Real solving polynomial equations with semidefinite programming

Jean Bernard Lasserre - Monique Laurent - Philipp Rostalski

LAAS, Toulouse - CWI, Amsterdam - ETH, Zürich

LAW 2008

Real solving polynomial equations with semidefinite programming - p.1

Given polynomials $h_1, \ldots, h_m \in \mathbb{R}[\mathbf{x}] = \mathbb{R}[\mathbf{x}_1, \ldots, \mathbf{x}_n]$

- Compute all common real roots (assuming finitely many), i.e. compute the real variety $V_{\mathbb{R}}(I)$ of the ideal $I := (h_1, \ldots, h_m)$
- Find a basis of the real radical ideal $I(V_{\mathbb{R}}(I))$

$$V_{\mathbb{R}}(I) := \{ v \in \mathbb{R}^n \mid f(v) = 0 \ \forall f \in I \}$$
$$I(V_{\mathbb{R}}(I)) := \{ f \in \mathbb{R}[\mathbf{x}] \mid f(v) = 0 \ \forall v \in V_{\mathbb{R}}(I) \}$$
$$\underset{\{ f \in \mathbb{R}[\mathbf{x}] \mid \exists m \in \mathbb{N} \ s_i \in \mathbb{R}[\mathbf{x}] \ f^{2m} + \sum_i s_i^2 \in I \}$$
Real Nullstellensatz

- **1.** A semidefinite characterization of $I(V_{\mathbb{R}}(I))$ [as the kernel of some positive semidefinite *moment matrix*]
- **2.** Assuming $|V_{\mathbb{R}}(I)| < \infty$, an algorithm for finding:
- a generating set (**border** or **Gröbner basis**) of $I(V_{\mathbb{R}}(I))$
- the real variety $V_{\mathbb{R}}(I)$

Remarks about the method:

- real algebraic in nature: no complex roots computed
- works if $V_{\mathbb{R}}(I)$ is finite (even if $V_{\mathbb{C}}(I)$ is not)
- no preliminary Gröbner basis of I is needed
- *numerical*, based on semidefinite programming (SDP)

1. The moment-matrix method for $V_{\mathbb{R}}(I)$

- **2.** Adapt the moment-matrix method for $V_{\mathbb{C}}(I)$ [drop PSD]
- **3.** Relate to the 'prolongation-projection' algorithm of Zhi and Reid for $V_{\mathbb{C}}(I)$

4. Adapt the prolongation-projection algorithm for $V_{\mathbb{R}}(I)$ [add PSD]

Given an ideal $I \subseteq \mathbb{R}[\mathbf{x}]$ with $|V_{\mathbb{C}}(I)| < \infty$,

find the (complex) variety $V_{\mathbb{C}}(I)$ and the radical ideal $I(V_{\mathbb{C}}(I))$.

Linear algebra in the finite dimensional space $\mathbb{R}[\mathbf{x}]/I$

 \rightsquigarrow Need a linear basis of $\mathbb{R}[\mathbf{x}]/I$ and a normal form algorithm

 $V_{\mathbb{C}}(I)$ can be computed e.g. with:

- Linear algebra methods: ~> **Eigenvalue method** [Stetter-Möller, Stickelberger, Rouillier]
- Homotopy methods [Verschelde] . . .

Seidenberg [1974]: $I(V_{\mathbb{C}}(I)) = (I \cup \{q_1, \dots, q_n\})$, where q_i is the square-free part of p_i , the monic generator of $I \cap \mathbb{R}[\mathbf{x}_i]$.

Stickelberger theorem:

Let m_f be the *'multiplication by f' linear operator* in $\mathbb{R}[\mathbf{x}]/I$.

- **1.** The eigenvalues of m_f are $\{f(v) \mid v \in V_{\mathbb{C}}(I)\}$.
- **2.** The eigenvectors of m_f^T give the points $v \in V_{\mathbb{C}}(I)$.

$$M_f^T \zeta_{\mathcal{B},v} = f(v) \zeta_{\mathcal{B},v} \quad \forall v \in V_{\mathbb{C}}(I)$$

where M_f is the matrix of m_f in a base \mathcal{B} of $\mathbb{R}[\mathbf{x}]/I$ and $\zeta_{\mathcal{B},v} := (b(v))_{b \in \mathcal{B}}$

Moreover, when \mathcal{B} is a set of monomials and $1 \in \mathcal{B}$, a **border basis** of *I* can be read directly from the multiplication matrices M_{x_1}, \ldots, M_{x_n} .

Finding a linear basis \mathcal{B} of $\mathbb{R}[\mathbf{x}]/I$ and a basis G of the ideal I

• Typically: *G* is a **Gröbner basis** and *B* is the set of **standard monomials** for a given monomial ordering (e.g. via Buchberger's algorithm)

• More generally: Assume $\mathcal{B} = \{b_1 = 1, b_2, \dots, b_N\}$ is a set of monomials with **border** $\partial \mathcal{B} := (\mathbf{x}_1 \mathcal{B} \cup \ldots \cup \mathbf{x}_n \mathcal{B}) \setminus \mathcal{B}$. Write any border monomial

$$\mathbf{x}_i b_j = \underbrace{\sum_{k=1}^N a_k^{(ij)} b_k}_{\in \mathbf{Span}(\mathcal{B})} + \underbrace{g^{(ij)}}_{\in I}$$

Then: $G := \{g^{(ij)} \mid \mathbf{x}_i b_j \in \partial B\}$ is a (border) basis of I and carries the *same information* as the multiplication matrices $M_{\mathbf{x}_1}, \ldots, M_{\mathbf{x}_n}$ Real solving polynomial equations with semidefinite programming – p.7 **Counting real roots with the Hermite quadratic form**

For
$$f \in \mathbb{R}[\mathbf{x}]$$

Hermite bilinear form:

Theorem: For f = 1

 $\operatorname{rank}(H_1) = |V_{\mathbb{C}}(I)|, \operatorname{Sign}(H_1) = |V_{\mathbb{R}}(I)|, \operatorname{Rad}(H_1) = I(V_{\mathbb{C}}(I))$

- rank $(H_f) = |\{v \in V_{\mathbb{C}}(I) \mid f(v) \neq 0\}|$
- Sign(H_f) = $|\{v \in V_{\mathbb{R}}(I) \mid f(v) > 0\}| - |\{v \in V_{\mathbb{R}}(I) \mid f(v) < 0\}|$

To find $V_{\mathbb{R}}(I)$ and a basis of the real radical ideal $I(V_{\mathbb{R}}(I))$...

... it suffices to have a linear basis \mathcal{B} of $\mathbb{R}[\mathbf{x}]/I(V_{\mathbb{R}}(I))$ and the **multiplication matrices** in $\mathbb{R}[\mathbf{x}]/I(V_{\mathbb{R}}(I))$!

New tool: Moment matrices

$$y \in \mathbb{R}^{\mathbb{N}_{2s}^n} \rightsquigarrow M_s(y) := (y_{\alpha+\beta})_{\alpha,\beta \in \mathbb{N}_s^n}$$

$$\mathbb{N}_s^n := \{ \alpha \in \mathbb{N}^n \mid |\alpha| = \sum_i \alpha_i \le s \}$$

\$\sim monomials \$\mathbf{x}^\alpha\$ of degree \$\le s\$

Motivation: For $y = (v^{\alpha})_{\alpha \in \mathbb{N}_{2s}^n} =: \zeta_{2s,v}$ where $v \in \mathbb{R}^n$

$$M_s(y) = \zeta_{s,v} \zeta_{s,v}^T \succeq 0$$
 and $\operatorname{Ker} M_s(y) \subseteq I(v)$

Real roots of $I = (h_1, \ldots, h_m)$ **and PSD moment matrices**

Lemma: For $v \in V_{\mathbb{R}}(I)$ and $t \ge D := \max_j \deg(h_j)$ the vector $y = \zeta_{t,v} = (v^{\alpha})_{|\alpha| \le t}$ satisfies:

• the linear constraints (LC): $[v \in V_{\mathbb{C}}(I)]$

 $y^T(h_j \mathbf{x}^{\alpha}) = 0 \quad \forall j = 1 \dots m \; \forall \alpha \text{ s.t. } |\alpha| + \deg(h_j) \le t$

• the PSD constraint:

$$M_{\lfloor t/2 \rfloor}(y) \succeq 0$$

$$[v \in \mathbb{R}^n]$$

Set:
$$\mathcal{K}_t := \{ y \in \mathbb{R}^{\mathbb{N}_t^n} \mid (\mathbf{LC}), M_{\lfloor t/2 \rfloor}(y) \succeq 0 \}$$

Obviously: $\mathcal{K}_t \supseteq \operatorname{cone}(\zeta_{t,v} \mid v \in V_{\mathbb{R}}(I))$

Theorem: $\exists t \geq s \geq D \quad \pi_s(\mathcal{K}_t) = \operatorname{cone}(\zeta_{s,v} \mid v \in V_{\mathbb{R}}(I))$

Semidefinite characterization of $I(V_{\mathbb{R}}(I))$

Theorem 1: Let y be a **generic element** of \mathcal{K}_t , i.e. y lies in the **relative interior** of the cone \mathcal{K}_t . Then $(\operatorname{Ker} M_{\lfloor t/2 \rfloor}(y)) \subseteq I(V_{\mathbb{R}}(I))$ with equality for t large enough.

• Geometric property of SDP: $y \text{ is generic} \iff \operatorname{rank} M_{\lfloor t/2 \rfloor}(y) \text{ is maximum}$ $\iff \operatorname{Ker} M_{\lfloor t/2 \rfloor}(y) \subseteq \operatorname{Ker} M_{\lfloor t/2 \rfloor}(z) \quad \forall z \in \mathcal{K}_t$

Thus: for $v \in V_{\mathbb{R}}(I)$, $\operatorname{Ker} M_{\lfloor t/2 \rfloor}(y) \subseteq \operatorname{Ker} M_{\lfloor t/2 \rfloor}(\zeta_{t,v}) \subseteq I(v)$.

• Let $\{g_1, \ldots, g_L\}$ be a basis of $I(V_{\mathbb{R}}(I))$. Real Nullstellensatz: $g_l^{2m} + \sum_i s_i^2 = \sum_{j=1}^m u_j h_j$. This implies: $g_l \in \operatorname{Ker} M_{\lfloor t/2 \rfloor}(y)$ for t large enough. **Theorem 2:** Let *y* be a **generic** element of \mathcal{K}_t . Assume one of the following two *flatness conditions* holds:

(F1) rank
$$M_s(y) = \operatorname{rank} M_{s-1}(y)$$
 for some $D \le s \le \lfloor t/2 \rfloor$

(Fd) rank $M_s(y) = \operatorname{rank} M_{s-d}(y)$ for some $d = \lceil D/2 \rceil \le s \le \lfloor t/2 \rfloor$.

Then:

- $I(V_{\mathbb{R}}(I)) = (\operatorname{Ker} M_s(y))$
- Any base \mathcal{B} of the column space of $M_{s-1}(y)$ is a base of $\mathbb{R}[\mathbf{x}]/I(V_{\mathbb{R}}(I))$
- The multiplication matrices can be constructed from $M_s(y)$.

Sketch of proof: Assume $\operatorname{rank} M_s(y) = \operatorname{rank} M_{s-1}(y)$

- Thm [Curto-Fialkow 1996] $\pi_{2s}(y)$ has a flat extension $\tilde{y} \in \mathbb{R}^{\mathbb{N}^n}$, i.e. such that $\operatorname{rank} M(\tilde{y}) = \operatorname{rank} M_s(y)$.
- Thm [La 2005] As $M(\tilde{y}) \succeq 0$, $(\text{Ker}M_s(y))=\text{Ker}M(\tilde{y})$ is a real radical 0-dimensional ideal.

•
$$I \underbrace{\subseteq}_{(LC)} (\operatorname{Ker} M_s(y)) \underbrace{\subseteq}_{y \text{ generic}} I(V_{\mathbb{R}}(I))$$

Thus: $(\operatorname{Ker} M_s(y)) = I(V_{\mathbb{R}}(I))$

• \mathcal{B} indexes a base of $M_{s-1}(y) \Longrightarrow \mathcal{B}$ indexes a base of $M(\tilde{y}) \Longrightarrow \mathcal{B}$ is a base of $\mathbb{R}[\mathbf{x}]/\mathrm{Ker}M(\tilde{y}) = \mathbb{R}[\mathbf{x}]/I(V_{\mathbb{R}}(I))$

 \rightsquigarrow Use linear dependencies in $M_s(y)$ to construct the multiplication matrices.

The moment-matrix algorithm for $V_{\mathbb{R}}(I)$

Input: $h_1, \ldots, h_m \in \mathbb{R}[\mathbf{x}]$ **Output:** \mathcal{B} base of $\mathbb{R}[\mathbf{x}]/I(V_{\mathbb{R}}(I))$ The multiplication matrices $M_{\mathbf{x}_i}$ in $\mathbb{R}[\mathbf{x}]/I(V_{\mathbb{R}}(I))$

Algorithm: For t > D

Step 1: Compute a generic element $y \in \mathcal{K}_t$.

Step 2: Check if (F1) or (Fd) holds.

If yes, return a column basis \mathcal{B} of $M_{s-1}(y)$ and $M_{\mathbf{x}_i} = M_{\mathcal{B}}^{-1} P_i$,

- $M_{\mathcal{B}}$:= principal submatrix of $M_{s-1}(y)$ indexed by \mathcal{B}
- P_i := submatrix of $M_s(y)$ with rows in \mathcal{B} and columns in $\mathbf{x}_i \mathcal{B}$.

If no, go to Step 1 with $t \rightarrow t + 1$.

Theorem: The algorithm terminates. Real solving polynomial equations with semidefinite programming – p.14

The algorithm terminates: (F1) holds for t large enough.

- For $t \ge t_0$, $\operatorname{Ker} M_{\lfloor t/2 \rfloor}(y)$ contains a Gröbner base $\{g_1, \ldots, g_L\}$ of $I(V_{\mathbb{R}}(I))$ for a total degree ordering.
- $\mathcal{B} := \{b_1, \dots, b_N\}$: set of standard monomials ~> base of $\mathbb{R}[\mathbf{x}]/I(V_{\mathbb{R}}(I))$.

Set: $s := 1 + \max_{b \in \mathcal{B}} \deg(b)$ and assume $t \ge t_0$, $\lfloor t/2 \rfloor > s$. For $|\alpha| \le s$, write $x^{\alpha} = \sum_{\substack{i=1 \ deg \le s-1}}^{N} \lambda_i b_i + \sum_{\substack{l=1 \ deg \le |\alpha| \le s < \lfloor t/2 \rfloor}}^{L} u_l g_l$ Thus: $x^{\alpha} - \sum_{i=1}^{N} \lambda_i b_i \in \operatorname{Ker} M_{\lfloor t/2 \rfloor}(y)$. That is: $\operatorname{rank} M_s(y) = \operatorname{rank} M_{s-1}(y)$.

Two small examples

Ex. 1:
$$I = (h := \mathbf{x}_1^2 + \mathbf{x}_2^2)$$

 $V_{\mathbb{R}}(I) = \{0\}, |V_{\mathbb{C}}(I)| = \infty.$
 $M_1(y) \succeq 0, \ 0 = y^T \vec{h} = y_{20} + y_{02} \Longrightarrow y_{\alpha} = 0 \ \forall \alpha \neq 0.$
 \rightsquigarrow Any generic $y \in K_2$ is $y = (y_0, 0, \dots, 0)$ with $y_0 > 0.$
Thus: $(\operatorname{Ker} M_1(y)) = (\mathbf{x}_1, \mathbf{x}_2) = I(V_{\mathbb{R}}(I)).$
Ex. 2: $I = (h_i := \mathbf{x}_i(\mathbf{x}_i^2 + 1) | i = 1, \dots, n)$
 $V_{\mathbb{R}}(I) = \{0\}, |V_{\mathbb{C}}(I)| = 3^n.$
 $M_2(y) \succeq 0, \ 0 = y^T(\mathbf{x}_i \vec{h}_i) = y_{4e_i} + y_{2e_i} \ \forall i \Longrightarrow y_{\alpha} = 0 \ \forall \alpha \neq 0.$
 \rightsquigarrow Any generic $y \in K_4$ is $y = (y_0, 0, \dots, 0)$ with $y_0 > 0.$
Thus: $(\operatorname{Ker} M_1(y)) = (\mathbf{x}_1, \dots, \mathbf{x}_n) = I(V_{\mathbb{R}}(I)).$

How to find a generic $y \in \mathcal{K}_t$, i.e. with rank $M_t(y)$ max. ?

Solve the SDP program: $\min_{y \in \mathcal{K}_t} 1$ with a SDP solver using the 'extended self-dual embedding property'.

Then the central path converges to a solution in the relative interior of the optimum face, i.e., to a **generic** point $y \in \mathcal{K}_t$.

How to compute ranks of matrices ?

We use SVD decomposition, but this is a sensitive numerical issue ...

The method may work without (F1) or (Fd):

If rank $M_{\mathcal{B}}(y) = \operatorname{rank} M_{\mathcal{B} \cup \partial \mathcal{B}}(y)$ and the formal multiplication matrices commute.

Extension of the moment-matrix algorithm to $V_{\mathbb{C}}(I)$

Omit the PSD condition and work with the linear space:

 $\mathbf{K}_{t} = \{ y \in \mathbb{R}^{\mathbb{N}_{t}^{n}} \mid y^{T}(h_{j} \mathbf{x}^{\alpha}) = 0 \ \forall j, \alpha \text{ with } |\alpha| + \deg(h_{j}) \leq t \}$

The *same* algorithm applies: For $t \ge D$

- Pick generic $y \in K_t$, i.e. rank $M_s(y)$ maximum $\forall s \leq \lfloor t/2 \rfloor$ [choose $y \in K_t$ randomly]
- Check if the flatness condition (F1) or (Fd) holds.
- If yes, find a basis of $\mathbb{R}[\mathbf{x}]/J$ where $J := (\text{Ker}M_s(y))$ satisfies $I \subseteq J \subseteq I(V_{\mathbb{C}}(I))$ and thus $V_{\mathbb{C}}(J) = V_{\mathbb{C}}(I)$.
- If not, iterate with t + 1.

Find the ideal $(Ker M_s(y)) = I$ in the Gorenstein case

The inclusion $I \subseteq (\text{Ker}M_s(y)) \subseteq I(V_{\mathbb{C}}(I))$ may be strict for any generic y.

Example: For $I = (\mathbf{x}_1^2, \mathbf{x}_2^2, \mathbf{x}_1\mathbf{x}_2), V_{\mathbb{C}}(I) = \{0\},$ $I(V_{\mathbb{C}}(I)) = (\mathbf{x}_1, \mathbf{x}_2), \dim \mathbb{R}[\mathbf{x}]/I = 3, \dim \mathbb{R}[\mathbf{x}]/I(V_{\mathbb{C}}(I)) = 1,$ while $\dim \mathbb{R}[\mathbf{x}]/(\operatorname{Ker} M_s(y)) = 2$ for any generic y !

Recall: The algebra $\mathcal{A} := \mathbb{R}[\mathbf{x}]/I$ is *Gorenstein* if there exists a non-degenerate bilinear form on \mathcal{A} satisfying (f, gh) = (fg, h) $\forall f, g, h \in \mathcal{A}$, i.e. if there exists $y \in K_{\infty}$ with I = KerM(y)

Hence: $\exists y \in K_t$ s.t. rank $M_s(y) = \text{rank}M_{s-1}(y)$ and $I = (\text{Ker}M_s(y))$ IFF \mathcal{A} is Gorenstein.

Example: the moment-matrix algorithm for real/complex roots

$$I = (\mathbf{x}_1^2 - 2\mathbf{x}_1\mathbf{x}_3 + 5, \ \mathbf{x}_1\mathbf{x}_2^2 + \mathbf{x}_2\mathbf{x}_3 + 1, \ 3\mathbf{x}_2^2 - 8\mathbf{x}_1\mathbf{x}_3), \ D = 3, \ d = 2$$

	t=2	2 3	4	5	6	7	8	9	
s = 0) 1	1	1	1	1	1	1	1	_
s = 1	. 4	4	4	4	4	4	4	4	no PCD 8 complex roots
s = 2	2		8	8	8	8	8	8	$10 \text{ FSD} \sim 3 \text{ complex roots}$
s = 3	3				11	10	9	8	
s = 4	Ł						12	10	
	•								
		t =	2	3	4 :	56			
-	e = 0	1		1	1	1 1			

Ranks of $M_s(y)$ **for generic** $y \in K_t$, \mathcal{K}_t :

	t = 2	3	4	5	6	
s = 0	1	1	1	1	1	
s = 1	4	4	4	2	2	with PSD \rightsquigarrow extract 2 real roots
s = 2			8	8	2	
s = 3					10	

8 complex / 2 real roots:

$$v_{1} = \begin{bmatrix} -1.101, -2.878, -2.821 \end{bmatrix}$$

$$v_{2} = \begin{bmatrix} 0.07665 + 2.243i, 0.461 + 0.497i, 0.0764 + 0.00834i \end{bmatrix}$$

$$v_{3} = \begin{bmatrix} 0.07665 - 2.243i, 0.461 - 0.497i, 0.0764 - 0.00834i \end{bmatrix}$$

$$v_{4} = \begin{bmatrix} -0.081502 - 0.93107i, 2.350 + 0.0431i, -0.274 + 2.199i \end{bmatrix}$$

$$v_{5} = \begin{bmatrix} -0.081502 + 0.93107i, 2.350 - 0.0431i, -0.274 - 2.199i \end{bmatrix}$$

$$v_{6} = \begin{bmatrix} 0.0725 + 2.237i, -0.466 - 0.464i, 0.0724 + 0.00210i \end{bmatrix}$$

$$v_{7} = \begin{bmatrix} 0.0725 - 2.237i, -0.466 + 0.464i, 0.0724 - 0.00210i \end{bmatrix}$$

$$v_{8} = \begin{bmatrix} 0.966, -2.813, 3.072 \end{bmatrix}$$

Extracting real roots without (F1) or (Fd)

 $I = (5\mathbf{x}_1^9 - 6\mathbf{x}_1^5\mathbf{x}_2 + \mathbf{x}_1\mathbf{x}_2^4 + 2\mathbf{x}_1\mathbf{x}_3, -2\mathbf{x}_1^6\mathbf{x}_2 + 2\mathbf{x}_1^2\mathbf{x}_2^3 + 2\mathbf{x}_2\mathbf{x}_3, \mathbf{x}_1^2 + \mathbf{x}_2^2 - 0.265625)$ $D = 9, d = 5, |V_{\mathbb{R}}(I)| = 8, |V_{\mathbb{C}}(I)| = 20$

order	rank sequence of	extract. order s	accuracy	comm. error
t	$M_s(y) \ (1 \le s \le \lfloor t/2 \rfloor)$	MON/SVD	MON/SVD	MON/SVD
10	1 4 8 16 25 34			—
12	1 3 9 15 22 26 32			
14	1 3 8 10 12 16 20 24	3(3)/—(—)	0.12786/—	0.00019754/—
16	1 4 <mark>8 8 8</mark> 12 16 20 24	4(3)/3(3)	4.6789e-5/0.00013406	4.7073e-5/0.00075005

Quotient basis: $\mathcal{B} = \{1, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_1^2, \mathbf{x}_1\mathbf{x}_2, \mathbf{x}_1\mathbf{x}_3, \mathbf{x}_2\mathbf{x}_3\} \rightsquigarrow \text{border basis } G \text{ of size } 10$

Real solutions:
$$\begin{cases} x_1 = (-0.515, -0.000153, -0.0124) & x_2 = (-0.502, 0.119, 0.0124) \\ x_3 = (0.502, 0.119, 0.0124) & x_4 = (0.515, -0.000185, -0.0125) \\ x_5 = (0.262, 0.444, -0.0132) & x_6 = (-2.07e-5, 0.515, -1.27e-6) \\ x_7 = (-0.262, 0.444, -0.0132) & x_8 = (-1.05e-5, -0.515, -7.56e-7) \end{cases}$$

Link with the elimination method of Zhi and Reid

Theorem: If (F1) holds, i.e. for some $D \le s \le \lfloor t/2 \rfloor$

 $\operatorname{rank} M_s(y) = \operatorname{rank} M_{s-1}(y)$ for generic $y \in K_t$,

then
$$\dim \pi_{2s}(K_t) = \dim \pi_{2s-1}(K_t) = \dim \pi_{2s}(K_{t+1})$$

Theorem (based on [Zhi-Reid 2004]): If for some $D \le s \le t$

(ZR)
$$\dim \pi_s(K_t) = \dim \pi_{s-1}(K_t) = \dim \pi_s(K_{t+1})$$

then one can construct a base of $\mathbb{R}[\mathbf{x}]/I$ and the multiplication matrices in $\mathbb{R}[\mathbf{x}]/I$ [and thus extract $V_{\mathbb{C}}(I)$].

Hence: The Zhi-Reid criterion (ZR) may be satisfied earlier than the flatness criterion (F1).

	<i>t</i> =	= 2	3	4	5	6	7	8	9
s =	0	1	1	1	1	1	1	1	1
s =	1 4	1	4	4	4	4	4	4	4 $\operatorname{rank} M_3(y) = \operatorname{rank} M_2(y)$
s =	2			8	8	8	8	8	8 for $y \in K_9$
s =	3					11	10	9	8
s =	4							12	10
	t = 3	4		5	6	7	8	9	
s = 1	4	4	Z	1	4	4	4	4	
s = 2	8	8	8	3	8	8	8	8	
s = 3	11	10	ç)	8	8	8	8	$\dim -(K_{-})$
s = 4		12	1	0	9	8	8	8	$\dim \pi_3(\mathcal{K}_6)$
s = 5			1	2	10	9	8	8	$= \dim \pi_2(\mathcal{K}_6)$ $= \dim \pi_2(\mathcal{K}_6)$
s = 6					12	10	9	8	$= \dim \pi_3(\mathcal{K}_7)$
s = 7						12	10	9	
s = 8							12	10	
s = 9								12	Real solving polynomial equations with semidefinite programming – p.24

Extending the Zhi-Reid criterion to the real case

• In the **complex** case, $K_t = \mathcal{H}_t^{\perp}$ where

$$\mathcal{H}_t := \{ h_j \mathbf{x}^{\alpha} \quad \forall j, \alpha \text{ with } \deg(h_j \mathbf{x}^{\alpha}) \leq t \}.$$

• In the real case, \mathcal{K}_t is a cone, contained in the linear space \mathcal{P}_t^{\perp} , with the same dimensions: dim $\mathcal{K}_t = \dim \mathcal{P}_t^{\perp}$, where

$$\mathcal{P}_t := \mathcal{H}_t \cup \{ f \mathbf{x}^\alpha \mid f \in \mathrm{Ker} M_{\lfloor t/2 \rfloor}(y), \ \mathrm{deg}(\mathbf{x}^\alpha) \le \lfloor t/2 \rfloor \}$$

Theorem: If for some $D \le s \le t$

(ZR+) dim $\pi_s(\mathcal{P}_t^{\perp}) = \dim \pi_{s-1}(\mathcal{P}_t^{\perp}) = \dim \pi_s((\mathcal{P}_t \cup \partial \mathcal{P}_t)^{\perp})$

then one can construct a base of J with $I \subseteq J \subseteq I(V_{\mathbb{R}}(I))$ and thus extract $V_{\mathbb{R}}(I) = V_{\mathbb{C}}(J) \cap \mathbb{R}^n$. Link with the flatness criterion

Theorem: In the PSD case, the flatness criterion (F1):

 $\operatorname{rank} M_s(y) = \operatorname{rank} M_{s-1}(y)$ for generic $y \in \mathcal{K}_t$

is equivalent to the stronger version of the (ZR) criterion:

(ZR++) dim
$$\pi_{s-1}(\mathcal{P}_t^{\perp}) = \dim \pi_{2s}(\mathcal{P}_t^{\perp}) = \dim \pi_{2s}((\mathcal{P}_t \cup \partial \mathcal{P}_t)^{\perp})$$

in which case we find the real radical ideal $J = I(V_{\mathbb{R}}(I))$.

Hence: the algorithm based on (ZR) may stop earlier than the moment-matrix algorithm, based on (F1).

Future work: Adapt other known efficient algorithms for complex roots to *real* roots by incorporating SDP conditions.