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a b s t r a c t

Lovász and Schrijver, and later Lasserre, proposed hierarchies of semidefinite programming relaxations
for 0/1 linear programming problems. We revisit these two constructions and propose two new, block-
diagonal hierarchies, which are at least as strong as the Lovász–Schrijver hierarchy, but less costly to
compute. We report experimental results for the stable set problem of Paley graphs.
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1. Introduction

A basic approach in combinatorial optimization consists of
formulating the problem at hand as a 0/1 linear programming
problem, typically of the form

max
{
cTx | Ax ≤ b, x ∈ {0, 1}n

}
,

where c ∈ Rn, b ∈ Rm and A ∈ Rm×n. Then the task is to find
an efficiently computable outer approximation of the polytope P ,
defined as the convex hull of the 0/1 solutions to Ax ≤ b.
On the one hand, extensive research has been done for finding

(partial) linear inequality descriptions for many polyhedra arising
from specific combinatorial optimization problems. On the other
hand, researchers focused on developing general purposemethods
for arbitrary 0/1 linear programming problems. Here let us
mention the method of Gomory for generating cuts strengthening
the initial linear relaxation {x ∈ Rn | Ax ≤ b} of P and its various
extensions for generating strong cutting planes (see e.g. [14,18]),
the lift-and-project method [1], the reformulation-linearization
technique [17], thematrix-cutmethod of Lovász and Schrijver [13],
and the sums of squares andmomentmethod of Lasserre [8]. Some
of these methods are compared in [9]; see also [11]. A common
feature of the methods of Lovász–Schrijver and of Lasserre is that
they consider hierarchies involving semidefinite relaxations of P:
Convex sets Qt (t = 1, . . . , n + 1) are constructed which can be
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described by semidefinite conditions and which form a hierarchy
of increasingly stronger relaxations:

{x ∈ Rn | Ax ≤ b} ⊇ Q1 ⊇ Q2 ⊇ · · · ⊇ Qn+1 = P.

The twohierarchies are related; it is shown in [9] that the hierarchy
of Lasserre refines the hierarchy of Lovász–Schrijver.
In this note we revisit these hierarchies and propose two new

ones, which differ in the way of encoding the linear constraints
defining the starting linear relaxation of P . Moreover one of them
(introduced in Section 2.4) can also be defined when the starting
relaxation of P is an arbitrary convex body, as is the case for
the Lovász–Schrijver construction. The new hierarchies are nested
between the Lasserre and Lovász–Schrijver hierarchies, but they
are less costly to compute. So they are especially well suited
for implementations. For example, at given order t , the new
hierarchy fromSection 2.4 involves 1/(t+1)!nt+1+O(nt) variables
compared to 2t−2nt+1 + O(nt) variables for the Lovász–Schrijver
hierarchy and to O(n2t) variables for the Lasserre hierarchy. The
newhierarchies can be seen as a variation of the Lasserre hierarchy,
where one replaces a large matrix of order O(nt) by smaller blocks
of order n + 1 arising by block-diagonalizing suitably defined
principal submatrices of the original large matrix. The motivation
for considering blockmatrices is that it is computationally easier to
solve a semidefinite program involving many small blocks rather
than one large matrix. Most currently available interior-point
algorithms for semidefinite programming are indeed designed to
exploit block-diagonal matrices. While the hierarchy of Lovász
and Schrijver is originally defined recursively, we give an explicit
description obtained by ‘‘unfolding’’ the recursion. In this way,
the connection to the new hierarchies becomes transparent (see
Section 2 for details).
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When applied to the stable set problem, our new construction
gives a block-diagonal hierarchy whose first two steps were
already used in the literature. The first order relaxation gives the
Lovász theta number and the second order one gives parameters
considered in [4,10] for the stable set problem and in [6,7] for
the coloring problem. In these applications the computational
advantage of the new hierarchy was of crucial importance.

Contents of the paper

In Section 2 we first briefly introduce the constructions
of Lovász–Schrijver and of Lasserre. Then we give the new
construction and show how to derive more compact formulations
by block-diagonalization. In Section 3 we apply it to the stable set
problem and in Section 4 we present some computational results
illustrating the behavior of the new hierarchy for approximating
the stability number of Paley graphs.

Notation

Given a finite set V , we denote the collection of all subsets of V
byP (V ). Given a non-negative integer r , setPr(V ) := {I ∈ P (V ) |
|I| ≤ r} and P=r(V ) := {I ∈ P (V ) | |I| = r}. By 0 we denote the
empty set. Sometimes we identify P=1(V ) with V , i.e., we write i
instead of {i}. Furthermore, we sometimes write ij instead of {i, j}
and ijk instead of {i, j, k}, etc. The standard unit vectors in RP1(V )

are denoted by e0, ei for i ∈ V .

2. Semidefinite programming hierarchies

Suppose we are given a convex cone K contained in the
homogenized unit cube {x ∈ RP1(V ) | 0 ≤ xi ≤ x0 (i ∈ V )}.
Set

PK := conv
{
x ∈ {0, 1}V |

(
1
x

)
∈ K

}
,

CK := R+

{(
1
x

)
∈ K with x ∈ {0, 1}V

}
.

The general objective is to find the linear inequality description
of the polytope PK or, equivalently, of the cone CK . In Section 2.1
we recall the construction of Lovász–Schrijver which applies to
any convex cone K . While the original construction is recursive
we propose an explicit semidefinite programming reformulation.
In Section 2.2 we recall the construction of Lasserre which applies
to the case when K is represented by polynomial inequalities. Here
we focus on polyhedral cones K of the form

K = {x ∈ RP1(V ) | aTl x ≥ 0 (l = 1, . . . ,m)}, (1)

where a1, . . . , am ∈ RP1(V ). In Section 2.3 we introduce our new
construction, which can be seen as a variation of the previous
methods. We discuss two new hierarchies. The first one applies
to polyhedral cones K as in (1) and is more economical than
the Lasserre hierarchy while still refining the Lovász–Schrijver
hierarchy. The second one applies to any convex cone K and can be
seen as a non-recursive analogue of the Lovász–Schrijver hierarchy
having a more compact and explicit formulation.

2.1. The Lovász–Schrijver hierarchy

In this section we recall basic facts about the Lovász–Schrijver
hierarchy. For proofs and more details we refer to [13]. Set
M+,V := {Y ∈ RP1(V )×P1(V ) | Y � 0, Yii = Y0i (i ∈ V )},
where ‘‘� 0’’ stands for ‘‘is positive semidefinite’’. For a convex
cone K ⊆ RP1(V ) define
M+(K) := {Y ∈M+,V | Yei ∈ K , Y (e0 − ei) ∈ K (i ∈ V )},
N+(K) := {Ye0 | Y ∈M+(K)}.
The t-th iterate of the Lovász–Schrijver hierarchy is N t
+
(K) :=

N+(N t−1+ (K)) for t ≥ 1, where N1
+
(K) := N+(K) and N0+(K) := K .

It lies between K and CK and N t+1+ (K) ⊆ N t
+
(K). We have N t

+
(K) =

CK for t = |V |. Moreover, for any fixed t , if one can optimize over
K in polynomial time then the same holds for N t

+
(K).

In the following proposition we ‘‘unfold’’ the recursive defini-
tion of N t

+
(K) and give an explicit semidefinite programming for-

mulation. Its proof is straightforward and thus omitted.

Proposition 2.1. A vector x ∈ RP1(V ) lies in N t
+
(K) if and only if

there exist a matrix Y ∈ M+,V and matrices Y
σ1,...,σs
i1,...,is

∈ M+,V , with
s = 1, . . . , t − 1, i1, . . . , is ∈ V and σ1, . . . , σs ∈ {±1}, satisfying
the following conditions:
(a) x = Ye0.
(b) For all s = 1, . . . , t−1, i1, . . . , is ∈ V , andσ1, . . . , σs−1 ∈ {±1}:

Y σ1,...,σs−1i1,...,is−1
eis = Y

σ1,...,σs−1,+1
i1,...,is

e0,

Y σ1,...,σs−1i1,...,is−1
(e0 − eis) = Y

σ1,...,σs−1,−1
i1,...,is

e0,

where Y σ1,...,σs−1i1,...,is−1
= Y for s = 1.

(c) For all i1, . . . , it ∈ V and σ1, . . . , σt−1 ∈ {±1}:
Y σ1,...,σt−1i1,...,it−1

eit ∈ K ,

Y σ1,...,σt−1i1,...,it−1
(e0 − eit ) ∈ K ,

where Y σ1,...,σt−1i1,...,it−1
= Y for t = 1.

The above formulation allows estimating the cost of optimizing
over N t

+
(K) in terms of n = |V | and t . Set h(n, t) :=

∑t−1
s=0(2n)

s
=

2t−1nt−1+O(nt−2). The formulation involves
( n
2

)
h(n, t) variables,

h(n, t)matrices of order n+1, and (2n)t conditions of type ‘‘x ∈ K ’’.
Furthermore, it turns out that for 1 ≤ r ≤ s, the ir th column of the
matrix Y σ1,...,σsi1,...,is

is identically zerowheneverσr = −1 and it is equal
to the 0th columnwhenever σr = 1. Thus, Y

σ1,...,σs
i1,...,is

can be assumed
to have order n− s+ 1.

2.2. The Lasserre hierarchy

In this section we recall some basic facts about the Lasserre
construction, applied to the case when K is of the form (1); for
more informationwe refer to [8,9]. The Lasserre hierarchy involves
moment matrices: A matrix whose rows and columns are indexed
by a subset A of P (V ) is said to be a moment matrix if the (I, J)th
entry depends only on the union I ∪ J (for all I, J ∈ A). In this
definition one may allow A to be a multiset, which corresponds
to repeated rows and columns in the moment matrix. For a non-
negative integer t and a vector y ∈ RP2t (V ), define the moment
matrix of y of order t by Mt(y) := (yI∪J)I,J∈Pt (V ). For a set T and
a vector y ∈ RP (T ), we writeMT (y) := (yI∪J)I,J∈P (T ); thusMn(y) =
MV (y) if |V | = n.
The following fact, observed in [13,9], explains the relevance

of moment matrices to 0/1 polyhedra: For x ∈ RV define ζx :=
(
∏
i∈I xi)I∈P (V ). Then we have for y ∈ RP (V )

MV (y) � 0 ⇐⇒ y ∈ R+
{
ζx | x ∈ {0, 1}V

}
⇐⇒ ∀S ⊆ V :

∑
S′:S⊆S′⊆V

(−1)|S
′
\S|yS′ ≥ 0. (2)

In Lemma 2.2 we give an extension of this result.
Next we explain how to encode the linear constraints aTl x ≥ 0

describing K . Given y ∈ RP2t (V ) and a ∈ RP1(V ), define the vector
ay ∈ RP2t−1(V ) by (ay)I := a0yI +

∑
i∈V aiyI∪{i} for I ∈ P2t−1(V ).

For t ≥ 1 we define the t-th iterate of the Lasserre hierarchy by
Q t(K) := {x ∈ RP1(V ) | ∃y ∈ RP2t (V ) : y0 = x0, yi = xi (i ∈ V ),

Mt(y) � 0, Mt−1(aly) � 0 (l = 1, . . . ,m)}. (3)
It lies between K and CK and Q t+1(K) ⊆ Q t(K). The Lasserre
hierarchy refines the Lovász–Schrijver hierarchy, since we have
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Q t+1(K) ⊆ N+(Q t(K)) which implies Q t+1(K) ⊆ N t
+
(K) and

Q n+1(K) = CK . The formulation (3) involves
∑2t
i=0

( n
i

)
= O(n2t)

variables, onematrix of order
∑t
i=0

( n
i

)
= O(nt) andmmatrices of

order
∑t−1
i=0

( n
i

)
= O(nt−1).

2.3. A new block-diagonal hierarchy

One drawback of the Lasserre hierarchy is that the computa-
tional cost for optimizing over Q t(K) is considerably higher than
the cost for optimizing over N t−1+ (K). To define a more economical
variation of it, which still refines the Lovász–Schrijver hierarchy,
we consider a suitable principal submatrix of the full matrixMt(y).
For a positive integer t and a subset T ⊆ V of cardinality t − 1,

let M(T ; y) denote the principal submatrix of Mt(y) whose rows
and columns are indexed by

A(T ) :=
⋃
S⊆T

AS, whereAS := {S} ∪ {S ∪ {i} | i ∈ V }. (4)

It will be convenient to consider A(T ) as a multiset: We keep
possible repeated occurrences, e.g. S and S ∪ {i} if i ∈ S. So strictly
speaking the matrixM(T ; y) is a principal submatrix ofMt(y) only
after removing repeated rows and columns.We consider multisets
here because it simplifies the notation in Lemma 2.2. Note that
M(∅; y) = M1(y), and observe that we only need to know the
components of y indexed by Pt+1(V ), instead of P2t(V ) as in the
Lasserre hierarchy, in order to define the matrices M(T ; y) for all
T ∈ P=(t−1)(V ).
Define the first iterate of the block-diagonal hierarchy by

L1(K) := Q 1(K) and, for t ≥ 2, define its tth iterate by
Lt(K) := {x ∈ RP1(V ) | ∃y ∈ RPt+1(V ) : y0 = x0, yi = xi (i ∈ V ),

M(T ; y) � 0 (T ∈ P=(t−1)(V )),
M(T ; aly) � 0 (T ∈ P=(t−2)(V ), l = 1, . . . ,m)}.

Since we used principal submatrices of the Lasserre hierarchy,
we obviously have that the Lasserre hierarchy refines the block-
diagonal hierarchy. As we see in Section 2.5 the block-diagonal
hierarchy still refines the Lovász–Schrijver hierarchy.
Next we give a more compact formulation for the set Lt(K),

based on the fact that the matrix M(T ; y) has a special block
structure which can be exploited to block-diagonalize it. This
property justifies the name ‘‘block-diagonal hierarchy’’.
For a subset S of T , let AS(y) denote the principal submatrix

of M(T ; y) indexed by the set AS , which is defined in (4). It is a
(n+ 1)× (n+ 1)matrix lying inM+,V with entries
AS(y)0,0 = yS, AS(y)0,i = yS∪{i},
AS(y)i,j = yS∪{i,j} (i, j ∈ V ).
The submatrixM(T ; y)[S, S ′] ofM(T ; y)with row indices inAS and
column indices in AS′ depends only on S ∪ S ′: M(T ; y)[S, S ′] =
AS∪S′(y).

Lemma 2.2. The matrix M(T ; y) is positive semidefinite if and only if
for all subsets S of T the matrix

A(S, T )(y) :=
∑

S′:S⊆S′⊆T

(−1)|S
′
\S|AS′(y) (5)

is positive semidefinite.

Proof. The proof is a ‘‘block-matrix version’’ of the one of (2) in [9].
Define the block matrix Z indexed by A(T ), whose (S, S ′)th block
is the identity matrix I of order n+ 1 if S ⊆ S ′ and the zero matrix
otherwise. Its inverse is the block matrix whose (S, S ′)th block is
(−1)|S

′
\S|I if S ⊆ S ′ and the zero matrix otherwise. Define the

block-diagonal matrix Dwith diagonal blocks A(S, T )(y) for S ⊆ T .
Direct verification shows thatM(T ; y) = ZDZT. Therefore,

M(T , y) � 0⇐⇒ D � 0⇐⇒ ∀S ⊆ T : A(S, T )(y) � 0. �
Example 2.3. For T = {1, 2},A(T ) = A0 ∪A1 ∪A2 ∪A12 and

M(T ; y) =

 A0 A1 A2 A12
A1 A1 A12 A12
A2 A12 A2 A12
A12 A12 A12 A12

 � 0

⇐⇒


A0 − A1 − A2 + A12 � 0
A1 − A12 � 0
A2 − A12 � 0
A12 � 0

where we wrote AS instead of AS(y).

Hence, in the formulation of Lt(K), each conditionM(T ; y) � 0,
which involves one matrix of order 2t−1(n + 1), can be replaced
by the 2t−1 conditions A(S, T )(y) � 0, each involving a matrix of
order n+1. Similarly, the conditionM(T ; aly) � 0 can be replaced
by the 2t−2 conditions A(S, T )(aly) � 0, each involving a matrix of
order n+ 1.

2.4. A variation of the block-diagonal hierarchy

The next lemma deals with other possible ways of encoding
the linear conditions defining the set K . It motivates our second
variation L̃t(K). It turns out that it has an explicit link to the
Lovász–Schrijver hierarchy. A main advantage of L̃t(K) over Lt(K)
is that we do not need an explicit linear description of the set K
in order to be able to define L̃t(K). Hence L̃t(K) enjoys the same
complexity property as N t

+
(K): If one can optimize in polynomial

time over K then the same holds for L̃t(K) for any fixed t .

Lemma 2.4. Let t ≥ 1, y ∈ RPt+1(V ), K be as in (1) and A(S, T )(y)
be as in (5). Then, the following two assertions are equivalent:
(a) For all T ∈ P=(t−1)(V ), S ⊆ T , i ∈ V :

A(S, T )(y)ei ∈ K , A(S, T )(y)(e0 − ei) ∈ K .

(b) For all T ∈ P=t(V ), l = 1, . . . ,m:

MT (aly) � 0.

Proof. Using the identities

aTl AS(y)e0 = (aly)S, aTl AS(y)ei = (aly)S∪{i},

the conditions A(S, T )(y)ei ∈ K , A(S, T )(y)(e0 − ei) ∈ K can be
rewritten as∑
S′:S⊆S′⊆T

(−1)|S
′
\S|(aly)S′∪{i} ≥ 0 (l = 1, . . . ,m),∑

S′:S⊆S′⊆T

(−1)|S
′
\S|((aly)S′ − (aly)S′∪{i}) ≥ 0 (l = 1, . . . ,m).

On the other hand, using (2),MT (aly) � 0 is equivalent to∑
S′:S⊆S′⊆T

(−1)|S
′
\S|(aly)S′ ≥ 0 (S ⊆ T ).

From this one can verify the equivalence of (a) and (b). �

Observe that for t = 1 property (a) is equivalent to A0(y)ei,
A0(y)(e0 − ei) ∈ K for all i ∈ V . Combined with the condition
A0(y) � 0, this characterizes membership in the set N+(K).
This motivates replacing in the definition of Lt(K) the condition

‘‘M(T ; aly) � 0 for all T ∈ P=(t−2)(V )’’ by property (a): For t ≥ 1
define

L̃t(K) := {x ∈ RP1(V ) | ∃y ∈ RPt+1(V ) : y0 = x0, yi = xi (i ∈ V ),
M(T ; y) � 0 (T ∈ P=(t−1)(V )),
A(S, T )(y)ei ∈ K , A(S, T )(y)(e0 − ei) ∈ K
(T ∈ P=(t−1)(V ), S ⊆ T , i ∈ V )}.



30 N. Gvozdenović et al. / Operations Research Letters 37 (2009) 27–31
Table 1
Complexity comparison for L̃t (K) and N t

+
(K).

L̃t (K) N t
+
(K)

# variables
∑t+1
i=0

( n
i

) ( n
2

)∑t
i=0(2n)

i

=
1

(t+1)! n
t+1
+ O(nt ) = 2t−2nt+1 + O(nt )

# matrices
( n
t−1

)
2t−1

∑t
i=0(2n)

i

of order n+ 1 =
2t−1
(t−1)! n

t−1
+ O(nt−2) = 2t−1nt−1 +O(nt−2)

# conditions 2t
( n
t−1

)
2tnt

‘‘x ∈ K ’’ =
2t

(t−1)! n
t−1
+ O(nt−2)

2.5. Comparisons

Another advantage is that L̃t(K) can be compared directly to
the Lovász–Schrijver hierarchyN t

+
(K). The next proposition shows

that our second variation refines the Lovász–Schrijver hierarchy.

Proposition 2.5. We have L̃1(K) = N+(K) and L̃t(K) ⊆ N t+(K) for
t ≥ 2.

Proof. As noted abovewe have L̃1(K) = N+(K). Now let t ≥ 2 and
x ∈ L̃t(K). Thus, there is a y ∈ RPt+1(V )which satisfies y0 = x0, yi =
xi (i ∈ V ), and M(T ; y) � 0 or, equivalently, A(S, T )(y) � 0
for all S ⊆ T ⊆ V with |T | = t − 1. Moreover property (a) of
Lemma 2.4 holds. Set Y := M1(y). Then x = Ye0 and Y ∈ M+,V .
Given 1 ≤ s ≤ t − 1, and i1, . . . , is ∈ V , and σ ∈ {±1}s, consider
the multisets T = {i1, . . . , is}, S = {ir | r = 1, . . . , s, σr = 1} ⊆ T ,
and define Y σ1,...,σsi1,...,is

:= A(S, T )(y). Here we extend the definition
of A(S, T )(y) in (5) to the case when S and T are multisets by
taking the summation over all multisets S ′ lying between S and
T ; moreover, when S ′ is a multiset with S ′′ as underlying set, we
let AS′(y) := AS′′(y). Now one can verify that the conditions from
Proposition 2.1 hold, which implies x ∈ N t

+
(K). �

As one can see from the above proof, the main difference
between L̃t(K) and N t

+
(K) is that the matrices Y σ1,...,σsi1,...,is

share many
common entries in the definition of L̃t(K). As a consequence, one
can describe the set L̃t(K) with less variables compared to N t

+
(K).

In Table 1we compare the complexity of the formulations for L̃t(K)
and N t

+
(K). In both cases one has a semidefinite programming

formulation involving a number of matrices of size n+ 1 required
to be positive semidefinite and a number of conditions of the type
‘‘x ∈ K ’’.
Also, as already stated in Section 2.3, the block-diagonal

hierarchy refines the Lovász–Schrijver hierarchy. This can be seen
by comparing Lt+1(K)with the second variation L̃t(K).

Proposition 2.6. For t ≥ 1 the inclusion Lt+1(K) ⊆ L̃t(K) holds.
Proof. This follows directly from the definitions, after noting that,
for |T | = t , the index set of MT (y) is contained in the index set of
M(T \ {i}; y), where i is any element of T . �

3. Application to the stable set problem

In this section we apply the new hierarchies to the stable set
problem. Let G = (V , E) be a graph. A subset S ⊆ V is called a
stable set if none of its vertices are adjacent. The incidence vector
of S is χ S ∈ {0, 1}V with χ S(i) = 1 iff i ∈ S. The stability number
α(G) is the maximum cardinality of a stable set. By SG we denote
the set of all stable sets of G. Then the stable set polytope is

STAB(G) := conv{χ S | S ∈ SG},

and the corresponding cone is

ST(G) := R+

{(
1
χ S

)
| S ∈ SG

}
.

A linear relaxation of ST(G) is the fractional stable set cone
FR(G) := {x ∈ RP1(V ) | xi ≥ 0 (i ∈ V ), xi + xj ≤ x0 ({i, j} ∈ E)}.
A semidefinite relaxation of ST(G) is the theta body
TH(G) := {Ye0 ∈ RP1(V ) | Y ∈M+,V , Yij = 0 ({i, j} ∈ E)},
which is contained in FR(G). Maximizing the linear function∑
i∈V xi over the theta body TH(G) intersectedwith the hyperplane

x0 = 1 equals the Lovász theta function ϑ(G) introduced by
Lovász in [12]. For details about these relaxations and the stable
set problem we refer e.g. to [11,15].
In [9, Lemma 20] it was shown that when constructing the

Lasserre hierarchy for FR(G) one can considerably simplify the
formulation. One can replace the condition ‘‘Mt−1(aly) � 0’’,
where al runs through all linear inequalities defining FR(G), by
the simpler equalities yij = 0, where {i, j} ∈ E, the so-called
edge equalities. We want to apply the same simplification to
the definition of Lt(FR(G)) and define another variant Lt(G) of it.
However, in contrast to the Lasserre hierarchy, this simplification
weakens the block-diagonal hierarchy a little bit since we can
only claim the inclusion Lt(FR(G)) ⊆ Lt(G). Nevertheless the new
variant Lt(G) still refines the Lovász–Schrijver hierarchy, as Lt(G) ⊆
N t−1+ (TH(G)) follows from Proposition 3.2 below combined with
Proposition 2.5. We define
Lt(G) := {x ∈ RP1(V ) | ∃y ∈ RPt+1(V ) : y0 = x0, yi = xi (i ∈ V ),

M(T ; y) � 0 (T ∈ P=(t−1)(V )),
yij = 0 ({i, j} ∈ E)}.

Thus, L1(G) = TH(G) and one can easily verify the inclusions
L̃t(FR(G)) ⊆ Lt(G)when t ≥ 1 and Lt(FR(G)) ⊆ Lt(G)when t ≥ 2.
Maximizing the objective function

∑
i∈V xi over L

2(G) intersected
with the hyperplane x0 = 1 coincides with the parameter `(G)
considered in [4,6,7,10].
The next lemma says that the edge conditions in the definition

of Lt(G) imply that all variables indexed by non-stable sets are
identically 0.

Lemma 3.1. Let y ∈ RPt+1(V ) satisfy the conditions in the definition
of Lt(G). Then yI = 0 for any subset I ⊆ V with |I| ≤ t + 1 and
containing an edge.
Proof. For |I| = 2 the statement is nothing else but the edge
equalities. Assume that |I| ≥ 3, let i, j ∈ I be adjacent vertices, and
let k be another vertex in I . Define T := I \{i, j}. ThematrixM(T ; y)
is positive semidefinite and the sets {i, j} and T ∪ {k} occur in the
index setA(T ). As the (ij, ij)th entry ofM(T ; y) is yij = 0, we have
by the positive semidefiniteness of M(T ; y) that its (ij, T ∪ {k})th
entry is 0 as well and the statement of the lemma follows. �

Proposition 3.2. We have the inclusion Lt+1(G) ⊆ L̃t(TH(G)) for
t ≥ 1.
Proof. Assume that y ∈ RPt+2(V ) satisfies the conditions of the
definition of Lt+1(G). In the following we show that the vector
consisting of the first n+ 1 coordinates of y belongs to L̃t(TH(G)).
Fix T ∈ Pt−1(V ), S ⊆ T and k ∈ V . We show that A(S, T )(y)ek ∈

TH(G) and A(S, T )(y)(e0 − ek) ∈ TH(G). For this we construct
matrices Y k and Zk inM+,V satisfying Y kij = Z

k
ij = 0 when i and

j are adjacent, and satisfying

Y ke0 = A(S, T )(y)ek, Zke0 = A(S, T )(y)(e0 − ek).

We distinguish between three cases.
(1) k ∈ S: Then A(S, T )(y)e0 = A(S, T )(y)ek and define Y k :=
A(S, T )(y), Zk := 0.

(2) k ∈ T \ S: Then A(S, T )(y)ek = 0 and define Y k := 0,
Zk := A(S, T )(y).

(3) k ∈ V \ T : Then we define Y k = A(S ∪ {k}, T ∪ {k})(y) and
Zk := A(S, T ∪ {k})(y) = A(S, T )(y)− A(S ∪ {k}, T ∪ {k})(y).

In all cases we see by Lemmas 2.2 and 3.1 that Y k, Zk satisfy the
desired conditions. �
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Table 2
Optimizing over Lt (Pq) and N+(TH(Pq)) for Paley graphs.

q L1(Pq)=TH(Pq)
ϑ(Pq)=

√
q N+(TH(Pq)) L2(Pq) L3(Pq) α(Pq)

61 7.810 5.901 5.465 5.035 5
73 8.544 6.377 5.973 5.132 5
89 9.434 7.155 6.304 5.391 5
97 9.849 7.948 7.398 6.596 6
101 10.050 7.290 6.611 5.496 5
109 10.440 8.007 7.366 6.578 6
113 10.630 8.330 7.599 7.009 7
137 11.705 8.829 8.200 7.047 7
149 12.207 9.188 8.231 7.136 7
157 12.530 9.695 8.707 7.485 7
173 13.153 10.316 9.426 8.062 8
181 13.454 10.324 9.112 7.606 7
193 13.892 10.506 9.210 7.651 7
197 14.036 10.652 9.226 8.064 8
229 15.133 11.659 10.290 9.076 9
233 15.264 12.382 10.182 8.245 7
241 15.524 11.595 9.891 8.275 7
257 16.031 11.558 10.247 8.131 7
269 16.401 12.307 10.624 8.778 8
277 16.643 12.469 10.340 8.670 8
281 16.763 11.902 10.605 8.397 7
293 17.117 13.127 10.937 9.183 8
313 17.692 13.128 11.630 9.458 8
317 17.804 13.861 12.377 10.375 9
337 18.358 13.724 11.658 9.464 9
401 20.025 14.927 12.753 10.023 9
509 22.561 16.580 14.307 11.196 9
601 24.515 17.999 16.077 12.484 11
701 26.476 19.332 16.857 12.822 10
809 28.443 20.636 17.371 13.499 11

We summarize the inclusion relations between the various
relaxations:

ST(G) ⊆ Q t(FR(G)) ⊆ Lt(G) ⊆ L̃t−1(TH(G)) ⊆ N t−1
+
(TH(G)).

Moreover, N t−1+ (TH(G)) = ST(G) holds for t ≥ α(G) (see [5] for a
proof).

4. Experimental results

In this section we present some computational results for Paley
graphs.
Let Fq be the finite field with prime power qwhich is congruent

to 1 modulo 4; then −1 is a square in Fq. The Paley graph Pq
has Fq as vertex set and two distinct elements u, v ∈ Fq are
adjacent if u − v is a square in Fq. The Paley graph is isomorphic
to its complementary graph, it is a strongly regular graph and
its automorphism group acts doubly-transitive on the vertices. It
is known [12, Theorem 8] that ϑ(G)ϑ(G) = |V (G)| when G is
a vertex-transitive graph, where G denotes the complementary
graph of G. Since the Paley graph Pq is vertex-transitive and
isomorphic to its complementary graph, we have ϑ(Pq) =
ϑ(Pq) =

√
q (cf. [2, Theorem 13.14]). J.B. Shearer [16] has

computed α(Pq) for all primes q ≤ 7000. For more information
about Pq we refer e.g. to [2, Chapter 13.2].
In order to illustrate the quality of the new relaxations

Lt(Pq), we have computed the bounds obtained by maximizing∑
v∈V (Pq) xv over the sets L

t(Pq) (for t = 2, 3) and N+(TH(Pq))
intersected with x0 = 1. The results are given in Table 2. There we
consider all primes q congruent to 1modulo 4 between 61 and 337,
as well as a few larger values of q up to 809. We have chosen the
Payley graph here because its automorphism group acts doubly-
transitive on the vertex set and so our formulation for Lt(Pq)
(t ≤ 3) and N+(TH(Pq)) considerably simplifies. (See [5, Chapter
6.1] for implementation details.) For instance, optimization over
L3(P809) (resp., L2(P809), N+(TH(P809))) can be formulated via an
SDP with 876 (resp., 36, 812) variables and with four matrices
with sizes 808, 808, 404 and 202 (resp., two matrices with sizes
809 and 405, three matrices with sizes 810, 810 and 809). For
the computations we used the program CSDP [3]. Experiments
were conducted on a single machine with an Intel(R) Pentium(R)
processor, 3 Ghz and 1GB of RAM. To compute the bounds from
Table 2 we needed less than a minute when q ≤ 100 and, for the
largest instance P809, around45min for L3(P809), 31min for L2(P809)
and 4.5 h for N+(TH(P809)). Thus as expected the relaxation L2(G)
gives a sharper bound thanN+(TH(G)), however at amuch smaller
computational cost.
Finally note that one can strengthen the relaxation Lt(G) by

adding the non-negativity constraints y ≥ 0. However this only
gives a marginal improvement for Paley graphs, as the bounds
differ only in decimals.
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