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Outline
• Crossing numbers in complete bipartite graphs;
• Quadratic optimization on the simplex (standard

QP);
• Approximating standard QP’s using semidefinite

programming;
• Lower bounding the crossing numbers using

standard QP: new results.

Progress on Turán’s brick factory problem – p.2/18



Crossing numbers forKn,m

• We denote thecomplete bipartite graph with
color classes of sizem andn by Kn,m.
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Crossing numbers forKn,m

• We denote thecomplete bipartite graph with
color classes of sizem andn by Kn,m.

• In any drawing ofKn,m we count the number of
times that two edges cross.

• The minimum possible number of crossings is
called thecrossing number of Kn,m denoted by
cr(Kn,m).
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Example
This drawing ofK2,3 has3 crossings.
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Example (ctd.)
This drawing ofK2,3 has no crossings.

Progress on Turán’s brick factory problem – p.5/18



Zarankiewicz conjecture
• ‘Good drawing’: put one color class on the

x-axis, and the other color class on they-axis (no
vertex at the origin).
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Zarankiewicz conjecture
• ‘Good drawing’: put one color class on the

x-axis, and the other color class on they-axis (no
vertex at the origin).

• Number of crossings:Z(n)Z(m), where

Z(n) :=

(

b1

2
nc
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)

+

(

d1
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)

• Conjecture:cr(Km,n) = Z(n)Z(m).

• Proven for the casemin(m, n) ≤ 6. Casem = 7
still open.
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This talk
• We will show that

0.83Z(n)Z(m) ≤ cr(Km,n) ≤ Z(n)Z(m).
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This talk
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This talk
• We will show that

0.83Z(n)Z(m) ≤ cr(Km,n) ≤ Z(n)Z(m).

• Previous result (Kleitman 1970):

0.8Z(n)Z(m) ≤ cr(Km,n) ≤ Z(n)Z(m),

that follows fromcr(K6,n) = Z(6)Z(n).

• Slight improvement to0.8001 (Nahas 2003).
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Cyclic orders
• Let Cm denote the set of allcyclic orderingson
{1, . . . , m}. Then|Cm| = (m − 1)!.
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Cyclic orders
• Let Cm denote the set of allcyclic orderingson
{1, . . . , m}. Then|Cm| = (m − 1)!.

• The distance betweena ∈ Cm andb ∈ Cm is the
minimum number of ‘neighbor swaps’ to go form
a to b. (The first and last numbers are also
neighbours.)

• Exampled(123, 321) = 1, because

123 → 321.

• Theantidistance d̄(a, b) := d(a, b̄), wherēb is
obtained by invertingb, e.g:

d̄(123, 123) = d(123, 123) = d(123, 321) = 1.
Progress on Turán’s brick factory problem – p.8/18



A lower bound
• Consider a drawingD of K2,m with color classes
{α, β} and{1, . . . , m}.
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clockwise order in which the edges leaveα (resp.
β).
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A lower bound
• Consider a drawingD of K2,m with color classes
{α, β} and{1, . . . , m}.

• Let a ∈ Cm (resp.b ∈ Cm) denote thecyclic,
clockwise order in which the edges leaveα (resp.
β).

• Theorem (Kleitman, 1970): One has

cr(D) ≥ d̄(a, b).
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Example 1
This drawingD has cr(D) = 0 crossings.

d̄(123, 321) = d(123, 123) = 0 = cr(D).
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Example 2
This drawingD has cr(D) = 3 crossings.

d̄(321, 321) = d(321, 123) = 1 < cr(D).
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The caseK7,n (m = 7)
• Consider any drawingD of K7,n now.
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The caseK7,n (m = 7)
• Consider any drawingD of K7,n now.
• Denote the elements ofC7 by ai

(i = 1, . . . , (7 − 1)!);
• Denote byxi the number of then vertices that

have edge orientationai;
• Now

cr(D) ≥
1

2

∑

i,j

d̄(ai, aj)xixj −
9

2
n.
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Standard quadratic opt.
We get alower bound on cr(K7,n) via

cr(K7,n) ≥ min
x

1

2

∑

i,j

d̄(ai, aj)xixj −
9

2
n

subject toxi ≥ 0,
∑

i xi = n.
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Standard quadratic opt.
We get alower bound on cr(K7,n) via

cr(K7,n) ≥ min
x

1

2

∑

i,j

d̄(ai, aj)xixj −
9

2
n

subject toxi ≥ 0,
∑

i xi = n.

Scale the variables to get

cr(K7,n) ≥ min
x

1

2
n2

∑

i,j

d̄(ai, aj)xixj −
9

2
n

subject toxi ≥ 0,
∑

i xi = 1.
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Standard QO
• We want to minimize a non-convex quadratic

function over the simplex with(7 − 1)! = 720
variables.
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• This problem is NP-hard, but allows a PTAS
(Bomze, DK 2002, Nesterov 2003).
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Standard QO
• We want to minimize a non-convex quadratic

function over the simplex with(7 − 1)! = 720
variables.

• This problem is NP-hard, but allows a PTAS
(Bomze, DK 2002, Nesterov 2003).

• We want to use the SDP relaxations that are
based on the approaches of Parrilo and Lasserre.

• Problem: the relaxations aretoo large to solvein
the naive formulation.

• Solution: reduce the problem size by exploiting
the invariance properties of the quadratic
function, a’la Schrijver, Gatermann-Parrilo.
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The basic relaxation
Our problem is of the form

pmin := min
x

{

xTQx : eTx = 1, x ≥ 0
}

,

with e the all-ones vector.
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The basic relaxation
Our problem is of the form

pmin := min
x

{

xTQx : eTx = 1, x ≥ 0
}

,

with e the all-ones vector.

Basic relaxation we used:

min
X

{

tr(QX) : tr
(

eeTX
)

= 1, X º 0, X ≥ 0
}

,

whereX º 0 meansX positive semidefinite.
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Exploiting group symmetry
Our matrixQ is invariant under the action of a group
G of permutation matricesP ∈ G, in the sense that

Q = P TQP for all P ∈ G.
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Our matrixQ is invariant under the action of a group
G of permutation matricesP ∈ G, in the sense that

Q = P TQP for all P ∈ G.

Fixed point subspace:

A :=

{

Y ∈ S | Y =
1
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P∈G

P TXP, X = XT
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Exploiting group symmetry
Our matrixQ is invariant under the action of a group
G of permutation matricesP ∈ G, in the sense that

Q = P TQP for all P ∈ G.

Fixed point subspace:

A :=

{

Y ∈ S | Y =
1

k

∑

P∈G

P TXP, X = XT

}

.

Idea: If X is optimal for the SDP relaxation then so is
1

k

∑

P∈G P TXP . We can work in the low dimensional

subspaceA.
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Results
• We obtained the bound

cr(K7,n) ≥ 2.1796n2 −
9

2
n.
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Results
• We obtained the bound

cr(K7,n) ≥ 2.1796n2 −
9

2
n.

• This is an improvement on the previous best
known bound: cr(K7,n) ≥ 2.1n2 + O(n).

• Further implication:

cr(Km,n) ≥ 0.83Z(m)Z(n).

• Previous best:

cr(Km,n) ≥ 0.8001Z(m)Z(n).
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Further reading
• D. R. Woodall, Cyclic-order graphs and

Zarankiewicz’s crossing-number conjecture,J.
Graph Theory 17, 657–671, 1993.
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Further reading
• D. R. Woodall, Cyclic-order graphs and

Zarankiewicz’s crossing-number conjecture,J.
Graph Theory 17, 657–671, 1993.

• I. Bomze, E. de Klerk. Solving standard
quadratic optimization problems via semidefinite
and copositive programming.J. Global
Optimization, 24(2), 163–185, 2002.

• K. Gatermann, P. A. Parrilo, Symmetry groups,
semidefinite programs, and sums of squares.
http://www.arxiv.org/abs/math.AC/0211450

• Preprint with our results available at
www.math.uwaterloo.ca/~edeklerk/publications/
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