
STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FORCODESMONIQUE LAURENTAbstra
t. We give a hierar
hy of semide�nite upper bounds for the maximum sizeA(n; d) of a binary 
ode of word length n and minimum distan
e at least d. At any �xedstage in the hierar
hy, the bound 
an be 
omputed (to an arbitrary pre
ision) in timepolynomial in n; this is based on a result of de Klerk, Pase
hnik and S
hrijver [2℄ aboutthe regular �-representation for matrix �-algebras. The Delsarte bound for A(n; d) is the�rst bound in the hierar
hy, and the new bound of S
hrijver [13℄ is lo
ated between the�rst and se
ond bounds in the hierar
hy. While 
omputing the se
ond bound involvesa semide�nite program with O(n7) variables and thus seems out of rea
h for interestingvalues of n, S
hrijver's bound 
an be 
omputed via a semide�nite program of size O(n3), aresult whi
h uses the expli
it blo
k-diagonalization of the Terwilliger algebra. We proposetwo strengthenings of S
hrijver's bound with the same 
omputational 
omplexity.
1. Introdu
tionWe 
onsider the problem of 
omputing the parameter A(n; d), de�ned as the maximumsize of a binary 
ode of word length n and minimum distan
e at least d. With P denotingthe 
olle
tion of all subsets of f1; : : : ; ng, we 
an identify 
ode words in f0; 1gn with theirsupports; so a 
ode C is a subset of P and the Hamming distan
e of I; J 2 P is equal tojI�J j. The minimum distan
e of a 
ode C is the minimum Hamming distan
e of distin
telements of C. If we de�ne the graph G(n; d) with node set P, two nodes I; J 2 P beingadja
ent if jI�J j 2 f1; : : : ; d� 1g, then a 
ode with minimum distan
e d 
orresponds to astable set in the graph G(n; d). Therefore, the parameter A(n; d) is equal to the stabilitynumber of the graph G(n; d), i.e., the maximum 
ardinality of a stable set in G(n; d).S
hrijver [13℄ introdu
ed re
ently an upper bound for A(n; d) whi
h re�nes the 
lassi
albound of Delsarte [3℄. While Delsarte bound is based on diagonalizing the (
ommutative)Bose-Mesner algebra of the Hamming s
heme and 
an be 
omputed via linear program-ming, S
hrijver's bound is based on blo
k-diagonalizing the (non-
ommutative) Terwilligeralgebra of the Hamming s
heme and 
an be 
omputed via semide�nite programming. Inboth 
ases the bounds 
an be formulated as the optimum of a (linear or semide�nite) pro-gram of size polynomial in n (size O(n) for Delsarte bound and size O(n3) for S
hrijver'sbound).Finding tight upper bounds for the stability number �(G) of a graph G = (V; E) hasbeen the subje
t of extensive resear
h. Lov�asz [9℄ introdu
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2 MONIQUE LAURENTwhi
h 
an be 
omputed, e.g., via the semide�nite program:
(1) #(G) := max Pi2V Xii s.t. X = (Xij)i;j2V[f0g � 0; X00 = 1;X0i = Xii (i 2 V); Xij = 0 (ij 2 E):The theta number 
an be 
omputed (with arbitrary pre
ision) in time polynomial in thenumber of nodes of the graph. Moreover, #(G) = �(G) when G is a perfe
t graph (see[5℄). S
hrijver [12℄ introdu
ed the strenghtening #0(G) of #(G) obtained by adding thenonnegativity 
onstraint X � 0 to the program (1) and proved that #0(G(n; d)) 
oin
ideswith Delsarte bound.Various methods have been proposed in the litterature for 
onstru
ting tighter semi-de�nite upper bounds for the stability number of a graph, in parti
ular, by Lov�asz andS
hrijver [10℄ and more re
ently by Lasserre [6, 7℄. In both 
ases a hierar
hy of upperbounds for �(G) is obtained with the property that the bound rea
hed at the �(G)-thiteration 
oin
ides in fa
t with �(G). It turns out that Lasserre's hierar
hy re�nes thehierar
hy of Lov�asz and S
hrijver (see [8℄).For k � 1, denote by `(k)(G) the bound in Lasserre's hierar
hy at the k-th iteration;see Se
tion 3.1 for the pre
ise de�nition. It is known (and easy to see) that, for �xedk, one 
an 
ompute (with arbitrary pre
ision) the parameter `(k)(G) in time polynomialin the number of nodes of the graph G. However, for the 
oding problem, the graphG(n; d) has 2n nodes and su
h 
omplexity is prohibitive for large n. A �rst 
ontributionof this paper (see Se
tion 3.2) is to show that, for �xed k, the bound `(k)(G(n; d)) 
an be
omputed (with arbitrary pre
ision) in time polynomial in n. This result is based on aresult of de Klerk, Pase
hnik and S
hrijver [2℄, re
alled in Se
tion 2.1, about redu
ing thesize of invariant semide�nite programs using the regular �-representation for the algebraof invariant matri
es under a
tion of a group.The �rst bound `(1)(G) in the hierar
hy is equal to the theta number #(G); its strength-ening obtained by adding nonnegativity is equal to #0(G) whi
h, for the graph G = G(n; d),
oin
ides with the bound of Delsarte for the parameter A(n; d). It turns out that the boundof S
hrijver [13℄ for A(n; d) lies between `(1)+ (G) and `(2)+ (G), the strengthenings of `(1)(G)and `(2)(G) obtained by adding 
ertain bounds on the variables. While S
hrijver's bound
an be 
omputed via a semide�nite program of size O(n3) and thus 
omputed in pra
ti
efor reasonable values of n, a pra
ti
al 
omputation of `(2)+ (G(n; d)) seems out of rea
h forinteresting values of n sin
e one would have to solve a semide�nite program with O(n7)variables.In Se
tion 3.3, we introdu
e two bounds `+(G(n; d)) and `++(G(n; d)) satisfying`(2)+ (G(n; d)) � `++(G(n; d)) � `+(G(n; d)) � `(1)+ (G(n; d));they are at least as good as S
hrijver's bound, and their 
omputation still relies on solvinga semide�nite program of size O(n3). This 
omplexity result follows from the fa
t thatthe new bounds, analogously to S
hrijver's bound, require the positive semide�niteness of
ertain matri
es lying in the Terwilliger algebra (or a variation of it) whose dimension isO(n3) and for whi
h the expli
it blo
k-diagonalization has been given by S
hrijver [13℄.



STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FOR CODES 3Some notation. We group here some notation that will be used throughout thepaper. We set V := f1; : : : ; ng and P := P(V ) denotes the 
olle
tion of all subsets of theset V . For a �nite set V and an integer k � 1, we set Pk(V) := fI � V j jIj � kg andP=k(V) := fI � V j jIj = kg. We let Sym(V) denote the set of all permutations of theset V and we set Sym(n) := Sym(V) when jVj = n. The letter G will be used to denote agraph, with node set V and edge set E , while the letter G will be used to denote a group(e.g., of automorphisms of G).
2. Algebrai
 preliminaries2.1. Preliminaries on invariant matri
es. Let G be a �nite group a
ting on a �niteset X ; that is, we have a homomorphism h : G ! Sym(X ), where Sym(X ) is the groupof permutations of X . For � 2 G, h(�) is a permutation of X and M� is the asso
iatedX � X permutation matrix with(M�)x;y = � 1 if h(�)(x) = y;0 otherwise.The set: A := (X�2G��M� j �� 2 R (� 2 G))is a matrix �-algebra; that is, A is 
losed under addition, s
alar and matrix multipli
ation,and 
onjugation.Any � 2 G a
ts on matri
es indexed by the set X . Namely, for a X �X matrix N and� 2 G, set �(N) := (N�(x);�(y))x;y2X :The matrix N is said to be invariant under the a
tion of G if �(N) = N for all � 2 G.Then the 
ommutant algebra AG of the algebra A, de�ned byAG := fN 2 C X�X j NM =MN 8M 2 Ag;
onsists pre
isely of the X � X matri
es N that are invariant under the a
tion of G; AGis again a matrix �-algebra.The orbit of (x; y) 2 X � X under a
tion of G is the set f(�(x); �(y)) j � 2 Gg. LetO1; : : : ;ON denote the orbits of the set X � X under the a
tion of the group G and, fori = 1; : : : ; N , let ~Di be the X � X matrix:(2) ( ~Di)x;y = � 1 if (x; y) 2 Oi0 otherwise.Then, ~D1; : : : ; ~DN form a basis of the 
ommutantAG (as ve
tor spa
e) and ~D1+: : :+ ~DN =J (the all-ones matrix). We normalize the ~Di to(3) Di := ~Diqh ~Di; ~Dii



4 MONIQUE LAURENTfor i = 1; : : : ; N . (For two N � N matri
es A;B, hA;Bi := Tr(ATB) = PNi;j=1AijBij .)Then, hDi;Dji = 1 if i = j and 0 otherwise. The multipli
ation parameters 
ki;j are de�nedby(4) DiDj = NXk=1 
ki;jDkfor all i; j = 1; : : : ; N . De�ne the N �N matri
es L1; : : : ; LN by(5) (Lk)i;j := 
ik;j for k; i; j = 1; : : : ; N:De Klerk, Pase
hnik and S
hrijver [2℄ show:Theorem 1. The mapping Dk 7! Lk is a �-isomorphism, known as the regular �-representationof AG. In parti
ular, given real s
alars x1; : : : ; xN ,(6) NXi=1 xiDi � 0() NXi=1 xiLi � 0:This result has important algorithmi
 appli
ations, as it permits to give more 
ompa
tformulations for invariant semide�nite programs. Consider a semide�nite program:(7) min hC; Y i s.t. hA`; Y i � b` (` = 1; : : : ;m); Y � 0in the X � X matrix variable Y . Assume that the program (7) is invariant under a
tionof the group G; that is, C is invariant under a
tion of G and, for every matrix Y feasiblefor (7) and � 2 G, the matrix �(Y ) is again feasible for Y . (This holds, e.g., if the 
lassof 
onstraints is invariant under a
tion of G, i.e., if for ea
h ` 2 f1; : : : ;mg and � 2 G,there exists `0 2 f1; : : : ;mg su
h that �(A`) = A`0 and b` = b`0 .) Then, if Y is feasible for(7) then the matrix Y0 := 1jGjP�2G �(Y ) too is feasible for (7), with the same obje
tivevalue as Y . Therefore, in (7), one 
an assume without loss of generality that Y is invariantunder a
tion of G; that is, Y is of the form Y = PNi=1 xiDi with x1; : : : ; xN 2 R . Thenthe obje
tive fun
tion reads hC; Y i = PNi=1 
ixi, after setting C = PNi=1 
iDi, and the
onstraints in (7) be
ome linear 
onstraints in x. As a dire
t appli
ation of Theorem 1,we �nd:Corollary 2. Consider the program (7) in the X � X matrix variable Y . If (7) isinvariant under the a
tion of the group G, then it 
an be equivalently reformulated as(8) min NXi=1 
ixi s.t. aT̀x � b` (` = 1; : : : ;m); NXi=1 xiLi � 0:The program (8) involves N �N matri
es and N variables. Here, N is the dimension ofthe algebra AG (the set of X � X invariant matri
es under the a
tion of the group G),typi
ally mu
h smaller than jX j.To use 
omputationally this result, one needs to know expli
itly the matri
es L1; : : : ; LN ,whi
h involves 
omputing the 
ardinality of the orbits of X � X and the multipli
ationparameters 
ki;j in (4). De Klerk, Pase
hnik and S
hrijver [2℄ apply this te
hnique for
omputing tighter bounds for the 
rossing number of a 
omplete bipartite graph. We



STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FOR CODES 5apply it in Se
tion 3.2 for redu
ing the size of the semide�nite programs permitting to
ompute the hierar
hy of semide�nite bounds for the parameter A(n; d).Example 3. Let X := P, the 
olle
tion of all subsets of the set V = f1; : : : ; ng, andG := Sym(V ), the group of permutations of V . Ea
h � 2 G indu
es a permutation of X ,again denoted by �, by letting �(I) := f�(i) j i 2 Ig for I 2 P. Two pairs (I; J); (I 0; J 0)(I; J; I 0; J 0 2 P) lie in the same orbit [i.e., I 0 = �(I), J 0 = �(J) for some � 2 G℄ if andonly if jIj = jI 0j, jJ j = jJ 0j and jI \ J j = jI 0 \ J 0j. Therefore, the 
ommutant algebra AGis generated by the matri
es M ti;j (i; j; t 2 Z+), where(9) (M ti;j)I;J := � 1 if jIj = i; jJ j = j; jI \ J j = t;0 otherwisefor I; J 2 P; AG =: An is known as the Terwilliger algebra of the Hamming s
heme(Terwilliger [15℄).Example 4. Consider again the set X := P, but now the group is G := Aut(P), the auto-morphism group of P. The group G 
onsists of the permutations � 2 Sym(P) preservingthe symmetri
 di�eren
e, i.e., for whi
h j�(I)��(J)j = jI�J j for all I; J 2 P. Thus,(10) G = f�sA j A � V; � 2 Sym(V )gwhere, for a set A � V , sA is the permutation of P mapping any I 2 P to sA(I) := A�I;we have jGj = 2nn!. Two pairs (I; J); (I 0; J 0) (I; J; I 0; J 0 2 P) lie in the same orbit [i.e.,I 0 = �(I), J 0 = �(J) for some � 2 G℄ if and only if jI�J j = jI 0�J 0j. Therefore, thealgebra AG is generated by the matri
es Mk (k = 0; 1; : : : ; n) where(11) (Mk)I;J := � 1 if jI�J j = k;0 otherwisefor I; J 2 P; AG =: Bn is known as the Bose Mesner algebra of the Hamming s
heme. TheBose-Mesner algebra is a subalgebra of the Terwilliger algebra, asMk =Pni;j=0M (i+j�k)=2i;jfor k = 0; 1; : : : ; n.In fa
t, it is known from invariant theory and C�-algebra theory that the algebra AG
an be blo
k-diagonalized. Therefore, there exists a semide�nite program equivalent tothe invariant program (7), where the matrix Y is repla
ed by a blo
k-diagonal matrix withpossibly repeated blo
ks; see, e.g., Gaterman and Parrilo [4℄. Su
h program is typi
allymore 
ompa
t than the program (8). However, �nding expli
itly the blo
k-diagonalizationis a nontrivial task in general. An advantage of the above mentioned redu
tion method,based on the regular �-representation, is that it involves the matri
es Li whi
h are expli
itlyde�ned in terms of the matri
es Di generating the algebra. Nevertheless, S
hrijver [13℄was able to determine expli
itly the blo
k-diagonalization for the Terwilliger algebra; were
all this result in the next se
tion as we will need it for the 
omputation of our strongerbounds for the 
oding problem.2.2. Blo
k-diagonalization of the Terwilliger algebra. While the Bose-Mesner alge-bra Bn is a 
ommutative algebra and thus 
an be diagonalized (see [3℄), the Terwilligeralgebra An is a non-
ommutative algebra. Its dimension is dimAn = �n+33 �, whi
h is thenumber of triples (i; j; t) for whi
h M ti;j 6= 0. As An is a matrix �-algebra 
ontaining the



6 MONIQUE LAURENTidentity, it 
an be blo
k-diagonalized, whi
h means the following: There exists a unitaryP�P 
omplex matrix U (i.e., U�U = I) and positive integersm and p0; q0; : : : ; pm; qm su
hthat the set U�AnU := fU�MU j M 2 Ang is equal to the 
olle
tion of blo
k-diagonalmatri
es 0BBB�
C0 0 : : : 00 C1 : : : 0... ... . . . 00 0 : : : Cm

1CCCA
where ea
h Ck (k = 0; 1; : : : ;m) is a blo
k-diagonal matrix with qk identi
al blo
ks Bk oforder pk:

Ck =
0BBB�
Bk 0 : : : 00 Bk : : : 0... ... . . . 00 0 : : : Bk

1CCCA ;
thus 2n = Pmk=0 pkqk and Pmk=0 p2k = dimAn = �n+33 �: By deleting 
opies of identi
alblo
ks, it follows that An is isomorphi
 to the algebra
(12) mMk=0 C pk�pk =

8>>><>>>:
0BBB�
B0 0 : : : 00 B1 : : : 0... ... . . . 00 0 : : : Bm

1CCCA j Bk 2 C pk�pk for k = 0; 1; : : : ;m
9>>>=>>>; :

An important fa
t for our purpose is that this isomorphism preserves positive semidef-initeness. The existen
e of a unitary matrix U with the above properties is standardC�-algebra theory (see, e.g., [14℄). S
hrijver [13℄ has 
onstru
ted expli
itly this matrix Uand the image of a matrix M 2 An in the algebra (12). We re
all some fa
ts from [13℄needed for our treatment; we refer to [13℄ for details and proofs.It turns out that U is real valued, m = bn2 
 and, for k = 0; 1; : : : ; bn2 
, the blo
k Bk hasorder pk = n � 2k + 1 and multipli
ity qk = �nk� � � nk�1�. In parti
ular, the blo
k B0 hasorder n + 1 and multilpli
ity 1. We now des
ribe expli
itly the matrix U . For this, fork = 1; : : : ; bn2 
, de�neLk := fb 2 RP jMk�1k�1;kb = 0 and bI = 0 if jIj 6= kg:Let Bk be a basis of Lk. Then jBkj = �nk� � � nk�1� and PI2P bI = 0 for b 2 Lk. SetB0 := fb0g where b0 := (1; 0; : : : ; 0)T 2 RP (the nonzero entry being indexed by ; 2 P)and de�ne Q := f(k; b; i) j k 2 f0; : : : ; bn2 
g; b 2 Bk; i 2 fk; k + 1; : : : ; n� kgg:Then jQj = 2n = jPj. For (k; i; b) 2 Q, de�ne the ve
tor
uk;i;b := �n� 2ki� k �� 12Mki;kb 2 RP :



STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FOR CODES 7Finally de�ne U as the P �Q matrix whose 
olumns are the ve
tors uk;i;b for (k; i; b) 2 Q.The following is shown in [13℄.Proposition 5. [13℄ The matrix U is orthogonal, i.e., UTU = I. Moreover, for a matrixM =Pni;j;t=0 xti;jM ti;j 2 An (with xti;j 2 R ), the matrix UTMU is a blo
k-diagonal matrixdetermined by the partition of Q into the 
lasses Qk;b := f(k; i; b) j k � i � n � kg (fork = 0; : : : ; bn2 
; b 2 Bk). For a given integer k = 0; : : : ; bn2 
, the blo
ks 
orresponding tothe 
lasses Qk;b (for b 2 Bk) are all identi
al to the following matrix:
(13) Bk(x) :=  Xt �n� 2ki� k �� 12�n� 2kj � k �� 12�ti;j;kxti;j!n�ki;j=k ;after setting(14) �ti;j;k := nXu=0(�1)t�u�ut�� n� 2kn� k � u��n� k � ui� u ��n� k � uj � u �
for i; j; k; t 2 f0; : : : ; ng. As An is isomorphi
 to the algebra (12), we have:(15) nXi;j;t=0xti;jM ti;j � 0() Bk(x) � 0 for k = 0; 1; : : : ; bn2 
:The above property (15) is the key tool used in [13℄ and in the present paper, whi
hallows redu
ing semide�nite programs involving matri
es in the Terwilliger algebra tosemide�nite programs of size O(n3).We will deal in this paper with matri
es of the form(16) ~M = �d 
T
 M� ; where M = nXi;j;t=0xti;jM ti;j; d 2 R ; 
 = nXi=0 
i�P=i(V ):Re
all that P=i(V ) = fI � V j jIj = ig and �P=i(V ) 2 f0; 1gP whose I-th entry is 1 if andonly if I 2 P=i(V ).Lemma 6. The matrix ~M from (16) is positive semide�nite if and only if Bk(x) � 0 fork = 1; : : : ; bn2 
, and~B0(x) := �d ~
T~
 B0(x)� � 0; where ~
 := (
i�ni� 12 )ni=0:Proof. Setting ~U := �1 00 UT� ;we have: ~UT ~M ~U = � d 
TUUT 
 UTMU� :It suÆ
es now to verify that (
TU)k;i;b = 
Tuk;i;b = 0 for (k; i; b) 2 Q with k � 1, and that(
TU)0;i;b0 = 
i�ni� 12 for i = 0; : : : ; n. This is dire
t veri�
ation using the above de�nitions;



8 MONIQUE LAURENTdetails are omitted. Hen
e, ~UT ~M ~U is blo
k-diagonal, with blo
ks ~B0(x) (with multipli
ity1) and Bk(x) (with multipli
ity qk) for k = 1; : : : ; bn2 
. The lemma now follows.
3. Semidefinite programming bounds for the stability number of a graph3.1. Lasserre's 
onstru
tion. Let G = (V; E) be a graph. A stable set in G is a setS � V 
ontaining no edge and the stability number �(G) of G is the maximum 
ardinalityof a stable set in G. Re
all Pk(V) = fI � V j jIj � kg for an integer k. Given a stableset S in G, de�ne x = (xI)I2Pk(V) 2 f0; 1gPk(V) and y = (yI)I2P2k(V) 2 f0; 1gP2k(V) withxI = 1 (resp., yI = 1) if and only if I � S, for I 2 Pk(V) (resp., for I 2 P2k(V)). Then yand the matrix Y := xxT satisfy:(17) Y � 0(18) YI;J = yI[J (for I; J 2 Pk(V))(19) YI;J = yI[J = 0 if I [ J 
ontains an edge (for I; J 2 Pk(V))(20) Y;;; = y; = 1(21) 0 � yI � yJ if J � I (for I; J 2 P2k(V)):We refer to (19) as the edge 
ondition and to (18) as the moment 
ondition. A matrix Ysatisfying (18) is known as a moment matrix and is denoted as Y =Mk(y) (see [6, 7, 8℄).Under the assumption (17), the edge 
ondition (19) is, in fa
t, equivalent to yij = 0(for ij 2 E). (Here and below, we set yij := yfig;fjg, yi := yfig, et
.) Under (17),relation (21) holds for I 2 Pk(V); indeed, the prin
ipal submatrix of Mk(y) indexed byfI; Jg has the form �yI yIyI yJ�, whose positive semide�niteness implies 0 � yJ � yI . Onthe other hand, M1(y) � 0 implies jyijj � max(yi; yj); indeed the prin
ipal submatrixof M1(y) indexed by ffig; fjgg has the form � yi yijyij yj �, whose positive semide�nitenessimplies y2ij � yiyj � max(y2i ; y2j ). Similarly, M2(y) � 0 implies that jyijkj is at most thelargest two values among yij ; yik; yjk; indeed the prin
ipal submatrix of M2(y) indexed byffi; jg; fi; kg; fj; kgg has the form 0� yij yijk yijkyijk yik yijkyijk yijk yjk1A, whose positive semide�niteness impliesy2ijk � min(yijyik; yijyjk; yikyjk) � y2ik; y2jk assuming, say, that yij � yik � yjk.Consider the semide�nite program:(22) `(k)(G) := max Xi2V yi s.t. Mk(y) � 0; y; = 1; yij = 0 (ij 2 E):

Then, �(G) � `(k)(G), with equality if k � �(G) ([7, 8℄). De�ne `(k)+ (G) as the parameterobtained by adding to (22) the 
onstraints (21); thus,�(G) � `(k)+ (G) � `(k)(G):



STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FOR CODES 9For k = 1, `(1)(G) = #(G), the Lov�asz' theta number, and the stronger bound obtained byadding nonnegativity to (22) is #0(G), the strengthening of #(G) introdu
ed by M
Elie
e,Rodemi
h and Rumsey [11℄ and S
hrijver [12℄. The bound `(2)(G) is at least as good as theparameter obtained by optimizing over N+(TH(G)), the 
onvex relaxation of the stableset polytope of G obtained by applying the Lov�asz-S
hrijver N+-operator to the thetabody TH(G) ([8℄; or see (26)). For k = 2, the program (22) has size O(jVj4). We nowformulate a bound `(G), whi
h is weaker than `(2)(G), but still at least as good as thebound obtained from N+(TH(G)), although its 
omputation is more e
onomi
al sin
e it
an be expressed via a semide�nite program of size O(jVj3).Namely, for ea
h r 2 V, 
onsider the prin
ipal submatrix Yr(y) of M2(y) indexed bythe set P2(V; r) := P1(V) [ ffr; ig j i 2 Vg; thus the matri
es Yr(y) involve only variablesyI for I 2 P3(V). De�ne(23) `(G) := max Xi2V yi s.t. y; = 1; yij = 0 (ij 2 E); Yr(y) � 0 (r 2 V)
and `+(G) as the parameter obtained by adding to (23) the 
onstraints: 0 � yijk � yij fordistin
t i; j; k 2 V (
oming from (21)). Obviously,`(2)(G) � `(G) � `(1)(G);analogously for the `+ parameters. We will see in Se
tion 3.3 that, for the graph G =G(n; d), the matri
es involved in (23) lie in (a variation of) the Terwilliger algebra, whi
hallows reformulating the parameters `(G(n; d)), `+(G(n; d)) via semide�nite programs ofsize O(n3).From the moment 
ondition (18), the matrix Yr(y) has the blo
k stru
ture:
(24) Yr(y) = 0� 1 aT bTra A Brbr Br Br

1A ;
where A := (yij)i;j2V , Br := (yfi;j;rg)i;j2V are symmetri
 V �V matri
es, and a := (yi)i2V ,br := (yir)i2V . As br 
oin
ides with the r-th 
olumn of A and of Br, by applying some
olumn/row manipulation to Yr(y), one dedu
es that(25) Yr(y) � 0() Br � 0 and ~Cr := �1� yr aT � bTra� br A�Br� � 0;whi
h permits to redu
e the size of the matri
es involved in program (23). SettingTH(G) = fx 2 RP1 (V) j 9y 2 RP2 (V) s.t. M1(y) � 0; yij = 0 (ij 2 E); xI = yI (I 2 P1(V))g;N+(TH(G)) = fx 2 RV j 9y 2 RP2 (V) s.t. M1(y) � 0; y; = 1; xi = yi (i 2 V);(yI[frg)I2P1(V); (yI � yI[frg)I2P1(V) 2 TH(G)gone 
an verify that(26) `(G) � maxx2N+(TH(G))Xi2V xi:



10 MONIQUE LAURENTTo see it, let y be feasible for (23); then x := (yi)i2V 2 N+(TH(G)). Indeed, the ve
tor(yI[frg)I2P1(V ) is equal to the �rst 
olumn of the prin
ipal submatrix of Yr(y) indexed byfrg[ ffr; ig j i 2 Vg, and (yI � yI[frg)I2P1(V ) is the �rst 
olumn of the matrix ~Cr in (25).3.2. The semide�nite programming bounds `(k)(G) for the 
oding problem. LetG be a group of automorphisms of the graph G = (V; E); that is, G � Sym(V) and ea
h� 2 G preserves edges, i.e., ij 2 E =) �(i)�(j) 2 E . Then G a
ts on the set Pk(V)indexing matri
es in the program (22), by letting �(I) = f�(i) j i 2 Ig for � 2 G,I 2 Pk(V).Lemma 7. Let G be a group of automorphisms of G. Then the program (22) is invariantunder the a
tion of G.Proof. Set Y = Mk(y). The obje
tive fun
tion is of the form Pi2V yi = Pi2V Yi;i =hC; Y i, where C is invariant under a
tion of G, sin
e the set f(fig; fig) j i 2 Vg is aunion of orbits of Pk(V) � Pk(V) (in fa
t, a single orbit if G is vertex-transitive). The
onstraint y; = Y;;; = 1 is of the form hA; Y i = 1 where A is invariant, sin
e the setf(;; ;)g is an orbit. The 
lass of edge 
onstraints (19) is invariant under a
tion of G: IfI [J 
ontains an edge ij and � 2 G, then �(I)[�(J) 
ontains the edge �(i)�(j) and thusthe equation: y�(I)�(J) = Y�(I);�(J) = 0 is again an edge 
onstraint. Similarly, the 
lass ofmoment 
onstraints (18) is also invariant under a
tion of G.
By Corollary 2, the parameter `(k)(G) 
an therefore be formulated as the optimum ofa semide�nite program in N variables involving N �N matri
es, where N is the numberof orbits of the set Pk(V) � Pk(V) under the a
tion of the group G. We now applythis te
hnique to the graph G = G(n; d) and to the group G = Aut(P), the group ofautomorphisms of P (introdu
ed in (10)). Re
all that G(n; d) has node set P, the 
olle
tionof subsets of f1; : : : ; ng, with an edge (I; J) if jI�J j 2 f1; : : : ; d� 1g for I; J 2 P. Thus Galso a
ts on the set Pk(P) = fA � P j jAj � kg, indexing the matrix variable in program(22). We show:Theorem 8. For any �xed k, one 
an 
ompute (to an arbitrary pre
ision) the parameter`(k)(G(n; d)) from (22) in time polynomial in n. The same holds for the parameter `(k)+ (G)obtained by adding the 
onstraints (21) to (22).Proof. Let k be �xed and let Nk denote the number of orbits of the set Pk(P) � Pk(P)under the a
tion of the group G. As mentioned above, the parameter `(k)(G(n; d)) 
anbe expressed via a semide�nite program of the form (8), involving Nk �Nk matri
es andNk variables. Hen
e, to show Theorem 8, it suÆ
es to verify that Nk is bounded by apolynomial in n and that the new program equivalent to (22) 
an be 
onstru
ted in timepolynomial in n.To begin with, it is useful to have a way to identify the orbits of the set Pk(P)�Pk(P).Consider (A;B) 2 Pk(P) � Pk(P) with r := jAj and s := jBj. If r = s = 0 thenA = B = ;, the empty subset of P, and the orbit of (;; ;) just 
onsists of the pair (;; ;).We 
an now assume that r + s � 1. Let ~A = (A1; : : : ; Ar) be an ordering of the elements



STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FOR CODES 11of A; similarly, ~B = (B1; : : : ; Bs) is an ordering of the elements of B. Then one 
ande�ne the (r + s) � n in
iden
e tableau of ( ~A; ~B), whose rows are the in
iden
e ve
tors�A1; : : : ; �Ar ; �B1 ; : : : ; �Bs (in that order) of the sets A1; : : : ; Ar; B1; : : : ; Bs. De�ne thefun
tion ' ~A; ~B : f0; 1gr � f0; 1gs �! Z+ where, for (u; v) 2 f0; 1gr � f0; 1gs, ' ~A; ~B(u; v) isthe multipli
ity of (u; v) as a 
olumn of the in
iden
e tableau of ( ~A; ~B). Thus ' ~A; ~B belongsto the set �r;s 
onsisting of the fun
tions � : f0; 1gr � f0; 1gs �! f0; 1; : : : ; ng satisfying:Pu2f0;1gr;v2f0;1gs �(u; v) = n and, for all i 6= j 2 f1; : : : ; rg (resp., i 6= j 2 f1; : : : ; sg),there exists (u; v) 2 f0; 1gr � f0; 1gs for whi
h �(u; v) � 1 and ui 6= uj (resp., vi 6= vj).Let ~A0 (resp., ~B0) be another ordered sequen
e of r (resp., of s) distin
t elements of Pand let � = � ~A; ~B, �0 = ' ~A0; ~B0 . Then, ~A0 = (�(A1); : : : ; �(Ar)) and ~B0 = (�(B1); : : : ; �(Bs))for some � 2 G if and only if �(u; v) + �(1 � u;1 � v) = �0(u; v) + �0(1 � u;1 � v) forall (u; v) 2 f0; 1gr � f0; 1gs. (Here, 1 := (1; : : : ; 1) denotes the all-ones ve
tor of thesuitable size.) Moreover, ~A0 = (A�(1); : : : ; A�(r)) and ~B0 = (B�(1); : : : ; B�(s)) for somepermutations � 2 Sym(r), � 2 Sym(s) if and only if �0(u; v) = �(�(u); �(v)) for all(u; v) 2 f0; 1gr � f0; 1gs, setting �(u) := (u�(1); : : : ; u�(r)), �(v) := (v�(1); : : : ; v�(s)). Fortwo elements �; �0 2 �r;s, write � � �0 if�0(u; v)+�0(1�u;1�v) = �(�(u); �(v))+�(1��(u);1��(v))) 8(u; v) 2 f0; 1gr�f0; 1gsfor some � 2 Sym(r), � 2 Sym(s). This de�nes an equivalen
e relation on �r;s.We 
an now 
hara
terize orbits in the following way: Two pairs (A;B); (A0;B0) belongto the same orbit of Pk(P) � Pk(P) under a
tion of G if and only if jAj = jA0j =: r,jBj = jB0j =: s and ' ~A; ~B � ' ~A0; ~B0 for some respe
tive orderings ~A, ~B, ~A0, ~B0 of A, B, A0,B0. Thus ea
h orbit of Pk(P)�Pk(P) 
orresponds to an equivalen
e 
lass of [0�r;s�k�r;s.Hen
e the number Nk of orbits of Pk(P)�Pk(P) is at most 1 +P 0�r;s�kr+s�1 (n+ 1)2r+s�1�1,giving:(27) Nk � O(n22k�1�1):We now verify that the matri
es Li (i = 1; : : : ; Nk) (as de�ned in (5)) 
an be 
onstru
tedin time polynomial in n.For this one �rst needs to be able to 
ompute in time polynomial in n the 
ardinality ofthe orbits of Pk(P)�Pk(P). Given �0 2 �r;s (0 � r; s � k; r+s � 1), one has to 
ount thenumber L�0 of pairs (A;B) 2 P=r(P) � P=s(P) for whi
h ' ~A; ~B � �0 for some orderings~A, ~B of A, B. Given � � �0, there are `� := n!=Qu2f0;1grv2f0;1gs �(u; v)! pairs ( ~A; ~B) for whi
h' ~A; ~B = �0. Therefore, L�0 = 1r!s!P���0 `�, whi
h 
an be 
omputed in time polynomial inn sin
e one 
an enumerate the equivalen
e 
lass of �0 in time polynomial in n.Next we verify that one 
an 
ompute in time polynomial in n the multipli
ation pa-rameters 
ki;j from (4), used for de�ning the matri
es Li in (5). For this, given (A;B) 2P=r(P) � P=s(P) with respe
tive orderings ~A, ~B, given an integer 0 � t � k, and given�0 2 �r;t,  0 2 �s;t, one has to 
ount the number L�0; 0 of elements C 2 P=t(P) forwhi
h ' ~A;~C � �0 and ' ~B;~C �  0 for some ordering ~C of C. Set � := ' ~A; ~B. Given � � �0and  �  0, we �rst 
ount the number `�; of ordered sequen
es ~C of t elements of



12 MONIQUE LAURENTP for whi
h ' ~A;~C = � and ' ~B;~C =  . For this let x(u; v; w) denote the multipli
ity of(u; v; w) 2 f0; 1gr � f0; 1gs � 2t as 
olumn of the in
iden
e tableau of ( ~A; ~B; ~C). The �rstr + s rows of the tableau are given and one needs to determine its last t rows. Then,x(u; v; w) 2 f0; 1; : : : ; ng satisfy the system
(28) Pv2f0;1gs x(u; v; w) = �(u;w) 8u 2 f0; 1gr; w 2 f0; 1gtPu2f0;1gr x(u; v; w) =  (v; w) 8v 2 f0; 1gs; w 2 f0; 1gtPw2f0;1gt x(u; v; w) = �(u; v) 8u 2 f0; 1gr; v 2 f0; 1gs:As the system (28) has polynomially many variables and equations, its set S of solu-tions 
an be found by 
omplete enumeration and jSj � (n + 1)2r+s+t . Therefore, `�; =Px2SPu2f0;1gr;v2f0;1gs �(u;v)!Qw22t x(u;v;w)! , the number of possible ways to assign the ve
torsw 2 2t as 
olumns of the lower t�n part of the tableau. Now, L�0; 0 = 1t!P ���0 � 0 `�; 
anbe 
omputed in time polynomial in n sin
e one 
an enumerate the equivalen
e 
lasses of�0 and  0.Remains only to 
onstru
t the linear 
onstraints 
orresponding to the moment 
on-straints (18) and the edge 
onstraints (19). Label the orbits of Pk(P)�Pk(P) asO1; : : : ;ONkand determine a pair (Ai;Bi) belonging to ea
h orbit Oi. Then the moment 
onstraintsread: xi = xj if Ai [ Bi = �(Aj [ Bj) for some � 2 G (whi
h 
an be tested in timepolynomial in n), and the edge 
onstraints read: xi = 0 if Ai [ Bi 
ontains a pair (I; J)with jI�J j 2 f1; : : : ; d� 1g.The bounds (21) be
ome: xi � 0 (i = 1; : : : ; Nk) and xi � xj if Ai [ Bi � �(Aj [ Bj)for some � 2 G (whi
h 
an be tested in time polynomial in n).Therefore, the parameter `(k)(G(n; d)) (or `(k)+ (G(n; d))) 
an be 
omputed as the opti-mum value of a semide�nite program of the form (8) involving Nk � Nk matri
es, withNk variables and O(N2k ) linear 
onstraints. As Nk = O(n22k�1�1), it 
an be 
omputed intime polynomial in n (to any pre
ision), whi
h 
on
ludes the proof of Theorem 8.
The result from Theorem 8 is mainly of theoreti
al value for k � 2. Indeed, for k = 2,Nk = O(n7) and thus the semide�nite program de�ning `(2)(G(n; d)) is already too largeto be solved in pra
ti
e for interesting values of n by the 
urrently available software forsemide�nite programming.3.3. Re�ning S
hrijver's bound. We begin with observing that, when a graph G hasa vertex-transitive group G of automorphisms then, in the program (23), it suÆ
es torequire the 
ondition Yr(y) � 0 for one 
hoi
e of r 2 V.Lemma 9. Let G be a group of automorphisms of the graph G = (V; E). The program (23)is invariant under a
tion of G. If G is vertex-transitive then, in (23), it suÆ
es to requirethe 
onstraint Yr(y) � 0 for one 
hoi
e of r 2 V (instead of for all r 2 V).Proof. The �rst part of the proof is analogous to the proof of Lemma 7. Here, we use thefa
t that, for r 2 V, � 2 G, Yr(�(y)) = �(Y�(r)(y)). Hen
e, if y is invariant under a
tion



STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FOR CODES 13of G, then Yr(y) � 0 for some r 2 V implies that Yr(y) � 0 for all r 2 V.
3.3.1. A 
ompa
t semide�nite formulation for the bound `(G(n; d)). In this se
tion we
onsider the graph G = G(n; d) and the group G = Aut(P), whose a
tion on the graphG(n; d) is indeed vertex-transitive. We set:(29) X := P2(P; ;) = f;g [ ffIg j I 2 Pg [ ff;; Ig j I 2 Pg:Applying Lemma 9, one 
an reformulate the parameter `(G(n; d)) as
(30) `(G(n; d)) = max PI2P yfIgs.t. Y (y) � 0; y; = 1;yfI;Jg = 0 if jI�J j 2 f1; : : : ; d� 1gyA = y�(A) for � 2 G;A 2 X ;where the matrix variable Y (y) is indexed by the set X and satis�es: Y (y)A;B = yA[B forA;B 2 X . By (24), Y (y) has the form
(31) Y (y) = 0�1 aT bTa A Bb B B

1A
with A = (yfI;Jg)I;J2P ; B = (yf;;I;Jg)I;J2P ; a = (yfIg)I2P ; and b = (yf;;Ig)I2P : As y isinvariant under a
tion of G, it follows that AI;J = AI0;J 0 if I 0 = �(I), J 0 = �(J) for some� 2 G, i.e., if jI�J j = jI 0�J 0j. That is, the matrix A belongs to the Bose-Mesner algebraBn; say,(32) A = nXk=0 xkMk for some real s
alars x0; : : : ; xnwhere the matri
es Mk are as in (11). Moreover, BI;J = BI0;J 0 if I 0 = �(I), J 0 = �(J),; = �(;) for some � 2 G, i.e., if jI 0j = jIj, jJ 0j = jJ j and jI \ J j = jI 0 \ J 0j. That is, thematrix B belongs to the Terwilliger algebra An; say,(33) B = Xi;j;t�0xti;jM ti;j for some real s
alars xti;jwhere the matri
esM ti;j are as in (9) and xti;j = xtj;i for all i; j; t. The variables xk and xti;jare related by(34) xk = x00;k for k = 0; 1; : : : ; n:(sin
e xk = A;;I = B;;I = xk0;k for jIj = k). Moreover,(35) xti;j = xt0i0;j0 if (i0; j0; i0 + j0 � 2t0) is a permutation of (i; j; i+ j � 2t):Equivalently, xti;j = xi�ti+j�2t;i = xj�ti+j�2t;j. (Indeed, let I; J 2 P with i = jIj, j = jJ j,t = jI \ J j. As � := sJ maps A := f;; I; Jg to f;; J; I�Jg and y�(A) = yA, thenxti;j = yf;;I;Jg = yf;;J;I�Jg = xj�tj;i+j�2t:) The edge inequalities be
ome:(36) xti;j = 0 if fi; j; i+ j � 2tg \ f1; : : : ; d� 1g 6= ;;



14 MONIQUE LAURENTand the bounds (21) read:(37) 0 � xti;j � x0i;0 for i; j; t = 0; : : : ; n:From (25), we know that Y (y) � 0 if and only ifB = nXi;j;t=0xti;jM ti;j � 0 and ~C := �1� x00;0 
T
 C� � 0;whereC := A�B = nXi;j;t=0(x00;i+j�2t � xti;j)M ti;j and 
 := a� b = nXi=0(x00;0 � x00;i)�P=i(V ):(Re
all P=i(V ) = fI � V j jIj = ig:) Thus ~C is of the form (16). For k = 0; 1; : : : ; bn2 
,de�ne the matri
es:(38) Ak(x) :=  Xt �n� 2ki� k �� 12�n� 2kj � k �� 12�ti;j;kx00;i+j�2t!n�ki;j=kand Bk(x) as in (13), where �ti;j;k are as in (14). It follows from Lemma 6 that the positivesemide�niteness of Y (y) is equivalent to
(39) (i) Bk(x) � 0 for k = 0; 1; : : : ; bn2 
(ii) Ak(x)�Bk(x) � 0 for k = 0; 1; : : : ; bn2 
(iii) �1� x00;0 ~
T~
 A0(x)�B0(x)� � 0; setting ~
 := (�ni� 12 (x00;0 � x00;i))ni=0:(Of 
ourse, (39)(iii) implies (ii) for k = 0.) Summarizing, we have shown:(40) `(G(n; d)) = max 2nx00;0 s.t. xti;j (i; j; t = 0; : : : ; n) satisfy(35); (36); (39)(i)� (iii):Similarly,(41) `+(G(n; d)) = max 2nx00;0 s.t. xti;j (i; j; t = 0; : : : ; n) satisfy(35); (36); (37); (39)(i)� (iii):Hen
e both parameters 
an be 
omputed via a semide�nite program of size O(n3).3.3.2. Comparison with S
hrijver's bound. S
hrijver [13℄ introdu
ed the following upperbound for the stability number A(n; d) of the graph G(n; d):
(42) `s
h(G(n; d)) := max nXi=0 �ni�x00;is.t. xti;j (i; j; t = 0; : : : ; n) satisfy (35); (36); (37);(39)(i)� (ii) and x00;0 = 1:As noted in [13℄, S
hrijver's bound is at least as good as the Delsarte bound, whi
h
oin
ides with #0(G(n; d)) = `(1)+ (G(n; d)). We now show:Lemma 10. The bound `+(G(n; d)) is at least as good as S
hrijver's bound `s
h(G(n; d))from (42); that is, `+(G(n; d)) � `s
h(G(n; d)).



STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FOR CODES 15Proof. Let (xti;j)ni;j;t=0 be feasible for the program (41). De�ne yti;j := xti;j=x00;0 for alli; j; t = 0; : : : ; n. Then the variables yti;j satisfy (35), (36), (37), (39) (i)-(ii), and y00;0 = 1.Remains to verify that 2nx00;0 � Pni=0 �ni�y00;i, i.e., 2n(x00;0)2 � Pni=0 �ni�x00;i. For this,re
all that the 
onditions (39) (i)-(iii) are equivalent to the positive semide�niteness of thematrix in (31). In parti
ular, they imply�1 aTa A� � 0; i.e., A� aaT � 0;where A is as in (32), aT = (x00;0; : : : ; x00;0), xk = x00;k for k = 0; : : : ; n. Thus, aaT =(x00;0)2J , where J is the all-ones matrix. As A � (x00;0)2J � 0, we dedu
e that hJ;Ai �(x00;0)2hJ; Ji = (x00;02n)2: But hJ;Ai = Pnk=0 xkhJ;Mki = Pnk=0 xk2n�nk�, whi
h givesPnk=0 x00;k�nk� � 2n(x00;0)2:
3.3.3. Re�ning the bound `+(G(n; d)). It is possible to de�ne a new bound `++(G(n; d)),at least as good as the bound `+(G(n; d)), whose 
omputation still involves a semide�niteprogram of size O(n3). Namely, let us now 
onsider as matrix variable the prin
ipalsubmatrix Y (y) of M2(y) indexed by the set(43) X+ := f;g [ ffIg j I 2 Pg [ ff;; Ig j I 2 Pg [ ffI; V g j I 2 Pg:Then, Y (y) has the blo
k stru
ture:
(44) Y (y) = 0BB�1 aT bT 
Ta A B Cb B B D
 C D C

1CCA
where A = (yfI;Jg)I;J2P ; B = (yf;;I;Jg)I;J2P ; C = (yfI;J;V g)I;J2P , D = (yf;;I;J;V g)I;J2P ,a = (yfIg)I2P ; b = (yf;;Ig)I2P ; and 
 = (yfI;V g)I2P . The matri
es A;B are given by (32),(33). The matrix C is a permutation of B; namely,C = nXi;j;t=0xn+t�i�jn�i;n�jM ti;j :The matrix D too belongs to the Terwilliger algebra:D = nXi;j;t=0 zti;jM ti;j for some real s
alars zti;jsatisfying zti;j = ztj;i; indeed, DI;J = DI0;J 0 if there exists � 2 G su
h that �(;) = ;,�(I) = I 0, �(J) = J 0 (then �(V ) = V ), i.e., if jIj = jI 0j; jJ j = jJ 0j, jI \ J j = jI 0 \ J 0j. Wehave the following relations for the variables xti;j , zti;j :(45) zti;j = zn+t�i�jn�i;n�j for all i; j; t = 0; : : : ; nsin
e DI;J = yf;;V;I;Jg = yf;;V;V�I;V�Jg = DV�I;V�J , and(46) zii;i = z00;i = zin;i = xii;n for i = 0; : : : ; n
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e yf;;V;Ig = DI;I = D;;I = DV;I = BV;I . The edge 
ondition for the z-variables reads:(47) zti;j = 0 if fi; j; n� i; n� j; i+ j � 2tg \ f1; : : : ; d� 1g 6= 0 for i; j; t = 0; : : : ; n:The bounds (21) imply:(48) 0 � zti;j � xti;j ; zti;j � zii;i for i; j; t = 0; : : : ; n:As ea
h non-border blo
k of the matrix Y (y) in (44) belongs to the Terwilliger algebra,one 
an blo
k-diagonalize Y (y). Indeed, ea
h non-border blo
k in the matrix0BB�1 0 0 00 UT 0 00 0 UT 00 0 0 UT
1CCAY (y)0BB�1 0 0 00 U 0 00 0 U 00 0 0 U

1CCA = 0BB� 1 aTU bTU 
TUUa UTAU UTBU UTCUUb UTBU UTBU UTDUU
 UTCU UTDU UTCU
1CCA

is blo
k-diagonal with respe
t to the same partition, with bn2 
+1 distin
t blo
ks labeled byk = 0; 1; : : : ; bn2 
. It follows from Lemma 6 that aTU = (~aT ; 0; : : : ; 0), bTU = (~bT ; 0; : : : ; 0),
TU = (~
T ; 0; : : : ; 0), where ~a = x00;0Pni=0 �ni� 12�P=i(V ), ~b = Pni=0 x00;i�ni� 12�P=i(V ) and~
 =Pni=0 x00;n�i�ni� 12�P=i(V ) are indexed by the positions 
orresponding to the 0-th blo
k.Therefore, Y (y) � 0 if and only if
(49) 0BB�1 ~aT ~bT ~
T~a A0 B0 C0~b B0 B0 D0~
 C0 D0 C0

1CCA � 0; 0�Ak Bk CkBk Bk DkCk Dk Ck
1A � 0 for k = 1; : : : ; bn2 


where Ak = Ak(x) is as in (38), Bk = Bk(x) is as in (13) and
Ck =  Xt �n� 2ki� k �� 12�n� 2kj � k �� 12�ti;j;kxn+t�i�jn�i;n�j !n�ki;j=k ;
Dk =  Xt �n� 2ki� k �� 12�n� 2kj � k �� 12�ti;j;kzti;j!n�ki;j=k :One 
an now de�ne the bound(50) `++(G(n; d)) := max2nx00;0 s.t. xti;j ; zti;j (i; j; t = 0; : : : ; n) satisfy(35); (36); (37); (45); (46); (47); (48); (49):Obviously, A(n; d) � `++(G(n; d)) � `+(G(n; d)) � `s
h(G(n; d));and the bound `++(G(n; d)) is again expressed via a semide�nite program of size O(n3).Summarizing, the parameters `s
h, `+, `++ 
an all be seen as variations of the Lasserrebound `(2). Namely, instead of 
onsidering the full matrix variable M2(y) indexed by theset P2(P), one 
onsiders a prin
ipal submatrix of M2(y) indexed by a subset of P2(P);namely, by the set X nf;g for `s
h, by the set X for `+, and by the set X+ = X [ffI; V g jI 2 Pg for `++. (Re
all the set X in (29).)



STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FOR CODES 173.3.4. Redu
ing the number of variables. The following observation from [13℄ 
an be usedfor redu
ing the number of variables in the programs (40), (41), (42), (50), and for furtherre�ning the 
orresponding bounds. A well known fa
t in 
oding theory is that, if d is oddthen A(n; d) = A(n+1; d+1), and if d is even then A(n; d) is attained by a 
ode with all
ode words having an even Hamming weight. Therefore, it suÆ
es to 
ompute A(n; d) ford even. Moreover, for d even, A(n; d) = �(Gev(n; d)), the stability number of the graphGev(n; d), de�ned as the subgraph of G(n; d) indu
ed by the setPev := fI � V j jIj is eveng:Therefore, for d even, one may add the 
onstraints:(51) yA = 0 if A 6� Pevfor any A 2 P2k(P) to the program (22) de�ning `(k)(G(n; d)), or for any A 2 P3(P) tothe program (23) de�ning `(G(n; d)). Equivalently, one may add the 
onstraints:(52) xti;j = 0 if one of i or j is odd,to the programs (40), (41), (42), (50), as well as as the 
onstraints:(53) zti;j = 0 if one of i; j; or n is oddto (50), and the new programs still de�ne upper bounds for A(n; d). Namely, de�ne:(54) `0(G(n; d)) := max 2nx00;0 s.t. xti;j (i; j; t = 0; : : : ; n) satisfy(35); (36); (39)(i)� (iii); (52)and let `0+, (resp., `0s
h, `0++) be de�ned analogously by adding (52) (resp., (52), (52)-(53))to (41) (resp., (42), (50)).As A(n; d) = �(Gev(n; d)), one may also bound A(n; d) by the parameter `(Gev(n; d))(and analogously by `+(Gev(n; d)), `++(Gev(n; d))). The subgroup Gev := f�sA j A 2 Pevgof the group G (introdu
ed in (10)) a
ts vertex-transitively on Pev. Hen
e, applyingLemma 9, `(Gev(n; d)) 
an be formulated via the analogue of (30), where Y (y) in (31) isnow indexed only by even sets; that is, a; b, A and B in (31) are indexed by Pev. Again,A belongs to the Bose-Mesner algebra and B belongs to the Terwilliger algebra; that is,for some s
alars xk, xti;j , A (resp., B) is equal to the prin
ipal submatrix ofPk even xkMk(resp., ofPi;j;t even xti;jM ti;j) indexed by Pev. Therefore, `(Gev(n; d)) 
an be 
omputed viathe program:(55) `(Gev(n; d)) = max 2n�1x00;0 s.t. xti;j (i; j; t = 0; : : : ; n) satisfy(35); (36); (39)(i)� (iii); (52)where, in (39), we 
onsider only the `even half' of the matri
es Ak(x), Bk(x), i.e., theirprin
ipal submatri
es indexed by even indi
es i; j.Lemma 11. A(n; d) � `(Gev(n; d)) � `0(G(n; d)) � `(G(n; d)) and analogously for theparameters `+, `s
h, `++.Proof. The right and left most inequalities are obvious. To 
ompare the parameters`(Gev(n; d)) and `0(G(n; d)), it is easiest to use their formulation via (23); for the for-mulation of `0(G(n; d)), one should add to (23) the 
onstraint (51) for any A 2 P3(P).Consider a feasible solution y for the program (23) de�ning `(Gev(n; d)). Thus y is indexed



18 MONIQUE LAURENTby P3(Pev), yfI;Jg = 0 if jI�J j = 1; : : : ; d � 1 (for I; J 2 Pev) and, for any I 2 Pev, thematrix YI(y) (indexed by P2(Pev; I)) is positive semide�nite. We de�ne a feasible solutionz for the program de�ning `0(G(n; d)) in the following way: For A 2 P3(P), set zA := yA ifA � Pev, and zA := 0 otherwise. It is easy to verify that, for ea
h I 2 P, the matrix YI(z)(indexed by P2(P; I)) is positive semide�nite. Thus, `0(G(n; d)) �PI2P zI =PI2Pev yI ,implying `0(G(n; d)) � `(Gev(n; d)). The reasoning is analogous for the other parameters.
The bound `(Gev(n; d)) is more e
onomi
al to 
ompute than `0(G(n; d)), sin
e it involvessmaller matri
es; as a matter of fa
t, the bound 
omputed by S
hrijver [13℄ is the bound`s
h(Gev(n; d)). For n odd, in view of (53), all variables zti;j 
an be set to 0 for the
omputation of `++(G(n; d)); from this follows that `+(Gev(n; d)) = `++(Gev(n; d)) whenn is odd.3.3.5. Some 
omputational results. We have tested the various bounds on several instan
es(n; d), in parti
ular, on those where S
hrijver's bound gave a improvement on the previ-ously best known upper bound for A(n; d). There are two instan
es: (20; 8) and (25; 6), forwhi
h we 
ould �nd an upper bound for A(n; d) (slightly) better than S
hrijver's bound;namely, b`+(Gev(25; 6))
 and b`++(Gev(20; 8))
 improve the upper bound given by S
hri-jver by one. See Table 1 below (the values given there are the bounds rounded down to thenearest integer). For other instan
es (n; d), the bounds `+ and `++ give an improvementover S
hrijver's bound limited to some de
imals, thus yielding no improved upper boundon A(n; d). Our 
omputations were made using the NEOS Server for Optimization,whi
h 
an be a

essed at http://www-neos.m
s.anl.gov/, and we used spe
i�
ally thesoftware DSDP for semide�nite programming.We indi
ate in Table 2 the sizes of the semide�nite programs involved in our 
ompu-tations. (In the `blo
k sizes' 
olumn in Table 2, �N indi
ates that the last blo
k is adiagonal matrix of order N .)

Delsarte S
hrijver bound(n; d) bound `s
h(Gev(n; d)) `+(Gev(n; d)) `++(Gev(n; d)) `0+(G(n; d)) `0++(G(n; d))(20,8) 290 274 274 273 274 273(25,6) 48148 47998 47997 47997 47998 47998Table 1
bound # # blo
k sizesvar. blo
ks`+(Gev(25; 6)) 131 27 13 14 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 -436`+(Gev(20; 8)) 43 23 11 12 9 9 9 9 7 7 7 7 5 5 5 5 3 3 3 3 1 1 1 1 -128`++(Gev(20; 8)) 68 12 34 27 27 21 21 15 15 9 9 3 3 -221Table 2: # var. means `number of variables', # blo
ks means `number of blo
ks'



STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FOR CODES 19De Klerk and Pase
hnik [1℄ have re
ently applied the bound of S
hrijver [13℄ and ourbound `+ for �nding tighter upper bounds for the stability number of the orthogonalitygraph 
(n); 
(n) is the graph with node set P, with an edge (I; J) if jI�J j = n=2 (forI; J 2 P). Namely, to obtain an upper bound for the stability number of 
(n), theypropose to use the program (42) de�ning S
hrijver's bound, or the program (41) de�ningthe parameter `+, repla
ing the 
onstraint (36) by the 
onstraint:xti;j = 0 if fi; j; i+ j � 2tg \ fn=2g 6= ;:The only interesting 
ase is when n is a multiple of 4, sin
e 
(n) is the empty graph forn odd and 
(n) is a bipartite graph for n = 2 mod 4. The 
omputations made by deKlerk and Pase
hnik [1℄, quoted in Table 3 below, indi
ate that the bound `+(
(n)) maygive a mu
h better upper bound for �(
(n)) than S
hrijver's method. This 
ontrasts withthe situation en
ountered in the present paper, where the bound `+ gave only a moderateimprovement upon S
hrijver's bound for the instan
es of the 
oding problem we havetested. n `+(
(n)) S
hrijver's bound16 2304 230420 20,166.62 20,166.9824 183,373 184,19428 1,848,580 1,883,00932 21,103,609 21,723,404Table 3: [1℄ Comparing the bounds for the orthogonality graph 
(n)
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