STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FOR
CODES

MONIQUE LAURENT

ABSTRACT. We give a hierarchy of semidefinite upper bounds for the maximum size
A(n,d) of a binary code of word length n and minimum distance at least d. At any fixed
stage in the hierarchy, the bound can be computed (to an arbitrary precision) in time
polynomial in n; this is based on a result of de Klerk, Pasechnik and Schrijver [2] about
the regular *-representation for matrix *-algebras. The Delsarte bound for A(n,d) is the
first bound in the hierarchy, and the new bound of Schrijver [13] is located between the
first and second bounds in the hierarchy. While computing the second bound involves
a semidefinite program with O(n”) variables and thus seems out of reach for interesting
values of n, Schrijver’s bound can be computed via a semidefinite program of size O(n®), a
result which uses the explicit block-diagonalization of the Terwilliger algebra. We propose
two strengthenings of Schrijver’s bound with the same computational complexity.

1. INTRODUCTION

We consider the problem of computing the parameter A(n,d), defined as the maximum
size of a binary code of word length n and minimum distance at least d. With P denoting
the collection of all subsets of {1,...,n}, we can identify code words in {0,1}" with their
supports; so a code C is a subset of P and the Hamming distance of I, J € P is equal to
|IAJ|. The minimum distance of a code C' is the minimum Hamming distance of distinct
elements of C. If we define the graph G(n,d) with node set P, two nodes I, J € P being
adjacent if [IAJ| € {1,...,d— 1}, then a code with minimum distance d corresponds to a
stable set in the graph G(n,d). Therefore, the parameter A(n,d) is equal to the stability
number of the graph G(n,d), i.e., the maximum cardinality of a stable set in G(n,d).

Schrijver [13] introduced recently an upper bound for A(n,d) which refines the classical
bound of Delsarte [3]. While Delsarte bound is based on diagonalizing the (commutative)
Bose-Mesner algebra of the Hamming scheme and can be computed via linear program-
ming, Schrijver’s bound is based on block-diagonalizing the (non-commutative) Terwilliger
algebra of the Hamming scheme and can be computed via semidefinite programming. In
both cases the bounds can be formulated as the optimum of a (linear or semidefinite) pro-
gram of size polynomial in n (size O(n) for Delsarte bound and size O(n?) for Schrijver’s
bound).

Finding tight upper bounds for the stability number «(G) of a graph G = (V, ) has
been the subject of extensive research. Lovdasz [9] introduced the theta number 9(G),
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which can be computed, e.g., via the semidefinite program:

(1) V(G) :==max Y 0y Xi st X = (Xy5)i jevufoy = 0, Xoo =1,

The theta number can be computed (with arbitrary precision) in time polynomial in the
number of nodes of the graph. Moreover, ¥(G) = a(G) when G is a perfect graph (see
[5]). Schrijver [12] introduced the strenghtening ¥'(G) of 9(G) obtained by adding the
nonnegativity constraint X > 0 to the program (1) and proved that ¥'(G(n,d)) coincides
with Delsarte bound.

Various methods have been proposed in the litterature for constructing tighter semi-
definite upper bounds for the stability number of a graph, in particular, by Lovasz and
Schrijver [10] and more recently by Lasserre [6, 7]. In both cases a hierarchy of upper
bounds for «(G) is obtained with the property that the bound reached at the a(G)-th
iteration coincides in fact with «(G). It turns out that Lasserre’s hierarchy refines the
hierarchy of Lovasz and Schrijver (see [8]).

For k > 1, denote by £(*)(G) the bound in Lasserre’s hierarchy at the k-th iteration;
see Section 3.1 for the precise definition. It is known (and easy to see) that, for fized
k, one can compute (with arbitrary precision) the parameter e(k)(g) in time polynomial
in the number of nodes of the graph G. However, for the coding problem, the graph
G(n,d) has 2" nodes and such complexity is prohibitive for large n. A first contribution
of this paper (see Section 3.2) is to show that, for fixed k, the bound £(*)(G(n, d)) can be
computed (with arbitrary precision) in time polynomial in n. This result is based on a
result of de Klerk, Pasechnik and Schrijver [2], recalled in Section 2.1, about reducing the
size of invariant semidefinite programs using the regular x-representation for the algebra
of invariant matrices under action of a group.

The first bound /() (G) in the hierarchy is equal to the theta number 9(G); its strength-
ening obtained by adding nonnegativity is equal to ¢'(G) which, for the graph G = G(n, d),
coincides with the bound of Delsarte for the parameter A(n,d). It turns out that the bound
of Schrijver [13] for A(n,d) lies between E(j)(g) and e(f)(g), the strengthenings of £(1)(G)
and ¢ (G) obtained by adding certain bounds on the variables. While Schrijver’s bound
can be computed via a semidefinite program of size O(n?) and thus computed in practice

for reasonable values of n, a practical computation of ﬁ(f)(g (n,d)) seems out of reach for
interesting values of n since one would have to solve a semidefinite program with O(n")
variables.

In Section 3.3, we introduce two bounds ¢, (G(n,d)) and ¢, (G(n,d)) satisfying

(2(G(n,d)) < £14(G(n,d)) < £+(G(n,d)) < £7(G(n,d));

they are at least as good as Schrijver’s bound, and their computation still relies on solving
a semidefinite program of size O(n3). This complexity result follows from the fact that
the new bounds, analogously to Schrijver’s bound, require the positive semidefiniteness of
certain matrices lying in the Terwilliger algebra (or a variation of it) whose dimension is
O(n3) and for which the explicit block-diagonalization has been given by Schrijver [13].
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Some notation. We group here some notation that will be used throughout the
paper. We set V := {1,...,n} and P := P(V) denotes the collection of all subsets of the
set V. For a finite set V and an integer k > 1, we set Pi(V) :={I C V| |I| < k} and
P_(V):={I CV | |I| = k}. We let Sym(V) denote the set of all permutations of the
set V and we set Sym(n) := Sym(V) when |V| = n. The letter G will be used to denote a
graph, with node set V and edge set £, while the letter G will be used to denote a group
(e.g., of automorphisms of G).

2. ALGEBRAIC PRELIMINARIES

2.1. Preliminaries on invariant matrices. Let G be a finite group acting on a finite
set X; that is, we have a homomorphism h : G — Sym(X), where Sym(X) is the group
of permutations of X. For 0 € G, h(o) is a permutation of X and M, is the associated
X x X permutation matrix with

_ [ 1 ifh(o)(z) =y,
(Mo )ay = { 0 otherwise.

The set:

A::{Z/\UMGH\UG]R(JGG)}

c€G
is a matriz x-algebra; that is, A is closed under addition, scalar and matrix multiplication,
and conjugation.
Any o € G acts on matrices indexed by the set X'. Namely, for a X x X matrix N and
o € G, set

o(N) = (No(2),0(y))z.yex-

The matrix N is said to be invariant under the action of G if o(N) = N for all o € G.
Then the commutant algebra A of the algebra A, defined by

AC = {N e CY*Y |NM = MN VM € A},

consists precisely of the X x X matrices N that are invariant under the action of G; A%
is again a matrix x-algebra.

The orbit of (z,y) € X x X under action of G is the set {(o(z),0(y)) | o € G}. Let
O1,...,0n denote the orbits of the set X x X under the action of the group G and, for
i=1,...,N, let D; be the X x X matrix:

= [ 1 if (z,y) € O;
(2) (Di)ay = { 0 otherwise.

Then, Dy, ..., Dy form a basis of the commutant AC (as vector space) and Di+.. 4Dy =
J (the all-ones matrix). We normalize the D; to

D;

(3) Di = ———=
(Di, D;)
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fori =1,...,N. (For two N x N matrices 4, B, (A, B) := Tr(ATB) = Zi};zl A;;B;j.)
Then, (D;, D;) = 1if i = j and 0 otherwise. The multiplication parameters ’ylk, ; are defined
by

N
(4) DiDj =) ;D
k=1
forallé,7=1,...,N. Define the N x N matrices L1,..., Ly by
(5) (Lg)ij = ’Yli,j for k,i,7=1,...,N.

De Klerk, Pasechnik and Schrijver [2] show:

THEOREM 1. The mapping Dy — Ly, is a x-isomorphism, known as the regular x-representation

of AG. In particular, given real scalars x1,...,zN,
N N

(6) Z-TzDz >0 < Z-TiLi > 0.
=1 =1

This result has important algorithmic applications, as it permits to give more compact
formulations for invariant semidefinite programs. Consider a semidefinite program:

(7) min (C,Y) st. (A, Y)<b, ((=1,...,m), Y =0

in the X x X matrix variable Y. Assume that the program (7) is invariant under action
of the group G; that is, C is invariant under action of G and, for every matrix Y feasible
for (7) and o € G, the matrix o(Y) is again feasible for Y. (This holds, e.g., if the class
of constraints is invariant under action of G, i.e., if for each £ € {1,...,m} and o € G,
there exists ¢' € {1,...,m} such that 0(A4y) = Ay and by = bp.) Then, if Y is feasible for
(7) then the matrix Yp := ﬁ Y seq 0(Y) too is feasible for (7), with the same objective
value as Y. Therefore, in (7), one can assume without loss of generality that Y is invariant
under action of G; that is, Y is of the form Y = Zf\;1 x;D; with z1,...,zxy € R. Then
the objective function reads (C,Y) = El]\il cizi, after setting C' = Zfil ¢iD;, and the
constraints in (7) become linear constraints in z. As a direct application of Theorem 1,
we find:

COROLLARY 2. Consider the program (7) in the X x X matriz variable Y. If (7) is
invariant under the action of the group G, then it can be equivalently reformulated as

N N
(8) min Zcia:i s.t. a;tpx <b ((=1,...,m), inLi = 0.
i=1 =1

The program (8) involves N X N matrices and N variables. Here, N is the dimension of
the algebra AC (the set of X x X invariant matrices under the action of the group G),
typically much smaller than |X|.

To use computationally this result, one needs to know explicitly the matrices L1, ..., Ly,
which involves computing the cardinality of the orbits of X x X and the multiplication
parameters fyffj in (4). De Klerk, Pasechnik and Schrijver [2] apply this technique for
computing tighter bounds for the crossing number of a complete bipartite graph. We
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apply it in Section 3.2 for reducing the size of the semidefinite programs permitting to
compute the hierarchy of semidefinite bounds for the parameter A(n,d).

EXAMPLE 3. Let X := P, the collection of all subsets of the set V' = {1,...,n}, and
G := Sym(V), the group of permutations of V. Each m € G induces a permutation of X,
again denoted by , by letting n(I) := {n(i) | ¢ € I} for I € P. Two pairs (I, J), (L', J')
(I,J,I',J" € P) lie in the same orbit [i.e., I' = n(I), J' = ©(J) for some 7 € G] if and
only if |I| = |I'|, |J| = |J'| and |I N J| = |I' N J'|. Therefore, the commutant algebra A
is generated by the matrices Mit,j (1,7,t € Zy.), where

ey 1 i =6 =51InJ]=t,
9) (Mi)r.a '_{ 0 otherwise

for I,J € P; A =: A, is known as the Terwilliger algebra of the Hamming scheme
(Terwilliger [15]).

EXAMPLE 4. Consider again the set X := P, but now the group is G := Aut(P), the auto-
morphism group of P. The group G consists of the permutations o € Sym(P) preserving
the symmetric difference, i.e., for which |o(I)Ao(J)| = [IAJ] for all I,J € P. Thus,

(10) G={msa| ACV,m e Sym(V)}

where, for a set A C V', s4 is the permutation of P mapping any I € P to s4(I) := AAI;
we have |G| = 2™"n!. Two pairs (I,J),(I’,J') (I,J,I',J" € P) lie in the same orbit [i.e.,
I' = o(I), J = o(J) for some o € G] if and only if [IAJ| = |I'AJ'|. Therefore, the
algebra A® is generated by the matrices My (k =0,1,...,n) where

(1 if|IAJ| =k,
(11) (My)1,g = { 0 otherwise

for I, J € P; A® =: B, is known as the Bose Mesner algebra of the Hamming scheme. The
1’7]

Bose-Mesner algebra is a subalgebra of the Terwilliger algebra, as My = Zz =0

for k=0,1,...,n.

In fact, it is known from invariant theory and Cx-algebra theory that the algebra A¢
can be block-diagonalized. Therefore, there exists a semidefinite program equivalent to
the invariant program (7), where the matrix Y is replaced by a block-diagonal matrix with
possibly repeated blocks; see, e.g., Gaterman and Parrilo [4]. Such program is typically
more compact than the program (8). However, finding explicitly the block-diagonalization
is a nontrivial task in general. An advantage of the above mentioned reduction method,
based on the regular x-representation, is that it involves the matrices L; which are explicitly
defined in terms of the matrices D; generating the algebra. Nevertheless, Schrijver [13]
was able to determine explicitly the block-diagonalization for the Terwilliger algebra; we
recall this result in the next section as we will need it for the computation of our stronger
bounds for the coding problem.

2.2. Block-diagonalization of the Terwilliger algebra. While the Bose-Mesner alge-
bra B, is a commutative algebra and thus can be diagonalized (see [3]), the Terwilliger
algebra A, is a non-commutative algebra. Its dimension is dim A, = (”;“3), which is the
number of triples (4, j,t) for which Mlt ; 7 0. As A, is a matrix x-algebra containing the
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identity, it can be block-diagonalized, which means the following: There exists a unitary
P x P complex matrix U (i.e., U*U = I) and positive integers m and py, qo, - - - , Pm, gm Such
that the set U*A,U := {U*MU | M € A,} is equal to the collection of block-diagonal
matrices

Co 0 ... 0
0 C ... 0
S .0
0 0 ... Cn

where each Cy (k=0,1,...,m) is a block-diagonal matrix with g identical blocks By of
order pg:

B, 0 0
0 B 0
Cr = . . 5
: : .0
0 0 ... By

thus 2" = 7' prgr and > 1t p2 = dim A, = (";3). By deleting copies of identical
blocks, it follows that A, is isomorphic to the algebra

By 0 ... 0
m 0 By ... 0

(12) P crerre = L | B, € CP**Px for k=0,1,...,m
k0 : : 0
0 0 ... Bnp

An important fact for our purpose is that this isomorphism preserves positive semidef-
initeness. The existence of a unitary matrix U with the above properties is standard
C'x-algebra theory (see, e.g., [14]). Schrijver [13] has constructed explicitly this matrix U
and the image of a matrix M € A, in the algebra (12). We recall some facts from [13]
needed for our treatment; we refer to [13] for details and proofs.

It turns out that U is real valued, m = | 5] and, for K =0,1,...,|5], the block By, has
order pr = n — 2k + 1 and multiplicity g, = (Z) - (kfl) In particular, the block By has
order n + 1 and multilplicity 1. We now describe explicitly the matrix U. For this, for
k=1,...,1%], define

L:={beR” | M}~ b=0 and b = 0if || # k}.

Let By be a basis of L. Then |Bg| = (Z) — (kfl) and Y ;.pbyr = 0 for b € Lj. Set
Bo := {bo} where by := (1,0,...,0)T € R” (the nonzero entry being indexed by 0 € P)
and define

Q := {(k,b,i) | ke{0,...,ng},b66k,ie{k,k+1,...,n—k}}.

Then |Q| = 2" = |P|. For (k,i,b) € Q, define the vector

1
—9k\ "2
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Finally define U as the P x Q matrix whose columns are the vectors uy;; for (k,7,b) € Q.
The following is shown in [13].

PROPOSITION 5. [13] The matriz U is orthogonal, i.e., UTU = I. Moreover, for a matric
M =370 gz ;M € Ay (with o ; € R), the matriz UTMU is a block-diagonal matriz
determined by the partition of Q into the classes Qi p = {(k,i,b) | k <1 < n—k} (for
k=0,...,[%], b€ Bg). For a given integer k = 0,...,|5], the blocks corresponding to
the classes Qp (for b € By) are all identical to the following matriz:

1 1 n—k
n—2k\ 2(n—2k\ 2
(13) By(z) := (Z < i—k ) (] _k > ,3;]'7;@-175,]') )
t ij=k

after setting

(14) Blik = ;HV‘" (?) (nn—_lc2—ku) (n L u) <n ;f “ u)

fori,j,k,t € {0,...,n}. As A, is isomorphic to the algebra (12), we have:

n
n
(15) Z xﬁ,jMijEO@Bk(w)EO forkzO,l,...,LEJ.

%,7,t=0

The above property (15) is the key tool used in [13] and in the present paper, which
allows reducing semidefinite programs involving matrices in the Terwilliger algebra to
semidefinite programs of size O(n?).

We will deal in this paper with matrices of the form

" T n n
a6 wr= (1), e = 3 st aeR oo 3 a0
i, t=0 i=0

Recall that P—;(V) = {I C V| |I| =i} and x7=(V) € {0,1}” whose I-th entry is 1 if and
only if I € P—;(V).

LEMMA 6. The matriz M from (16) is positive semidefinite if and only if By(z) = 0 for
k=1,...,15], and

o = (1 ) 20 where = e (%) i

~ 1 0
U:= (0 UT):

d U )

Proof. Setting

we have:

UTe UTMU
It suffices now to verify that (CTU)k,i,b = cTuk,iyb =0 for (k,i,b) € Q with k£ > 1, and that

7 NI — (

1
(cf'u )0,ib0 = Ci (?) 2 fori=0,...,n. This is direct verification using the above definitions;



8 MONIQUE LAURENT

details are omitted. Hence, U7 MU is block-diagonal, with blocks Bo(z) (with multiplicity
1) and By(z) (with multiplicity g) for £ =1,...,|5]. The lemma now follows. |

3. SEMIDEFINITE PROGRAMMING BOUNDS FOR THE STABILITY NUMBER OF A GRAPH

3.1. Lasserre’s construction. Let G = (V,€) be a graph. A stable set in G is a set
S C V containing no edge and the stability number a(G) of G is the maximum cardinality
of a stable set in G. Recall Pr(V) = {I C V| |I| < k} for an integer k. Given a stable
set S in G, define z = (z1)7ep,(v) € {0, 1}PeM) and y = (Y1) rep,,(v) € 10, 1}P2.(V) with
xr =1 (resp., yr = 1) if and only if I C S, for I € Px(V) (resp., for I € Por(V)). Then y
and the matrix Y := z27 satisfy:

(17) Y =0

(18) Yr.; =yrug (for I,J € Pr(V))

(19) Yr,; =yrus =0 if TUJ contains an edge (for I,J € Pi(V))
(20) Yoo=yp=1

(21) 0<uyr <y if JCI (for I, J € Por(V)).

We refer to (19) as the edge condition and to (18) as the moment condition. A matrix Y
satisfying (18) is known as a moment matrix and is denoted as Y = Mj(y) (see [6, 7, 8]).
Under the assumption (17), the edge condition (19) is, in fact, equivalent to y;; = 0
(for ij € £). (Here and below, we set yi; = ypy,), ¥ = Y}, etc.) Under (17),
relation (21) holds for I € Pi(V); indeed, the principal submatrix of My (y) indexed by
{I,J} has the form (Z; z;), whose positive semidefiniteness implies 0 < y; < y7. On
the other hand, Mi(y) = 0 implies |y;;| < max(y;,y;); indeed the principal submatrix
of Mi(y) indexed by {{i},{j}} has the form (;’ Zijj), whose positive semidefiniteness

implies y?j < wyiy; < max(yg,yjz). Similarly, M>(y) = 0 implies that |y;;x| is at most the
largest two values among ¥;;, Yik, ¥jk; indeed the principal submatrix of Mz(y) indexed by

{{3,7},{i,k}, {J, k}} has the form vise o Z;i) , whose positive semidefiniteness implies

Yijk Yijk Yjk

Yo < Min(YijYir, YijYiks YinYik) < Yiks Y3y assuming, say, that yi; < yix < yji.-
Consider the semidefinite program:

(22) (*)(G) :=max Y "y st Mi(y) = 0, yp =1, i =0 (ij € £).
=%

Then, a(G) < (#)(G), with equality if & > a(G) ([7, 8]). Define e(f)(g) as the parameter
obtained by adding to (22) the constraints (21); thus,

o(g) < 69(G) < (P(g).



STRENGTHENED SEMIDEFINITE PROGRAMMING BOUNDS FOR CODES 9

For k = 1, (D(G) = ¥(G), the Lovasz’ theta number, and the stronger bound obtained by
adding nonnegativity to (22) is 9¥/(G), the strengthening of ¥(G) introduced by McEliece,
Rodemich and Rumsey [11] and Schrijver [12]. The bound £(?)(G) is at least as good as the
parameter obtained by optimizing over N, (TH(G)), the convex relaxation of the stable
set polytope of G obtained by applying the Lovdsz-Schrijver N,-operator to the theta
body TH(G) ([8]; or see (26)). For k = 2, the program (22) has size O(|V|*). We now
formulate a bound #(G), which is weaker than ¢(2)(G), but still at least as good as the
bound obtained from N, (TH(G)), although its computation is more economical since it
can be expressed via a semidefinite program of size O(|V|?).

Namely, for each » € V, consider the principal submatrix Y, (y) of M(y) indexed by
the set Po(V;r) := P1(V) U {{r,i} | i € V}; thus the matrices Y, (y) involve only variables
yr for I € P3(V). Define

(23) (G)==max » yi st.yp=1, 4;; =0(ij €E), V,(y) =0 (r€V)

i€V
and £ (G) as the parameter obtained by adding to (23) the constraints: 0 < y;;r < y;; for
distinct i, j,k € V (coming from (21)). Obviously,

(2 (G) < 0(G) < ¢M(G);

analogously for the ¢, parameters. We will see in Section 3.3 that, for the graph G =
G(n,d), the matrices involved in (23) lie in (a variation of) the Terwilliger algebra, which
allows reformulating the parameters ¢(G(n,d)), £+(G(n,d)) via semidefinite programs of

size O(n?).
From the moment condition (18), the matrix Y;(y) has the block structure:
1 o bF
(24) Y.(y)=|la A B,|,
b, B, B,

where A := (yij)ijev, Br := (Y{i jr})ijey are symmetric V x V matrices, and a := (¥;)icv,
by := (Yir)icy- As b, coincides with the r-th column of A and of B,, by applying some
column/row manipulation to Y, (y), one deduces that

x  (l1—y, af —bl
(25) E(y)tO@BTEOandCT._(a_bT A—B,«)to’

which permits to reduce the size of the matrices involved in program (23). Setting

TH(G) = {x e RV | 3y e RP2M) st My(y) =0, yi; = 0 (ij € &), zr = yr (I € P1(V))},

N (TH(G) ={z e RY | Iy e RP2M st. Mi(y) =0, yy=1, z; =y; (i € V),
(Yrugry) 1ePv)s (W1 — Yiugey) 1epy(v) € TH(G)}
one can verify that

26 2G) < max ;.
( ) () a:€N+(TH(g))Z;
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To see it, let y be feasible for (23); then = := (y;)icy € N+(TH(G)). Indeed, the vector
(Y1u{r}) 1ep,(v) is equal to the first column of the principal submatrix of Y;(y) indexed by

{r}u{{r,i} | i € V}, and (y1 — yrugr)) 1epi (v) is the first column of the matrix C, in (25).

3.2. The semidefinite programming bounds /(*)(G) for the coding problem. Let
G be a group of automorphisms of the graph G = (V,£); that is, G C Sym(V) and each
o € G preserves edges, i.e., ij € £ = o(i)o(j) € £. Then G acts on the set Pi(V)
indexing matrices in the program (22), by letting o(I) = {o(i) | ¢ € I} for 0 € G,
Ie€Pr(V).

LEMMA 7. Let G be a group of automorphisms of G. Then the program (22) is invariant
under the action of G.

Proof. Set Y = Mj(y). The objective function is of the form Y, v = > 0y Yii =
(C,Y), where C is invariant under action of G, since the set {({i},{i}) | i € V} is a
union of orbits of Px(V) x Pr(V) (in fact, a single orbit if G is vertex-transitive). The
constraint yp = Ypy = 1 is of the form (A4,Y) = 1 where A is invariant, since the set
{(®,0)} is an orbit. The class of edge constraints (19) is invariant under action of G: If
TUJ contains an edge ij and o € G, then o(I)Uo(J) contains the edge o(i)o(j) and thus
the equation: ys(1)(7) = Yo(1),0(7) = 0 is again an edge constraint. Similarly, the class of
moment constraints (18) is also invariant under action of G. |

By Corollary 2, the parameter é(k)(g) can therefore be formulated as the optimum of
a semidefinite program in N variables involving N x N matrices, where N is the number
of orbits of the set Pr(V) X Pr(V) under the action of the group G. We now apply
this technique to the graph G = G(n,d) and to the group G = Aut(P), the group of
automorphisms of P (introduced in (10)). Recall that G(n, d) has node set P, the collection
of subsets of {1,...,n}, with an edge (I, J) if |[IAJ| € {1,...,d—1} for I,J € P. Thus G
also acts on the set Px(P) = {A C P | |A| < k}, indexing the matrix variable in program
(22). We show:

THEOREM 8. For any fized k, one can compute (to an arbitrary precision) the parameter

() (G(n,d)) from (22) in time polynomial in n. The same holds for the parameter E(f) (9]
obtained by adding the constraints (21) to (22).

Proof. Let k be fixed and let N denote the number of orbits of the set Pr(P) x Pr(P)
under the action of the group G. As mentioned above, the parameter £*)(G(n,d)) can
be expressed via a semidefinite program of the form (8), involving Ny x N matrices and
Ny, variables. Hence, to show Theorem 8, it suffices to verify that Nj is bounded by a
polynomial in n and that the new program equivalent to (22) can be constructed in time
polynomial in 7.

To begin with, it is useful to have a way to identify the orbits of the set Py (P) x Pr(P).
Consider (A,B) € Pr(P) x Pr(P) with r := |A| and s := |B|. If r = s = 0 then
A = B = (), the empty subset of P, and the orbit of (0, ) just consists of the pair (0,0).
We can now assume that r +s > 1. Let A = (A1,...,4,) be an ordering of the elements
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of A; similarly, B = (B1,...,Bs) is an ordering of the elements of B. Then one can
define the (r + s) x n incidence tableau of (A, B), whose rows are the incidence vectors
XA, oxA x P, . xPs (in that order) of the sets Aj,...,A,, By,...,B,. Define the
function ¢ 7 5 {0,1}" x {0,1}* — Z where, for (u,v) € {0,1}" x {0,1}*, ¢ 7 5(u,v) is
the multiplicity of (u,v) as a column of the incidence tableau of (./t, g) Thus ¢ AB belongs
to the set ®, s consisting of the functions ¢ : {0,1}" x {0,1}* — {0, 1,...,n} satisfying:
Zue{071},,7v€{0,1}s ¢(u,v) = n and, for all ¢ # j € {1,...,7r} (resp., i # j € {1,...,s}),
there exists (u,v) € {0,1}" x {0,1}* for which ¢(u,v) > 1 and u; # u; (resp., v; # vj).

Let A’ (resp., B ) be another ordered sequence of r (resp., of s) distinct elements of P
andlet ¢ = ¢ ¢ 5, ¢' = ¢ 4 ;5 Then, & = (0(A1),...,0(A,)) and B' = (3(B1),. .., 0(Bs))
for some o € G if and only if ¢(u,v) + ¢(1 —u,1 —v) = ¢'(u,v) + ¢'(1 —u,1 — v) for
all (u,v) € {0,1}" x {0,1}*. (Here, 1 := (1,...,1) denotes the all-ones vector of the
suitable size.) Moreover, A = (Aa1)s -+ > Aa(ry) and B = (Bs(1), - - - » Bp(s)) for some
permutations a € Sym(r), B € Sym(s) if and only if ¢'(u,v) = ¢(a(u),B(v)) for all
(u,v) € {0,1}" x {0,1}%, setting a(u) := (ua(1),- - > Ua@r)), BV) = (Vga),---,v8(5)). For
two elements ¢, ¢’ € @, 5, write ¢ ~ ¢’ if
¢ (u,v) +¢'(1—u,1—v) = ¢(a(u), B(v)) + $(1—a(u), 1= B(v))) Y(u,v) € {0,1}" x {0, 1}*
for some o € Sym(r), 5 € Sym(s). This defines an equivalence relation on &, ;.

We can now characterize orbits in the following way: Two pairs (A, B), (A’, B') belong
to the same orbit of Pi(P) x Pr(P) under action of G if and only if |A] = |A| =: r,
|B| = |B'| =: s and CLE™ PG for some respective orderings A B A B of A B, A,
B'. Thus each orbit of Py(P) x Pi(P) corresponds to an equivalence class of U<y, s<Pr,s-
Hence the number Ny, of orbits of Pg(P) x Px(P) is at most 1+ S o<rscr (n+ 1) 71,

. r+s>1
giving:

(27) Ny <o 0.

We now verify that the matrices L; (¢ = 1, ..., Ni) (as defined in (5)) can be constructed
in time polynomial in n.

For this one first needs to be able to compute in time polynomial in n the cardinality of
the orbits of P(P) x Pr(P). Given ¢g € ®,5s (0 <r,s < k,r+s > 1), one has to count the
number Lg, of pairs (A, B) € P=(P) x P—s(P) for which ¢ 3 5 ~ ¢ for some orderings

A, B of A, B. Given ¢ ~ ¢y, there are Ly :=n!/[[ueronyr ¢(u,v)! pairs (A, B) for which
v€{0,1}5

¢ 15 = Po. Therefore, Ly, = ﬁ > dtho 4, which can be computed in time polynomial in

n since one can enumerate the equivalence class of ¢ in time polynomial in n.

Next we verify that one can compute in time polynomial in n the multiplication pa-
rameters 'ygfj from (4), used for defining the matrices L; in (5). For this, given (A, B) €

P_,(P) x P—(P) with respective orderings A, B, given an integer 0 < t < k, and given
o € Pry, Yo € Psy, one has to count the number Lg, y, of elements C € P—_y(P) for
which ¢ AC ™ ¢o and P~ 1o for some ordering C of C. Set E=¢p AB Given ¢ ~ ¢o

and ¢ ~ g, we first count the number /4, of ordered sequences C of t elements of
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P for which ¢ ;= ¢ and ¢z = 9. For this let z(u,v, w) denote the multiplicity of

(u,v,w) € {0,1}" x {0,1}* x 2! as column of the incidence tableau of (A, B,C). The first
r + s rows of the tableau are given and one needs to determine its last ¢ rows. Then,
z(u,v,w) € {0,1,...,n} satisfy the system

> vefoays T v,w) = d(u,w)  Vu € {0,1}", w € {0, 1}t
(28) > uefoay T(u,v,w) = ¢(v,w) Vv € {0,1}, w € {0, 1}t
> wefo,p T, v,w) = &(u,v) - Vu € {0,1}",v € {0,1}°.

As the system (28) has polynomially many variables and equations, its set S of solu-

)2r+s+t

tions can be found by complete enumeration and |S| < (n+1 . Therefore, £y =

§(u)!

Y zes Zue{o,l}r,ve{o,l}s Moo 2(uo)l the number of possible ways to assign the vectors
w € 2! as columns of the lower ¢ x n part of the tableau. Now, Ly yo = 5 > o0 L4 can
~%v0

be computed in time polynomial in n since one can enumerate the equivalence classes of

¢o and .

Remains only to construct the linear constraints corresponding to the moment con-
straints (18) and the edge constraints (19). Label the orbits of Py (P)xPi(P) as O1,...,On,
and determine a pair (A4;, B;) belonging to each orbit O;. Then the moment constraints
read: z; = z; if A, UB; = o(A; U B;j) for some 0 € G (which can be tested in time
polynomial in n), and the edge constraints read: z; = 0 if 4; U B; contains a pair (I, J)
with [IAJ| € {1,...,d—1}.

The bounds (21) become: z; > 0 (i = 1,...,Ny) and z; < z; if A; UB; D o(A; UBj)
for some o € G (which can be tested in time polynomial in n).

Therefore, the parameter £*)(G(n,d)) (or Ef)(g(n, d))) can be computed as the opti-
mum value of a semidefinite program of the form (8) involving Ny x Nj matrices, with
Ny, variables and O(N7) linear constraints. As Ny = O(n?7"~1), it can be computed in
time polynomial in n (to any precision), which concludes the proof of Theorem 8. |

The result from Theorem 8 is mainly of theoretical value for k > 2. Indeed, for k = 2,
N = O(n") and thus the semidefinite program defining £(2)(G(n,d)) is already too large
to be solved in practice for interesting values of n by the currently available software for
semidefinite programming.

3.3. Refining Schrijver’s bound. We begin with observing that, when a graph G has
a vertex-transitive group G of automorphisms then, in the program (23), it suffices to
require the condition Y, (y) = 0 for one choice of r € V.

LEMMA 9. Let G be a group of automorphisms of the graph G = (V, ). The program (23)
is invariant under action of G. If G is vertez-transitive then, in (23), it suffices to require
the constraint Y,.(y) = 0 for one choice of r € V (instead of for allT € V).

Proof. The first part of the proof is analogous to the proof of Lemma 7. Here, we use the
fact that, for r € V, 0 € G, Y;(0(y)) = 0(Y5(r)(y)). Hence, if y is invariant under action
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of G, then Y, (y) = 0 for some r € V implies that Y;(y) »= 0 for all » € V. |

3.3.1. A compact semidefinite formulation for the bound £(G(n,d)). In this section we
consider the graph G = G(n,d) and the group G = Aut(P), whose action on the graph
G(n,d) is indeed vertex-transitive. We set:

(29) X :=Py(P;0) ={0}U{{I} | T e PYU{{0,I} | I € P}.
Applying Lemma 9, one can reformulate the parameter ¢(G(n,d)) as
t(G(n,d)) = max > rcpyin
st. Y(y) =0, yp=1,
Y{r,gy = 0 if |IAJ| S {1,...,d— 1}
YA = Yo(u) for o € G, A€ X,

(30)

where the matrix variable Y (y) is indexed by the set X and satisfies: Y (y) 4,8 = yaus for
A, B e X. By (24), Y(y) has the form

1 of b7
(31) Yy)=|a A B
b B B

with A = (y1,1y)1,5eP, B = (ygo,1,7})1,7eP, @ = (yg1})1eP, and b = (ygpny)rep- As y is
invariant under action of G, it follows that Ay ; = Ap y if I' = o(I), J' = o(J) for some
o € G, ie., if [IAJ| =|I'AJ'|. That is, the matrix A belongs to the Bose-Mesner algebra
By; say,
n

(32) A= Zkak for some real scalars zg, ..., 2,

k=0
where the matrices M}, are as in (11). Moreover, By y = Bp jy if I' = o(I), J' = o(J),
0 = o(0) for some o € G, i.e., if |I'| =|I|, |J'| = |J| and |[INJ| = |I'NJ'|. That is, the
matrix B belongs to the Terwilliger algebra A,,; say,

(33) B = Z a:f]MfJ for some real scalars :Ufj
1,5,¢20
where the matrices Mlt, ;j are asin (9) and :cij = :c;,i for all 4, j,t. The variables x; and xfy j
are related by
(34) :ck::cg,k for k=0,1,...,n.
: _ _ _ .k —

. )
(since z, = A,y = By 1 =z, for |I| = k). Moreover
(35) i = xijj, if (¢/,4',4' + 7' — 2t') is a permutation of (i,7,i + j — 2t).

Equivalently, a:fj = xzzjrj-iw = xfﬁ-dt,r (Indeed, let I,J € P with ¢ = |I|, j = |J|,
t =1[INJl. As o := sy maps A := {0,I,J} to {0, J,IAJ} and y,(4) = ya, then
xf] = Y{0,1,7} = Y{0,7,1AT} = x;;ijfm.) The edge inequalities become:

(36) oi ;=0 if {i,ji+j—2t}n{1,...,d—1} #0,
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and the bounds (21) read:
(37) 0<aj Sxoforz],t—()
From (25), we know that Y (y) > O if and only if

1—a29, ¥
B—Zx”Mt >0 and C := ( 0.0 >§0,

c C
1,J,t=0
where
n n
o _ 0 ¢ t - — 0 0\, P=i(V
C:=A-B= g (T0i4j-2 —Ti;)M;; and c:=a—b= Z(%,O —20;)X V),
i,j,t=0 i=0

(Recall P—;(V) = {I C V | |I| = i}.) Thus C is of the form (16). For k = 0,1,..., 2],
define the matrices:

n—k
n — 2k n — 2k
(38) Ag(z) := (Z < ik > (j ke ) /Bt,j,kxg,i—i-j—%)
t ij=k

and By(z) as in (13), where Bt  are as in (14). It follows from Lemma 6 that the positive
semidefiniteness of Y (y) is equlvalent to

(1) Bk()>0fork—0,1,...,L%J
39y @ Ax(@) Bl )>0 for k=0,1,..
(iii) (1 _65'30,0 > =0, setting & := ((7;)5(3:8’0 _ Ig,i))?:o-

(Of course, (39)(iii) implies (11) for k= 0 ) Summarizing, we have shown:
U(G(n,d)) = max 2"zf, s.t.  al; (i,5,t=0,...,n) satisfy

(40) (35), (36), (39) () — (iid).
Similarly,
(41) ?,(G(n,d)) = max 2”:58,0 s.t. a:ij (1,7,t =0,...,n) satisfy

(35), (36), (37), (39)(¢) — (éi).
Hence both parameters can be computed via a semidefinite program of size O(n?).

3.3.2. Comparison with Schrijver’s bound. Schrijver [13] introduced the following upper
bound for the stability number A(n,d) of the graph G(n,d):

gsch(g(n, d)) = Inax Z (?) ajg,i
42 i=
(42) s.t. a;’?;). (¢,7,t =0,...,n) satisfy (35),(36), (37),

(39)(¢) — (é4) and 2§y = 1.
As noted in [13], Schrijver’s bound is at least as good as the Delsarte bound, which
coincides with ¢'(G(n,d)) = ZSFI)(Q(n, d)). We now show:

LEMMA 10. The bound ¢4 (G(n,d)) is at least as good as Schrijver’s bound ., (G(n,d))
from (42); that is, £4(G(n,d)) < Lsen(G(n,d)).
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Proof. Let ( ! ;)P40 be feasible for the program (41). Define y!; := ! /xf for all
i,j,t = 0,...,n. Then the variables y; ; satisfy (35), (36), (37), (39) (i)-(ii), and Yoo = 1.
Remains to verlfy that 2"z, < Yo (7)yg. L-es 2%(200)* < Yoig (7)2g,- For this,
recall that the conditions (39) (1)-(iii) are equivalent to the positive semidefiniteness of the
matrix in (31). In particular, they imply
<1 aT) =0, e, A—aal =0,
a A

where A is as in (32), ol = (mgo,.. mgo) T = ka for k = 0,...,n. Thus, aal =

(z0,0)?J, where J is the all-ones matrix. As A — (z{4)*J = 0, we deduce that (J, A) >
(0,0)*(J,J) = (2002™)% But (J,A) = Y p_gaw(J, My) = Yp_ozx2"(}), which gives
> k=0 xO,k( ) > 2”(378,0)2- |

3.3.3. Refining the bound £, (G(n,d)). It is possible to define a new bound ¢ (G(n,d)),
at least as good as the bound ¢, (G(n,d)), whose computation still involves a semidefinite
program of size O(n?®). Namely, let us now consider as matrix variable the principal
submatrix Y (y) of Ms(y) indexed by the set

(43) Xy ={0yu{{I} | T ePU{{0, I} | T e P}U{{I,V}|I€eP}
Then, Y (y) has the block structure:

1 o pr T
a A B C
c C D C

where A = (y(1,5y)1,0ers B = (Ygo,1,0))1,5eP, C = Yravy)rier, D = (Yo.1,0v})1,5€P
a = (y¢ry)1ers b = (yq0,1r3)1eP, and ¢ = (y(7,vy)rep. The matrices A, B are given by (32),
(33). The matrix C is a permutation of B; namely,
n
t
C: Z "Ez+1,nl JJMt
i,4,t=0
The matrix D too belongs to the Terwilliger algebra:
n
D= Z zf]Mf] for some real scalars z!
1,5,t=0

7j

satisfying zf] = ] ; indeed, Dy y = Dy y if there exists o € G such that o(0) = 0,

79

o(I) =TI, 6(J) = J' (then o(V) = V), ie., i [I| = |I'], |J| = ||, |InJ| = [I' 0 J'|. We

have the following relations for the variables x! T 2t Tt
(45) 2z = zZJrfnz jj forall 4,5,t =0,...,n

since Dr,j = ygo,v,1,5} = Y{o,v,varvast = Dvarvas, and

(46) z?-:zg’i:zi-:xi fori=0,...,n

1,0 n,i in
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since yqp,v,ry = D11 = D@ 1 = Dy,r = By,;. The edge condition for the z-variables reads:

(47) z”—O if {i,j,n —4i+j—2t}n{1,...,d—1}#0 fori,j,t=0,...,n
The bounds (21) imply:
(48) ng Sx”, fngzfﬂ' fori,5,t =0,...,n

As each non-border block of the matrix Y (y) in (44) belongs to the Terwilliger algebra,
one can block-diagonalize Y (y). Indeed, each non-border block in the matrix

1 0 0 O 1 0 0 O 1 aTU vI'U c'u

0o U" 0 o0 Y () 0 U 0 0| |Ua UTAU UTBU UTCU
0o 0 UT o0 Y90 0 v o~ |vs UvTBU UTBU UTDU
o 0 o UT 00 0 U Uc UTcUu UTDU UTCU

is block-diagonal with respect to the same partition, with |3 | +1 distinct blocks labeled by

k=0,1,...,|2]. It follows from Lemma 6 that a’ U = (~ 0,...,0),b"U = (ET 0,...,0),

Jdvu = (@o,...,0), Wherea—xooz ()2 P=i(V b—E 05301()2)(73:’( )and
1

=" x) (") 2yP=i(V) are indexed by the positions corresponding to the 0-th block.

i=0 xO,nfz i
Therefore, Y (y) = 0 if and only if

~T 3T ~T
i 40 B G A B G \
(49) S B m | =0 [ Be Be Di| =0 fork=1...[]
S 20 20 0 Cr D Cy
¢ Cy Dy Cy

where A = Ar(z) is as in (38), By = Bg(x) is as in (13) and

n—k
n — 2k n — 2k
C: t n+tz]
(Sl )
1,]=

)=

1 1 n—k
n—26\"7 (n—2%\"7 ,
Dy = (Z(Z_k> <j_k) ukzw> :
t inj=k

One can now define the bound
¢4 (G(n,d)) ;== max 2”338,0 s.t. iﬁ (i,7,t =0,...,n) satisfy

(50) (38), (36), (37), (45), (46), (47), (48), (49).

Obviously,
A(n,d) < Ly1(G(n,d)) < £4(G(n,d)) < Lsen(G(n,d)),
and the bound ¢, (G(n,d)) is again expressed via a semidefinite program of size O(n?3).

Summarizing, the parameters ., £+, 14 can all be seen as variations of the Lasserre
bound ¢, Namely, instead of considering the full matrix variable My (y) indexed by the
set Pa(P), one considers a principal submatrix of Ms(y) indexed by a subset of Ps(P);
namely, by the set X'\ {0} for £y, by the set X for £, and by the set Xy = XYU{{I,V} |
I € P} for £4. (Recall the set X' in (29).)
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3.3.4. Reducing the number of variables. The following observation from [13] can be used
for reducing the number of variables in the programs (40), (41), (42), (50), and for further
refining the corresponding bounds. A well known fact in coding theory is that, if d is odd
then A(n,d) = A(n+1,d+1), and if d is even then A(n,d) is attained by a code with all
code words having an even Hamming weight. Therefore, it suffices to compute A(n, d) for
d even. Moreover, for d even, A(n,d) = a(Gey(n,d)), the stability number of the graph
Gev(n,d), defined as the subgraph of G(n,d) induced by the set

Pey :={I CV ||I] is even}.
Therefore, for d even, one may add the constraints:
(51) ya=0 if AL Pe,

for any A € Pai(P) to the program (22) defining £*)(G(n,d)), or for any A € P3(P) to
the program (23) defining ¢(G(n,d)). Equivalently, one may add the constraints:

(52) zj ;=0 if one of i or j is odd,
to the programs (40), (41), (42), (50), as well as as the constraints:
(53) zi ;=0 if one of 7,7, or n is odd

to (50), and the new programs still define upper bounds for A(n,d). Namely, define:

O(G(n,d)) := max 2"3:8,0 s.t. a:fj (1,7,t =0,...,n) satisfy
and let £9, (resp., £9,, €9 ,) be defined analogously by adding (52) (resp., (52), (52)-(53))
to (41) (resp., (42), (50)).

As A(n,d) = a(Gev(n,d)), one may also bound A(n,d) by the parameter £(G.,(n,d))
(and analogously by £, (Gey(n,d)), €44 (Gew(n,d))). The subgroup Gey := {msa | A € Pey}
of the group G (introduced in (10)) acts vertex-transitively on P.,. Hence, applying
Lemma 9, ¢(Gey(n,d)) can be formulated via the analogue of (30), where Y (y) in (31) is
now indexed only by even sets; that is, a, b, A and B in (31) are indexed by P.,. Again,
A belongs to the Bose-Mesner algebra and B belongs to the Terwilliger algebra; that is,
for some scalars zy, a:ﬁ’j, A (resp., B) is equal to the principal submatrix of ), ... ZxMp
(resp., of D2, 4 even i ;MY ;) indexed by Pe,. Therefore, £(Ge,(n,d)) can be computed via
the program:
£(Gey(n,d)) = max 2”*1308,0 s.t. xf] (4,7,t =0,...,n) satisfy
where, in (39), we consider only the ‘even half of the matrices Ag(z), Br(z), i.e., their
principal submatrices indexed by even indices %, j.

LEMMA 11. A(n,d) < £(Gey(n,d)) < £°(G(n,d)) < £(G(n,d)) and analogously for the
parameters €4, Lsch, Cyy.

(54)

(55)

Proof. The right and left most inequalities are obvious. To compare the parameters
£(Gev(n,d)) and £°(G(n,d)), it is easiest to use their formulation via (23); for the for-
mulation of £°(G(n,d)), one should add to (23) the constraint (51) for any A € P3(P).
Consider a feasible solution y for the program (23) defining ¢(Ge,(n,d)). Thus y is indexed
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by P3(Pev), ygr,5y = 0if [IAJ| =1,...,d =1 (for I, J € Pey) and, for any I € Pey, the
matrix Y7(y) (indexed by Pa(Pey; I)) is positive semidefinite. We define a feasible solution
z for the program defining £°(G(n, d)) in the following way: For A € P3(P), set z4 := y4 if
A C Py, and z4 := 0 otherwise. It is easy to verify that, for each I € P, the matrix Y7(z)
(indexed by Pa(P;I)) is positive semidefinite. Thus, £2(G(n,d)) > ", p 21 = > 1ep,, YT
implying £°(G(n, d)) > £(Gey(n,d)). The reasoning is analogous for the other parameters.

1

The bound #(Gey(n, d)) is more economical to compute than £°(G(n, d)), since it involves
smaller matrices; as a matter of fact, the bound computed by Schrijver [13] is the bound
sch(Gev(n,d)). For n odd, in view of (53), all variables 2, can be set to 0 for the
computation of £ (G(n,d)); from this follows that £, (Gey(n,d)) = €44 (Gev(n,d)) when
n is odd.

3.3.5. Some computational results. We have tested the various bounds on several instances
(n,d), in particular, on those where Schrijver’s bound gave a improvement on the previ-
ously best known upper bound for A(n, d). There are two instances: (20, 8) and (25, 6), for
which we could find an upper bound for A(n,d) (slightly) better than Schrijver’s bound;
namely, | /4 (Gev(25,6))] and |44+ (Gen(20,8))] improve the upper bound given by Schri-
jver by one. See Table 1 below (the values given there are the bounds rounded down to the
nearest integer). For other instances (n,d), the bounds ¢, and ¢, ; give an improvement
over Schrijver’s bound limited to some decimals, thus yielding no improved upper bound
on A(n,d). Our computations were made using the NEOS Server for Optimization,
which can be accessed at http://www-neos.mcs.anl.gov/, and we used specifically the
software DSDP for semidefinite programming.

We indicate in Table 2 the sizes of the semidefinite programs involved in our compu-
tations. (In the ‘block sizes’ column in Table 2, —N indicates that the last block is a
diagonal matrix of order N.)

Delsarte | Schrijver bound

(n,d) | bound | lych(Gev(n,d)) | Ls(Gev(n,d)) | Lot (Gev(n,d)) | £2(G(n,d)) | €2, (G(n,d))

(20,8) 290 274 274 273 274 273
(25,6) | 48148 47998 47997 47997 47998 47998
Table 1
bound +# +# block sizes

var. | blocks

0 (Gen(25,6)) | 131 | 27 |13141212111110109988776655443322 11 -436
7 (Ger(20,8)) | 43| 23 111299997777555533331111-128
011 (Gs(20,8)) | 68 | 12 342727212115 1599 3 3 -221

Table 2: # var. means ‘number of variables’, # blocks means ‘number of blocks’
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De Klerk and Pasechnik [1] have recently applied the bound of Schrijver [13] and our
bound /. for finding tighter upper bounds for the stability number of the orthogonality
graph Q(n); Q(n) is the graph with node set P, with an edge (I, J) if [IAJ| = n/2 (for
I,J € P). Namely, to obtain an upper bound for the stability number of ©(n), they
propose to use the program (42) defining Schrijver’s bound, or the program (41) defining
the parameter ¢, replacing the constraint (36) by the constraint:

ot =0 if {i,5,i+j — 2t} N {n/2} # 0.

The only interesting case is when n is a multiple of 4, since 2(n) is the empty graph for
n odd and Q(n) is a bipartite graph for n = 2 mod 4. The computations made by de
Klerk and Pasechnik [1], quoted in Table 3 below, indicate that the bound ¢4 (£2(n)) may
give a much better upper bound for «(2(n)) than Schrijver’s method. This contrasts with
the situation encountered in the present paper, where the bound ¢, gave only a moderate
improvement upon Schrijver’s bound for the instances of the coding problem we have
tested.

n | £4(Q(n)) | Schrijver’s bound

16 2304 2304
20| 20,166.62 20,166.98
24| 183,373 184,194
28 | 1,848,580 1,883,009

32| 21,103,609 21,723,404
Table 3: [1] Comparing the bounds for the orthogonality graph Q(n)
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