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Crossing numbers in complete bipartite graphs;
Quadratic optimization on the simplex (standard

QP);
Approximating standard QP’s using semidefinite
programming;

Lower bounding the crossing numbers using
standard QP: new results.
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We denote theomplete bipartite graph with
color classes of sizex andn by K, ;..

Progress on Tan’s brick factory problem — p.3/18



We denote theomplete bipartite graph with
color classes of sizex andn by K, ;..

In any drawing off,, ,,, we count the number of
times that two edges cross.

Progress on Tan’s brick factory problem — p.3/18



We denote theomplete bipartite graph with
color classes of sizex andn by K, ;..

In any drawing off,, ,,, we count the number of
times that two edges cross.

The minimum possible number of crossings Is
called thecrossing number of K, ,,, denoted by

Cr( K m)-
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This drawing ofK 3 has3 crossings.
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This drawing ofk’; 3 has no crossings.
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‘Good drawing’: put one color class on the
r-axis, and the other color class on thraxis (no
vertex at the origin).
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‘Good drawing’: put one color class on the
r-axis, and the other color class on thraxis (no
vertex at the origin).

Number of crossings?(n)Z(m), where

2o = (1) 4 (157)
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‘Good drawing’: put one color class on the
r-axis, and the other color class on thraxis (no
vertex at the origin).

Number of crossings?(n)Z(m), where

2o = (1) 4 (157)

Conjecturecr (K,,,) = Z(n)Z(m).

Progress on Tan’s brick factory problem — p.6/18



‘Good drawing’: put one color class on the
r-axis, and the other color class on thraxis (no
vertex at the origin).

Number of crossings?(n)Z(m), where

2o = (1) 4 (157)

Conjecturecr (K,,,) = Z(n)Z(m).

Proven for the casain(m,n) < 6. Casen =7
still open.
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We will show that

0.83Z(n)Z(m) < ¢t (Kpn) < Z(n)Z(m).
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We will show that
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We will show that

0.83Z(n)Z(m) < ¢t (Kpn) < Z(n)Z(m).

Previous result (Kleitman 1970):
0.8Z(n)Z(m) < cr(Ky.,) < Z(n)Z(m),

that follows fromcer (K ,,) = Z(6)Z(n).
Slight improvement t©.8001 (Nahas 2003).
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Let C,,, denote the set of atlyclic orderingson
{1,...,m}. Then|C,,| = (m — 1)L
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a to b. (The first and last numbers are also
neighbours.)
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Let C,,, denote the set of atlyclic orderingson
{1,...,m}. Then|C,,| = (m — 1)L

The distance betweenc C,, andb € C,, I1s the
minimum number of ‘neighbor swaps’ to go form
a to b. (The first and last numbers are also
neighbours.)

Exampled(123,321) = 1, because
123 — 321.
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Let C,,, denote the set of atlyclic orderingson
{1,...,m}. Then|C,,| = (m — 1)L

The distance betweenc C,, andb € C,, I1s the
minimum number of ‘neighbor swaps’ to go form

a to b. (The first and last numbers are also
neighbours.)

Exampled(123,321) = 1, because
123 — 321.

Theantidistance d(a, b) := d(a, b), whereb is
obtained by inverting, e.g:

d(123,123) = d(123,123) = d(123,321) = 1.
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Consider a drawind) of K ,, with color classes

{a, B} and{1, ..., m}.
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Consider a drawind) of K ,, with color classes
{a, B} and{1,... ,m}.

Leta € C), (resp.b € C,,) denote thesyclic,
clockwise order in which the edges leave (resp.

B).
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Consider a drawind) of K ,, with color classes
{a, B} and{1,... ,m}.

Leta € C), (resp.b € C,,) denote thesyclic,
clockwise order in which the edges leave (resp.

B)-
Theorem (Kleitman, 1970): One has

cr(D) > d(a,b).
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This drawingD has c{D) = 0 crossings.

1

123

d(123,321) = d(123,123) = 0 = cr(D).
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This drawingD has c(D) = 3 crossings.
321

1

321

d(321,321) = d(321,123) = 1 < cr(D).
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Consider any drawing of K7, now.
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Denote byr; the number of the vertices that
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Consider any drawing of K7, now.

Denote the elements of; by a;
(t=1,....(7—1)D;

Denote byr; the number of the vertices that
have edge orientatiod;

Now

1 _ 9
CI’(D) > 5 %: d(CLZ', CL]’)I’Z'.I’]' — in
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We get dower bound on cr{ K7,,) via

1 - 9
cr(K7,) > mgjn 5 Z d(a;, a;)rx; — o7

1]

subjecttar; > 0, > .z, =n.
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We get dower bound on cr{ K7,,) via

1 - 9
cr(K7,) > mgjn 5 ; d(a;, a;)rx; — o7
subjecttar; > 0, > .z, =n.
Scale the variables to get
1 - 9
cr(K7,) > min o Z d(a;, a;)r;x; — ok

2Y)

subjecttar; > 0, > .z;=1.
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We want to minimize a non-convex quadratic
function over the simplex witi7 — 1)! = 720
variables.
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variables.

This problem is NP-hard, but allows a PTAS
(Bomze, DK 2002, Nesterov 2003).
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We want to minimize a non-convex quadratic
function over the simplex witi7 — 1)! = 720
variables.

This problem is NP-hard, but allows a PTAS
(Bomze, DK 2002, Nesterov 2003).

We want to use the SDP relaxations that are
based on the approaches of Parrilo and Lasserre.

Problem: the relaxations ar®o large to solven
the naive formulation.

Solution: reduce the problem size by exploiting
the invariance properties of the quadratic
function, a’la Schrijver, Gatermann-Parrilo.
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Our problem is of the form

T

Dmin = min{xTQa: e x =1, :1320},
X

with e the all-ones vector.
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Our problem is of the form

T

Dmin = min{xTQa: e x =1, :CZO},
X

with e the all-ones vector.

Basic relaxation we used:

m}}n {tr(QX) : tr(ee’ X)=1, X =0, X >0},

whereX > 0 meansX positive semidefinite.
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Our matrix( is invariant under the action of a group
G of permutation matrice® € , In the sense that

Q=PQP forall PedG.
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Our matrix( is invariant under the action of a group
G of permutation matrice® € , In the sense that

Q=PQP forall PedG.
Fixed point subspace:

( )

1
A=_YeS|ly==d Plxp X=X}
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Our matrix( is invariant under the action of a group
G of permutation matrice® € , In the sense that

Q=PQP forall PedG.
Fixed point subspace:

( )

1
A=_YeS|ly==d Plxp X=X}

ldea: If X is optimal for the SDP relaxation then so is
% ZPGG P X P. We can work in the low dimensional
subspaced.
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We obtained the bound

cr(Ky,) > 2.1796n* — gn.
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We obtained the bound

9
cr(Ky,) > 2.1796n* — -

This Is an improvement on the previous best
known bound: ctK7,,) > 2.1n* + O(n).
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We obtained the bound

9
cr(Ky,) > 2.1796n* — -

This Is an improvement on the previous best
known bound: ctK7,,) > 2.1n* + O(n).

Further implication:

CH( K n) > 0.83Z(m)Z(n).
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We obtained the bound

9
cr(Ky,) > 2.1796n* — -

This Is an improvement on the previous best
known bound: ctK7,,) > 2.1n* + O(n).

Further implication:
cr(Kmn) > 0.832(m)Z(n).
Previous best:

cr(K,) > 0.8001Z(m)Z(n).
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D. R. Woodall, Cyclic-order graphs and
Zarankiewicz’s crossing-number conjectuie,
Graph Theory 17, 657-671, 1993.

|. Bomze, E. de Klerk. Solving standard
guadratic optimization problems via semidefinite
and copositive programming. Global
Optimization, 24(2), 163-185, 2002.

K. Gatermann, P. A. Parrilo, Symmetry groups,
semidefinite programs, and sums of squares.
http://www.arxiv.org/abs/math.AC/0211450

Preprint with our results available at

www. mat h. uwat er | oo. ca/ ~edekl er k/ publ i cati ons/
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