s}(\Lambda)$ with row indices $\mathcal{M}_{2 s-2}$ and column indices \mathcal{B}
- Using the fact: $\operatorname{Tr}\left(M_{h}\right)=\Lambda(h \Delta)$ for $h \in R$

Example: the real/complex moment matrix algorithm

$$
I=\left(x_{1}^{2}-2 x_{1} x_{3}+5, x_{1} x_{2}^{2}+x_{2} x_{3}+1,3 x_{2}^{2}-8 x_{1} x_{3}\right), \quad D=3, d=2
$$

Ranks of $M_{s}(\Lambda)$ for generic $\Lambda \in \mathcal{L}_{t}, \mathcal{L}_{t, \succeq}$:

	$t=2$	3	4	5	6	7	8	9
$s=0$	1	1	1	1	1	1	1	1
$s=1$	4	4	4	4	4	4	4	4
$s=2$			8	8	8	8	8	$\mathbf{8}$
$s=3$					11	10	9	$\mathbf{8}$
$s=4$							12	10

	$t=2$	3	4	5	6
$s=0$	1	1	1	1	1
$s=1$	4	4	4	2	2
$s=2$			8	8	2
$s=3$					10

with PSD $\rightsquigarrow 2$ real roots

$$
I\left(h_{1}, \ldots, h_{m}\right), D=\max _{j} \operatorname{deg}\left(h_{j}\right)
$$

Theorem (Zhi-Reid 2004)

If the following dimension condition holds for $s \in[D, t]$:
(D) $\operatorname{dim} \pi_{s}\left(\mathcal{L}_{t}\right)=\operatorname{dim}_{s-1}\left(\mathcal{L}_{t}\right)=\operatorname{dim} \pi_{s}\left(\mathcal{L}_{t+1}\right)$
then one can construct the multiplication matrices of R / I.
Theorem (Link to the flatness condition)
The flatness condition for generic $\Lambda \in \mathcal{L}_{t}$, $s \in[D,\lfloor t / 2\rfloor]$:
(F1) $\operatorname{rank} M_{s}(\Lambda)=\operatorname{rank} M_{s-1}(\Lambda)$
implies the dimension condition at order $(t, 2 s)$:

$$
\operatorname{dim} \pi_{2 s}\left(\mathcal{L}_{t}\right)=\operatorname{dim}_{2 s-1}\left(\mathcal{L}_{t}\right)=\operatorname{dim} \pi_{2 s}\left(\mathcal{L}_{t+1}\right)
$$

\rightsquigarrow The stopping criterion (D) might hold earlier than (F1)

Extension to the real case

Complex case: Dimensions of projections of $\mathcal{L}_{t}=\langle H \mid t\rangle^{\perp}$ Real case: Dimension of cone $\mathcal{L}_{t, \succeq}=\operatorname{dim} G_{t}^{\perp}$

$$
G_{t}:=\langle H \mid t\rangle \cup\left\{f_{x}^{\alpha}\left|f \in \mathcal{N}_{t},|\alpha| \leq\lfloor t / 2\rfloor\right\}\right.
$$

Theorem

If the following dimension condition holds for $s \in[D, t]$:
$\left(D_{+}\right) \quad \operatorname{dim} \pi_{s}\left(G_{t}^{\perp}\right)=\operatorname{dim} \pi_{s-1}\left(G_{t}^{\perp}\right)=\operatorname{dim} \pi_{s}\left(\left(G_{t}^{+}\right)^{\perp}\right)$ then one can construct the multiplication matrices of R / J, where $I \subseteq J \subseteq \sqrt[\mathbb{R}]{I}$, with equality: $J=\sqrt[\mathbb{R}]{I}$ if $\operatorname{dim} \pi_{s}\left(G_{t}^{\perp}\right)=\left|V_{\mathbb{R}}(I)\right|$.

Theorem (Link to the flatness condition)

(F1) $\operatorname{rank} M_{s}(\Lambda)=\operatorname{rank} M_{s-1}(\Lambda)$ for generic $\Lambda \in \mathcal{L}_{t, 乙}$ is equivalent to the dimension condition at order $(t, 2 s)$:
$\left(D_{++}\right) \quad \operatorname{dim} \pi_{2 s}\left(G_{t}^{\perp}\right)=\operatorname{dim} \pi_{2 s-1}\left(G_{t}^{\perp}\right)=\operatorname{dim} \pi_{2 s}\left(\left(G_{t}^{+}\right)^{\perp}\right)$

Example

$$
\begin{aligned}
& I=\left(x_{1}^{2}-2 x_{1} x_{3}+5, x_{1} x_{2}^{2}+x_{2} x_{3}+1,3 x_{2}^{2}-8 x_{1} x_{3}\right) \\
& \operatorname{rank} M_{2}(\Lambda)=\operatorname{rank} M_{1}(\Lambda)=2 \\
& \text { for } \Lambda \in \mathcal{L}_{6, \succeq}
\end{aligned}
$$ $\operatorname{dim} \pi_{2}\left(G_{5}^{\perp}\right)=\operatorname{dim} \pi_{1}\left(G_{5}^{\perp}\right)=\operatorname{dim} \pi_{2}\left(\left(G_{5}^{+}\right)^{\perp}\right)=2$

Bottleneck: Solve large SDP problems involving matrices indexed by all monomials up to degree t

Idea: Combine the SDP based moment matrix approach with border base algorithms to obtain an iterative procedure, involving SDP computations on smaller matrices

Theorem (Generalized flat extension theorem, La-Mourrain 2009)
Let $\Lambda: \mathcal{B}^{+} \cdot \mathcal{B}^{+} \rightarrow \mathbb{R}$, where \mathcal{B} is connected to 1 .
If $\operatorname{rank} M_{\mathcal{B}}(\Lambda)=\operatorname{rank} M_{\mathcal{B}^{+}}(\Lambda)$, then Λ has a flat extension to $\tilde{\Lambda} \in R^{*}$.
\rightsquigarrow Lecture of Bernard Mourrain this afternoon

- J.B. Lasserre, M. Laurent and P. Rostalski.

Semidefinite characterization and computation of real radical ideals. Foundations of Computational Mathematics, 8(5):607-647, 2008.

- J.B. Lasserre, M. Laurent and P. Rostalski.

A unified approach for real and complex zeros of zero-dimensional ideals. In Emerging Applications of Algebraic Geometry, M. Putinar and S. Sullivant, eds., vol. 149, pp 125-156, 2009.

- J.B. Lasserre, M. Laurent and P. Rostalski.

A prolongation-projection algorithm for computing the finite real variety of an ideal. Theoretical Computer Science, 410:2685-2700, 2009.

- M. Laurent and P. Rostalski.

The approach of moments for polynomial equations. Survey paper, to appear as chapter of Handbook on Semidefinite, Cone and Polynomial Optimization.

