Real solving polynomial equations with semidefinite programming

Jean Bernard Lasserre - Monique Laurent - Philipp Rostalski

LAAS, Toulouse - CWI, Amsterdam - ETH, Zürich

LAW 2008

Given polynomials $h_{1}, \ldots, h_{m} \in \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]$

- Compute all common real roots (assuming finitely many), i.e. compute the real variety $V_{\mathbb{R}}(I)$ of the ideal $I:=\left(h_{1}, \ldots, h_{m}\right)$
- Find a basis of the real radical ideal $I\left(V_{\mathbb{R}}(I)\right)$

$$
\begin{aligned}
& V_{\mathbb{R}}(I):=\left\{v \in \mathbb{R}^{n} \mid f(v)=0 \forall f \in I\right\} \\
& I\left(V_{\mathbb{R}}(I)\right):=\left\{f \in \mathbb{R}[\mathbf{x}] \mid f(v)=0 \forall v \in V_{\mathbb{R}}(I)\right\} \\
& \underbrace{=} \quad\left\{f \in \mathbb{R}[\mathbf{x}] \mid \exists m \in \mathbb{N} s_{i} \in \mathbb{R}[\mathbf{x}] f^{2 m}+\sum_{i} s_{i}^{2} \in I\right\}
\end{aligned}
$$

1. A semidefinite characterization of $I\left(V_{\mathbb{R}}(I)\right)$
[as the kernel of some positive semidefinite moment matrix]
2. Assuming $\left|V_{\mathbb{R}}(I)\right|<\infty$, an algorithm for finding:

- a generating set (border or Gröbner basis) of $I\left(V_{\mathbb{R}}(I)\right)$
- the real variety $V_{\mathbb{R}}(I)$

Remarks about the method:

- real algebraic in nature: no complex roots computed
- works if $V_{\mathbb{R}}(I)$ is finite (even if $V_{\mathbb{C}}(I)$ is not)
- no preliminary Gröbner basis of I is needed
- numerical, based on semidefinite programming (SDP)

Plan of the talk

1. The moment-matrix method for $V_{\mathbb{R}}(I)$
2. Adapt the moment-matrix method for $V_{\mathbb{C}}(I) \quad$ [drop PSD]
3. Relate to the 'prolongation-projection' algorithm of Zhi and Reid for $V_{\mathbb{C}}(I)$
4. Adapt the prolongation-projection algorithm for $V_{\mathbb{R}}(I)$ [add PSD]

Given an ideal $I \subseteq \mathbb{R}[\mathbf{x}]$ with $\left|V_{\mathbb{C}}(I)\right|<\infty$,
find the (complex) variety $V_{\mathbb{C}}(I)$ and the radical ideal $I\left(V_{\mathbb{C}}(I)\right)$.

Linear algebra in the finite dimensional space $\mathbb{R}[\mathrm{x}] / I$

\rightsquigarrow Need a linear basis of $\mathbb{R}[\mathbf{x}] / I$ and a normal form algorithm
$V_{\mathbb{C}}(I)$ can be computed e.g. with:

- Linear algebra methods: \rightsquigarrow Eigenvalue method [Stetter-Möller, Stickelberger, Rouillier]
- Homotopy methods [Verschelde] . . .

Seidenberg [1974]: $I\left(V_{\mathbb{C}}(I)\right)=\left(I \cup\left\{q_{1}, \ldots, q_{n}\right\}\right)$, where q_{i} is the square-free part of p_{i}, the monic generator of $I \cap \mathbb{R}\left[\mathbf{x}_{i}\right]$.

Stickelberger theorem:

Let m_{f} be the 'multiplication by f ' linear operator in $\mathbb{R}[\mathbf{x}] / I$.

1. The eigenvalues of m_{f} are $\left\{f(v) \mid v \in V_{\mathbb{C}}(I)\right\}$.
2. The eigenvectors of m_{f}^{T} give the points $v \in V_{\mathbb{C}}(I)$.

$$
M_{f}^{T} \zeta_{\mathcal{B}, v}=f(v) \zeta_{\mathcal{B}, v} \quad \forall v \in V_{\mathbb{C}}(I)
$$

where M_{f} is the matrix of m_{f} in a base \mathcal{B} of $\mathbb{R}[\mathbf{x}] / I$ and
$\zeta_{\mathcal{B}, v}:=(b(v))_{b \in \mathcal{B}}$
Moreover, when \mathcal{B} is a set of monomials and $1 \in \mathcal{B}$, a border basis of I can be read directly from the multiplication matrices $M_{x_{1}}, \ldots, M_{x_{n}}$.

Finding a linear basis \mathcal{B} of $\mathbb{R}[\mathrm{x}] / I$ and a basis G of the ideal I

- Typically: G is a Gröbner basis and \mathcal{B} is the set of standard monomials for a given monomial ordering (e.g. via Buchberger's algorithm)
- More generally: Assume $\mathcal{B}=\left\{b_{1}=1, b_{2}, \ldots, b_{N}\right\}$ is a set of monomials with border $\partial \mathcal{B}:=\left(\mathrm{x}_{1} \mathcal{B} \cup \ldots \cup \mathrm{x}_{n} \mathcal{B}\right) \backslash \mathcal{B}$. Write any border monomial

$$
\mathbf{x}_{i} b_{j}=\underbrace{\sum_{k=1}^{N} a_{k}^{(i j)} b_{k}}_{\in \operatorname{Span}(\mathcal{B})}+\underbrace{g^{(i j)}}_{\in I}
$$

Then: $G:=\left\{g^{(i j)} \mid \mathbf{x}_{i} b_{j} \in \partial \mathcal{B}\right\}$ is a (border) basis of I and carries the same information as the multiplication matrices $M_{\mathbf{x}_{1}}, \ldots, M_{\mathbf{x}_{n}}$

Counting real roots with the Hermite quadratic form

For $f \in \mathbb{R}[\mathbf{x}]$
Hermite bilinear form: $\begin{gathered}H_{f}: \begin{array}{c}\mathbb{R}[\mathbf{x}] / I \times \mathbb{R}[\mathbf{x}] / I \rightarrow \mathbb{R} \\ (g, h) \mapsto \operatorname{Tr}\left(M_{f g h}\right)\end{array} \\ \end{gathered}$

Theorem: For $f=1$

$$
\operatorname{rank}\left(H_{1}\right)=\left|V_{\mathbb{C}}(I)\right|, \operatorname{Sign}\left(H_{1}\right)=\left|V_{\mathbb{R}}(I)\right|, \operatorname{Rad}\left(H_{1}\right)=I\left(V_{\mathbb{C}}(I)\right)
$$

- $\operatorname{rank}\left(H_{f}\right)=\left|\left\{v \in V_{\mathbb{C}}(I) \mid f(v) \neq 0\right\}\right|$
- $\operatorname{Sign}\left(H_{f}\right)$

$$
=\left|\left\{v \in V_{\mathbb{R}}(I) \mid f(v)>0\right\}\right|-\left|\left\{v \in V_{\mathbb{R}}(I) \mid f(v)<0\right\}\right|
$$

To find $V_{\mathbb{R}}(I)$ and a basis of the real radical ideall $I\left(V_{\mathbb{R}}(I)\right)$...

... it suffices to have a linear basis \mathcal{B} of $\mathbb{R}[\mathbf{x}] / I\left(V_{\mathbb{R}}(I)\right)$ and the multiplication matrices in $\mathbb{R}[\mathbf{x}] / I\left(V_{\mathbb{R}}(I)\right)$!

New tool: Moment matrices

$$
y \in \mathbb{R}^{\mathbb{N}_{2 s}^{n}} \rightsquigarrow M_{s}(y):=\left(y_{\alpha+\beta}\right)_{\alpha, \beta \in \mathbb{N}_{s}^{n}}
$$

$$
\mathbb{N}_{s}^{n}:=\left\{\alpha \in \mathbb{N}^{n}| | \alpha \mid=\sum_{i} \alpha_{i} \leq s\right\}
$$

\rightsquigarrow monomials \mathbf{x}^{α} of degree $\leq s$

Motivation: For $y=\left(v^{\alpha}\right)_{\alpha \in \mathbb{N}_{2 s}^{n}}=: \zeta_{2 s, v}$ where $v \in \mathbb{R}^{n}$

$$
M_{s}(y)=\zeta_{s, v} \zeta_{s, v}^{T} \succeq 0 \text { and } \operatorname{Ker} M_{s}(y) \subseteq I(v)
$$

Real roots of $I=\left(h_{1}, \ldots, h_{m}\right)$ and PSD moment matrices

Lemma: For $v \in V_{\mathbb{R}}(I)$ and $t \geq D:=\max _{j} \operatorname{deg}\left(h_{j}\right)$ the vector $y=\zeta_{t, v}=\left(v^{\alpha}\right)_{|\alpha| \leq t}$ satisfies:

- the linear constraints (LC): $\quad\left[v \in V_{\mathbb{C}}(I)\right]$

$$
y^{T}\left(h_{j} \overrightarrow{\mathbf{x}}^{\alpha}\right)=0 \quad \forall j=1 \ldots m \quad \forall \alpha \text { s.t. }|\alpha|+\operatorname{deg}\left(h_{j}\right) \leq t
$$

- the PSD constraint: $\quad M_{\lfloor t / 2\rfloor}(y) \succeq 0 \quad\left[v \in \mathbb{R}^{n}\right]$

$$
\text { Set: } \mathcal{K}_{t}:=\left\{y \in \mathbb{R}^{\mathbb{N}_{t}^{n}} \mid(\mathrm{LC}), \quad M_{\lfloor t / 2\rfloor}(y) \succeq 0\right\}
$$

Obviously: $\mathcal{K}_{t} \supseteq \operatorname{cone}\left(\zeta_{t, v} \mid v \in V_{\mathbb{R}}(I)\right\}$
Theorem: $\exists t \geq s \geq D \quad \pi_{s}\left(\mathcal{K}_{t}\right)=\operatorname{cone}\left(\zeta_{s, v} \mid v \in V_{\mathbb{R}}(I)\right\}$

Semidefinite characterization of $I\left(V_{\mathbb{R}}(I)\right)$

Theorem 1: Let y be a generic element of \mathcal{K}_{t}, i.e. y lies in the relative interior of the cone \mathcal{K}_{t}. Then

$$
\left(\operatorname{Ker} M_{\lfloor t / 2\rfloor}(y)\right) \subseteq I\left(V_{\mathbb{R}}(I)\right)
$$

with equality for t large enough.

- Geometric property of SDP:
y is generic $\Longleftrightarrow \operatorname{rank} M_{\lfloor t / 2\rfloor}(y)$ is maximum $\Longleftrightarrow \operatorname{Ker} M_{\lfloor t / 2\rfloor}(y) \subseteq \operatorname{Ker} M_{\lfloor t / 2\rfloor}(z) \forall z \in \mathcal{K}_{t}$
Thus: for $v \in V_{\mathbb{R}}(I), \operatorname{Ker} M_{\lfloor t / 2\rfloor}(y) \subseteq \operatorname{Ker} M_{\lfloor t / 2\rfloor}\left(\zeta_{t, v}\right) \subseteq I(v)$.
- Let $\left\{g_{1}, \ldots, g_{L}\right\}$ be a basis of $I\left(V_{\mathbb{R}}(I)\right)$.

Real Nullstellensatz: $g_{l}^{2 m}+\sum_{i} s_{i}^{2}=\sum_{j=1}^{m} u_{j} h_{j}$.
This implies: $g_{l} \in \operatorname{Ker} M_{\lfloor t / 2\rfloor}(y)$ for t large enough.

Stopping criterion when $\left|V_{\mathbb{R}}(I)\right|<\infty$

Theorem 2: Let y be a generic element of \mathcal{K}_{t}.
Assume one of the following two flatness conditions holds:
(F1) $\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-1}(y)$ for some $D \leq s \leq\lfloor t / 2\rfloor$
$(\mathrm{Fd}) \operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-d}(y)$ for some $d=\lceil D / 2\rceil \leq s \leq\lfloor t / 2\rfloor$.

Then:

- $I\left(V_{\mathbb{R}}(I)\right)=\left(\operatorname{Ker} M_{s}(y)\right)$
- Any base \mathcal{B} of the column space of $M_{s-1}(y)$
is a base of $\mathbb{R}[\mathbf{x}] / I\left(V_{\mathbb{R}}(I)\right)$
- The multiplication matrices can be constructed from $M_{s}(y)$.

Sketch of proof: Assume $\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-1}(y)$

- Thm [Curto-Fialkow 1996] $\pi_{2 s}(y)$ has a flat extension $\tilde{y} \in \mathbb{R}^{\mathbb{N}^{n}}$, i.e. such that $\operatorname{rank} M(\tilde{y})=\operatorname{rank} M_{s}(y)$.
- Thm [La 2005] As $M(\tilde{y}) \succeq 0,\left(\operatorname{Ker} M_{s}(y)\right)=\operatorname{Ker} M(\tilde{y})$ is a real radical 0-dimensional ideal.
- I $\underset{(L C)}{\subseteq}\left(\operatorname{Ker} M_{s}(y)\right) \underbrace{\subseteq}_{y \text { generic }} I\left(V_{\mathbb{R}}(I)\right)$

Thus: $\left(\operatorname{Ker} M_{s}(y)\right)=I\left(V_{\mathbb{R}}(I)\right)$

- \mathcal{B} indexes a base of $M_{s-1}(y) \Longrightarrow \mathcal{B}$ indexes a base of $M(\tilde{y})$ $\Longrightarrow \mathcal{B}$ is a base of $\mathbb{R}[\mathbf{x}] / \operatorname{Ker} M(\tilde{y})=\mathbb{R}[\mathbf{x}] / I\left(V_{\mathbb{R}}(I)\right)$
\rightsquigarrow Use linear dependencies in $M_{s}(y)$ to construct the multiplication matrices.

Input: $\quad h_{1}, \ldots, h_{m} \in \mathbb{R}[\mathbf{x}]$
Output: \mathcal{B} base of $\mathbb{R}[\mathbf{x}] / I\left(V_{\mathbb{R}}(I)\right)$
The multiplication matrices $M_{\mathbf{x}_{i}}$ in $\mathbb{R}[\mathbf{x}] / I\left(V_{\mathbb{R}}(I)\right)$
Algorithm: For $t \geq D$
Step 1: Compute a generic element $y \in \mathcal{K}_{t}$.
Step 2: Check if (F1) or (Fd) holds.
If yes, return a column basis \mathcal{B} of $M_{s-1}(y)$ and $M_{\mathrm{x}_{i}}=M_{\mathcal{B}}^{-1} P_{i}$,

- $M_{\mathcal{B}}:=$ principal submatrix of $M_{s-1}(y)$ indexed by \mathcal{B}
- $P_{i}:=$ submatrix of $M_{s}(y)$ with rows in \mathcal{B} and columns in $\mathbf{x}_{i} \mathcal{B}$.

If no, go to Step 1 with $t \rightarrow t+1$.
Theorem: The algorithm terminates.

The algorithm terminates: (F1) holds for t large enough.

- For $t \geq t_{0}, \operatorname{Ker} M_{\lfloor t / 2\rfloor}(y)$ contains a Gröbner base $\left\{g_{1}, \ldots, g_{L}\right\}$ of $I\left(V_{\mathbb{R}}(I)\right)$ for a total degree ordering.
- $\mathcal{B}:=\left\{b_{1}, \ldots, b_{N}\right\}$: set of standard monomials \rightsquigarrow base of $\mathbb{R}[\mathbf{x}] / I\left(V_{\mathbb{R}}(I)\right)$.
Set: $s:=1+\max _{b \in \mathcal{B}} \operatorname{deg}(b)$ and assume $t \geq t_{0},\lfloor t / 2\rfloor>s$. For $|\alpha| \leq s$, write $x^{\alpha}=\underbrace{\sum_{i=1}^{N} \lambda_{i} b_{i}}_{\operatorname{deg} \leq s-1}+\underbrace{\sum_{l=1}^{L} u_{l} g_{l}}_{\operatorname{deg} \leq|\alpha| \leq s<\lfloor t / 2\rfloor}$
Thus: $x^{\alpha}-\sum_{i=1}^{N} \lambda_{i} b_{i} \in \operatorname{Ker} M_{\lfloor t / 2\rfloor}(y)$.
That is: $\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-1}(y)$.

Ex. 1: $I=\left(h:=\mathbf{x}_{1}^{2}+\mathbf{x}_{2}^{2}\right)$
$V_{\mathbb{R}}(I)=\{0\},\left|V_{\mathbb{C}}(I)\right|=\infty$.
$M_{1}(y) \succeq 0,0=y^{T} \vec{h}=y_{20}+y_{02} \Longrightarrow y_{\alpha}=0 \quad \forall \alpha \neq 0$.
\rightsquigarrow Any generic $y \in K_{2}$ is $y=\left(y_{0}, 0, \ldots, 0\right)$ with $y_{0}>0$.
Thus: $\left(\operatorname{Ker} M_{1}(y)\right)=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=I\left(V_{\mathbb{R}}(I)\right)$.
Ex. 2: $I=\left(h_{i}:=\mathbf{x}_{i}\left(\mathbf{x}_{i}^{2}+1\right) \mid i=1, \ldots, n\right)$
$V_{\mathbb{R}}(I)=\{0\},\left|V_{\mathbb{C}}(I)\right|=3^{n}$.
$M_{2}(y) \succeq 0,0=y^{T}\left(\mathbf{x}_{i} \vec{h}_{i}\right)=y_{4 e_{i}}+y_{2 e_{i}} \forall i \Longrightarrow y_{\alpha}=0 \quad \forall \alpha \neq 0$.
\rightsquigarrow Any generic $y \in K_{4}$ is $y=\left(y_{0}, 0, \ldots, 0\right)$ with $y_{0}>0$.
Thus: $\left(\operatorname{Ker} M_{1}(y)\right)=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=I\left(V_{\mathbb{R}}(I)\right)$.

Some algorithmic issues

How to find a generic $y \in \mathcal{K}_{t}$, i.e. with $\operatorname{rank} M_{t}(y)$ max. ?
Solve the SDP program: $\min _{y \in \mathcal{K}_{t}} 1$ with a SDP solver using the 'extended self-dual embedding property'.

Then the central path converges to a solution in the relative interior of the optimum face, i.e., to a generic point $y \in \mathcal{K}_{t}$.

How to compute ranks of matrices?
We use SVD decomposition, but this is a sensitive numerical issue ...

The method may work without (F1) or (Fd):
If $\operatorname{rank} M_{\mathcal{B}}(y)=\operatorname{rank} M_{\mathcal{B} \cup \partial \mathcal{B}}(y)$ and the formal multiplication matrices commute.

Extension of the moment-matrix algorithm to $V_{\mathbb{C}}(I)$

Omit the PSD condition and work with the linear space:

$$
K_{t}=\left\{y \in \mathbb{R}^{\mathbb{N}_{t}^{n}} \mid y^{T}\left(h_{j} \overrightarrow{\mathbf{x}}^{\alpha}\right)=0 \forall j, \alpha \text { with }|\alpha|+\operatorname{deg}\left(h_{j}\right) \leq t\right\}
$$

The same algorithm applies: For $t \geq D$

- Pick generic $y \in K_{t}$, i.e. $\operatorname{rank} M_{s}(y)$ maximum $\forall s \leq\lfloor t / 2\rfloor$ [choose $y \in K_{t}$ randomly]
- Check if the flatness condition (F1) or (Fd) holds.
- If yes, find a basis of $\mathbb{R}[\mathbf{x}] / J$ where $J:=\left(\operatorname{Ker} M_{s}(y)\right)$ satisfies $I \subseteq J \subseteq I\left(V_{\mathbb{C}}(I)\right)$ and thus $V_{\mathbb{C}}(J)=V_{\mathbb{C}}(I)$.
- If not, iterate with $t+1$.

Find the ideal $\left(\operatorname{Ker} M_{s}(y)\right)=I$ in the Gorenstein case

The inclusion $I \subseteq\left(\operatorname{Ker} M_{s}(y)\right) \subseteq I\left(V_{\mathbb{C}}(I)\right)$ may be strict for any generic y.

Example: For $I=\left(\mathbf{x}_{1}^{2}, \mathbf{x}_{2}^{2}, \mathbf{x}_{1} \mathbf{x}_{2}\right), V_{\mathbb{C}}(I)=\{0\}$, $I\left(V_{\mathbb{C}}(I)\right)=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), \operatorname{dim} \mathbb{R}[\mathbf{x}] / I=3, \operatorname{dim} \mathbb{R}[\mathbf{x}] / I\left(V_{\mathbb{C}}(I)\right)=1$, while $\operatorname{dim} \mathbb{R}[\mathbf{x}] /\left(\operatorname{Ker} M_{s}(y)\right)=2$ for any generic y !

Recall: The algebra $\mathcal{A}:=\mathbb{R}[\mathbf{x}] / I$ is Gorenstein if there exists a non-degenerate bilinear form on \mathcal{A} satisfying $(f, g h)=(f g, h)$ $\forall f, g, h \in \mathcal{A}$, i.e. if there exists $y \in K_{\infty}$ with $I=\operatorname{Ker} M(y)$

Hence: $\exists y \in K_{t}$ s.t. $\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-1}(y)$ and $I=\left(\operatorname{Ker} M_{s}(y)\right) \operatorname{IFF} \mathcal{A}$ is Gorenstein.

Example: the moment-matrix algorithm for real/complex roots

$$
I=\left(\mathbf{x}_{1}^{2}-2 \mathbf{x}_{1} \mathbf{x}_{3}+5, \mathbf{x}_{1} \mathbf{x}_{2}^{2}+\mathbf{x}_{2} \mathbf{x}_{3}+1,3 \mathbf{x}_{2}^{2}-8 \mathbf{x}_{1} \mathbf{x}_{3}\right), D=3, d=2
$$

Ranks of $M_{s}(y)$ for generic $y \in K_{t}, \mathcal{K}_{t}$:

	$t=2$	3	4	5	6	7	8	9
$s=0$	1	1	1	1	1	1	1	1
$s=1$	4	4	4	4	4	4	4	4
$s=2$			8	8	8	8	8	$\mathbf{8}$
$s=3$					11	10	9	$\mathbf{8}$
$s=4$							12	10

	$t=2$	3	4	5	6
$s=0$	1	1	1	1	1
$s=1$	4	4	4	2	2
$s=2$			8	8	2
$s=3$					

8 complex / 2 real roots:

$$
\begin{aligned}
& v_{1}=[-1.101,-2.878,-2.821] \\
& v_{2}=[0.07665+2.243 i, 0.461+0.497 i, 0.0764+0.00834 i] \\
& v_{3}=[0.07665-2.243 i, 0.461-0.497 i, 0.0764-0.00834 i] \\
& v_{4}=[-0.081502-0.93107 i, 2.350+0.0431 i,-0.274+2.199 i] \\
& v_{5}=[-0.081502+0.93107 i, 2.350-0.0431 i,-0.274-2.199 i] \\
& v_{6}=[0.0725+2.237 i,-0.466-0.464 i, 0.0724+0.00210 i] \\
& v_{7}=[0.0725-2.237 i,-0.466+0.464 i, 0.0724-0.00210 i] \\
& v_{8}=[0.966,-2.813,3.072]
\end{aligned}
$$

Extracting real roots without (F1) or (Fd)

$$
\begin{aligned}
& I=\left(5 \mathbf{x}_{1}^{9}-6 \mathbf{x}_{1}^{5} \mathbf{x}_{2}+\mathbf{x}_{1} \mathbf{x}_{2}^{4}+2 \mathbf{x}_{1} \mathbf{x}_{3},-2 \mathbf{x}_{1}^{6} \mathbf{x}_{2}+2 \mathbf{x}_{1}^{2} \mathbf{x}_{2}^{3}+2 \mathbf{x}_{2} \mathbf{x}_{3}, \mathbf{x}_{1}^{2}+\mathbf{x}_{2}^{2}-0.265625\right) \\
& D=9, d=5,\left|V_{\mathbb{R}}(I)\right|=8,\left|V_{\mathbb{C}}(I)\right|=20
\end{aligned}
$$

order t	rank sequence of $M_{s}(y)(1 \leq s \leq\lfloor t / 2\rfloor)$	extract. order s MON/SVD	accuracy MON/SVD	comm. error MON/SVD
10	148162534	-	-	-
12	13915222632	-	-	-
14	1381012162024	$3(3) /-(-)$	$0.12786 /-$	$0.00019754 /-$
16	1488812162024	$4(3) / 3(3)$	$4.6789 \mathrm{e}-5 / 0.00013406$	$4.7073 \mathrm{e}-5 / 0.00075005$

Quotient basis: $\mathcal{B}=\left\{1, \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{1}^{2}, \mathbf{x}_{1} \mathbf{x}_{2}, \mathbf{x}_{1} \mathbf{x}_{3}, \mathbf{x}_{2} \mathbf{x}_{3}\right\} \rightsquigarrow$ border basis G of size 10
Real solutions: $\begin{cases}x_{1}=(-0.515,-0.000153,-0.0124) & x_{2}=(-0.502,0.119,0.0124) \\ x_{3}=(0.502,0.119,0.0124) & x_{4}=(0.515,-0.000185,-0.0125) \\ x_{5}=(0.262,0.444,-0.0132) & x_{6}=(-2.07 \mathrm{e}-5,0.515,-1.27 \mathrm{e}-6) \\ x_{7}=(-0.262,0.444,-0.0132) & x_{8}=(-1.05 \mathrm{e}-5,-0.515,-7.56 \mathrm{e}-7)\end{cases}$

Link with the elimination method of Zhi and Reid

Theorem: If (F1) holds, i.e. for some $D \leq s \leq\lfloor t / 2\rfloor$

$$
\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-1}(y) \text { for generic } y \in K_{t}
$$

$$
\text { then } \quad \operatorname{dim} \pi_{2 s}\left(K_{t}\right)=\operatorname{dim} \pi_{2 s-1}\left(K_{t}\right)=\operatorname{dim} \pi_{2 s}\left(K_{t+1}\right)
$$

Theorem (based on [Zhi-Reid 2004]): If for some $D \leq s \leq t$
$(\mathrm{ZR}) \operatorname{dim} \pi_{s}\left(K_{t}\right)=\operatorname{dim} \pi_{s-1}\left(K_{t}\right)=\operatorname{dim} \pi_{s}\left(K_{t+1}\right)$
then one can construct a base of $\mathbb{R}[\mathbf{x}] / I$ and the multiplication matrices in $\mathbb{R}[\mathbf{x}] / I$ [and thus extract $V_{\mathbb{C}}(I)$].

Hence: The Zhi-Reid criterion (ZR) may be satisfied earlier than the flatness criterion (F1).

Example: $I=\left(\mathrm{x}_{1}^{2}-2 \mathrm{x}_{1} \mathrm{x}_{3}+5, \mathrm{x}_{1} \mathrm{x}_{2}^{2}+\mathrm{x}_{2} \mathrm{x}_{3}+1,3 \mathrm{x}_{2}^{2}-8 \mathbf{x}_{1} \mathrm{x}_{3}\right)$

	$t=2$	3	4	5	6	7	8	9	
$s=0$	1	1	1	1	1	1	1	1	
$s=1$	4	4	4	4	4	4	4	4	$\operatorname{rank} M_{3}(y)=\operatorname{rank} M_{2}(y)$
$s=2$			8	8	8	8	8	$\mathbf{8}$	for $y \in K_{9}$
$s=3$					11	10	9	$\mathbf{8}$	
$s=4$							12	10	

	$t=3$	4	5	6	7	8	9	
$s=1$	4	4	4	4	4	4	4	
$s=2$	8	8	8	8	8	8	8	
$s=3$	11	10	9	8	8	8	8	
$s=4$		12	10	9	8	8	8	$\operatorname{dim} \pi_{3}\left(\mathcal{K}_{6}\right)$
$s=5$			12	10	9	8	8	$=\operatorname{dim} \pi_{2}\left(\mathcal{K}_{6}\right)$
$s=6$				12	10	9	8	$=\operatorname{dim} \pi_{3}\left(\mathcal{K}_{7}\right)$
$s=7$					12	10	9	
$s=8$						12	10	
$s=9$							12	Real solving polynomial equations with semidefinite programming - p. 24

Extending the Zhi-Reid criterion to the real case

- In the complex case, $K_{t}=\mathcal{H}_{t}{ }^{\perp}$ where

$$
\mathcal{H}_{t}:=\left\{h_{j} \mathbf{x}^{\alpha} \quad \forall j, \alpha \text { with } \operatorname{deg}\left(h_{j} \mathbf{x}^{\alpha}\right) \leq t\right\} .
$$

- In the real case, \mathcal{K}_{t} is a cone, contained in the linear space \mathcal{P}_{t}^{\perp}, with the same dimensions: $\operatorname{dim} \mathcal{K}_{t}=\operatorname{dim} \mathcal{P}_{t}^{\perp}$, where

$$
\mathcal{P}_{t}:=\mathcal{H}_{t} \cup\left\{f \mathbf{x}^{\alpha} \mid f \in \operatorname{Ker} M_{\lfloor t / 2\rfloor}(y), \operatorname{deg}\left(\mathbf{x}^{\alpha}\right) \leq\lfloor t / 2\rfloor\right\}
$$

Theorem: If for some $D \leq s \leq t$
$(\mathrm{ZR}+) \operatorname{dim} \pi_{s}\left(\mathcal{P}_{t}^{\perp}\right)=\operatorname{dim} \pi_{s-1}\left(\mathcal{P}_{t}^{\perp}\right)=\operatorname{dim} \pi_{s}\left(\left(\mathcal{P}_{t} \cup \partial \mathcal{P}_{t}\right)^{\perp}\right)$
then one can construct a base of J with $I \subseteq J \subseteq I\left(V_{\mathbb{R}}(I)\right)$ and thus extract $V_{\mathbb{R}}(I)=V_{\mathbb{C}}(J) \cap \mathbb{R}^{n}$.

Link with the flatness criterion

Theorem: In the PSD case, the flatness criterion (F1):

$$
\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-1}(y) \text { for generic } y \in \mathcal{K}_{t}
$$

is equivalent to the stronger version of the (ZR) criterion:

$$
(\mathrm{ZR}++) \operatorname{dim} \pi_{s-1}\left(\mathcal{P}_{t}^{\perp}\right)=\operatorname{dim} \pi_{2 s}\left(\mathcal{P}_{t}^{\perp}\right)=\operatorname{dim} \pi_{2 s}\left(\left(\mathcal{P}_{t} \cup \partial \mathcal{P}_{t}\right)^{\perp}\right)
$$

in which case we find the real radical ideal $J=I\left(V_{\mathbb{R}}(I)\right)$.
Hence: the algorithm based on (ZR) may stop earlier than the moment-matrix algorithm, based on (F1).

Future work: Adapt other known efficient algorithms for complex roots to real roots by incorporating SDP conditions.

