Progress on Turán's brick factory problem

Etienne de Klerk[†], John Maharry, Dima Pasechnik, Bruce Richter and Gelasio Salazar

[†]University of Waterloo

HPOPT 2004, CWI, Amsterdam

• Crossing numbers in complete bipartite graphs;

- Crossing numbers in complete bipartite graphs;
- Quadratic optimization on the simplex (standard QP);

- Crossing numbers in complete bipartite graphs;
- Quadratic optimization on the simplex (standard QP);
- Approximating standard QP's using semidefinite programming;

- Crossing numbers in complete bipartite graphs;
- Quadratic optimization on the simplex (standard QP);
- Approximating standard QP's using semidefinite programming;
- Lower bounding the crossing numbers using standard QP: new results.

Crossing numbers for $K_{n,m}$

• We denote the *complete bipartite graph* with color classes of size m and n by $K_{n,m}$.

Crossing numbers for $K_{n,m}$

- We denote the *complete bipartite graph* with color classes of size m and n by $K_{n,m}$.
- In any drawing of $K_{n,m}$ we count the number of times that two edges cross.

Crossing numbers for $K_{n,m}$

- We denote the *complete bipartite graph* with color classes of size m and n by $K_{n,m}$.
- In any drawing of $K_{n,m}$ we count the number of times that two edges cross.
- The minimum possible number of crossings is called the *crossing number* of $K_{n,m}$ denoted by $\operatorname{cr}(K_{n,m})$.

Example

This drawing of $K_{2,3}$ has 3 crossings.

Example (ctd.)

This drawing of $K_{2,3}$ has no crossings.

• 'Good drawing': put one color class on the *x*-axis, and the other color class on the *y*-axis (no vertex at the origin).

- 'Good drawing': put one color class on the *x*-axis, and the other color class on the *y*-axis (no vertex at the origin).
- Number of crossings: Z(n)Z(m), where

$$Z(n) := \begin{pmatrix} \lfloor \frac{1}{2}n \rfloor \\ 2 \end{pmatrix} + \begin{pmatrix} \lceil \frac{1}{2}n \rceil \\ 2 \end{pmatrix}$$

- 'Good drawing': put one color class on the *x*-axis, and the other color class on the *y*-axis (no vertex at the origin).
- Number of crossings: Z(n)Z(m), where

$$Z(n) := \begin{pmatrix} \lfloor \frac{1}{2}n \rfloor \\ 2 \end{pmatrix} + \begin{pmatrix} \lceil \frac{1}{2}n \rceil \\ 2 \end{pmatrix}$$

• Conjecture: $\operatorname{cr}(K_{m,n}) = Z(n)Z(m)$.

- 'Good drawing': put one color class on the x-axis, and the other color class on the y-axis (no vertex at the origin).
- Number of crossings: Z(n)Z(m), where

$$Z(n) := \begin{pmatrix} \lfloor \frac{1}{2}n \rfloor \\ 2 \end{pmatrix} + \begin{pmatrix} \lceil \frac{1}{2}n \rceil \\ 2 \end{pmatrix}$$

- Conjecture: $\operatorname{cr}(K_{m,n}) = Z(n)Z(m)$.
- Proven for the case $\min(m, n) \le 6$. Case m = 7 still open.

This talk

• We will show that

$$0.83Z(n)Z(m) \le \operatorname{cr}(K_{m,n}) \le Z(n)Z(m).$$

This talk

We will show that

$$0.83Z(n)Z(m) \le \operatorname{cr}(K_{m,n}) \le Z(n)Z(m).$$

• Previous result (Kleitman 1970):

$$0.8Z(n)Z(m) \le \operatorname{cr}(K_{m,n}) \le Z(n)Z(m),$$

that follows from
$$\operatorname{cr}(K_{6,n}) = Z(6)Z(n)$$
.

This talk

We will show that

$$0.83Z(n)Z(m) \le \operatorname{cr}(K_{m,n}) \le Z(n)Z(m).$$

• Previous result (Kleitman 1970):

$$0.8Z(n)Z(m) \le \operatorname{cr}(K_{m,n}) \le Z(n)Z(m),$$

that follows from $\operatorname{cr}(K_{6,n}) = Z(6)Z(n)$.

Slight improvement to 0.8001 (Nahas 2003).

• Let C_m denote the set of all cyclic orderings on $\{1,\ldots,m\}$. Then $|C_m|=(m-1)!$.

- Let C_m denote the set of all cyclic orderings on $\{1,\ldots,m\}$. Then $|C_m|=(m-1)!$.
- The distance between $a \in C_m$ and $b \in C_m$ is the minimum number of 'neighbor swaps' to go form a to b. (The first and last numbers are also neighbours.)

- Let C_m denote the set of all cyclic orderings on $\{1,\ldots,m\}$. Then $|C_m|=(m-1)!$.
- The distance between $a \in C_m$ and $b \in C_m$ is the minimum number of 'neighbor swaps' to go form a to b. (The first and last numbers are also neighbours.)
- Example d(123, 321) = 1, because

$$123 \to 321.$$

- Let C_m denote the set of all cyclic orderings on $\{1, \ldots, m\}$. Then $|C_m| = (m-1)!$.
- The distance between $a \in C_m$ and $b \in C_m$ is the minimum number of 'neighbor swaps' to go form a to b. (The first and last numbers are also neighbours.)
- Example d(123, 321) = 1, because

$$123 \to 321.$$

• The antidistance $\overline{d}(a, b) := d(a, \overline{b})$, where \overline{b} is obtained by inverting b, e.g:

$$d(123, 123) = d(123, \overline{123}) = d(123, 321) = 1.$$

A lower bound

• Consider a drawing D of $K_{2,m}$ with color classes $\{\alpha, \beta\}$ and $\{1, \ldots, m\}$.

A lower bound

- Consider a drawing D of $K_{2,m}$ with color classes $\{\alpha,\beta\}$ and $\{1,\ldots,m\}$.
- Let $a \in C_m$ (resp. $b \in C_m$) denote the *cyclic*, *clockwise order* in which the edges leave α (resp. β).

A lower bound

- Consider a drawing D of $K_{2,m}$ with color classes $\{\alpha,\beta\}$ and $\{1,\ldots,m\}$.
- Let $a \in C_m$ (resp. $b \in C_m$) denote the *cyclic*, *clockwise order* in which the edges leave α (resp. β).
- **Theorem** (Kleitman, 1970): One has

$$\operatorname{cr}(D) \geq \bar{d}(a,b).$$

Example 1

This drawing D has cr(D) = 0 crossings.

$$\bar{d}(123, 321) = d(123, 123) = 0 = \operatorname{cr}(D).$$

Example 2

This drawing D has cr(D) = 3 crossings.

$$\bar{d}(321, 321) = d(321, 123) = 1 < \operatorname{cr}(D).$$

The case
$$K_{7,n}$$
 ($m = 7$)

• Consider any drawing D of $K_{7,n}$ now.

The case $K_{7,n}$ (m = 7)

- Consider any drawing D of $K_{7,n}$ now.
- Denote the elements of C_7 by a_i (i = 1, ..., (7 1)!);

The case $K_{7,n}$ (m = 7)

- Consider any drawing D of $K_{7,n}$ now.
- Denote the elements of C_7 by a_i (i = 1, ..., (7 1)!);
- Denote by x_i the number of the n vertices that have edge orientation a_i ;

The case $K_{7,n}$ (m = 7)

- Consider any drawing D of $K_{7,n}$ now.
- Denote the elements of C_7 by a_i (i = 1, ..., (7 1)!);
- Denote by x_i the number of the n vertices that have edge orientation a_i ;
- Now

$$\operatorname{cr}(D) \ge \frac{1}{2} \sum_{i,j} \bar{d}(a_i, a_j) x_i x_j - \frac{9}{2} n.$$

Standard quadratic opt.

We get a *lower bound* on $cr(K_{7,n})$ via

$$\operatorname{cr}(K_{7,n}) \ge \min_{x} \frac{1}{2} \sum_{i,j} \bar{d}(a_i, a_j) x_i x_j - \frac{9}{2} n$$

subject to
$$x_i \ge 0$$
, $\sum_i x_i = n$.

Standard quadratic opt.

We get a *lower bound* on $cr(K_{7,n})$ via

$$\operatorname{cr}(K_{7,n}) \ge \min_{x} \frac{1}{2} \sum_{i,j} \bar{d}(a_i, a_j) x_i x_j - \frac{9}{2} n$$

subject to $x_i \ge 0$, $\sum_i x_i = n$.

Scale the variables to get

$$\operatorname{cr}(K_{7,n}) \ge \min_{x} \frac{1}{2} n^2 \sum_{i,j} \bar{d}(a_i, a_j) x_i x_j - \frac{9}{2} n$$

subject to
$$x_i \ge 0$$
, $\sum_i x_i = 1$.

• We want to minimize a non-convex quadratic function over the simplex with (7-1)! = 720 variables.

- We want to minimize a non-convex quadratic function over the simplex with (7-1)! = 720 variables.
- This problem is NP-hard, but allows a PTAS (Bomze, DK 2002, Nesterov 2003).

- We want to minimize a non-convex quadratic function over the simplex with (7-1)! = 720 variables.
- This problem is NP-hard, but allows a PTAS (Bomze, DK 2002, Nesterov 2003).
- We want to use the SDP relaxations that are based on the approaches of Parrilo and Lasserre.

- We want to minimize a non-convex quadratic function over the simplex with (7-1)! = 720 variables.
- This problem is NP-hard, but allows a PTAS (Bomze, DK 2002, Nesterov 2003).
- We want to use the SDP relaxations that are based on the approaches of Parrilo and Lasserre.
- **Problem:** the relaxations are too large to solve in the naive formulation.

Standard QO

- We want to minimize a non-convex quadratic function over the simplex with (7-1)! = 720 variables.
- This problem is NP-hard, but allows a PTAS (Bomze, DK 2002, Nesterov 2003).
- We want to use the SDP relaxations that are based on the approaches of Parrilo and Lasserre.
- **Problem:** the relaxations are too large to solve in the naive formulation.
- Solution: reduce the problem size by exploiting the invariance properties of the quadratic function, a'la Schrijver, Gatermann-Parrilo.

The basic relaxation

Our problem is of the form

$$p_{\min} := \min_{x} \left\{ x^{T} Q x : e^{T} x = 1, \ x \ge 0 \right\},$$

with *e* the all-ones vector.

The basic relaxation

Our problem is of the form

$$p_{\min} := \min_{x} \left\{ x^{T} Q x : e^{T} x = 1, \ x \ge 0 \right\},$$

with e the all-ones vector.

Basic relaxation we used:

$$\min_{X} \left\{ \operatorname{tr}(QX) : \operatorname{tr}\left(ee^{T}X\right) = 1, \ X \succeq 0, \ X \geq 0 \right\},\,$$

where $X \succeq 0$ means X positive semidefinite.

Exploiting group symmetry

Our matrix Q is invariant under the action of a group G of permutation matrices $P \in G$, in the sense that

$$Q = P^T Q P$$
 for all $P \in G$.

Exploiting group symmetry

Our matrix Q is invariant under the action of a group G of permutation matrices $P \in G$, in the sense that

$$Q = P^T Q P$$
 for all $P \in G$.

Fixed point subspace:

$$\mathcal{A} := \left\{ Y \in \mathcal{S} \mid Y = \frac{1}{k} \sum_{P \in G} P^T X P, \ X = X^T \right\}.$$

Exploiting group symmetry

Our matrix Q is invariant under the action of a group G of permutation matrices $P \in G$, in the sense that

$$Q = P^T Q P$$
 for all $P \in G$.

Fixed point subspace:

$$\mathcal{A} := \left\{ Y \in \mathcal{S} \mid Y = \frac{1}{k} \sum_{P \in G} P^T X P, \ X = X^T \right\}.$$

Idea: If X is optimal for the SDP relaxation then so is $\frac{1}{k} \sum_{P \in G} P^T X P$. We can work in the low dimensional subspace A.

We obtained the bound

$$\operatorname{cr}(K_{7,n}) \ge 2.1796n^2 - \frac{9}{2}n.$$

We obtained the bound

$$\operatorname{cr}(K_{7,n}) \ge 2.1796n^2 - \frac{9}{2}n.$$

• This is an improvement on the previous best known bound: $\operatorname{cr}(K_{7,n}) \geq 2.1n^2 + O(n)$.

We obtained the bound

$$\operatorname{cr}(K_{7,n}) \ge 2.1796n^2 - \frac{9}{2}n.$$

- This is an improvement on the previous best known bound: $\operatorname{cr}(K_{7,n}) \geq 2.1n^2 + O(n)$.
- Further implication:

$$cr(K_{m,n}) \ge 0.83Z(m)Z(n)$$
.

We obtained the bound

$$\operatorname{cr}(K_{7,n}) \ge 2.1796n^2 - \frac{9}{2}n.$$

- This is an improvement on the previous best known bound: $\operatorname{cr}(K_{7,n}) \geq 2.1n^2 + O(n)$.
- Further implication:

$$\operatorname{cr}(K_{m,n}) \ge 0.83 Z(m) Z(n).$$

• Previous best:

$$\operatorname{cr}(K_{m,n}) \ge 0.8001 Z(m) Z(n).$$

• D. R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing-number conjecture, *J. Graph Theory* **17**, 657–671, 1993.

- D. R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing-number conjecture, *J. Graph Theory* **17**, 657–671, 1993.
- I. Bomze, E. de Klerk. Solving standard quadratic optimization problems via semidefinite and copositive programming. *J. Global Optimization*, **24(2)**, 163–185, 2002.

- D. R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing-number conjecture, *J. Graph Theory* **17**, 657–671, 1993.
- I. Bomze, E. de Klerk. Solving standard quadratic optimization problems via semidefinite and copositive programming. *J. Global Optimization*, **24(2)**, 163–185, 2002.
- K. Gatermann, P. A. Parrilo, Symmetry groups, semidefinite programs, and sums of squares. http://www.arxiv.org/abs/math.AC/0211450

- D. R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing-number conjecture, *J. Graph Theory* **17**, 657–671, 1993.
- I. Bomze, E. de Klerk. Solving standard quadratic optimization problems via semidefinite and copositive programming. *J. Global Optimization*, **24(2)**, 163–185, 2002.
- K. Gatermann, P. A. Parrilo, Symmetry groups, semidefinite programs, and sums of squares. http://www.arxiv.org/abs/math.AC/0211450
- Preprint with our results available at

www.math.uwaterloo.ca/~edeklerk/publications/