Semidefinite Programming Bounds for Stable Sets and Coloring

Monique Laurent, CWI, Amsterdam

Joint work with

Nebojša Gvozdenović, Univ. Novi Sad

and partly F. Vallentin, CWI

Combinatorial Optimization, Oberwolfach, November 2008

The stability number $\alpha(G)$ and the chromatic number $\chi(G)$

G = (V, E) graph; $S \subseteq V$ is stable if S contains no edge

 $\alpha(G)$:= maximum cardinality of a stable set

 $\chi(G)$:= minimum number of colors needed to properly color G = minimum number of stable sets needed to cover V

$$\alpha(G) = \max \sum_{i \in V} x_i \text{ s.t. } x_i x_j = 0 \text{ } (ij \in E), x \in \{0, 1\}^V$$
$$\chi(G) = \min \sum_{S \subseteq V, \text{ stable}} \lambda_S \text{ s.t. } \sum_S \lambda_S \chi^S = \mathbf{1}, \ \lambda_S \in \{0, 1\}$$

 $\alpha(G)$, $\chi(G)$ are hard to compute (and approximate)

SDP bounds via the theta tumber $\vartheta(G)$ of Lovász [1979]

The theta number

can be computed in polynomial time (to any precision) via SDP:

 $\vartheta(G) := \max\langle J, X \rangle$ s.t. $\operatorname{Tr}(X) = 1, \ X_{ij} = 0 \ (ij \in E), X \succeq 0$

The 'sandwich theorem': $\alpha(G) \leq \vartheta(G) \leq \bar{\chi}^*(G) := \chi^*(\bar{G}) \leq \bar{\chi}(G) := \chi(\bar{G})$ with equality if G is a perfect graph $\chi^*(G) := \min \sum_{S \subseteq V, \text{ stable}} \lambda_S \text{ s.t. } \sum_S \lambda_S \chi^S = \mathbf{1}, \ \lambda_S \geq 0$

is the **fractional chromatic number** of G

How to improve the theta number toward $\alpha(G)$ and $\chi(G)$?

• Toward $\alpha(G)$: Add nonnegativity [McEliece, Rodemich, Rumsey 1978], [Schrijver 1979]

$$\vartheta'(G) := \max\langle J, X \rangle$$
 s.t. $\operatorname{Tr}(X) = 1, X_{ij} = 0 \ (ij \in E), X \succeq 0, X \ge 0$

• Toward $\overline{\chi}(G)$: *Relax the edge conditions* [Szegedy 1994]

 $\vartheta^+(G) := \max\langle J, X \rangle$ s.t. $\operatorname{Tr}(X) = 1, \ X_{ij} \leq 0 \ (ij \in E), X \succeq 0$

$$\alpha(G) \le \vartheta'(G) \le \vartheta(G) \le \vartheta^+(G) \le \bar{\chi}^*(G) \le \bar{\chi}(G)$$

How to get further improved bounds toward $\alpha(G)$?

Several constructions exist producing bounds for $\alpha(G)$ s.t. - the *t*-th step bound can be computed in *poly-time for fixed t* - *finite convergence to* $\alpha(G)$ *in* $\alpha(G)$ *steps* [for • (SDP), •]

- (LP) lift-and-project method [Balas-Ceria-Cornuéjols 1993], RLT method [Sherali-Adams 1990]
- (LP/SDP) matrix-cut method [Lovász-Schrijver 1991]
- (SDP) method [Lasserre 2001] (based on moment theory)

(SDP) method [de Klerk-Pasechnik 2002] (based on SOS relaxations for the copositive cone)
 Conjecture: finite convergence in α(G) steps ?

Note: (Las) \leq (SA) \leq (LS) \leq (BCC) [L 03] (Las) \leq (dKP) [GL 08]

Much less known, at the start of our work ...

• Meurdesoif [2005] strengthens $\bar{\vartheta}^+(G)$ towards $\chi(G)$ by *adding triangle inequalities*

• Dukanovic-Rendl [2006] introduced a hierarchy of SDP bounds (based on SOS relaxations for the copositive cone) converging asymptotically to $\chi^*(G)$

Two basic ideas for constructing SDP bounds:

- Use moment matrices and the 0/1 constraints
- Use SOS relaxations for the copositive cone
- \rightsquigarrow hierarchies of bounds for $\alpha(G)$ and $\chi^*(G)$

(1) How to get more compact SDP programs ? (2) How to go beyond $\chi^*(G)$?

(1) Exploit structure/symmetry to **block-diagonalize matrices** in the SDP

- Design (weaker) block-diagonal hierarchies
- Exploit the symmetry of the graph G (e.g. Hamming, Kneser graphs)
- (2) **Recipe**: Convert any upper bound β on α to a lower bound Ψ_{β} on χ

First basic idea for SDP bounds

$$\boldsymbol{x} \in \{0,1\}^n \rightsquigarrow \boldsymbol{y} := (1 \ x_1 \dots x_n) \rightsquigarrow \boldsymbol{Y} := \boldsymbol{y} \boldsymbol{y}^T$$

$$Y = \begin{pmatrix} 1 & x_1 & \dots & x_n \\ x_1 & x_1 & & \\ \vdots & \ddots & \\ x_n & & & x_n \end{pmatrix} \text{ satisfies: } \begin{cases} Y \succeq 0 \\ Y_{\mathbf{0},\mathbf{0}} = 1 \\ Y_{i,i} = Y_{\mathbf{0},i} \forall i \end{cases}$$

Linear conditions: $Ax \le b$ $\rightsquigarrow x_i(b - Ax) \ge 0, \ (1 - x_i)(b - Ax) \ge 0$ \rightsquigarrow Linear conditions on Y

Stable set problem: Edge condition: $x_i x_j = 0 \rightsquigarrow Y_{i,j} = 0$ \rightsquigarrow Theta number $\vartheta(G)$ **SDP relaxations of higher order** t

$$\boldsymbol{x} \in \{0,1\}^n \rightsquigarrow \boldsymbol{y} := (\prod_{i \in I} x_i)_{I \in \mathcal{P}_t(V)} \rightsquigarrow \boldsymbol{Y} := \boldsymbol{y}\boldsymbol{y}^T$$
$$\mathcal{P}_t(V) := \{I \subseteq V \mid |I| \le t\}$$
$$\mathbf{Ex:} \ \boldsymbol{y} = (1, \ x_1, \cdots, x_n, \ x_1x_2, \ \cdots, x_1x_2x_3, \cdots)$$

 $\begin{cases} Y \succeq 0 \\ Y_{0,0} = 1 \\ Y_{I,J} \text{ depends only on the union } I \cup J \\ + \text{LP (SDP) } localizing \text{ conditions corresponding to } Ax \leq b \end{cases}$

order t of $y \in \mathbb{R}^{\mathcal{P}_{2t}(V)}$

Get SDP/LP formulation of the original 0/1-problem at order n

For
$$y \in \mathbb{R}^{\mathcal{P}(V)}$$

$$M_n(y) = (y_{I \cup J})_{I,J \subseteq V} \succeq 0 \iff \sum_{S' \supseteq S} (-1)^{|S' \setminus S|} y_{S'} \ge 0 \quad \forall S \subseteq V$$
$$\iff y \in \mathbb{R}_+ (y^S \mid S \subseteq V)$$

where $y^{S} := (\prod_{i \in I} x_i)_{I \subseteq V}, x :=$ incidence vector of $S \subseteq V$

$$\begin{array}{cccccccc} \mathbf{0} & 1 & 2 & 12 \\ \mathbf{0} & y_{\mathbf{0}} & y_{\mathbf{1}} & y_{\mathbf{2}} & y_{\mathbf{12}} \\ 1 & y_{\mathbf{1}} & y_{\mathbf{1}} & y_{\mathbf{12}} & y_{\mathbf{12}} \\ 2 & y_{\mathbf{2}} & y_{\mathbf{12}} & y_{\mathbf{2}} & y_{\mathbf{12}} \\ 12 & y_{\mathbf{12}} & y_{\mathbf{12}} & y_{\mathbf{12}} & y_{\mathbf{12}} \end{array} \succeq 0 \Longleftrightarrow \begin{cases} y_{\mathbf{0}} - y_{\mathbf{1}} - y_{\mathbf{2}} + y_{\mathbf{12}} \ge 0 \\ y_{\mathbf{1}} - y_{\mathbf{12}} \ge 0 \\ y_{\mathbf{2}} - y_{\mathbf{12}} \ge 0 \\ y_{\mathbf{12}} \ge 0 \end{cases}$$

$$\iff y \in \mathbb{R}_+(y^0, y^{\{1\}}, y^{\{2\}}, y^{\{1,2\}})$$

Semidefinite Programming Bounds for Stable Sets and Coloring - p.10

$$\begin{aligned} & \mathsf{las}^{(t)}(G) &:= \max \sum_{i \in V} y_i \; \text{ s.t. } \; M_t(y) \succeq 0, \; y_0 = 1, \; y_{ij} = 0 \; (ij \in E) \\ & \psi_{\mathsf{las}}^{(t)}(G) &:= \min \; y_0 \; \text{ s.t. } \; M_t(y) \succeq 0, \; y_i = 1 \; (i \in V), \; y_{ij} = 0 \; (ij \in E) \end{aligned}$$

If $\mathbf{1} = \sum_{S} \lambda_{S} \chi^{S}$ ($\lambda_{S} \ge 0$) is a fractional coloring, then $\sum_{S} \lambda_{S} (y^{S}) (y^{S})^{T} =: M_{t}(y)$ is feasible with $y_{\mathbf{0}} = \sum_{S} \lambda_{S}$

• Bounds $las^{(t)}$, $\psi_{las}^{(t)}$ for α , χ^* , with equality if $t = \alpha(G)$

• $las^{(t)}$, $\psi_{las}^{(t)}$ are computable by a SDP of matrix size $O(n^t)$, thus in time polynomial in n for *fixed* t (to any precision)

• For
$$t = 1$$
, $\operatorname{las}^{(1)} = \vartheta$, $\operatorname{las}^{(1)}_{+} = \vartheta'$, $\psi^{(1)}_{\operatorname{las}} = \overline{\vartheta}$, $\psi^{(1)}_{\operatorname{las},+} = \overline{\vartheta}^+$

'Reciprocity' between the two hierarchies $las^{(t)}(G)$, $\psi_{las}^{(t)}(G)$

(α, χ^*) form a **'reciprocal pair'**:

 $\alpha(G)\chi^*(G) \ge |V|$, with equality if G is vertex-transitive

The same holds for the following pairs:

- $(\vartheta, \overline{\vartheta})$ [Lovász 1979]
- $(\vartheta', \overline{\vartheta}^+)$ [Szegedy 1994]
- $(las^{(t)}, \psi_{las}^{(t)})$
- $(\operatorname{las}^{(t)}_+, \psi^{(t)}_{\operatorname{las},+})$

Second basic idea for SDP bounds: Relax matrix copositivity by

sums of squares of polynomials

 $\mathcal{C}, \mathcal{C}^*$: cones of copositive / completely positive matrices

M copositive if
$$x^T M x \ge 0 \quad \forall x \in \mathbb{R}^n_+$$

i.e., if $p_M(x) := \sum_{i,j} x_i^2 x_j^2 M_{ij}$ is nonnegative on \mathbb{R}^n

M completely positive if $M = \sum_i u_i u_i^T$ with $u_i \ge 0$

Parrilo [2000] relaxes copositivity by:

$$\mathcal{K}^{(t)} := \{ M \mid p_M(x) (\sum_{i=1}^n x_i^2)^{t-1} \text{ SOS} \} \subseteq \mathcal{C}$$

•
$$\mathcal{K}^{(1)} = \{ P + N \mid P \succeq 0, N \ge 0 \}$$

•
$$\bigcup_{t \ge 1} \mathcal{K}^{(t)} = \operatorname{int}(\mathcal{C})$$
 [Pólya 1974]

Copositive programming formulations for $\alpha(G)$ [de Klerk-

Pasechnik 02] and $\chi^*(G)$ [Dukanovic-Rendl 06]

$$\alpha(G) = \max \langle J, X \rangle \text{ s.t. } \operatorname{Tr}(X) = 1, \ \langle A_G, X \rangle = 0, \ X \in \mathcal{C}^*$$
$$\stackrel{(\bullet)}{=} \min \ \lambda \text{ s.t. } \lambda(I + A_G) - J \in \mathcal{C}$$

 $\chi^*(G) = \min \lambda \text{ s.t. } X_{ii} = \lambda \ (i \in V), \ \langle A_G, X \rangle = 0, X \in \mathcal{C}^*, \ X - J \succeq 0$

• $X = \chi^S (\chi^S)^T$ is completely positive and (•) follows using [Motzkin-Straus 1965]:

$$\frac{1}{\alpha(G)} = \min x^T (I + A_G) x$$
 s.t. $\sum_{i \in V} x_i = 1, x \ge 0$

• If $\mathbf{1} = \sum_{S} \lambda_{S} \chi^{S}$ ($\lambda_{S} \ge 0$) is a fractional coloring and $\lambda := \sum_{S} \lambda_{S}$, then $X = \lambda \sum_{S} \lambda_{S} (\chi^{S}) (\chi^{S})^{T}$ is completely positive and $X - J \succeq 0$

SDP hierarchies for $\alpha(G)$ [dKP 02] and $\chi^*(G)$ [DR 06]

Replace the copositive cone C by the subcone $\mathcal{K}^{(t)}$:

- \rightsquigarrow **Reciprocal pair** $(\vartheta^{(t)}, \kappa^{(t)})$ of bounds for α, χ^*
- **Theorem:** $[dKP \ 02] \lfloor \vartheta^{(t)}(G) \rfloor = \alpha(G) \text{ for } t \ge \alpha(G)^2 + 1$
- **Conjecture:** $\vartheta^{(t)}(G) = \alpha(G)$ for $t \ge \alpha(G)$

Equivalently: For $M = \alpha (I + A_G) - J$, $\alpha = \alpha(G)$, $(\sum_{i,j} x_i^2 x_j^2 M_{i,j}) (\sum_i x_i^2)^{\alpha - 1}$ is a sum of squares of polynomials

Partial answer: [GL05] **Yes** if $\alpha(G) \leq 8$

Comparison: $las_{+}^{(t)} \leq \vartheta^{(t)}$

How to obtain more economical bounds ?

Idea: Instead of one matrix $M_t(y)$ with large indexset $\mathcal{P}_t(V)$, consider several principal submatrices M(T; y) $(T \in \mathcal{P}_{t-1}(V))$ with small indexsets:

$$\bigcup_{S \subseteq T} \{S, S \cup \{i\} \ (i \in V)\} =: \bigcup_{S \subseteq T} S \cdot \mathcal{P}_1(V)$$

 $\rightsquigarrow O(n^{t+1}) \text{ variables, instead of } O(n^{2t})$

For $T = \{1, 2\}$, M(T; y) has the block-structure:

$$M(T;y) \succeq 0 \iff \sum_{T \supseteq S' \supseteq S} (-1)^{|S' \setminus S|} A_{S'} \succeq 0 \quad \forall S \subseteq T$$

where $A_{S'}$ is indexed by $\mathcal{P}_1(V)$

 \rightsquigarrow Replace the matrix M(T; y) of size $2^{|T|}(n+1)$ by $2^{|T|}$ matrices each of size n+1

Block-diagonal hierarchies for $\alpha(G)$, $\chi^*(G)$

$$\ell^{(t)}(G) := \max \sum_{i \in V} y_i \text{ s.t. } M(T; y) \succeq 0 \ (|T| = t - 1), \ y_0 = 1, \ y_{ij} = 0 \ (ij \in E)$$

$$\psi^{(t)}(G) := \min y_0 \text{ s.t. } M(T; y) \succeq 0 \ (|T| = t - 1), \ y_i = 1 \ \forall i, \ y_{ij} = 0 \ (ij \in E)$$

- Reciprocal pair $(\ell^{(t)}, \psi^{(t)})$
- Weaker bounds than $las^{(t)}$, $\psi_{las}^{(t)}$, but with the same finite convergence in $\alpha(G)$ steps
- $\ell^{(t)}(G)$ refines the bound obtained from $N^{t-1}_+(\mathrm{TH}(G))$

General fact: [GLV 08] *The block-diagonal construction refines the SDP Lovász-Schrijver hierarchy, while being less costly to compute*

Complexity comparison

	$las^{(t)}(G)$	$\ell^{(t)}(G)$	$N^{t-1}_+(\mathrm{TH}(G))$
	Lasserre relax.	block-diagonal relax.	LS N_+ -operator
# var.	$O(n^{2t})$	$\frac{1}{(t+1)!}n^{t+1} + O(n^t)$	$2^{t-2}n^{t+1} + O(n^t)$
size SDP	one matrix	$\frac{2^{t-1}}{(t-1)!}n^{t-1} + O(n^t)$ matrices	$2^{t-1}n^{t-1} + O(n^t)$ matrices
	of size $O(n^{2t})$	of size $n + 1$	of size $n + 1$
# linear eq.	m	m	$O(mn^{t-1})$

Note: $\ell^{(2)}$ needs *n* matrices: $M(\{i\}; y) \succeq 0 \ (i \in V)$

But one matrix suffices if G is vertex-transitive

G = (V, E) $\mathcal{G} \subseteq \operatorname{Aut}(G)$: group of permutations of V preserving edges

 $g \in \mathcal{G}$ acts on $V, \mathcal{P}(V), \mathbb{R}^V, \mathbb{R}^{\mathcal{P}(V)},$ etc.

 $y = (y_i, y_{\{i,j\}}, y_{\{i,j,k\}}, \cdots) \rightsquigarrow gy = (y_{g(i)}, y_{\{g(i),g(j)\}}, y_{\{g(i),g(j),g(k)\}}, \cdots)$

Fact: If *y* is feasible for the SDP defining e.g. $\ell^{(2)}(G)$, then *gy* too, and thus $\frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} gy$ too, *because* $M(\{i_0\}; y)$ *is permutation equivalent to* $M(\{g(i_0)\}; y)$

• We may assume that y is **invariant under action of** $\mathcal{G} \rightsquigarrow$ **less variables**

• *G* is vertex-transitive if $\forall i, j \in V \exists g \in \mathcal{G} \ g(i) = j$ ~ Enough to require $M(\{i_0\}; y) \succeq 0$ for one $i_0 \in V$

Numerical results for Paley graphs

 P_q := graph on \mathbb{F}_q , $q = 1 \pmod{4}$, with ij edge if i - j is a square

- P_q is self-complementary $\rightsquigarrow \vartheta(P_q) = \sqrt{q} \quad (= \vartheta'(G))$
- P_q is vertex-transitive

 \rightsquigarrow For $\ell^{(2)}(P_q)$, we need only one matrix $M(\{i_0\}, y) \succeq 0$

• $Aut(P_q)$ acts transitively on edges and on non-edges

 \rightsquigarrow For $\ell^{(3)}(P_q)$, we need only **one** matrix $M(\{i_1, i_2\}, y) \succeq 0$ with $i_1 i_2$ edge and **one** with $i_1 i_2$ non-edge

q	$\vartheta(P_q) = \sqrt{q}$	$N_+(\operatorname{TH}(P_q))$	$\ell^{(2)}(P_q)$	$\ell^{(3)}(P_q)$	$\alpha(P_q)$
101	10.050	7.290	6.611	5.496	5
149	12.207	9.188	8.231	7.136	7
241	15.524	11.595	9.891	8.275	7
257	16.031	11.558	10.247	8.131	7
269	16.401	12.307	10.624	8.778	8
277	16.643	12.469	10.340	8.670	8
281	16.763	11.902	10.605	8.397	7
313	17.692	13.128	11.630	9.458	8
337	18.358	13.724	11.658	9.464	9
401	20.025	14.927	12.753	10.023	9
509	22.561	16.580	14.307	11.196	9
601	24.515	17.999	16.077	12.484	11
701	26.476	19.332	16.857	12.822	10
809	28.443	20.636	17.371	13.499	11

Another simple strengthening of $\bar{\vartheta}$ toward χ^*

Pick a clique K of G

Consider the principal submatrix X of $M_2(y)$ indexed by

$$\mathcal{P}_1(V) \cup \bigcup_{h \in K} \{\{h\}, \{i, h\} \ (i \in V)\} = \mathcal{P}_1(V) \cup \bigcup_{h \in K} \{h\} \cdot \mathcal{P}_1(V)$$

$$X = \begin{pmatrix} A_{0} & A_{1} & A_{2} & \dots & A_{k} \\ A_{1} & A_{1} & 0 & \dots & 0 \\ A_{2} & 0 & A_{2} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ A_{k} & 0 & \dots & 0 & A_{k} \end{pmatrix} \iff \begin{cases} A_{0} - \sum_{h \in K} A_{h} \succeq 0 \\ A_{1}, \dots, A_{k} \succeq 0 \end{cases}$$

 \rightsquigarrow Bound $\psi_K(G) \leq \chi^*(G)$

DIMACS instances DSJCa.b [Random graph on a nodes, edge probability b/10]

Graph	LB	$\overline{\vartheta}(G)$	$\left\lceil \overline{\vartheta}(G) \right\rceil$	K	$\psi_K(G)$	$\lceil \psi_K(G) \rceil$	UB
DSJC125.1	5	4.1062	5	4	4.337	5	5
DSJC125.5	14 (17)	11.7844	12	10	13.942	14	17
DSJC125.9	42	37.768	38	34	42.53	43 *	43
DSJC250.1	6 (8)	4.906	5	4	5.208	6	8
DSJC250.5	14	16.234	17	12	19.208	20	28
DSJC250.9	48	55.152	56	43	66.15	67	72
DSJC500.1	6	6.217	7	5	6.542	7	12
DSJC500.5	13 (16)	20.542	21	13	27.791	28	48
DSJC500.9	59	84.04	85	56	100.43	101	126
DSJC1000.1	6	8.307	9	5	-	-	20
DSJC1000.5	15 (17)	31.89	32	14	-	-	83
DSJC1000.9	66	122.67	123	65	-	-	224
DSJR500.1c	82 (83)	83.74	84	77	84.12	85 *	85

LB: [DesRosiers-Gallinier-Hertz 08, Mendez-Diaz-Zabala 06, Caramia-Dell'Olmo 04]

UB: [Caramia-Dell'Olmo 08, Gallinier-Hertz-Zufferey 08, Gallinier-Hao 07]

Semidefinite Programming Bounds for Stable Sets and Coloring -p.24

How to go beyond the fractional chromatic number ?

 $G \Box K_t$: the Cartesian product of G and K_t

Given a graph parameter $\beta(\cdot)$ s.t. $\frac{|V(\cdot)|}{\chi(\cdot)} \leq \beta(\cdot) \leq \bar{\chi}(\cdot)$ define the new graph parameter $\Psi_{\beta}(\cdot)$ by

$$\Psi_{\beta}(G) := \min_{t \in \mathbb{N}} t \text{ s.t. } \beta(G \Box K_t) = n$$

Then:
$$\omega(\cdot) \leq \Psi_{\beta}(\cdot) \leq \chi(\cdot)$$

- β poly-time computable $\Longrightarrow \Psi_{\beta}$ poly-time computable
- Ψ is monotone nonincreasing

Action of the operator Ψ

$$\begin{vmatrix} |V| \\ \chi &\leq |V| \\ \chi^* &\leq \alpha &\leq \vartheta' &\leq \vartheta &\leq \bar{\chi}^* &\leq \bar{\chi} \\ \downarrow &\downarrow &\downarrow &\downarrow &\downarrow &\downarrow \\ \chi &\geq |\bar{\vartheta}^+| &\geq |\bar{\vartheta}| &\geq \omega \\ && & & & & & \\ && & & & & \\ && & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & \\ && & & & \\ && & & & \\ && & & & \\ && & & & & \\ && & & & & \\ && & & & \\ && & & & & \\ && & & & & \\ && & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & & \\ && & & & \\ && & & & \\ && & & & & \\ && & & & \\ && & & & & & \\ && & & & & & \\ && & & & & \\ && & & & & \\ && & & & & & \\ &&$$

Hence: Ψ maps a hierarchy toward α to a hierarchy toward χ For example, $\Psi_{\ell(t)} = \chi$ if $t \ge n$

Hard interval around the fractional chromatic number: A graph parameter $\beta \in \begin{bmatrix} |V| \\ \omega \end{bmatrix}$, $\overline{\chi}$ cannot be computed in polynomial time, unless P=NP **Examples of graph parameters in** $[\chi^*, \chi]$

- [Vince 1988] The circular chromatic number: $\chi_c(G) := \min r \text{ s.t.} \quad \exists \text{ proper coloring } c \text{ s.t.}$ $1 \le |c(i) - c(j)| \le r - 1 \forall ij \in E$
- [Hahn-Hell-Poljak 1995] The ultimate independence ratio: $I(G) := \lim_{k \to \infty} \frac{\alpha(G^{\Box k})}{|V|^k}$
- [Körner-Pilotto-Simonyi 2005] Local chromatic number: $\psi(G) := \min_{\substack{c \text{ proper coloring}}} \max_{v \in V} |\{c(u) \mid u \in N_G(v) \cup \{v\}\}|$

$$\chi^*(G) \le \frac{1}{I(G)} \le \chi_c(G) \le \lceil \chi_c(G) \rceil = \chi(G)$$
$$\chi^*(G) \le \psi(G) \le \chi(G)$$

Using symmetry reduction to compute Ψ_{β} for $\beta = \ell^{(2)}$

$$\Psi_{\ell^{(2)}}(G) = \min t \text{ s.t. } \ell^{(2)}(G_t) = n \\
\text{with } G_t := G \Box K_t \\
\ell^{(2)}(G_t) = \max \sum_{i \in V(G_t)} y_i \text{ s.t. } y_0 = 1, \ y_{ij} = 0 \ (ij \in E(G_t)) \\
(*) \ M(\{u\}; y) \succeq 0 \ (u \in V(G_t))$$

We may assume that y is invariant under action of the symmetric group S_t , thus it is enough to require (*) for $u \in V_1$ (just one level) and for just one $u \in V_1$ if G is vertex-transitive

Semidefinite Programming Bounds for Stable Sets and Coloring - p.29

Action of $K_t \rightsquigarrow$ Symmetry structure in $M(\{u\}; y)$

$$M(\{u\}; y) = \begin{array}{ccc} \mathbf{0} & V(G_t) & V(G_t) \\ 0 & \mathbf{a}^T & \mathbf{b}^T \\ V(G_t) \begin{pmatrix} \mathbf{y} \mathbf{0} & \mathbf{a}^T & \mathbf{b}^T \\ \mathbf{a} & \mathbf{A} & \mathbf{B} \\ \mathbf{b} & \mathbf{B} & \mathbf{B} \end{pmatrix}$$

$$A = \begin{array}{cccccc} V_1 & V_2 & \cdots & V_t \\ V_2 & A_1 & A_2 & \cdots & A_2 \\ V_2 & A_1 & \cdots & A_2 \\ \vdots & \vdots & \ddots & \vdots \\ A_2 & A_2 & \cdots & A_1 \end{array} \right) \begin{array}{ccccccc} V_1 & V_2 & V_3 & \cdots & V_t \\ V_2 & V_2 & B_1 & B_2 & B_2 & \cdots & B_2 \\ V_2 & B_1 & B_2 & B_2 & \cdots & B_2 \\ B_1 & B_2 & B_2 & B_2 & \cdots & B_2 \\ (B_2)^T & B_3 & B_4 & \cdots & B_4 \\ (B_2)^T & B_4 & B_3 & \cdots & B_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ (B_2)^T & B_4 & B_4 & \cdots & B_3 \end{array}$$

 $\rightsquigarrow \ell^{(2)}(G_t)$ can be reformulated via a SDP with four matrices of sizes 2n + 1, 2n, n, n, for G vertex-transitive

T 7

T 7

T 7

Numerical results for Hamming graphs H(n, D)

 $V = \{0, 1\}^n, \ \mathcal{D} \subseteq [1, n]$ edge *ij* if $d_H(i, j) = |i \oplus j| \in \mathcal{D}$

The coding problem: Find $\alpha(H(n, \mathcal{D}))$

• LP bound of [Delsarte 73] $\rightsquigarrow \vartheta'(H(n, D))$, computed via an LP of size n

SDP bound of [Schrijver 05]
 + small improvement ℓ⁽²⁾(H(n, D)) [L 07]
 → computed via an SDP of size O(n³)

Exploit graph symmetry: May assume that y **is invariant under** action of $\mathcal{G} \subseteq Aut(G)$

$$M(\{i_0\}; y) = \begin{array}{ccc} \mathbf{0} & V & i_0 \cdot V \\ \mathbf{0} & a^T & b^T \\ a & A & B \\ b & B & B \end{array} \right) \begin{array}{c} A_{i,j} = y_{\{i,j\}} \\ B_{ij} = y_{\{i_0,i,j\}} \end{array}$$

•
$$A_{i,j} = A_{i',j'}$$
 if $\exists g \in \mathcal{G} \ g(i) = i', g(j) = j'$

 $\rightsquigarrow A \in \mathcal{A}(\mathcal{G})$: algebra of matrices invariant under \mathcal{G}

• $B_{i,j} = B_{i',j'}$ if $\exists g \in \mathcal{G} \ g(i) = i', g(j) = j'$ and $g(i_0) = i_0$

 $\rightsquigarrow B \in \mathcal{A}(\mathcal{G}_{i_0})$: algebra of matrices invariant under $\mathcal{G}_{i_0} := \{g \in \mathcal{G} \mid g(i_0) = i_0\}$

Fact: *These are matrix* *-*algebras, which can thus be block-diagonalized* (by **Wedderburn theorem**)

Theorem: Let \mathcal{A} be a matrix *-algebra over \mathbb{C} with $I \in \mathcal{A}$. There is a unitary matrix Q and $s, n_1, \ldots, n_s \in \mathbb{N}$ such that

$$Q^* \mathcal{A} Q = \begin{pmatrix} \mathcal{A}_1 & 0 & \cdots & 0 \\ 0 & \mathcal{A}_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \mathcal{A}_s \end{pmatrix}$$

where each $\mathcal{A}_i \sim \mathbb{C}^{n_i \times n_i}$ and takes the form

$$\mathcal{A}_{i} = \left\{ \begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & A & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A \end{pmatrix} \mid A \in \mathbb{C}^{n_{i} \times n_{i}} \right\}$$

$$= \left\{ \begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & A & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A \end{pmatrix} \right\}$$
Semidefinite Programming Bounds for Stable Sets and Coloring – p.33

Application to Hamming graphs $H(n, \mathcal{D})$

 $\mathcal{G} = \operatorname{Aut}(H(n, \mathcal{D}))$: All permutations of [1, n] combined with all 'switchings': $i \mapsto i \oplus i_0$

• $A_{i,j} = A_{i',j'} \iff |i \oplus j| = |i' \oplus j'|$

 \rightsquigarrow (commutative) Bose-Mesner algebra, with dimension n + 1 \rightsquigarrow LP of size n to compute $\vartheta'(H(n, \mathcal{D}))$

• $B_{i,j} = B_{i',j'} \iff |i|, |j|, |i \oplus j| = |i'|, |j'|, |i' \oplus j'|$

 $\rightsquigarrow \mathcal{A}_{\mathcal{G}_{i_0}}$: Terwilliger algebra, with dimension $O(n^3)$, whose block-diagonalization is given by [Schrijver 05] \rightsquigarrow SDP of size $O(n^3)$ for $\ell^{(2)}(H(n, \mathcal{D}))$

Bounds on $\alpha(H(n, D))$ for $\mathcal{D} = \{1, \dots, d-1\}$

n	d	LB	Delsarte ϑ'	UB	Schrijver	$\ell_+^{(2)}$
19	6	1024	1289	1288	1280	
23	6	8192	13,775	13,774	13,766	
25	6	16,384	48,148	48,148	47,998	47,997
19	8	128	145	144	142	
20	8	256	290	279	274	
25	8	4096	6474	5557	5477	
27	8	8192	18,189	17,804	17,768	
28	8	16,384	32,206	32,204	32,151	
22	10	64	95	88	87	
25	10	192	551	549	503	
26	10	384	1040	989	886	

Orthogonality graphs [de Klerk-Pasechnik 2005]

n	LB	ϑ'	Schrijver	$\ell_+^{(2)}$
16	2304	4096	2304	2304
20	20,144	52,428	20,166.98	20,166.62
24	178,208	699,050	184,194	183,373
28	406,336	9,586,980	1,883,009	1,848,580
32	14,288,896	134,217,728	21,723,404	21,103,609

Bounds on $\chi(H(n, \mathcal{D}))$ for $\mathcal{D} = \{d\}$

graph	$\bar{artheta}$	$\bar{\vartheta}^+$	$\kappa^{(2)}$	$\psi^{(2)}$	$\Psi_{\ell^{(2)}}$	$\psi_{+}^{(2)}$	$\Psi_{\ell_+^{(2)}}$
H(10, 6)	6	8.72	10.5	10.43	11	10.89	11
H(10,8)	2.66	3.2	3.4	3.92	5	3.92	5
H(11,4)	16	21.56	24.7	25.73	26	25.73	26
H(11,6)	12	12	14.1	12	12	15.28	16
H(11, 8)	3.2	4.93	5.4	5.78	6	5.78	6
H(13,8)	5.33	9.41	12.5	12.14	13	13.65	14
H(15,6)	27.76	30.73	43.0	46.43	47	50.30	51
H(16,8)	16	16	24.1	16	16	28.44	29
H(17, 6)	35	48.22	62.5	86.30	87	88.32	89
H(17,8)	18	18	34.5	32	32	46.51	47
H(17, 10)	6.66	12.63	20.5	15.87	16	25.84	26
H(18, 10)	10	16	28.8	18.30	19	38.88	-
H(20, 6)	59.37	59.37		140.95	141	140.95	-
H(20, 8)	41.71	60.95		107.14	-	136.41	-
H(10, [8, 10])	3.2	3.2		3.92	5	3.92	5

Semidefinite Programming Bounds for Stable Sets and Coloring – p.37

 $(\mathbf{0})$

Numerical results for Kneser graphs K(n, r)

- V: all r-subsets of [1, n], with an edge between disjoint sets
- $\alpha = \vartheta = \binom{n-1}{r-1}$ [Lovász 79]

$$\chi^* = \frac{n}{r}$$

$$\omega = \lfloor \frac{n}{r} \rfloor$$

 $\chi = n - 2r + 2 \text{ [Lovász 78]}$

As $\alpha = \vartheta$, the full hierarchy $\ell^{(t)}$ collapses to α , and the hierarchy $\psi^{(t)}$ collapses to χ^* , which is far from χ ! Thus the Ψ_β bounds may help ..

Numerical results for Kneser graphs

Graph	$\lceil \chi^* \rceil = \lceil n/r \rceil$	$\Psi_{\ell^{(2)}}$	$\Psi_{\ell_+^{(2)}}$	$\chi = n - 2r + 2$
K(6,2)	3	4	4	4
K(7,2)	4	4	5	5
K(8,3)	3	4	4	4
K(9,3)	3	4	4	5
K(10, 4)	3	3	4	4
K(11, 4)	3	4	4	5
K(12, 3)	4	5	6	8
K(12, 4)	3	4	4	6
K(12, 5)	3	3	4	4
K(13, 5)	3	4	4	5
K(15, 3)	5	6	6	11
K(16, 4)	4	5	6	10
K(25, 5)	5	6	7	17
K(34, 7)	5	6	7	22
K(36, 6)	6	7	9	26

Semidefinite Programming Bounds for Stable Sets and Coloring - p.39

Exploiting symmetry is crucial to get compact SDP's

- Bounds for the crossing number of $K_{n,m}$ [de Klerk-Maharry-Pasechnik-Richter-Salazar 06] [de Klerk-Pasechnik-Schrijver 07] (using regular *-representation)
- *Bounds for the kissing number* (using harmonic analysis) [Bachoc-Vallentin 08]
- *QAP, truss topology optimization, polynomial optimization ...* [Gaterman-Parrilo 04], de Klerk & al., Murota, Kojima & al.

Some recent surveys:

- [de Klerk] *Exploiting special structure in semidefinite programming: A survey of theory and applications*
- [Vallentin] Symmetry in semidefinite programming & Lecture Notes: Semidefinite programs and harmonic analysis

Quadratic and Copositive Formulations for $\chi(G)$

Motzkin-Straus formulation for α + reduction of χ to $\alpha \implies$

$$\chi(G) = \min \sum_{t} t(e^T x_t)^2 \text{ s.t. } \sum_{t} (e^T x_t)^2 = 1$$
$$\sum_{t} x_t^T (I + A_{G \square K_t}) x_t = \frac{1}{n}$$
$$x_t \in \mathbb{R}_+^{V(G \square K_t)}$$

$$\chi(G) = \min \sum_{t} t \langle J, X_t \rangle \text{ s.t. } \sum_{t} \langle J, X_t \rangle = 1$$

$$\sum_{t} \langle I + A_{G \square K_t}, X_t \rangle = \frac{1}{n}$$

$$X_t \in \mathcal{C}^* \quad (t \in [1, \Delta(G)])$$

$$X_t \text{ indexed by } V(G \square K_t)$$