Semidefinite Optimization Approach for the
Single-Row Layout Problem with Unequal
Dimensions

Miguel F. Anjos

Operational Research Group
School of Mathematics
University of Southampton, U.K.

(joint on-going work with Andrew Kennings and Anthony Vannelli,

University of Waterloo, Canada)

HPOPT 2004 — CWI — Amsterdam

25 June 2004




The Single-Row Facility Layout Problem

e The single-row facility layout problem, also known as the 1-D

space allocation problem, consists in finding an optimal linear
placement of facilities with varying dimensions on a straight

line.

e Note that the distance between two facilities depends on the
facilities placed between them. Consider the distance between
1 and 2 in this example:




The Single-Row Layout Problem (ctd)

An instance of the problem consists of:
e n 1-D facilities {ry,...,r,}

e with positive lengths ¢1,...,¢,

e and (usually non-negative) pairwise connectivities c;;.

We seek an arrangement of the facilities so as to minimize the total
weighted sum of the center-to-center distances between all pairs of

facilities.
We are thus optimizing over all permutations of the facilities.

(If all ¢; are equal, this is an instance of the Quadratic Assignment
Problem.)




The Single-Row Layout Problem (ctd)

Some applications:

1. Assigning files to the cylinder of a disk

(minimize average access time)

2. Layout of rooms along a corridor

(minimize total travelled distance)

Standard-cell circuit design

(minimize wirelength)




Earlier Work on Globally Optimal Algorithms

e Simmons (1969) proposed a branch-and-bound algorithm;

e Picard and Queyranne (1981) developed a DP algorithm,
extending an algorithm of Karp and Held (1967) for the special

case with all /; equal.

All these algorithms are guaranteed to find the global optimal
solution, but they have very high computational times and memory
requirements, and are unlikely to be effective for problems with 20

or more facilities.




Earlier Work on Locally Optimal Algorithms

e Heragu and Kusiak (1991) use non-linear optimization

methods;

e Romero and Sanchez-Flores (1990) and Heragu and Alfa (1992)

developed simulated annealing algorithms;

e Kumar et al. (1995) proposed a greedy heuristic algorithm.

The last two papers contain the best results in the literature so far,

on problems with up to 30 facilities.




Our Contribution

We construct a semidefinite programming (SDP) relaxation

providing a global lower bound on the optimal value of the problem.

e To the best of our knowledge, this is the first non-trivial global

lower bound in the published literature.

e The structure of the relaxation suggests a simple heuristic
procedure which extracts a facility arrangement from an

optimal matrix solution to the SDP.




Our Contribution (ctd)

Therefore, the SDP-based approach yields both a feasible solution

and guarantee of how far it is from global optimality.

When applied to problems previously considered in the literature,
our lower bounds also provide a measure of the distance from
optimality of the best layouts obtained using some of the

aforementioned algorithms.

We successtully applied the SDP approach to randomly generated
instances with up to 80 facilities.




Modelling the Problem

Let m = (my,...,7m,) denote a permutation of the indices
n] :={1,2,...,n} of the facilities. Given a permutation 7 and two
distinct facilities r; and r;, the center-to-center distance between r;

and r; with respect to this permutation is

1 N |
MN& + Dr(i,J) + m@

where D, (i,j) denotes the sum of the lengths of the facilities
between r; and r; in the linear arrangement defined by .
The problem is then

1

1
Cij F? + D (i,7) + m&.

where II denotes the set of all permutations 7 of [n].




Modelling the Problem (ctd)

Rewriting the objective function as

. .. H
in . .msbaA@Lvl_'MU.m@&?._.S
1<) 1<)J

where the second summation is a constant independent of w, we see

that the problem is really to minimize ) ¢;;D(¢,J) over all

1<J
permutations .

Note also that we can exchange the left and right ends of the layout

and obtain the same objective value.

Most algorithms apply explicit symmetry-breaking strategies to

reduce the computational cost.

The SDP approach implicitly considers these symmetries.




Construction of the SDP Relaxation

For each pair 7, j of facilities, define the 41 variable

1, if facility ¢ is to the right of facility j
—1, if facility ¢ is to the left of facility j

The order of the subscripts matters: R;; = —R;;.

To accurately formulate the problem, we must ensure that the
variables represent a valid permutation. In particular, we require
that

if 7 is right of 7 and j is right of k, then 7 is right of k.
We can formulate this condition as
if Rj; = Rjg, then R, = Ry,

or equivalently

(Rij + Rjr)(Rix — Rij) = 0.




Construction of the SDP Relaxation (ctd)

Expanding
(Rij + Rjr)(Rir, — Rij) = 0,

we obtain the quadratic constraint

RyiRij — RijRij — R Rij = —

In principle, we have three such constraints for each triple (¢, j, k),
but it is easy to check that they are all equivalent to this single
quadratic equation with 7 < 7 < k.

These Amv constraints on the I?;; variables suffice to obtain

precisely all possible permutations of the n facilities.




Construction of the SDP Relaxation (ctd)

Let

Ri={pe {(#1}E) : RyRyj — Rij Ry — RyiByy = —1 Vi < j < k}

and given p € R, consider

P,=> Rij=> —Rjn+» Ry for k=1,2,...,n. (1)
j#k i<k >k
Clearly all the P values are integer and belong to the set
P={-(n-1),—-(n-3),...,n—3,n—1}
which has exactly n elements. A straightforward mapping of the

elements of P onto [n] is given by

wwl_lﬁ\lTH
Pr = 9




Construction of the SDP Relaxation (ctd)

Theorem 1 If p € R then the values Py, defined in (1) are all

distinct.

This implies that every element of P is represented by exactly one
Py, and hence that (p1,p2,...,pn) is a permutation of [n]

representing p.

To express the objective function of the problem in terms of the

variables R;;, observe that the sum of the lengths of the facilities

between 7 and j can be expressed as




SDP Relaxation

Defining a rank-one matrix variable X with @ rows and columns
such that X;; 1 = R;; Ry for all pairs of facilities, we can formulate

the problem as:

. Cij
min K — ) 5| > beXping — D LeXinks + 20 CeXik jk
i<y k<i i<k<j k>j

st Xgiij — Xijkj — Xkik; = —1 for all triples ¢ < 7 < k
diag (X) =e
rank (X) =1
X >0

where K = | ) < AM ?v.
k=1

i<j

Omitting the rank constraint yields the SDP relaxation.




SDP-based Heuristic

Let X* be the optimal solution to the SDP relaxation. If we set
Ri5 = +1, then we can scan the first row of X* and assign the

value X192 ;; to the variable R;;, for every pair (i,7) # (1,2).

Using these values, we then generate the Pj, values using equation
(1). From these we get the corresponding py values, and sorting

these we obtain a permutation of the facilities.

Note that if every R;; variable is replaced by its negative, then
there is no change to the SDP relaxation.

The choice of R15 = +1 is arbitrary, and simply breaks this

symmetry.




Computational Results

The first set of results was obtained by applying the SDP approach
to a set of six test problems from the literature, ranging in

dimension from 8 to 30 facilities.

For these problems, we can solve the SDP relaxations to optimality
using SDPT3 (version 3.2).

Instance  Number of SDP CPU time

facilities Bound (seconds)

Lit-1 3 2324.5 0.5
Lit-2 10 2773.9 0.9
Lit-3 11 6846.6 1.0
Lit-4 11 6847.6 1.0
Lit-5 20 15285.9 24.3
Lit-6 30 43963.7 499.0

(Computations performed on a 2.4GHz Pentium IV with 1.5Gb of RAM)




Instance

Best layout
from

HA (1992)

Best layout
from

KHL (1995)
1 pass

Best layout
from

KHL (1995)
> 1 passes

Layout by
SDP-based

heuristic

2324.5

2324.5
(0%)

2324.5
(0%)

2324.5
(0%)

2324.5
(0%)

2773.9

2781.5
(0.27%)

2781.5
(0.27%)

2781.5
(0.27%)

2781.5
(0.27%)

6846.6

6933.5

(1.24%)

6953.5
(1.54%)

6953.5
(1.54%)

7083.5
(3.34%)

6847.6

6933.5

(1.24%)

7265.5
(5.75%)

7265.5
(5.75%)

7083.5
(3.33%)

15285.9

15602.0
(2.03%)

15971.0
(4.29%)

15549.0
(1.69%)

15804.0
(3.28%)

44107.8™

45111.0
(2.22%)

45308.5
(2.65%)

44466.5
(0.81%)

45605.0"
(3.28%)




Observations

1. The SDP bounds are remarkably tight for these six instances.
In fact, they prove the optimality of the layout for Lit-1 which

was (apparently) not yet known.

. The SDP bound can improve dramatically by using a single
branch and solving two more SDPs. This was done for the
30-facility problem, and improved the bound from 43963.7 to
44107.8

The SDP-based heuristic is surprisingly competitive (see e.g.

Lit-4), considering that its layouts are not (yet) improved by

applying a local improvement procedure.




Results on Randomly Generated Instances

To explore the effectiveness of the SDP approach on larger

instances, we randomly generated instances with up to 80 facilities,

and we used SBmethod for these instances.

Number of Cutoft for Gap between SDP global bound
facilities SB method and SDP heuristic layout

(average over 5 instances)

4.47%
4.29%
4.12%
6.85%




Summary and Some Current Research

e This SDP approach provides the first non-trivial global lower

bound for single-row layout in the published literature.

A heuristic procedure extracts a feasible layout from the SDP
optimal solution, and empirical evidence shows that it is
consistently within a few percentage points of the global

optimal solution.

This construction can be extended to two-dimensional

unequal-area facility layout (on-going work with P.L. Takouda
and A. Vannelli).




